
 

 
 
 
 
 

Wang, S., Lin, Z., Cao, Q., Cen, Y. and Chen, Y. (2023) Bi-nuclear tensor Schatten-p 

norm minimization for multi-view subspace clustering. IEEE Transactions on Image 

Processing, (doi: 10.1109/TIP.2023.3293764). 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

https://eprints.gla.ac.uk/303031/ 
      

 
 
 
 
 
 

Deposited on: 14 July 2023 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

https://eprints.gla.ac.uk  

  

https://eprints.gla.ac.uk/303031/
https://eprints.gla.ac.uk/


Bi-Nuclear Tensor Schatten-p Norm Minimization
for Multi-view Subspace Clustering

Shuqin Wang, Zhiping Lin, Senior Member, IEEE, Qi Cao, Yigang Cen and Yongyong Chen, Member, IEEE

Abstract—Multi-view subspace clustering aims to integrate
the complementary information contained in different views to
facilitate data representation. Currently, low-rank representation
(LRR) serves as a benchmark method. However, we observe that
these LRR-based methods would suffer from two issues: limited
clustering performance and high computational cost since (1) they
usually adopt the nuclear norm with biased estimation to explore
the low-rank structures; (2) the singular value decomposition of
large-scale matrices is inevitably involved. Moreover, LRR may
not achieve low-rank properties in both intra-views and inter-
views simultaneously. To address the above issues, this paper
proposes the Bi-nuclear tensor Schatten-p norm minimization
for multi-view subspace clustering (BTMSC). Specifically, BTMSC
constructs a third-order tensor from the view dimension to
explore the high-order correlation and the subspace structures
of multi-view features. The Bi-Nuclear Quasi-Norm (BiN) fac-
torization form of the Schatten-p norm is utilized to factorize
the third-order tensor as the product of two small-scale third-
order tensors, which not only captures the low-rank property
of the third-order tensor but also improves the computational
efficiency. Finally, an efficient alternating optimization algorithm
is designed to solve the BTMSC model. Extensive experiments
with ten datasets of texts and images illustrate the performance
superiority of the proposed BTMSC method over state-of-the-art
methods.

Index Terms—Multi-view subspace clustering, low-rank repre-
sentation, tensor factorization, Schatten-p norm

I. INTRODUCTION

DUE to the popularity of multi-view data and the difficulty

of acquiring label information, multi-view clustering has

been widely used in unsupervised knowledge discovery to au-

tomatically find underlying correlations [1], [2]. For example,

one person may be identified by several different features,

such as face poses, pedestrian walking postures and palm-

print images. Various visual descriptors, such as local binary

patterns, scale-invariant feature transform and histogram of
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oriented gradients, have been adopted to extract corresponding

visual features for some specific tasks, such as recognition and

detection. Researchers have long been working on different

types of approaches for multi-view clustering. Among them,

multi-view subspace clustering has attracted much attention.

The core of multi-view subspace clustering is how to

build an intrinsic matrix to capture both the consistent and

complementary principles of multiple views [3], [4]. One

direct way is to adopt the cosine or heat kernel methods [5]

to compute the pair-wise distances on the raw data without

considering the noise disturbance. Furthermore, the kernel-

based methods [6], [7] are limited to the predefined kernel

and the corresponding parameters. Towards this issue, low-

rank representation (LRR) [8] and sparse subspace clustering

(SSC) [9] are proposed to overcome the noise interference

with the basic assumption that data can be linearly represented

by samples belonging to the same subspace. Many multi-

view subspace clustering methods based on LRR have been

proposed [10]–[13]. In terms of the construction form of

self-representation coefficients, these methods can be divided

into matrix representation [10], [11] and tensor representation

methods [12], [13]. Matrix-based methods only explore the

pair-wise correlation between views by processing each self-

representation matrix or their fusion matrices separately, and

ignore the correlation among views. Note that tensor-based

methods commonly construct a third-order tensor to explore

high-order correlation of multiple views.

Technically, the aforementioned multi-view subspace clus-

tering methods utilize the nuclear norm to describe the low-

rank property of a similarity matrix. However, there are two

common limitations for the above methods: (1) the nuclear

norm is the convex approximation of the rank function yet the

biased estimation. To alleviate the bias of the nuclear norm, a

large number of researchers [14]–[17] borrowed the nonconvex

functions to further improve the approximation performance of

the rank function, which is termed as nonconvex approxima-

tion. However, nonconvex approximation methods have non-

convex, nonsmooth and non-Lipschitz problems. Fortunately,

the factorization form of the nonconvex Schatten-p norm is

proved to be tractable [18]. (2) the high computational cost of

each iteration has greatly limited their practical applicability

since each iteration involves singular value decomposition

(SVD) of large-scale matrices. To improve efficiency, Sun

and Wang et al. [19], [20] applied anchor to represent the

actual latent data distribution, which is essentially a matrix

factorization-based method. Although the matrix factorization-

based clustering methods [21]–[23] effectively reduce the

computational complexity, they fail to closely combine the



multi-view matrix factorization with the essential structure of 
the view, resulting in unsatisfactory performance.

To overcome the above mentioned limitations, in this paper, 
we aim to design a multi-view subspace clustering method 
to achieve both clustering performance and computational 
efficiency. We propose the Bi-nuclear t ensor Schatten-p norm 
minimization for multi-view subspace clustering (BTMSC). To 
be specific, to s imultaneously explore the consistent principle 
and the complementary principle (i.e., high-order correlation) 
of multi-view features, BTMSC constructs the third-order 
tensor from the view dimension. BTMSC utilizes the noncon-

vex Schatten-p norm and its Bi-Nuclear Quasi-Norm (BiN) 
factorization form instead of the nuclear norm to factorize 
the tensor into the product of two small-scale tensors, which 
not only reduces the computational complexity, but also better 
preserves the global low-rank structure information of multiple 
views. Consequently, the learned similarity matrix from the 
third-order tensor could accurately represent the latent data 
distribution. An efficient algorithm with seven subproblems is 
derived by the alternating direction method of multipliers. The 
main contributions of this paper are summarized as follows:

• To overcome the biased estimation and high compu-

tational cost of LRR-based methods, we propose the

Bi-nuclear tensor Schatten-p norm minimization for

multi-view subspace clustering (BTMSC). The proposed

method combines the nonconvex low-rank constraint and

tensor factorization to reduce the computational complex-

ity and improve the clustering performance.

• Instead of the coefficient construction form of matrix rep-

resentation, BTMSC strengthens the correlation among

multiple views by constructing the self-representation

matrices as a tensor along the view dimension. Simul-

taneously, BTMSC uses the factorized Bi-Nuclear Quasi-

Norm (BiN) of Schatten-p norm as the rank relaxation to

find a more robust low-dimensional subspace accurately

and efficiently.

• We design an efficient iterative algorithm by the al-

ternating direction method of multipliers to solve the

resultant optimization problem and validate the cluster-

ing performance of the proposed method on ten real

datasets. Comprehensive experiments demonstrate that

the proposed BTMSC significantly outperforms state-of-

the-art methods in clustering accuracy and computational

efficiency.

The remainder of this paper is organized as follows. Some

subspace clustering and matrix factorization-based clustering

methods are reviewed in Section II. Section III shows some

notations and preliminaries of Schatten-p norm and tensor.

The proposed BTMSC method and its optimization process

are described in Section IV. Section V shows the theoretical

convergence of the proposed BTMSC method. We conduct the

clustering experiments and model analysis on some datasets

in Section VI. The conclusions of this paper are summarized

in Section VII.

II. RELATED WORK

In this section, we briefly review subspace clustering and

matrix factorization-based clustering methods related to our

proposed method. The nonnegative matrix factorization (NMF)

methods are often used to find a low-rank approximation by

the product of two nonnegative matrices. Given the feature

matrix X = [x1, x2, · · · , xN ] ∈ Rd×N , each column of which

is a d dimensional sample and N is the number of samples.

Let X ≈ UV T , the objective function of the standard NMF

model based on Frobenius norm ‖·‖F =
√∑

ij x
2
ij is defined

as

min
U≥0,V≥0

‖X − UV T ‖2F , (1)

where U = [u1, u2, · · · , uk] ∈ Rd×k, V = [v1, v2, · · · , vk] ∈
RN×k. Currently, many studies apply NMF to clustering

as a dimensionality reduction method. For example, Cai et
al. [24] proposed the graph regularized nonnegative matrix

factorization (GNMF) method, which incorporates manifold

structure into NMF to explore the intrinsic geometric struc-

ture of the data. Peng et al. [22] integrated robust principal

component analysis and GNMF into a unified framework,

enhancing the ability to recover the nonlinear structure of data.

Another matrix factorization strategy is to factorize the matrix

nuclear norm into the product of two or three small-scale

matrices [25]. Liu et al. [26] proposed an efficient matrix tri-

factorization method for single-view clustering. For multi-view

data with M views: X(v) = [x
(v)
1 , x

(v)
2 , · · · , x(v)

N ] ∈ Rd(v)×N ,

Guo et al. [27] proposed the rank consistency induced multi-

view clustering by matrix tri-factorization. To preserve the

local manifold structure, Wang et al. [28] develop a struc-

tural low-rank matrix factorization method. However, matrix

factorization-based clustering methods often suffer from out-

liers or noise sensitivity [22].

Subspace clustering methods [29] divide the original feature

space into low-dimensional subspaces and use different regu-

larization terms to learn a similarity matrix with some specific

prior structures. Typical examples are LRR [8], SSC [9] for

single-view clustering and the works in [3], [12], [13] for

multi-view clustering. Existing LRR-based clustering methods

often use the nuclear norm to approximate the rank function

to avoid the NP-hard problem. Taking multi-view data as an

example, the feature matrix of each view is expressed under

the self-representation technique as: X(v) = X(v)Z(v)+E(v),

where Z(v) ∈ R
N×N is the corresponding self-representation

matrix; E(v) denotes outliers or noise. To reveal the common

latent subspace shared by multiple views, the LRR-based

multi-view subspace clustering methods are developed with

their general model is shown in the following formulation:

min
Z(v),E(v)

‖Z(v)‖∗ + λ‖E(v)‖l
s.t. X(v)=X(v)Z(v)+E(v), v = 1, · · · ,M,

(2)

where ‖ · ‖∗ denotes the nuclear norm (i.e., sum of singular

values of a matrix); ‖ · ‖l means coding noise, which is for

different types of noise and the sample-specific noise is mainly

encoded by l2,1 in the clustering task.

LRR-based multi-view subspace clustering methods are

mainly divided into matrix representation [11], [30]–[32] and

tensor representation [3], [12], [13], [33] methods. The former

methods either fuse all self-representation matrices learned



from each view individually or discover one shared self-

representation matrix. For example, the work in [11] learned 
a low-rank and sparse representation for each view while the 
work in [32] uncovered a shared low-rank representation. With 
the increase of the number and dimensions of views, it is much 
important to make full use of view information. The latter 
methods utilized the tensor representation to obtain high-order 
correlation among multiple views. For example, prior works 
[3], [12], [13], [33] constructed a tensor by storing all self-

representation matrices with the low-rank constraint. All these 
above-mentioned methods are based on the matrix nuclear 
norm or tensor nuclear norm. However, the nuclear norm is a 
biased estimation of the rank function and computes the time-

consuming SVD at each iteration inevitably [34]. Fortunately, 
the low-rank performance of the nonconvex approximation 
methods, such as weighted nuclear norm [14], truncated 
nuclear norm [15], Logdet rank [16], gamma-norm [17] are 
proven to be superior to the nuclear norm. In particular, the 
Schatten-p norm [35], [36] is equivalent to the nuclear norm 
if p = 1. When 0 < p < 1, the Schatten-p norm is a 
nonconvex approximation of the rank function. However, the 
introduction of nonconvex functions cannot overcome the high 
computational complexity for large-scale data. Fortunately, the 
work in [18] has proved that the Schatten-p norm has an 
equivalent matrix factorization form when p = 1/2, which 
transforms a large-scale matrix calculation into smaller factor 
matrix calculations. Therefore, the BiN factorization form of 
the Schatten-1/2 norm could guarantee the performance and 
efficiency of the low-rank approximation. The factorability of 
BiN not only reduces the computational complexity, but also 
makes each subproblem a convex optimization problem, which 
is defined i n Section III.

III. NOTATIONS AND PRELIMINARIES

In this section, we give the definition o f t he nonconvex 
Schatten-p norm and its BiN factorization form, as well as the 
relevant knowledge of the tensor nuclear norm. The nonconvex 
Schatten-p norm (0 < p < 1) of matrix X ∈ Rm×n is defined 
as

‖X‖Sp �
( n∑

i=1

σp
i (X)

)1/p

, (3)

where σi(X) represents the i-th singular value of X . The work

in [37] has proved that when the rank number is larger, the

nonconvex Schatten-p norm (0 < p < 1) is better than the

nuclear norm. To further reduce the computational complexity,

we introduce the BiN [18] of Schatten-p norm (p = 1/2) to

explore the global low-rank structure information of multiple

views.

Definition 1. [18] For any matrix X ∈ Rm×n with
rank(X) = r ≤ k, we can factorize it into two smaller
matrices U ∈ Rm×k and V ∈ Rn×k such that X = UV T .
Then the BiN of X is defined as

‖X‖BiN � min
X=UV T

‖U‖∗‖V ‖∗ (4)

Property 1. [18] For any matrix X ∈ Rm×n with
rank(X) = r ≤ k, the following holds:

‖X‖BiN = min
X=UV T

‖U‖∗‖V ‖∗ = min
X=UV T

‖U‖2∗ + ‖V ‖2∗
2

= min
X=UV T

(‖U‖∗ + ‖V ‖∗
2

)2

= ‖X‖S1/2
.

(5)

For a third-order tensor X ∈ Rn1×n2×n3 , the tensor nuclear

norm based on tensor SVD (t-SVD) is defined as:

‖X‖� =

min(n1,n2)∑
i=1

n3∑
k=1

S̄(i, i, k), (6)

where S̄ is the Fourier transform of S along the third dimen-

sion, denoted as S̄ = fft(S, [], 3). S denotes an f-diagonal

tensor obtained by the t-SVD.

Definition 2. (f-Diagonal Tensor): A tensor is called f-
diagonal if each of its frontal slices is diagonal matrix.

Definition 3. (t-SVD): Let X ∈ Rn1×n2×n3 , its t-SVD is
defined as

X = A ∗ S ∗ BT , (7)

where A ∈ Rn1×n1×n3 and B ∈ Rn2×n2×n3 are orthogonal
tensors, S ∈ Rn1×n2×n3 denotes an f-diagonal tensor.

IV. THE PROPOSED BTMSC

Most current methods obtain the self-representation matrix

Z(v) through the rank approximation learning based on nuclear

norm in Eq. (2) and then use the similarity matrix C =
1
M

∑M
v=1(|Z(v)|+ |Z(v)T |) as the input of spectral clustering

to obtain the clustering result. However, the definition and

solution of nuclear norm suffer from the difficulties in biased

estimation and high computational complexity. To address the

above two limitations, we consider the nonconvex function

i.e., nonconvex Schatten-p norm and its BiN factorization form

instead of the nuclear norm to approximate the rank function.

The model using the nonconvex Schatten-p norm instead of

the nuclear norm in Eq. (2) is as follows:

min
Z(v),E(v)

‖Z(v)‖pSp
+ λ‖E(v)‖l

s.t. X(v)=X(v)Z(v)+E(v),

Z(v)=U (v)V (v)T , v = 1, · · · ,M.

(8)

According to Property 1, ‖Z(v)‖1/2S1/2
is equivalent to

‖Z(v)‖1/2BiN . To reduce the computational complexity, Eq. (8)

can be transformed into the following BiN-based model:

min
Z(v),E(v),U(v),V (v)

1

2

(‖U (v)‖∗ + ‖V (v)‖∗
)
+ λ‖E(v)‖l

s.t. X(v)=X(v)Z(v)+E(v),

Z(v)=U (v)V (v)T , v = 1, · · · ,M,

(9)

where min
Z(v)=U(v)V (v)T

1
2

(‖U (v)‖∗ + ‖V (v)‖∗
)
= ‖Z(v)‖1/2BiN ,

U (v) ∈ RN×k and V (v) ∈ RN×k, k is the upper bounding of

the rank(Z(v)).
Inspired by the great success of tensor representation meth-

ods [3], [12], [13], we consider tensorizing all Z(v) into tensor



Z ∈ RN×N×M . The BiN factorizes the self-representation 
tensor Z into U ∗ VT , which not only describes the low-rank 
property but also further reduces the computational complexity 
by optimizing the tensors with small dimensions. Tensors U 
and V are with dimensions as N ×k×M , where k is the upper 
bounding of the rank(Z). The proposed BTMSC model is 
shown as follows:

min
U,V,Z,E1,E2

1

2

(‖U‖� + ‖V‖�
)
+ λ1‖E1‖2,1 + λ2‖E2‖2F

s.t. X(v)=X(v)Z(v)+E
(v)
1 , v = 1, · · · ,M,

Z = U ∗ VT + E2,
E1 =

[
E

(1)
1 ;E

(2)
1 ; · · · ;E(M)

1

]
,

Z=Φ(Z(1), Z(2), · · · , Z(M)),
(10)

where ‖ · ‖� denotes the tensor nuclear norm in Eq. (6). λ1

and λ2 are the trade-off parameters. E1 represents noise em-

bedding in multi-view features, which is yielded by vertically

concatenating all noise matrix E
(v)
1 of views. Tensor E2 is

the error term between Z and U ∗ VT . Z(v) represents the

noise-free matrix and is constructed as Z by operator Φ(·).

• BTMSC reduces the computational complexity by Z =
U ∗ VT + E2, and uses tensor nuclear norm based on t-

SVD to describe the low-rank property of U and V . The

tensor rank is the sum of the tensor singular values in

the Fourier domain. Unlike existing tensor-based multi-

view subspace clustering methods [3], [13], [17] which

imposed the low-rank constraint on tensor Z with size

of N ×N ×M , our BTMSC imposes the tensor nuclear

norm on U and V with size of N × k ×M .

• Eq. (10) models the sample-specific corruptions noise

term E1 with l2,1 norm (
∑

i

√∑
j x

2
ij) to force columns

of E1 to be closer to zero.

• Tensor E2 is constrained by Frobenius norm to satisfy the

minimum loss condition according to Eq. (1).

After obtaining the minimizer Z(v), we use the similarity

matrix C to obtain the clustering results of the original data

X(v).

We introduce auxiliary variables M and N into Eq. (10) to

make variables U and V separable, leading to the following

optimization model:

min
M,N ,U,V,Z,E1,E2

1

2

(‖M‖� + ‖N‖�
)
+ λ1‖E1‖2,1 + λ2‖E2‖2F

s.t. X(v)=X(v)Z(v)+E
(v)
1 , v = 1, · · · ,M,

Z = U ∗ VT + E2,
E1 =

[
E

(1)
1 ;E

(2)
1 ; · · · ;E(M)

1

]
,

Z=Φ(Z(1), Z(2), · · · , Z(M)),
U = M, V = N .

(11)

Meanwhile, we observe that it is not jointly convex when

updating all variables simultaneously. Thus, we solve Eq. (11)

by the alternating direction method of multipliers, and the

corresponding Lagrangian function is shown as follows:

L(M,N ,U ,V,Z, E1, E2) = 1

2

(‖M‖� + ‖N‖�
)
+ λ1‖E1‖2,1

+ λ2‖E2‖2F +
ρ

2
‖Z − U ∗ VT − E2 + Y2

ρ
‖2F

+
M∑
v=1

(ρ
2
‖X(v) −X(v)Z(v) − E

(v)
1 +

Y
(v)
1

ρ
‖2F

)
+

ρ

2
‖U −M+

Y3

ρ
‖2F +

ρ

2
‖V − N +

Y4

ρ
‖2F ,

(12)

where the augmented Lagrangian function is constructed from

the objective function and the penalty term with the l2 norm

constraint. Y1, Y2, Y3 and Y4 represent the Lagrange multi-

pliers; ρ denotes the penalty parameter.

We solve Eq. (12) according to an iterative mechanism.

Specifically, we can update each variable while keeping others

fixed.

M and N -subproblems: We first fix variables

N ,U ,V,Z, E1, E2 and solve the optimization problem

of M by Eq. (13).

Mt+1 = argmin
M

1

2
‖M‖� +

ρt
2
‖Ut −M+

Y3t

ρt
‖2F . (13)

Similar to the M-subproblem, the N -subproblem is as

follows:

Nt+1 = argmin
N

1

2
‖N‖� +

ρt
2
‖Vt −N +

Y4t

ρt
‖2F . (14)

Due to M < k, we rotate M ∈ RN×k×M and N ∈
RN×k×M to M̃ ∈ RN×M×k and Ñ ∈ RN×M×k to reduce

the computational complexity of SVD. Then, the optimization

problems in Eq. (13) and Eq. (14) can be solved by the tensor

tubal-shrinkage operator [3], as shown in Eq. (15) and Eq.

(16).

M̃t+1 = C k
2ρt

(FM) = AM ∗ C k
2ρt

(SM) ∗ BT
M, (15)

Ñt+1 = C k
2ρt

(FN ) = AN ∗ C k
2ρt

(SN ) ∗ BT
N , (16)

where FM = Ut +
Y3t

ρt
= AM ∗ SM ∗ BT

M and FN =

Vt + Y4t

ρt
= AN ∗ SN ∗ BT

N . C k
2ρt

(SM) = SM ∗
diag{max(S̄(j)

M (i, i) − k
2ρt

, 0)} and C k
2ρt

(SN ) = SN ∗
diag{max(S̄(j)

N (i, i)− k
2ρt

, 0)}. S̄M = fft(SM, [], 3), S̄N =
fft(SN , [], 3) and j = 1, 2, · · · , k.

Z-subproblem: To solve subproblem Z , variables

M,N ,U ,V, E1, E2 are fixed in the augmented Lagrangian

function. We find that all terms are based on the Frobenius

norm with respect to Z , which makes all frontal slices of Z
independent. Thus, we can solve Z slice-by-slice from the

frontal side by minimizing Eq. (17):

Z
(v)
t+1 = argmin

Z(v)

ρt
2
‖X(v) −X(v)Z(v) − E

(v)
1t +

Y
(v)
1t

ρt
‖2F

+
ρt
2
‖Z(v) − U

(v)
t V

(v)T
t − E

(v)
2t +

Y
(v)
2t

ρt
‖2F .

(17)



t+1

Different from the solutions of Eq. (13) and Eq. (14), by 
differentiating the Eq. (17) with respect to Z(v) and making 
it equal to zero, the closed-form solution for Z(v) 

can be
obtained as follows:

Z
(v)
t+1 =

(
I +X(v)TX(v)

)−1

× (
X(v)TX(v) −X(v)TE

(v)
1t

+X(v)T Y
(v)
1t

ρt
+ U

(v)
t V

(v)T

t + E
(v)
2t +

Y
(v)
2t

ρt

)
,

(18)

where I denotes the identity matrix with proper size.

U and V-subproblems: Similarly, the subproblems of up-

dating U and V can also be obtained by fixing other variables.

We write them as follows:

[Ut+1,Vt+1] = argmin
U,V

ρt
2
‖Zt+1 − U ∗ VT − E2t + Y2t

ρt
‖2F+

ρt
2
‖U −Mt+1 +

Y3t

ρt
‖2F +

ρt
2
‖V − Nt+1 +

Y4t

ρt
‖2F .

(19)

Same to Z-subproblem, all terms are based on the Frobenius

norm with respect to U and V , which makes all frontal slices of

U and V independent. It is also beneficial to parallel compute

U and V to improve the running efficiency. Subsequently, we

can solve U and V slice-by-slice from the frontal side, whose

v-th slice is updated by:

[U
(v)
t+1, V

(v)
t+1] = arg min

U(v),V (v)

ρt
2

(‖Z(v)
t+1 − U (v)V (v)T − E

(v)
2t +

Y
(v)
2t

ρt
‖2F + ‖U (v) −M

(v)
t+1 +

Y
(v)
3t

ρt
‖2F + ‖V (v) −N

(v)
t+1 +

Y
(v)
4t

ρt
‖2F

)
.

(20)

By setting the derivative of Eq. (20) to zero, we obtain the

closed-form solutions of U (v) and V (v) as follows:

U
(v)
t+1 =

((
Z

(v)
t+1 − E

(v)
2t +

Y
(v)
2t

ρt

)
V

(v)
t +M

(v)
t+1 −

Y
(v)
3t

ρt

)
×
(
V

(v)T
t V

(v)
t + I

)−1

,

(21)

V
(v)
t+1 =

((
Z

(v)
t+1 − E

(v)
2t +

Y
(v)
2t

ρt

)T
U

(v)
t+1 +N

(v)
t+1 −

Y
(v)
4t

ρt

)
×
(
U

(v)T
t+1 U

(v)
t+1 + I

)−1

.

(22)

E1 and E2-subproblems: According to Eq. (12), with other

variables fixed, we write the corresponding subproblems of E1

and E2 as follows:

E1t+1 = argmin
E1

λ1‖E1‖2,1 + ρt
2
‖E1 −Dt‖2F , (23)

E2t+1 = argmin
E2

λ2‖E2‖2F +
ρt
2
‖Zt+1 − Ut+1VT

t+1

− E2 + Y2t

ρt
‖2F

)
,

(24)

where Dt is constructed by vertically concatenating {X(v) −
X(v)Z

(v)
t+1 +

Y
(v)
1t

ρt
} along the column. The j-th column of

optimal solution E1t+1 can be obtained by Eq. (25).

E1t+1(:, j) =

⎧⎨
⎩

‖Dt(:,j)‖2−λ1
ρt

‖Dt(:,j)‖2
Dt(:, j), if λ1

ρt
< ‖Dt(:, j)‖2;

0, otherwise.
(25)

The closed-form solution of E2t+1 is obtained by setting the

derivative with respect to E2 to zero as shown in Eq. (26).

E2t+1 =
(
2λ2 + ρt)

−1 × ρt(Zt+1 − Ut+1 ∗ VT
t+1 +

Y2t

ρt

)
.

(26)

The Lagrange multipliers Y1,Y2,Y3,Y4 and penalty param-

eter ρ are updated by Eq. (27)-Eq. (31).

Y
(v)
1t+1 = Y

(v)
1t + ρt(X

(v) −X(v)Z
(v)
t+1 − E

(v)
1t+1); (27)

Y2t+1 = Y2t + ρt(Zt+1 − Ut+1 ∗ VT
t+1 − E2t+1); (28)

Y3t+1 = Y3t + ρt(Ut+1 −Mt+1); (29)

Y4t+1 = Y4t + ρt(Vt+1 −Nt+1); (30)

ρt+1 = min{β ∗ ρt, ρmax}, (31)

where β is used to accelerate the convergence speed. Algo-

rithm 1 shows the whole process of the proposed BTMSC.

Algorithm 1 : BTMSC for multi-view subspace clustering

Input: multi-view features {X(v), v = 1, 2, · · · ,M}; param-

eter λ1, λ2, k;

Initialize: M, N , E2, E1, Y2, Y3, Y4 initialized to 0; Z(v)

= V (v) = Y
(v)
1 = 0, U (v) = IN×k, v = 1, · · · ,M ; ρ =

10−5, β = 2, ρmax = 1010, tol = 10−7;

1: while not converged do
2: Update Mt+1 according to Eq. (15);

3: Update Nt+1 according to Eq. (16);

4: for v = 1 to M do
5: Update Z

(v)
t+1 according to Eq. (18);

6: Update U
(v)
t+1 and V

(v)
t+1 according to Eq. (21) and Eq.

(22);

7: end for
8: Update E1t+1 and E2t+1 according to Eq. (25) and Eq.

(26);

9: Update Y
(v)
1t+1,Y2t+1,Y3t+1,Y4t+1 and ρt+1 according

to Eqs. (27), (28), (29), (30) and (31);

10: Check the convergence conditions:

max

{
‖X(v) −X(v)Z(v) − E

(v)
1 ‖∞,

‖Z − U ∗ VT − E2‖∞

}
≤ tol

11: end while
Output: Z

(v)
t+1.

V. CONVERGENCE ANALYSIS

We first introduce several lemmas and then show the theo-

retical convergence of the proposed BTMSC.

Lemma 1. The sequences {Mt Nt,Ut,Vt,Zt, E1t, E2t} and
Yt = {Y1t,Y2t,Y3t,Y4t} are bounded if Y2t is bounded and
∞∑
t=1

(ρt + ρt−1)/(ρt−1)
2 < ∞.

Proof. The optimal Mt+1,Nt+1, E1t+1 satisfy the first-order

optimality condition, i.e.,



TABLE I
COMPLEXITY OF THE COMPARED METHODS

Method DiMSC LT-MSC ECMSC tSVDMSC ETLMSC LMSC BTMSC

Cost O(TMN3) O(TMN3) O(T +M)N3 O(MN3 + TMN2log(N)) O(MN3 + TMN2log(N)) O(TMN3) O((MN3 + 2TMNklog(k))

0 ∈ ∂MLρt(Mt+1,Nt+1,Ut+1,Vt+1,Zt+1, E1t+1, E2t+1)

=
1

2
∂M‖M‖� − Y3t − ρt(Ut+1 −Mt+1)

=
1

2
∂M‖M‖� − Y3t+1.

(32)

0 ∈ ∂NLρt
(Mt+1,Nt+1,Ut+1,Vt+1,Zt+1, E1t+1, E2t+1)

=
1

2
∂N ‖N‖� − Y4t − ρt(Vt+1 −Nt+1)

=
1

2
∂N ‖N‖� − Y4t+1.

(33)

0 ∈ ∂E1
Lρt

(Mt+1,Nt+1,Ut+1,Vt+1,Zt+1, E1t+1, E2t+1)

= ∂E1(λ1‖E1‖2,1)−
M∑
v=1

(
Y

(v)
1t + ρt(X

(v) −X(v)Z
(v)
t+1 − E

(v)
1t+1)

)

= ∂E1
(λ1‖E1‖2,1)−

M∑
v=1

Y
(v)
1t+1

(34)

According to Lemma 2, we can obtain ‖Y3t+1‖2 ≤ 1
2 ,

‖Y4t+1‖2 ≤ 1
2 .

Lemma 2. Let H be a real Hilbert space endowed with an
inner product, and a nuclear norm, and y ∈ ∂‖x‖. Then the
dual norm of the nuclear norm ‖y‖2 = 1 if x �= 0, and ‖y‖2 ≤
1 if x = 0.

The ∂E1(λ1‖E1‖2,1) is bounded according to Eq. (35).

Thus, Y
(v)
1t+1 is bounded.

∂E1
(‖E1‖2,1) =

{
0, if ‖E1t+1(:, l)‖2 = 0

E1t+1(:,l)
‖E1t+1(:,l)‖2

, otherwise.
(35)

By the iterative mechanism of Lagrangian function, we have

Lρt
(Mt+1,Nt+1,Ut+1,Vt+1,Zt+1, E1t+1, E2t+1)

≤ Lρt
(Mt,Nt,Ut,Vt,Zt, E1t, E2t)

= Lρt−1
(Mt,Nt,Ut,Vt,Zt, E1t, E2t)

+
ρt + ρt−1

2(ρt−1)2
‖Yt − Yt−1‖2F .

(36)

Since
∞∑
t=1

(ρt + ρt−1)/(ρt−1)
2 < ∞. Then the se-

quence {Mt,Nt,Ut,Vt,Zt, E1t, E2t, Y (v)
1t ,Y2t,Y3t,Y4t} is

upper-bounded due to the boundedness of the sequences of

all Lagrange multipliers {Y (v)
1t ,Y2t,Y3t,Y4t}.

Theorem 1. Suppose the sequence {Mt,Nt,Ut,Vt,Zt, E1t,

E2t, Y (v)
1t ,Y2t,Y3t,Y4t} be generated by Algorithm 1 and

{M∗,N ∗,U∗,V∗,Z∗, E∗
1 , E∗

2 , Y
(v)∗
1 ,Y∗

2 ,Y∗
3 ,Y∗

4} be the ac-
cumulation point. Then, {M∗,N ∗,U∗,V∗,Z∗, E∗

1 , E∗
2 , Y

(v)∗
1 ,

Y∗
2 ,Y∗

3 ,Y∗
4} satisfies the first-order Karush-Kuhn-Tucker

(KKT) conditions of Eq. (11).

Proof. According to Lemma 1, the sequence

{Mt,Nt,Ut,Vt,Zt, E1t, E2t, Y (v)
1t ,Y2t,Y3t,Y4t} is bounded.

By Bolzano–Weierstrass theorem, the sequence has

at least one accumulation point which is denoted as

{M∗,N ∗,U∗,V∗,Z∗, E∗
1 , E∗

2 , Y
(v)∗
1 ,Y∗

2 ,Y∗
3 ,Y∗

4}. Assume

that {Mt,Nt,Ut,Vt,Zt, E1t, E2t, Y (v)
1t ,Y2t,Y3t,Y4t} con-

verges to {M∗,N ∗,U∗,V∗,Z∗, E∗
1 , E∗

2 , Y
(v)∗
1 ,Y∗

2 ,Y∗
3 ,Y∗

4}.

According to the boundness of {Y (v)
1t ,Y2t,Y3t,Y4t}, we

obtain

lim
t→∞

X(v) −X(v)Z
(v)
t+1 − E

(v)
t+1 = lim

t→∞
(Y

(v)
1t+1 − Y

(v)
1t )/ρt = 0,

lim
t→∞

Zt+1 − Ut+1 ∗ VT
t+1 − E2t+1 = lim

t→∞
(Y2t+1 − Y2t)/ρt = 0,

lim
t→∞

Ut+1 −Mt+1 = lim
t→∞

(Y3t+1 − Y3t)/ρt = 0,

lim
t→∞

Vt+1 −Nt+1 = lim
t→∞

(Y4t+1 − Y4t)/ρt = 0.

(37)

Then we have that X(v) = X(v)Z(v)∗ −E(v)∗, Z∗ = U∗ ∗
VT∗ − E∗, U∗ = M∗, V∗ = N ∗.

According to Eqs. (32)-(37), we reach the conclusion that

{M∗,N ∗,U∗,V∗,Z∗, E∗
1 , E∗

2 , Y
(v)∗
1 ,Y∗

2 ,Y∗
3 ,Y∗

4} satisfies

the KKT conditions. Thus, {M∗,N ∗,U∗,V∗,Z∗, E1,
∗ E∗

2 }
is a stationary point of the original problem (11).

Complexity analysis The computational complexity of the

proposed BTMSC method mainly comes from the solution of

subproblems U (v), V (v), M and N . The calculation of U (v)

and V (v) involves multiplication for N × k matrix and the

inverse for k × k matrix. Therefore, the computational com-

plexity of U (v) and V (v) is 2(Nk2+kN2+k3). The solution

of M and N requires calculating the 3D FFT and 3D inverse

FFT for N ×M × k tensor and k SVDs of N ×M matrices

in the Fourier domain. For each iteration, the computational

complexity of FFT and inverse FFT is O(2MNklog(k)) and

the cost of k SVD for N×M matrices is O(kNM2). Accord-

ing to [3], the computational complexity of the last step i.e.,
spectral clustering for M matrices is usually O(MN3). Since

log(k) > M and N > k, the total computational complexity

of BTMSC is about O(2TMNklog(k))+O(MN3), where T
is the total number of iterations. The computational complexity

of the compared methods is recorded in Table I.

VI. EXPERIMENTAL RESULTS

In this section, we experimentally compare the proposed

BTMSC method with sixteen state-of-the-art clustering meth-

ods on ten real datasets based on the quantitative analysis



TABLE II
DETAILS OF TEN MULTI-VIEW DATASETS

Datasets Types View Dimension Samples Clusters

BBCSport text 2 3183/3203 544 5
UCI-3views image 3 240/76/6 2000 10
COIL 20 image 3 1024/3304/6750 1440 20
Reuters text 5 21526/24892/34121/15487/11539 600 6
MSRC-V1 image 5 24/576/512/256/254 210 7
Wikipedia text 2 128/10 693 10
Scene-15 image 3 1800/1180/1240 4485 15
Caltech101 image 4 2048/4800/3540/1240 8677 101
Mnist image 3 30/9/30 10000 10
SUNRGBD image 2 4096/4096 10335 45

TABLE III
PARAMETERS SELECTION RANGE OF COMPARISON METHODS

Method Parameter 1 Parameter 2 Parameter 3

SSC [9] [0.01, 10] - -
LRR [8] [0.01, 10] - -
RMSC [38] [0.005, 0.1] - -
DiMSC [39] [0.01, 0.03] [20, 180] -
LT-MSC [12] [0.01, 100] - -
ECMSC [40] [0.1, 0.5] [0.2, 0.7] 1.2
GMC [41] Initial value: 1 - -
LMSC [30] [0.001, 1000] - -
MLAN [42] [1, 30] - -
tSVDMSC [3] [0.1, 2] - -
ETLMSC [13] [0.0008, 0.01] - -
LRTG [43] [0.001, 100] [5, 15] -
GNLTA [17] [0.001, 0.1] [1.1, 2] -
HLR-M2VS [33] [0.01, 0.2] [0.1, 0.9] -
OPMC [44] - - -
SCGL [45] [0.2, 1.4] [10, 350] -

results of evaluation metrics. The six clustering evaluation

metrics are Accuracy (ACC), normalized mutual information

(NMI), adjusted rand index (ARI), F-score, Precision and

Recall. In addition to quantitative analysis, we also perform

analysis on parameters selection, numerical convergence and

running time. The experimental setting and results are as

follows.

A. Datasets and Compared Methods

Datasets: Experiments are conducted on ten real multi-

view datasets of text and images. The details of ten multi-

view datasets are described in Table II. BBCSport1 is a

News stories dataset. It contains 544 documents from the BBC

Sports website, which correspond to 5 clusters with 2 views;

UCI-3views2 includes 2000 instance with 10 clusters and three

types of features including the 240d Fourier coefficients, the

76d pixel averages and the 6d morphological features are

explored; COIL 203 and Caltech101 are the Generic objects

datasets. COIL 20 contains 1440 images with 32× 32 pixels,

which corresponds to 20 clusters with 3 views. Caltech101

contains 8677 images with 101 clusters and four types of

features are explored. Reuters is an article written in 5 lan-

guages with 5 views. In this paper we follow [17] to randomly

sample 100 documents from each class to obtain a dataset

1http://mlg.ucd.ie/datasets/segment.html
2http://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://www.cs.columbia.edu/CAVE/software/softlib/

with 600 documents. MSRC-V1 includes 210 images, which

correspond to 7 clusters with 5 views. Wikipedia contains 693
documents, which correspond to 10 clusters associated with

2 views. Scene-154 contains 4485 outdoor and indoor scene

images from 15 categories and each category has 210 to 410
images. Mnist includes 10000 images, which correspond to

10 clusters with 3 views. SUNRGBD contains 10335 images,

which correspond to 45 clusters associated with 2 views.

Compared methods: We compare the proposed BTMSC

with state-of-the-art clustering methods including two single-

view methods: SSC [9] and LRR [8] and fourteen multi-view

methods: RMSC [38], DiMSC [39], LT-MSC [12], ECMSC
[40], GMC [41], LMSC [30], MLAN [42], tSVDMSC [3],

ETLMSC [13], LRTG [43], GNLTA [17], HLR-M2VS [33],

OPMC [44] and SCGL [45]. Among these fourteen multi-

view clustering methods, RMSC and LMSC utilize the convex

matrix nuclear norm to realize the low-rankness while LT-

MSC, tSVDMSC, ETLMSC and HLR-M2VS adopt the con-

vex tensor nuclear norm. LRTG is a one-step low-rank tensor

graph learning method. GNLTA is the recently proposed non-

convex multi-view subspace clustering method. For ECMSC,

three parameters are tuned from interval [0.1, 1], [0.1, 1] and

1.2, respectively. Two parameters of HLR-M2VS are selected

from [0.01, 0.2] and [0.1, 0.9], respectively. Two parameters of

SCGL are selected from [0.2, 1.4] and [10, 350], respectively.

For other compared methods, we set the parameters as in [46].

B. Experimental Results

The clustering results compared with sixteen clustering

methods on ten datasets are shown in Tables IV-VIII, in

which each row represents the cluster metric value for the

corresponding comparison method on a specific dataset. In

these tables, the best results are highlighted in bold, and the

second best results are underlined.

Observed in Tables IV-VIII, the multi-view clustering meth-

ods are overall better than the single-view clustering methods

in most cases because the complementary information in dif-

ferent views can facilitate data representation. The top-ranked

methods are tensor-based multi-view clustering methods. The

reason is that exploring the tensor low-rank structure can

preserve the high-order correlation of views. The superior

clustering results of tSVDMSC and ETLMSC quantitatively

confirm the above statements, since they are direct extensions

of LRR and RMSC from matrix optimization to tensor opti-

mization, respectively.

For the ACC metrics, the proposed BTMSC method

achieves the most advantageous clustering performance.

Specifically, the ACC values of BTMSC on all datasets are im-

proved by 0.2%, 0.1%, 4.3%, 2.8%, 0.9%, 3.2%, 7.4%, 3.3%,

1.3%, 1.1% compared to the second-best method. The above

results show the effectiveness of BTMSC. Compared to the

second-best methods HLR-M2VS, LRTG, GNLTA, tSVDMSC

and ETLMSC, although the proposed BTMSC method is also

based on the low-rank tensor approximation, it applies the

BiN factorization form of the nonconvex Schatten-p norm

as an approximation of the rank function, which avoids the

4http://www-cvr.ai.uiuc.edu/ponce grp/data/



TABLE IV
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON BBCSport AND UCI-3views DATASETS.

Dataset Method ACC NMI AR F-score Precision Recall

SSC [9] 0.627±0.003 0.534±0.008 0.364±0.007 0.565±0.005 0.427±0.004 0.834±0.004
LRR [8] 0.836±0.001 0.698±0.002 0.705±0.001 0.776±0.001 0.768±0.001 0.784±0.001

RMSC [38] 0.826±0.001 0.666±0.001 0.637±0.001 0.719±0.001 0.766±0.001 0.677±0.001
DiMSC [39] 0.922±0.000 0.785±0.000 0.813±0.000 0.858±0.000 0.846±0.000 0.872±0.000
LT-MSC [12] 0.460±0.046 0.222±0.028 0.167±0.043 0.428±0.014 0.328±0.028 0.629±0.053
ECMSC [40] 0.285±0.014 0.027±0.013 0.009±0.011 0.267±0.020 0.244±0.007 0.297±0.045

GMC [41] 0.807±0.000 0.760±0.000 0.722±0.000 0.794±0.000 0.727±0.000 0.875±0.000
LMSC [30] 0.847±0.003 0.739±0.001 0.749±0.001 0.810±0.001 0.799±0.001 0.822±0.001
MLAN [42] 0.721±0.000 0.779±0.000 0.591±0.000 0.714±0.000 0.567±0.000 0.962±0.000

tSVDMSC [3] 0.879±0.000 0.765±0.000 0.784±0.000 0.834±0.000 0.863±0.000 0.807±0.000
ETLMSC [13] 0.959±0.086 0.972±0.058 0.949±0.107 0.961±0.081 0.963±0.078 0.960±0.085

LRTG [43] 0.943±0.005 0.869±0.009 0.840±0.012 0.879±0.010 0.866±0.006 0.892±0.014
GNLTA [17] 0.980±0.064 0.986±0.043 0.973±0.086 0.979±0.065 0.979±0.067 0.980±0.064

HLR-M2VS [33] 0.998±0.000 0.993±0.000 0.994±0.000 0.996±0.000 0.996±0.000 0.995±0.064
OPMC [44] 0.945±0.000 0.842±0.000 0.854±0.000 0.889±0.000 0.885±0.000 0.893±0.000
SCGL [45] 0.906±0.000 0.778±0.000 0.784±0.000 0.836±0.000 0.849±0.000 0.823±0.000

BBCSport

BTMSC 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
SSC [9] 0.815±0.011 0.840±0.001 0.770±0.005 0.794±0.004 0.747±0.010 0.848±0.004
LRR [8] 0.871±0.001 0.768±0.002 0.736±0.002 0.763±0.002 0.759±0.002 0.767±0.002

RMSC [38] 0.915±0.024 0.822±0.008 0.789±0.014 0.811±0.012 0.797±0.017 0.826±0.006
DiMSC [39] 0.703±0.010 0.772±0.006 0.652±0.006 0.695±0.006 0.673±0.005 0.718±0.007
LT-MSC [12] 0.803±0.001 0.775±0.001 0.725±0.001 0.753±0.001 0.739±0.001 0.767±0.001
ECMSC [40] 0.718±0.001 0.780±0.001 0.672±0.001 0.707±0.001 0.660±0.001 0.760±0.001

GMC [41] 0.736±0.000 0.815±0.000 0.678±0.000 0.713±0.000 0.644±0.000 0.799±0.000
LMSC [30] 0.893±0.000 0.815±0.000 0.783±0.000 0.805±0.000 0.798±0.000 0.812±0.000
MLAN [42] 0.874±0.000 0.910±0.000 0.847±0.000 0.864±0.000 0.797±0.000 0.943±0.000

tSVDMSC [3] 0.955±0.000 0.932±0.000 0.924±0.000 0.932±0.000 0.930±0.000 0.934±0.000
ETLMSC [13] 0.958±0.078 0.977±0.028 0.953±0.069 0.958±0.062 0.940±0.088 0.980±0.029

LRTG [43] 0.981±0.000 0.953±0.000 0.957±0.000 0.961±0.000 0.961±0.000 0.962±0.000
GNLTA [17] 0.981±0.036 0.979±0.012 0.972±0.036 0.975±0.032 0.968±0.052 0.983±0.008

HLR-M2VS [33] 0.998±0.000 0.995±0.000 0.996±0.000 0.996±0.000 0.996±0.000 0.996±0.000
OPMC [44] 0.898±0.000 0.821±0.000 0.793±0.000 0.814±0.000 0.812±0.000 0.816±0.000
SCGL [45] 0.980±0.000 0.953±0.000 0.955±0.000 0.959±0.000 0.960±0.000 0.959±0.000

UCI-3views

BTMSC 0.999±0.000 0.998±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000

biased estimation of the tensor nuclear norm. In addition, the

factorization of the BiN improves the computational efficiency

while further filtering out noise.

Taking the Caltech101 dataset as an example, ETLMSC

and BTMSC respectively introduce the decomposition and

factorization strategy to reduce the dimension of the data, and

the clustering results are outstanding. However, for all datasets,

the low-rank self-representation tensor of BTMSC outperforms

the low-rank transition probability tensor of ETLMSC in

clustering performance. In Fig. 1, we also plot the variation in

the ACC of BTMSC over iterations. We can see that the ACC

value of BTMSC increases rapidly in the first 5 iterations, and

reaches stable convergence after 15 iterations. Therefore, the

proposed BTMSC method can achieve fast convergence.

Overall, the proposed BTMSC method has two advantages.

First, BTMSC exhibits the superior low-rank performance of

nonconvex function over convex function. Second, BTMSC

greatly contributes to the clustring efficiency and performance

improvement on multiple datasets through the factorization

strategy, which is confirmed by the results in Tables IV-VIII.

C. Parameter Selection

The proposed method involves balance parameters λ1, λ2

for low-rankess and sparsity and parameter k for tuning the

dimension of the tensor factorization. During the experiment,

we select their values from range: λ1 = [0.01 : 0.01 : 0.1],

λ2 = [0.1 : 0.1 : 1.0], k = [10 : 5 : 100]. Fig. 2 shows

the influence of the three parameters λ1, λ2 and k on the

ACC value, where the first row is the value of ACC when

k is fixed and λ1, λ2 traverses all parameters. The second

row is the result of ACC when λ1, λ2 are fixed and k
takes different values. The results show that UCI-3views and

COIL 20 datasets are insensitive to parameters λ1 and λ2. For

the BBCSport and Reuters datasets, when parameter λ1 takes

0.03 to 0.1 and λ2 takes 0.4 to 1, the ACC value is better.

According to Definition 1, k ≥ rank(Z). For selecting an

appropriate k, we use a rank estimation procedure to estimate

rank following reference [18]. First, we compute the L largest

singular values of the input data (usually L = 100), and

then determine the number of clusters by the basic spectral

gap technique. We finally obtain the estimated rank(Z) of

BBCSport, UCI-3views, COIL 20 and Reuters datasets to

be 30, 20, 20, 10. From Fig. 2, it can be seen that the

proposed BTMSC obtains lower ACC when k is smaller than

30, 20, 20, 10, respectively, which corresponds exactly to our

estimated rank. When k ≥ 30, the variation range of ACC

are 0.002, 0.005, 0.05, 0.005 and the clustering results are

relatively stable for BBCSport, UCI-3views, COIL 20 and

Reuters datasets, respectively. In general, the selection range of

the above parameters can obtain reasonable clustering results.



TABLE V
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON COIL 20 AND Reuters DATASETS.

Dataset Method ACC NMI AR F-score Precision Recall

SSC [9] 0.803±0.022 0.935±0.009 0.798±0.022 0.809±0.013 0.734±0.027 0.804±0.028
LRR [8] 0.761±0.003 0.829±0.006 0.720±0.020 0.734±0.006 0.717±0.003 0.751±0.002

RMSC [38] 0.685±0.045 0.800±0.017 0.637±0.044 0.656±0.042 0.620±0.057 0.698±0.026
DiMSC [39] 0.778±0.022 0.846±0.002 0.732±0.005 0.745±0.005 0.739±0.007 0.751±0.003
LT-MSC [12] 0.804±0.011 0.860±0.002 0.748±0.004 0.760±0.007 0.741±0.009 0.776±0.006
ECMSC [40] 0.782±0.001 0.942±0.001 0.781±0.001 0.794±0.001 0.695±0.002 0.925±0.001

GMC [41] 0.791±0.001 0.941±0.000 0.782±0.000 0.794±0.000 0.694±0.000 0.929±0.000
LMSC [30] 0.749±0.018 0.866±0.006 0.699±0.025 0.715±0.023 0.655±0.041 0.790±0.017
MLAN [42] 0.862±0.011 0.961±0.004 0.835±0.006 0.844±0.013 0.758±0.008 0.953±0.007

tSVDMSC [3] 0.830±0.000 0.884±0.005 0.786±0.003 0.800±0.004 0.785±0.007 0.808±0.001
ETLMSC [13] 0.877±0.065 0.947±0.024 0.862±0.057 0.869±0.054 0.830±0.065 0.914±0.045

LRTG [43] 0.927±0.000 0.976±0.000 0.928±0.000 0.932±0.000 0.905±0.000 0.961±0.000
GNLTA [17] 0.888±0.056 0.956±0.017 0.881±0.049 0.887±0.046 0.856±0.063 0.922±0.028

HLR-M2VS [33] 0.852±0.009 0.960±0.006 0.833±0.005 0.842±0.003 0.757±0.010 0.949±0.011
OPMC [44] 0.619±0.000 0.769±0.000 0.595±0.000 0.617±0.000 0.574±0.000 0.667±0.000
SCGL [45] 0.874±0.000 0.945±0.000 0.845±0.000 0.854±0.000 0.971±0.000 0.762±0.000

COIL 20

BTMSC 0.970±0.021 0.968±0.000 0.944±0.024 0.947±0.023 0.940±0.030 0.951±0.015

SSC [9] 0.433±0.002 0.278±0.002 0.134±0.002 0.324±0.001 0.244±0.001 0.481±0.002
LRR [8] 0.512±0.001 0.361±0.001 0.246±0.001 0.393±0.001 0.332±0.001 0.482±0.001

RMSC [38] 0.496±0.039 0.296±0.020 0.238±0.020 0.372±0.015 0.350±0.017 0.398±0.014
DiMSC [39] 0.476±0.007 0.307±0.002 0.175±0.006 0.345±0.003 0.276±0.005 0.459±0.007
LT-MSC [12] 0.435±0.001 0.273±0.003 0.171±0.005 0.337±0.004 0.279±0.011 0.431±0.035

GMC [41] 0.277±0.000 0.235±0.000 0.027±0.000 0.287±0.000 0.177±0.000 0.748±0.000
LMSC [30] 0.512±0.004 0.317±0.005 0.238±0.004 0.375±0.003 0.346±0.003 0.408±0.004
MLAN [42] 0.490±0.003 0.355±0.001 0.250±0.003 0.389±0.002 0.346±0.002 0.444±0.002

tSVDMSC [3] 0.907±0.001 0.841±0.001 0.801±0.001 0.835±0.001 0.823±0.001 0.846±0.001
ETLMSC [13] 0.932±0.049 0.957±0.050 0.924±0.073 0.938±0.060 0.914±0.066 0.968±0.055

LRTG [43] 0.525±0.000 0.413±0.000 0.210±0.000 0.382±0.000 0.290±0.000 0.557±0.000
GNLTA [17] 0.967±0.077 0.967±0.042 0.955±0.077 0.963±0.063 0.956±0.086 0.972±0.035

HLR-M2VS [33] 0.708±0.000 0.686±0.000 0.567±0.000 0.645±0.000 0.589±0.000 0.713±0.000
OPMC [44] 0.303±0.000 0.163±0.000 0.052±0.000 0.274±0.000 0.193±0.000 0.470±0.000
SCGL [45] 0.573±0.000 0.396±0.000 0.314±0.000 0.440±0.000 0.493±0.000 0.397±0.000

Reuters

BTMSC 0.995±0.000 0.986±0.000 0.988±0.000 0.990±0.000 0.990±0.000 0.990±0.000
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Fig. 1. Error and ACC versus iterations on BBCSport, UCI-3views, COIL 20 and Reuters datasets.



TABLE VI
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON MSRC-V1 AND Wikipedia DATASETS.

Dataset Method ACC NMI AR F-score Precision Recall

SSC [9] 0.791±0.007 0.750±0.005 0.651±0.006 0.701±0.005 0.670±0.008 0.736±0.003
LRR [8] 0.695±0.000 0.590±0.000 0.491±0.000 0.562±0.000 0.560±0.000 0.564±0.000

RMSC [38] 0.761±0.054 0.673±0.032 0.587±0.041 0.646±0.035 0.633±0.041 0.660±0.031
DiMSC [39] 0.759±0.009 0.622±0.015 0.548±0.015 0.611±0.013 0.606±0.013 0.616±0.012
LT-MSC [12] 0.831±0.003 0.743±0.004 0.665±0.004 0.712±0.004 0.699±0.004 0.725±0.003
ECMSC [40] 0.795±0.002 0.750±0.002 0.681±0.001 0.727±0.001 0.705±0.001 0.750±0.001

GMC [41] 0.748±0.000 0.771±0.000 0.640±0.000 0.697±0.000 0.612±0.000 0.809±0.000
LMSC [30] 0.770±0.022 0.679±0.025 0.596±0.028 0.654±0.024 0.635±0.025 0.673±0.023
MLAN [42] 0.859±0.003 0.751±0.003 0.709±0.004 0.750±0.003 0.727±0.004 0.776±0.002

tSVDMSC [3] 0.991±0.000 0.982±0.000 0.978±0.000 0.981 ±0.000 0.980±0.000 0.982±0.000
ETLMSC [13] 0.872±0.082 0.805±0.053 0.764±0.083 0.797±0.071 0.784±0.082 0.812±0.059

LRTG [43] 0.895±0.000 0.829±0.000 0.775±0.000 0.807±0.000 0.794±0.000 0.821±0.000
GNLTA [17] 0.894±0.089 0.880±0.053 0.829±0.092 0.854±0.078 0.836±0.095 0.873±0.060

HLR-M2VS [33] 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
OPMC [44] 0.862±0.000 0.771±0.000 0.718±0.000 0.757±0.000 0.750±0.000 0.765±0.000
SCGL [45] 0.900±0.000 0.808±0.000 0.787±0.000 0.817±0.000 0.819±0.000 0.814±0.000

MSRC-V1

BTMSC 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
SSC [9] 0.561±0.001 0.527±0.002 0.418±0.001 0.481±0.001 0.491±0.001 0.471±0.001
LRR [8] 0.554±0.001 0.523±0.001 0.417±0.000 0.479±0.000 0.490±0.000 0.468±0.001

RMSC [38] 0.558±0.015 0.513±0.015 0.430±0.020 0.491±0.019 0.501±0.021 0.483±0.017
DiMSC [39] 0.547±0.007 0.500±0.003 0.397±0.002 0.461±0.002 0.478±0.002 0.445±0.002
LT-MSC [12] 0.532±0.003 0.496±0.005 0.407±0.005 0.471±0.005 0.480±0.004 0.461±0.006
ECMSC [40] 0.563±0.000 0.522±0.000 0.413±0.000 0.475±0.000 0.494±0.000 0.457±0.000

GMC [41] 0.449±0.000 0.417±0.000 0.145±0.000 0.283±0.000 0.191±0.000 0.550±0.000
LMSC [30] 0.186±0.000 0.070±0.000 0.021±0.000 0.123±0.000 0.128±0.000 0.123±0.000
MLAN [42] 0.203±0.001 0.066±0.000 0.020±0.000 0.127±0.000 0.127±0.000 0.127±0.000

t-SVD-MSC [3] 0.577±0.000 0.495±0.000 0.413±0.000 0.475±0.000 0.491±0.000 0.460±0.000
ETLMSC [13] 0.561±0.000 0.499±0.000 0.398±0.000 0.462±0.000 0.472±0.000 0.453±0.000

LRTG [43] 0.557±0.000 0.501±0.000 0.402 ±0.000 0.465±0.000 0.482±0.000 0.449 ±0.000
GNLTA [17] 0.581±0.017 0.507±0.011 0.414±0.005 0.476±0.004 0.491±0.006 0.463±0.006

HLR-M2VS [33] 0.577±0.000 0.513±0.000 0.417±0.000 0.480±0.000 0.485±0.000 0.475±0.000
OPMC [44] 0.189±0.000 0.066±0.000 0.021±0.000 0.128±0.000 0.128±0.000 0.127±0.000
SCGL [45] 0.470±0.000 0.494±0.000 0.427±0.000 0.487±0.000 0.471±0.000 0.501±0.000

Wikipedia

BTMSC 0.613±0.000 0.536±0.000 0.454±0.000 0.513±0.000 0.524±0.000 0.502±0.000
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Fig. 2. Parameter tuning with respect to λ1, λ2 and k on (a) BBCSport, (b) UCI-3views, (c) COIL 20 and (d) Reuters datasets.
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Fig. 3. Structural visualization comparison of the similarity matrices of
(a) tSVDMSC, (b) TSPMSC and the proposed (c) BTMSC on UCI-3views
dataset.

D. Ablation Experiment
We design the ablation experiment on Table IX to verify

the effectiveness of BiN in the proposed BTMSC method. The

baseline method is tSVDMSC based on tensor nuclear norm.

The comparison methods are TSPMSC (p = [0.1 : 0.1 : 0.9])
based on tensor nonconvex Schatten-p norm and BTMSC

based on BiN. Among them, we only record the p value of

TSPMSC with the best clustering result. The clustering results

in Table IX show that the ACC and NMI of BTMSC and

TSPMSC are significantly improved compared to tSVDMSC,

and BTMSC has the least running time. The difference be-

tween the clustering results of BTMSC and TSPMSC is very

small, and the optimal result of TSPMSC is often obtained



TABLE VII
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON Scene-15 AND Caltech101 DATASETS.

Dataset Method ACC NMI AR F-score Precision Recall

SSC [9] 0.444±0.003 0.470±0.002 0.279±0.001 0.337±0.002 0.292±0.001 0.397±0.001
LRR [8] 0.445±0.013 0.426±0.018 0.272±0.015 0.324±0.010 0.316±0.011 0.333±0.015

RMSC [38] 0.503±0.000 0.495±0.000 0.325±0.000 0.371±0.000 0.374±0.000 0.368±0.000
DiMSC [39] 0.300±0.010 0.269±0.009 0.117±0.012 0.181±0.010 0.173±0.016 0.190±0.010
LT-MSC [12] 0.574±0.009 0.571±0.011 0.424±0.010 0.465±0.007 0.452±0.003 0.479±0.008
ECMSC [40] 0.457±0.001 0.463±0.002 0.303±0.001 0.357±0.001 0.318±0.001 0.408±0.001

GMC [41] 0.381±0.000 0.519±0.000 0.191±0.000 0.281±0.000 0.174±0.000 0.732±0.000
LMSC [30] 0.563±0.000 0.525±0.000 0.397±0.000 0.440 ±0.000 0.430±0.000 0.450±0.000
MLAN [42] 0.331±0.000 0.475±0.000 0.151±0.000 0.248±0.000 0.150±0.000 0.731±0.000

tSVDMSC [3] 0.812±0.007 0.858±0.007 0.771±0.003 0.788±0.001 0.743±0.006 0.839±0.003
ETLMSC [13] 0.878±0.000 0.902±0.000 0.851±0.000 0.862±0.000 0.848±0.000 0.877±0.000

LRTG [43] 0.615±0.016 0.657±0.005 0.486±0.016 0.525±0.014 0.485±0.023 0.572±0.005
GNLTA [17] 0.881±0.043 0.895±0.013 0.850±0.032 0.861±0.030 0.846±0.041 0.876±0.020

Scene-15

HLR-M2VS [33] 0.878±0.003 0.895±0.005 0.850±0.003 0.861±0.005 0.850±0.008 0.871±0.010
OPMC [44] 0.490±0.000 0.541±0.005 0.343±0.003 0.392±0.005 0.363±0.008 0.425±0.010
SCGL [45] 0.599±0.000 0.587±0.000 0.439±0.000 0.478±0.000 0.486±0.000 0.471±0.000

BTMSC 0.955±0.003 0.935±0.000 0.910±0.005 0.916±0.004 0.922±0.004 0.911±0.005
SSC [9] 0.420±0.015 0.723±0.005 0.303±0.011 0.317±0.012 0.441±0.025 0.248±0.010
LRR [8] 0.510±0.009 0.728±0.014 0.304±0.017 0.339±0.008 0.627±0.012 0.231±0.010

RMSC [38] 0.346±0.036 0.573±0.047 0.246±0.031 0.258±0.027 0.457±0.033 0.182±0.031
DiMSC [39] 0.351±0.000 0.589±0.000 0.226±0.000 0.253±0.000 0.362±0.000 0.191±0.000
LT-MSC [12] 0.559±0.012 0.788±0.005 0.393±0.007 0.403±0.003 0.670±0.009 0.288±0.012
ECMSC [40] 0.359±0.004 0.606±0.001 0.273±0.003 0.286±0.006 0.433±0.020 0.214±0.030

GMC [41] 0.331±0.000 0.544±0.000 0.031±0.000 0.081±0.000 0.044±0.000 0.470±0.000
LMSC [30] 0.566±0.012 0.818±0.004 0.383±0.010 0.392±0.010 0.710±0.014 0.271±0.008
MLAN [42] 0.579±0.024 0.748±0.020 0.222±0.015 0.265±0.015 0.173±0.009 0.560±0.016

tSVDMSC [3] 0.607±0.005 0.858±0.003 0.430±0.005 0.440±0.010 0.742±0.007 0.323±0.009
ETLMSC [13] 0.639±0.019 0.899±0.007 0.456±0.017 0.465±0.017 0.825±0.029 0.324±0.012

LRTG [43] 0.490±0.000 0.750±0.000 0.340±0.000 0.350±0.000 0.547±0.000 0.260±0.000
GNLTA [17] 0.604±0.016 0.875±0.005 0.444±0.017 0.453±0.016 0.776±0.018 0.320±0.015

Caltech101

HLR-M2VS [33] 0.650±0.000 0.872±0.000 0.463±0.000 0.472±0.000 0.760±0.000 0.343±0.000
OPMC [44] 0.430±0.000 0.644±0.000 0.344±0.000 0.356±0.000 0.553±0.000 0.263±0.000
SCGL [45] 0.617±0.000 0.813±0.000 0.422±0.000 0.432±0.000 0.313±0.000 0.699±0.000

BTMSC 0.683±0.014 0.903±0.000 0.504±0.024 0.512±0.023 0.843±0.015 0.368±0.021
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Fig. 4. t-SNE demonstration of similarity matrix of BTMSC during the iteration process on BBCSport and UCI-3views datasets.

when 0.3 ≤ p ≤ 0.6. The above conclusions show that

the nonconvex Schatten-p norm is effective, and BiN as

the factorization form of Schatten-p norm (p = 1/2) plays

an important role in clustering efficiency. The advantage of

BTMSC over TSPMSC is that it introduces an additional noise

term. Fig. 3 also show that the block-diagonal structure of the

similarity matrix obtained by the proposed method is obvious.

Overall, the proposed BTMSC method improves the clustering

performance and efficiency over with the compared methods.

E. Numerical Convergence

We record the relative error and ACC versus iterations of

the proposed BTMSC method on BBCSport, UCI-3views,

COIL 20 and Reuters datasets in Fig. 1 to verify its con-

vergence, where Error1 = 1
M

∑M
v=1 ‖X(v) − X(v)Z(v) −

E
(v)
1 ‖∞, Error2 = 1

M

∑M
v=1 ‖Z(v) − U (v)V (v)T − E

(v)
2 ‖∞.

It is easy to see that the error changes gently in the first

8 iterations and decreases rapidly after 10 iterations. With

a few fluctuations, the error tends to 0 after 15 iterations.

Corresponding to the change trend between ACC and iter-



TABLE VIII
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON Mnist AND SUNRGBD DATASETS.

Dataset Method ACC NMI AR F-score Precision Recall

SSC [9] 0.418±0.009 0.483±0.002 0.289±0.008 0.380±0.003 0.296±0.019 0.538±0.004
LRR [8] 0.509±0.000 0.466±0.000 0.335±0.000 0.404±0.000 0.390±0.000 0.419±0.000

RMSC [38] 0.545±0.021 0.502±0.012 0.382±0.011 0.445±0.009 0.434±0.012 0.457±0.007
DiMSC [39] 0.548±0.000 0.385±0.000 0.275±0.000 0.352±0.000 0.332±0.000 0.374±0.000
LT-MSC [12] 0.684±0.000 0.625±0.000 0.545±0.000 0.592±0.000 0.567±0.000 0.620±0.000

GMC [41] 0.844±0.000 0.771±0.000 0.714±0.000 0.744±0.000 0.719±0.000 0.772±0.000
LMSC [30] 0.445±0.001 0.379±0.004 0.254±0.002 0.330±0.002 0.323±0.003 0.337±0.001
MLAN [42] 0.621±0.000 0.656±0.000 0.509±0.000 0.562±0.000 0.515±0.000 0.620±0.000

tSVDMSC [3] 0.923±0.000 0.876±0.000 0.846±0.000 0.861±0.000 0.859±0.000 0.863±0.000
ETLMSC [13] 0.888±0.000 0.891±0.000 0.830±0.000 0.848±0.000 0.827±0.000 0.871±0.000

LRTG [43] 0.639±0.000 0.657±0.000 0.515±0.000 0.568±0.000 0.513±0.000 0.637±0.000
GNLTA [17] 0.874±0.063 0.881±0.023 0.814±0.056 0.834±0.050 0.809±0.073 0.862±0.024

HLR-M2VS [33] 0.919±0.000 0.868±0.000 0.838±0.000 0.855±0.000 0.853±0.000 0.856±0.000
OPMC [44] 0.552±0.000 0.517±0.000 0.398±0.000 0.461±0.000 0.438±0.000 0.487±0.000
SCGL [45] 0.839±0.000 0.731±0.000 0.696±0.000 0.727±0.000 0.737±0.000 0.717±0.000

Mnist

BTMSC 0.936±0.000 0.906±0.000 0.871±0.000 0.884±0.000 0.883±0.000 0.885±0.000
SSC [9] 0.122±0.003 0.179±0.001 0.049±0.002 0.083±0.002 0.152±0.003 0.057±0.001
LRR [8] 0.112±0.003 0.159±0.002 0.041±0.002 0.073±0.002 0.140±0.003 0.049±0.001

RMSC [38] 0.200±0.007 0.265±0.007 0.101±0.005 0.131±0.005 0.252±0.008 0.089±0.003
DiMSC [39] 0.127±0.004 0.156±0.003 0.040±0.001 0.075±0.001 0.134±0.004 0.052±0.001
LT-MSC [12] 0.199±0.000 0.306±0.000 0.108±0.000 0.139±0.000 0.260±0.000 0.095±0.000

GMC [41] 0.128±0.000 0.073±0.000 0.008±0.000 0.122±0.000 0.065±0.000 0.944±0.000
LMSC [30] 0.087±0.003 0.115±0.004 0.024±0.002 0.057±0.002 0.107±0.003 0.039±0.001
MLAN [42] 0.218±0.007 0.273±0.002 0.110±0.006 0.145±0.006 0.240±0.009 0.104±0.005

tSVDMSC [3] 0.197±0.000 0.269±0.000 0.101±0.000 0.131±0.000 0.250±0.000 0.089±0.000
ETLMSC [13] 0.195±0.000 0.264±0.000 0.098±0.000 0.128±0.000 0.246±0.000 0.087±0.000

LRTG [43] 0.218±0.000 0.307±0.000 0.112±0.000 0.147±0.000 0.240±0.000 0.106±0.000
GNLTA [17] 0.232±0.011 0.393±0.007 0.141±0.008 0.171±0.008 0.312±0.015 0.118±0.005

HLR-M2VS [33] 0.196±0.000 0.310±0.000 0.106±0.000 0.138±0.000 0.252±0.000 0.095±0.000
OPMC [44] 0.201±0.000 0.259±0.000 0.105±0.000 0.136±0.000 0.253±0.000 0.093±0.000
SCGL [45] 0.190±0.000 0.251±0.000 0.098±0.000 0.129±0.000 0.088±0.000 0.244±0.000

SUNRGBD

BTMSC 0.243±0.007 0.394±0.000 0.151±0.003 0.180±0.003 0.341±0.007 0.123±0.002

TABLE IX
ABLATION EXPERIMENT: CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON SIX DATASETS.

Method P
BBCSport

P
UCI-3views

ACC NMI Time ACC NMI Time
tSVDMSC - 0.879±0.000 0.765±0.000 17.35 - 0.955±0.000 0.932±0.000 158.26
TSPMSC 0.6 1.000±0.000 1.000±0.000 20.66 1/2 0.996±0.001 0.989±0.002 185.60
BTMSC 1/2 1.000±0.000 1.000±0.000 8.21 1/2 0.999±0.000 0.998±0.000 102.88

Method P
COIL 20

P
Reuters

ACC NMI Time ACC NMI Time
tSVDMSC - 0.830±0.000 0.884±0.005 169.10 - 0.907±0.001 0.841±0.001 101.01
TSPMSC 1/2 0.938±0.041 0.935±0.000 263.94 0.3 0.988±0.000 0.970±0.000 599.70
BTMSC 1/2 0.970±0.021 0.968±0.000 99.10 1/2 0.995±0.000 0.986±0.000 99.27

Method P
MSRC-V1

P
Wikipedia

ACC NMI Time ACC NMI Time
tSVDMSC - 0.991±0.000 0.982±0.000 3.19 - 0.527±0.011 0.480±0.001 5.46
TSPMSC 0.4 1.000±0.000 1.000±0.000 3.38 0.6 0.574±0.001 0.498±0.002 9.97
BTMSC 1/2 1.000±0.000 1.000±0.000 1.82 1/2 0.613±0.000 0.536±0.000 3.79

ations, the ACC value increases rapidly after 5 iterations

and reaches the optimal result after 15 iterations. The above

phenomena indicate that the proposed BTMSC method is

stable and convergent. In addition, we use t-SNE to visualize

the clustering results of the similarity matrix C in Fig. 4. We

present cluster visualization results for iterations 1, 5, 10, 15
and 20. As the iterations increasing, the similarity matrix C
shows a clearer cluster structure after 15 iterations, which

proves the convergence and superior clustering performance

of the proposed method.

F. Running Time

For convenient comparison, we ignore the final k-means

computation for all methods and only report the running time

of the optimal similarity matrix. Fig. 5 shows the distribution

of running time on seven datasets, where the y axis being

log scale. We can intuitively see that BTMSC has the least

running time. Among them, DiMSC and tSVDMSC have

obvious running speed advantage on BBCSport, Reuters and

MSRC-V1 datasets with relatively small samples, while on

datasets with more than 2000 samples such as Scene-15,
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Fig. 5. The running time of compared methods and the proposed method on
seven datasets.

the clustering efficiency of BTMSC is superior. The above

conclusions demonstrate that the factorability of BTMSC is

more easily applicable to large-scale datasets.

VII. CONCLUSION

In this paper, we proposed a Bi-nuclear tensor Schatten-p
norm minimization method for multi-view subspace clustering.

The proposed method has the following advantages. First,

LRR-based multi-view subspace clustering methods often used

the nuclear norm to explore the low-rank structure of views,

which limits the clustering efficiency because the nuclear norm

is a convex relaxation yet a biased approximation of the rank

function, leading to suboptimal solution. The proposed method

replaced the nuclear norm with the BiN as a nonconvex

approximation of the rank function. Besides, the nuclear norm-

based minimization problem may lead to high computational

cost due to the SVD involving large-scale matrices. Consider-

ing the factorability of BiN of Schatten-p norm, we integrated

nonconvex low-rank constraint and factorization to reduce

the computational complexity. Furthermore, matrix-based LRR

cannot simultaneously consider low-rank properties involving

both intra-view and inter-view. Therefore, we applied the

BiN to factorize the third-order tensor as the product of two

small-scale tensors for low-rank constraint to explore higher-

order correlation among views. The clustering results on ten

datasets demonstrate that the proposed method can improve

not only the clustering performance but also the computational

efficiency. The limitation of the proposed method is that

BTMSC is a tedious two-step clustering since the subspace and

similarity matrix learning are independent. The future work

will explore one-step multi-view clustering methods using the

Wolfe dual algorithm to reduce the computational complexity.
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