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Abstract

Camera images are ubiquitous in machine learning research. They also play a central role
in the delivery of important public services spanning medicine or environmental surveying.
However, the application of machine learning models in these domains has been limited
because of robustness concerns. A primary failure mode are performance drops due to
differences between the training and deployment data. While there are methods to prospec-
tively validate the robustness of machine learning models to such dataset drifts, existing
approaches do not account for explicit models of machine learning’s primary object of interest:
the data. This limits our ability to study and understand the relationship between data
generation and downstream machine learning model performance in a physically accurate
manner. In this study, we demonstrate how to overcome this limitation by pairing traditional
machine learning with physical optics to obtain explicit and differentiable data models. We
demonstrate how such data models can be constructed for image data and used to control
downstream machine learning model performance related to dataset drift. The findings
are distilled into three applications. First, drift synthesis enables the controlled generation
of physically faithful drift test cases to power model selection and targeted generalization.
Second, the gradient connection between machine learning task model and data model allows
advanced, precise tolerancing of task model sensitivity to changes in the data generation.
These drift forensics can be used to precisely specify the acceptable data environments
in which a task model may be run. Third, drift optimization opens up the possibility to
create drifts that can help the task model learn better faster, effectively optimizing the
data generating process itself to support the downstream machine vision task. This is an
interesting upgrade to existing imaging pipelines which traditionally have been optimized to
be consumed by human users but not machine learning models. The data models require
access to raw sensor images as commonly processed at scale in industry domains such as
microscopy, biomedicine, autonomous vehicles or remote sensing. Alongside the data model
code we release two datasets to the public that we collected as part of this work. In total,
the two datasets, Raw-Microscopy and Raw-Drone, comprise 1,488 scientifically calibrated
reference raw sensor measurements, 8,928 raw intensity variations as well as 17,856 images
processed through twelve data models with different configurations. A guide to access the
open code and datasets is available at https://github.com/aiaudit-org/raw2logit.

1 Introduction

In this study we demonstrate how explicit data models for images can be constructed and then be used for
advanced dataset drift controls in machine learning workflows. We connect raw image data, differentiable
data models and the standard machine learning pipeline. This combination enables novel, physically faithful
validation protocols that can be used towards intended use specifications of machine learning systems, a
necessary pre-requisite for the use of any technology in many application domains such as medicine or
autonomous vehicles.

Camera image data are a staple of machine learning research, from the early proliferation of neural networks
on MNIST [1–4] to leaps in deep learning on CIFAR and ImageNet [5–7] or high-dimensional generative
models [8, 9]. Camera images also play an important role in the delivery of various high-impact public and
commercial services. Unsurprisingly, the exceptional capacity of deep supervised learning has inspired great
imagination to automate or enhance such services. During the 2010s, "deep learning for ..." rang loud in
most application domains under the sun, and beyond [10], spanning medicine and biology (microscopy for
cell detection [11–14], histopathology [15, 16], opthalmology [17–19], malaria detection [20–23]), geospatial
modelling (climate [24–26], precision farming [27–29], pollution detection [30–32]) and more.

However, the excitement was reined in by calls for caution. Machine learning systems exhibit particular failure
modes that are contingent on the makeup of their inputs [33–35]. Many findings from the machine learning
robustness literature confirm supervised learning’s tremendous capacity for identifying features in the training
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inputs that are correlated with the true labels [36–40]. But these findings also point to a flipside of this
capacity: the sensitivity of the resulting machine learning model’s performance to changes - both large and
small - in the input data. Because this dependency touches on generalization, a summum bonum of machine
learning, the implications have been studied across most of its many sub-disciplines including robustness
validation [41–54], formal model verification [55–71], uncertainty quantification [72–82], out-of-distribution
detection [34, 83–87], semi- [88–90] and self-supervised learning [91, 92], learning theory and optimization
[93–96], federated learning [97–99], or compression [100–102], among others.

We refer to the mechanism underlying changes in the input data as dataset drift1. Formally, we characterize
it as follows. Let (XRAW , Y ) ∶ Ω→ RH,W ×Y be the raw sensor data generating random variable2 on some
probability space (Ω,F ,P), for example with Y = {0, 1}K for a classification task. Raw inputs xRAW are in a
data state before further processing is applied, in our case photons captured by the pixels of a camera sensor
as displayed in the outputs of the ”Measurement” block in Figure 1. The raw inputs xRAW are then further
processed by a data model ΦProc∶RH,W → RC,H,W , in our case the measurement hardware like a camera
itself or other downstream data processing pipelines, to produce a processed view v =ΦProc(xRAW) of the
data as illustrated in the output of the ”Data model” block in Figure 1. This processed view v could for
example be the finished RGB image, the image data state that most machine learning researchers typically
work with to train a task model ΦTask ∶ RC,H,W → Y. Thus, in the conventional machine learning setting
we obtain V = ΦProc(XRAW ) as the image data generating random variable with the target distribution
Dt = P ○ (V , Y )−1. A different data model Φ̃Proc generates a different view Ṽ = Φ̃Proc(XRAW ) of the same
underlying raw sensor data generating random variable XRAW , resulting in the dataset drift

Ds = P ○ (Ṽ , Y )−1 /= Dt. (1)

This characterization of dataset drift is closely related to the concept of distributional robustness in the sense
of Huber where "the shape of the true underlying distribution deviates slightly from the assumed model"
[104]. In the distributional robustness literature it is typically assumed that something changes from Ds to
Dt, however without exactly specifying what changes. This makes it unclear what is actually being compared,
whether the considered change is plausible and what factors contribute to the change. Data models offer a
way out of this ambiguity through exact description of the data generating process. In practice, a common
reason for dataset drift in images is a change in the camera types or settings, for example different acquisition
microscopes across different lab sites s and t that lead to drifted distributions Ds /= Dt. Anticipating and
validating the robustness of a machine learning model to these variations in an exact and traceable way is not
just an engineering concern but also mandated by quality standards in many industries [105–107]. Omissions
to perform physically faithful robustness validations has, among other reasons, slowed or prevented the rollout
of machine learning technology in impactful applications such as large-scale automated retinopathy screening
[108], machine learning melanoma detection [109, 110] or yield prediction [111] from drone cameras.

Hence, the calls for realistic robustness validation of image machine learning systems are not merely an exercise
in intellectual novelty but a matter of integrating machine learning research with real world infrastructures
and performance expectations around its core ingredient: the data.

1.1 The status quo of dataset drift controls for images

How can one go about validating a machine learning model’s performance under image dataset drift? The
dominant empirical techniques can broadly be categorized into augmentation and catalogue testing. Each
approach has particular benefits and limitations (see Table 1 for a conceptual comparison).

Augmentation testing involves the application of perturbations, for example Gaussian noise, to already
processed images [43, 112, 113] in order to approximate the effect of dataset drift. Given a processed dataset

1Note that the nomenclature around dataset drift is as heterogenous as the disciplines in which it is studied. See [103] for
a good discussion of cross-disciplinary taxonomy. Here we are concerned with dataset drift as defined in Equation (1), that
is changes in V that are induced by changes in ΦProc which some works also refer to as covariate shift or more generally as
distribution shift.

2We write an uppercase letter A for a real valued random variable and a lowercase letter a for its realization. A bold
uppercase letter A denotes a random vector and a bold lowercase letter a its realization. For N ∈ N realizations of the random
vector A we write a1, ..., aN . The state space of the random vector A is denoted by A = {A(ω) ∣ω ∈ Ω}.
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Figure 1: Schematic illustration of an optical imaging pipeline, the data states and novel, raw-enabled drift
controls. Data x transitions through different representations. The measurement process yields metrologically
accurate raw data xRAW, where the errors on each pixel are uncorrelated and unbiased. From the RAW
sensor state data undergoes stages of image signal processing (ISP) ΦProc, the data model we consider here.
Finally, the data is consumed by a machine learning task model ΦTask which outputs ŷ. Combining raw data
with the standard machine learning pipeline and a differentiable data model ΦProc enables useful controls for
dataset drift comprising 1 drift synthesis (creation of physically faithful drift test cases for model selection),
2 drift forensics (precise specification of data environments that should be avoided for a given task model),
and 3 drift optimization (use of task model gradient to optimize data generating process).

this allows fast and easy generation of test samples. However, [114] point out that perturbations applied to
an already processed image can produce drift artifacts that are unfaithful to the physics of camera processing.
Results in optics further support the concern that noise obtained from a composite image processing pipeline,
such as the data model block in Figure 1, is distinct from noise added to an image that has already been
processed on hardware [115, 116]. For illustration, assume we carry out augmentation testing to test the
robustness of the task model wrt. to the dataset drift (1). Let ξ ∼ Dnoise be a noise sample additively applied
to the the view resulting in v + ξ. Doing so, the task models robustness is tested wrt. the distribution
P○(V +Ξ)−1 that might not approximate Ds well. Since P is unknown, this is difficult to resolve. For physically
faithful robustness testing we need to ensure that a sample is an element of the image Φ̃Proc [XRAW ] of
XRAW under Φ̃Proc. Accordingly, we define a physically faithful data point wrt. the dataset drift (1) as
a view ṽ that satisfies ṽ ∈ Φ̃Proc [XRAW ]. In augmentation testing, the test samples are not restricted to
physically faithful data points wrt. to any dataset drift, since v + ξ ∈ Φ̃Proc [XRAW] might not hold true for
any data model.

A physically faithful alternative to augmentation testing is what we call catalogue testing. It involves the
collection of datasets from different cameras which are then used as hold-out robustness validation datasets
[49, 117–119]. It does not allow for as flexible and fast in-silico simulation of test cases as augmentation
testing because cataloguing requires expensive data collection after which the test cases are "locked-in".
Notwithstanding, catalogue testing comes with the appealing guarantee that test samples conform to the
processing physics of the different cameras they were gathered from, ensuring that only physically faithful
data points are used for testing.
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Augmentation testing Catalogue testing Data models
Simulation of test samples ✓ ✗ ✓
Physically faithful test samples ✗ ✓ ✓
Differentiable data model ✗ ✗ ✓

Table 1: A conceptual comparison of different empirical approaches to dataset drift validation for machine
learning task models. While augmentation testing allows flexible, ad-hoc synthesis of test cases, they are, in
contrast to catalogue testing, not guaranteed to be physically faithful. Pairing qualified raw data with explicit
data models allows for flexible synthesis of physically faithful test cases. In addition, the differentiable data
model opens up novel drift controls including drift forensics and drift adjustments.

However, the root of input data variations - the data model of images - has received little attention in
machine learning robustness research to date. While machine learning practitioners are acutely aware of
the dependency between data generation and downstream machine learning model performance, as 75%
of respondents to a recent study confirmed [120], data models are routinely treated as a black-box in the
robustness literature. This blind spot for explicit data models is particularly surprising since they are standard
practice in other scientific communities, in particular optics and metrology [121–124], as well as advanced
industry applications, including microscopy [125–127] or autonomous vehicles [128–130].

1.2 Our contributions

In this manuscript we outline how to alleviate this blind spot and obtain data models by connecting
conventional machine learning with physical optics. Combining raw image data, differentiable data models
ΦProc of image signal processing (ISP) and the standard machine learning pipeline enables us to go beyond
what is possible with augmentation and catalogue testing. We obtain explicit, differentiable models of the
data generating process for flexible, physically faithful drift controls for image machine learning models. Our
core contributions are:

• The combination of raw sensor data and data models enables three novel dataset drift controls:
1 Drift synthesis: Controlled synthesis of physically faithful drift test cases for model selection
and targeted generalization. This is demonstrated for a classification and a regression task and
compared to physically unfaithful alternatives (Section 5.1).
2 Drift forensics: Given a particular data model ΦProc, the gradient from the upstream task
model ΦTask can propagate to ΦProc, thus enabling precise data forensics: precise specification of
data generation environments that should be avoided for a given task model (Section 5.2).
3 Drift optimization: Lastly, the gradient connection between data ΦProc and task model ΦTask
allows directly adjusting the data and data generating process themselves via backpropagation to aid
the downstream task model learn better faster (Section 5.3).

• We collected and publicly release two raw image datasets in the camera sensor state for data modelling.
The raw datasets come with full annotations and processing variations for both a classification (Raw-
Microscopy, 17,860 total samples) and a regression (Raw-Drone, 10,412 total samples) task. The data
can be downloaded from the anonymized record https://zenodo.org/record/5235536 as well as
through the data loader integrated in our code base below.

• We provide modular PyTorch code for explicit and differentiable data models ΦTask from raw camera
sensor data. All code is accessible at https://github.com/aiaudit-org/raw2logit.

1.3 Scope, practical fit and limitation of the proposed methods

The systems infrastructure for optical imaging produced by large industry vendors such as ZEISS, Hamamatsu,
Teledyne-Photometrics, Andor, Yokogawa or Perkin-Elmer allow raw sensor readouts. The same applies
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to consumer-grade cameras by market-dominating vendors such as Samsung or Apple. Concurrently, ISP-
processed data is predominantly used in practice - both in the application domains considered here and
machine learning. The reasons are often downstream workload dependencies. In most settings, data is
acquired to be human readable for a specific task, for example diagnostics or environmental surveying.
Variations in the ISPs, between different vendors or acquisition sites, then lead to the drifts of Equation (1)
outlined above. This work is targeted at the current imaging infrastructure that (i) makes widespread use
of ISPs that lead to drift and (ii) simultaneously allows access to raw sensor readouts. For this setting, we
propose data models that allow engineers to explore, emulate and control different data generating processes
related to the ISP at low cost in a physically faithful way. In terms of practical benefits, data models can
save time and money (drift synthesis) as additional acquisitions, on the order of days or even weeks, can be
avoided. They also open up completely new applications for integrated data-model quality management (drift
forensics, drift optimization) which are impossible without differentiable data models. To be clear, there are
other important sources of drift, such as the sensor or optical components of the camera, which cannot be
captured, yet, by our framework. For example, in the Raw-Microscopy dataset, factors such as the choice of
filters for blue, green, and red channels, the point-spread function, and mechanical drift can influence the
final image quality. Similarly, in the Raw-Drone dataset, the choice of lens, f-number, PSF circle diameter,
ISO, and the gain applied to pixel values can affect the acquired images. These factors introduce variations
contributing to dataset drift. The data models presented in this study aim to account for changes during the
ISP. While extensions beyond this setting are opportune, raw-only, as sketched out in the drift optimization
experiments, would require a shift in the dominant imaging workflows of the application domains considered
here. In summary, the current data models offer rich utility to capture ISP as a dominant source of data drift,
but are limited to the ISP scope and require an extension to model additional factors outside that scope in a
physically faithful manner.

2 Related work

While physically sound data models of images have to the best of our knowledge not yet found their way into
the machine learning and dataset drift literature, they have been studied in other disciplines, in particular
physical optics and metrology. Our ideas on data models and dataset drift controls we present in this
manuscript are particularly indebted to the following works.

Data models for images [131, 132] employ deep convolutional neural networks for modelling a raw image
data processing which is optimized jointly with the task model. In contrast, we employ a parametric data
model with tunable parameters that enables the modular drift forensics and synthesis presented later. [133]
propose a differentiable image processing pipeline for the purpose of camera lens manufacturing. Their
goal, however, is to optimize a physical component (lens) in the image acquisition process and no code or
data is publicly available. Existing software packages that provide low level image processing operations
include Halide [134], Kornia [135] and the rawpy package [136] which can be integrated with our Python and
PyTorch code. We should also take note that outside optical imaging there are areas in machine learning and
applied mathematics, in particular inverse problems such as magnetic resonance imaging (MRI) or computed
tomography, that make use of known operator learning [137, 138] to incorporate the forward model in the
optimization [139] or, as in the case of MRI, learn directly in the k-space [140].

Drift synthesis As detailed in Section 1, the synthesis of realistic drift test cases for a task model in
computer vision is often done by applying augmentations directly to the input view vGC, e.g. a processed
.jpeg or .png image. Hendrycks et al. [43] have done foundational work in this direction developing a
practical, standardized benchmark. However, as we explain in Section 1.1 there is no guarantee that noise ξ
added to a processed image v will be physically faithful, i.e. that v+ξ ∈ Φ̃Proc [XRAW]. This is problematic, as
nuances matter [141] for assessing the cascading effects data models have on the task model ΦTask downstream
[120, 142]. For the same reason, the use of generative models [47] like GANs has been limited for test data
generation as they are known to hallucinate visible and less visible artifacts [143, 144]. Other approaches,
like the WILDS data catalogue [145, 146], build on manual curation of so called natural distribution shifts,
or, like [68], on artificial worst case constructions. These are important tools for the study of dataset drifts,
especially those that are created outside the camera image signal processing. Absent explicit, differentiable
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data models and raw sensor data, the shared limitation of catalogue approaches is that metrologically faithful
drift synthesis is not possible and the data generating process cannot be granularly studied and manipulated.

Drift forensics Phan et al. [147] use a differentiable raw processing pipeline to propagate the gradient
information back to the raw image. Similar to this work, the signal is used for adversarial search. However,
Phan et al. optimize adversarial noise on a per-image basis in the raw space xRAW, whereas our work modifies
the parameters of the data model ΦProc itself in pursuit of harmful parameter configurations. The goal in
this work is not simply to fool a classifier, but to discover failure modes and susceptible parameters in the
data model ΦProc that will have the most influence on the task model’s performance.

Drift optimization An explicit and differentiable image processing data model allows joint optimization
together with the task model ΦProc. This has been done for radiology image data [148–150] though the
measurement process there is different and the focus lies on finding good sampling patterns. For optical data,
a related strand of work is modelling inductive biases in the image acquisition process which is explained and
contrasted to this work above [116, 133].

Raw image data Camera raw files contain the data captured by the camera sensors [121]. In contrast
to processed formats such as .jpeg or .png, raw files contain the sensor data with minimal processing
[115, 151, 152]. The processing of the raw data usually differs by camera manufacturer thus contributing to
dataset drift. Existing raw data sets from the machine learning, computer vision and optics literature can be
organized into two categories. First, datasets that are sometimes treated - usually not by the creators but
by users of the data - as raw data but which are in fact not raw. Examples for this category can be found
for both modalities considered here [153–163]. All of the preceding examples are processed and stored in
formats including .jpeg, .tiff, .svs, .png, .mp4 and .mov. Second, datasets that are labelled raw data
which are raw. In contrast to the labelled and precisely calibrated raw data presented here, existing raw
datasets [164–167] are collected from various sources for image enhancement tasks without full specification
of the measurement conditions or labels for classification or segmentation tasks.

3 Preliminaries: a data model for images

Before proceeding with a description of the methods we use to obtain the data models ΦProc in this study,
let us briefly review the distinction between raw data xRAW, processed image v and the mechanisms
ΦProc∶RH,W → RC,H,W by which image data transitions between these states3. Image acquisition has
traditionally been optimized for the human perception of a scene [122, 168]. Human eyes detect only the
visible spectrum of electromagnetic radiation, hence imaging cameras in different application domains such as
medical imaging or remote sensing are usually calibrated to aid the human eye perform a downstream task.
This process that gives rise to optical image data, which ultimately forms the backbone for any machine
learning downstream, is rarely considered in the machine learning literature. Conversely, most research to
date has been conducted on processed RGB image representations. The raw sensor image xRAW obtained
from a camera differs substantially from the processed image that is used in conventional machine learning
pipelines. The xRAW state appears like a grey scale image with a grid structure (see xraw in Figure 1).
This grid is given by the Bayer color filter mosaic, which lies over sensors [121]. The final RGB image
v is the result of a series of transformations applied to xRAW. For many steps in this process different
possible algorithms exist. Starting from a single xRAW, all those possible combinations can generate an
exponential number of possible images that are slightly different in terms of colors, lighting and blur -
variations that contribute to dataset drift. In Figure 1 a conventional pipeline from xRAW to the final RGB
image v is depicted. Here, common and core transformations are considered. Note that depending on the
application context it is possible to reorder or add additional steps. The symbol Φi is used to denote the
ith transformation and vi (view) for the output image of Φi. The first step of the pipeline is black level
correction ΦBL, which removes any constant offset. The image vBL is a grey image with a Bayer filter
pattern. A demosaicing algorithm ΦDM is applied to construct the full RGB color image [169]. Given vDM,
intensities are adjusted to obtain a neutrally illuminated image vWB through a white balance transformation
ΦWB. By considering color dependencies, a color correction transformation ΦCC is applied to balance
hue and saturation of the image. Once lighting and colors are corrected, a sharpening algorithm ΦSH is

3We recommend [122] for a good introduction to the physics of digital optical imaging.
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applied to reduce image blurriness. This transformation can make the image appear more noisy. For this
reason a denoising algorithm ΦDN is applied afterwards [170, 171]. Finally, gamma correction, ΦGC, adjusts
the linearity of the pixel values. For a closed form description of these transformations see Section 4.2.
Compression may also take place as an additional step. It is not considered here as the input image size is
already small. Furthermore, the effect of compression on downstream task model performance has been
thoroughly examined before [172–176]. However, users of our code can add this step or reorder the sequence
of steps in the modular processing object class per their use case needs4.

4 Methods

In order to obtain advanced data models for images, raw sensor data is required. In many industry domains
such as microscopy, biomedicine, autonomous vehicles or remote sensing raw sensor data is processed at scale
for machine vision tasks. Most existing digital camera systems on the market today, including consumer
smartphones, can be configured to access the raw sensor measurements. Next, we explain how to obtain raw
sensor data from existing optical hardware. We collected two datasets for two representative machine learning
tasks. Both datasets are made available for free, public use at https://zenodo.org/record/5235536.

4.1 Raw dataset acquisition

As public, scientifically calibrated and labelled raw data is, to the best of our knowledge, currently not
available, we acquired two raw datasets as part of this study: Raw-Microscopy and Raw-Drone. Raw-
Microscopy consists of expert annotated blood smear microscope images. Raw-Drone comprises drone images
with annotations of cars. Our motivation behind the acquisition of these particular datasets was threefold.
First, we wanted to ensure that the acquired datasets provide good coverage of representative machine
learning tasks, including classification (Raw-Microscopy) and regression (Raw-Drone). Second, we wanted
to collect data on applications that, to our minds, are disposed towards positive welfare impact in today’s
world, including medicine (Raw-Microscopy) and environmental surveying (Raw-Drone). Third, we wanted to
ensure the downstream machine learning application contexts are such where errors can be costly, here patient
safety (Raw-Microscopy) and autonomous vehicles (Raw-Drone), hence necessitating extensive robustness and
dataset drift controls. Since data collection is an expensive project in and of itself we did not aspire to provide
extensive benchmark datasets for the respective applications, but to collect enough data to demonstrate the
advanced data modelling and dataset drift controls that raw data enables.

In Appendix A.4.1 we provide detailed information on the two datasets and the calibration setups of the
acquisition process. Samples of both datasets can be inspected in Figure 2 and Appendix A.4.1. Full datasheet
documentation following [177] is also available in Appendix A.4.2.

An alternative approach could be to attempt reconstruct raw images from processed images [178, 179]. As
we laid out earlier, when an image is captured by a digital camera, the sensor records raw image data in the
form of an array of pixel values. This raw image data is usually processed by an ISP before being used in
a downstream task. The ISP performs various adjustments such as color correction, noise reduction, and
sharpening to enhance the quality of the image. However, these adjustments are not physically faithful to
the original raw image data and result in a loss of information. Therefore, it is generally not possible to
reconstruct the exact raw image data from the ISP processed images. While the processed images may look
better to the human eye, they do not accurately represent the physical reality of the original scene. For
example, a recent paper by Nam et al. [179] propose a content-aware metadata approach to sRGB-to-Raw
RGB de-rendering, but acknowledges that the resulting approximations are not perfectly accurate and still
suffer from limitations. Similarly, another study by Brooks et al. [178] present a method for recovering raw
data from processed images, but also note that the approach is not able to recover all of the original data
with perfect accuracy. These findings highlight the fundamental challenge of reconstructing raw data from
processed images. Empirical approximations are possible but not exact, that is not physically faithful, and
hence orthogonal to our goal here. However, one should note that these reconstruction approaches can offer

4See pipeline_torch.py and pipeline_numpy.py in our code.
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Figure 2: Processed samples and labels of the two datasets, Raw-Microscopy (columns one to four) and
Raw-Drone (columns five and eight), that were acquired for the dataset drift study presented here.

interesting value propositions outside the physically precise drift regime. The proposed technique by [178]
"unprocesses" images and offers interesting gains during training, enabling a convolutional neural network
with 14-38% lower error rates and 9-18x faster performance, while generalizing to other sensors as well. This
approach can further be calibrated using joint learning of sampling and reconstruction, offering better raw
reconstructions by adapting to image content, with an additional online fine-tuning strategy for enhanced
results [179].

4.2 Data models: Image signal processing ΦProc

The second ingredient to this study are the data models of image processing. Let (XRAW , Y ) ∶ Ω→ RH,W ×Y
be the raw sensor data generating random variable on some probability space (Ω,F ,P), with Y = {0, 1}K for
classification and Y = {0, 1}H,W for segmentation. Let ΦTask ∶ RC,H,W → Y be the task model determined
during training. The inputs that are given to the task model ΦTask are the outputs of the data model ΦProc.
We distinguish between the raw sensor image xRAW and a view v = ΦProc(xRAW) of this image, where
ΦProc∶RH,W → RC,H,W models the transformation steps applied to the raw sensor image during processing.

The objective in supervised machine learning is to learn a task model ΦTask ∶ RC,H,W → Y within a fixed
class of task models H that minimizes the expected loss wrt. the loss function L ∶ Y ×Y → [0,∞), that is to
find Φ⋆Task such that

inf
ΦTask∈H

E[L (ΦTask(V ), Y )] (2)
is attained. Towards that goal, ΦTask is determined during training such that the empirical error

1
N

N

∑
n=1
L (ΦTask(vn), yn) (3)

is minimized over a sample S = ((v1, y1), ..., (vN , yN)) of views. Modelling in the conventional machine
learning setting begins with the image data generating random variable (V , Y ) = (ΦProc(XRAW ), Y ) and
the target distribution Dt = P ○ (V , Y )−1. Given a dataset drift Ds = P ○ (Ṽ , Y )−1 /= Dt, as specified in
Equation (1), without a data model we have little recourse to disentangle reasons for performance drops in
ΦTask. To alleviate this underspecification, an explicit data model is needed. We consider two such models in
this study: a static model Φstat

Proc and a parametrized model Φpara
Proc.

In the following, we denote by xRAW ∈ [0, 1]H,W the normalized raw image, that is a grey scale image with a
Bayer filter pattern normalized by 216 − 1, i.e.

xRAW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 . . . A1, W
2

. . .

. . .

. . .
A H

2 ,1 . . . A H
2 , W

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Ah,j = [
r2h+1,2w+1 g2h+1,2w

g2h,2w+1 b2h,2w
] , (4)

where the values r2h+1,2w+1, g2h+1,2w, g2h,2w+1, b2h,2w correspond to the values measured through the different
sensors and normalized by 216−1. We provide here a precise description of the transformations that we consider
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(a) Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve
static data models Φstat

Proc used for the drift synthesis experiments in Section 5.1.
A version with higher resolution is omitted here to save space and can instead be
found in Figure 8 in the appendices.

Data models Used functions

bi,s,me ΦBil
DM ΦSF

SH ΦMD
DN

bi,s,ga ΦBil
DM ΦSF

SH ΦGD
DN

bi,u,me ΦBil
DM ΦUM

SH ΦMD
DN

bi,u,ga ΦBil
DM ΦUM

SH ΦGD
DN

me,s,me ΦMen
DM ΦSF

SH ΦMD
DN

me,s,ga ΦMen
DM ΦSF

SH ΦGD
DN

me,u,me ΦMen
DM ΦUM

SH ΦMD
DN

me,u,ga ΦMen
DM ΦUM

SH ΦGD
DN

ma,s,me ΦMal
DM ΦSF

SH ΦMD
DN

ma,s,ga ΦMal
DM ΦSF

SH ΦGD
DN

ma,u,me ΦMal
DM ΦUM

SH ΦMD
DN

ma,u,ga ΦMal
DM ΦUM

SH ΦGD
DN

(b) Abbreviations of the twelve
configurations of the static data
model Φstat

Proc used in the drift
synthesis experiments.

Figure 3: Samples for both datasets (a) and abbreviations of the twelve data models (b)

in our static model Φstat
Proc, followed by a description how to convert this static model into a differentiable,

parametrized model Φpara
Proc.

4.2.1 The static data model Φstat
Proc

Following common steps in ISP, the static data model is defined as the composition
Φstat

Proc =ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL, (5)
mapping a raw sensor image to a RGB image. We note that other data model variations, for example by
reordering or adding steps, are feasible. The static data models allow the controlled synthesis of different,
physically faithful views from the same underlying raw sensor data by manually changing the configurations
of the intermediate steps. Fixing the continuous features, but varying ΦDM, ΦSH and ΦDN results in twelve
different views for the configurations considered here. Samples for each of the twelve data models are provided
in Figure 3a. The individual functions of the composition Φstat

Proc can be found in Appendix A.1.1. An
overview of the data model configurations and their corresponding abbreviations can be found alongside
processed samples in Figures 3a and 3b.

4.2.2 The parametrized data model Φpara
Proc

For a fixed raw sensor image, the parametrized data model Φpara
Proc maps from a parameter space Θ to a

RGB image. It is similar to the static data model with the notable difference that each processing step is
differentiable wrt. its parameters θ. This allows for backpropagation of the gradient from the output of the
task model ΦTask through the data model ΦProc all the way back to the raw sensor image xRAW to perform
drift forensics and drift adjustments. Hence, we aim to design a data model Φpara

Proc ∶ RH,W ×Θ→ RC,H,W that
is differentiable in θ ∈ Θ satisfying

Φstat
Proc =Φpara

Proc (⋅, θstat) (6)
for some choice of parameters θstat and some fixed configuration of the static pipeline Φstat

Proc. Using
the individual functional components specified in Appendix A.1.2, we define for θ = (θ1, ..., θ7) ∈ Θ the
parametrized processing model

Φpara
P roc ∶ [0, 1]3,H,W ×Θ→ [0, 1]3,H,W , (xRAW, θ)↦ v (7)

by the composition
v = (Φpara

GC (⋅, θ7) ○Φpara
DN (⋅, θ6) ○Φpara

SH (⋅, θ5) ○Φpara
CC (⋅, θ4) ○Φpara

WB (⋅, θ3) ○Φpara
DM (⋅, θ2) ○Φpara

BL (⋅, θ1)) (xRAW) . (8)

The operations used above are differentiable except for the clipping operation in the GC that is a.e.-
differentiable5, since the set {0, 1} of non-differentiable points has measure zero. Assuming in addition
that P ((vDN)c,h,w ∈ {0, 1}) = 0 holds true for the entries of vDN results in an a.e.-differentiable processing

5a.e. stands for almost everywhere
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model. We further say that Φpara
Proc is differentiable, noting that this holds only a.e. under the aforementioned

assumption.

4.3 Task models ΦTask

Finally, two task models are employed in the experiments. For the classification task on the Raw-Microscopy
dataset a 18-layer residual net (ResNet18) [180] was used as reference task model. To segment cars from the
Raw-Drone dataset the convolutional neural network proposed in [181] (U-Net) was used. Both task models
were trained using common data augmentations on processed views v of the image measurements to avoid
naive robustness failures. A detailed description of the task models and their hyperparameters is given in A.2.

5 Applications

With data models, raw data and task models in place we are now able to demonstrate the advanced dataset
drift controls comprising 1 drift synthesis, 2 modular drift forensics and 3 drift optimization.

5.1 Drift synthesis

The static data model enables physically faithful synthesis of drift test cases: individual components of the
data model can be swapped out, allowing the controlled creation of different, physically faithful processed
views from one raw reference dataset. A typical use case of drift synthesis for machine learning researchers
and practitioners is the prospective validation of their task model to drift from different camera devices, for
example microscopes across different labs, without having to collect measurements from the different devices.
This simulation can be done insilico as software because the hardware specific processing that takes place
on optical measurement devices after the sensor reading is also insilico. Thus, the extraction of raw sensor
readings from one device allows the emulation of different processing variations present on other devices. A
typical workflow of this data synthesis starts with an engineer constructing a data model of interest, then
passing raw measurements through it and finally getting emulated data to test how the downstream task
model would fare on processing variations from different devices.

We provide twelve possible example data models in the following experiments. For each of the twelve data
models laid out in Section 4.2, the task models were trained for 100 epochs on image data processed through
the training data model. Hyperparameters were kept constant across all runs to isolate the effect of varying
the data models. Then, dataset drift test cases were synthesized by processing the raw test data through
the remaining eleven data models. The task models were then evaluated on test data from all twelve data
models. All results that follow are reported as the mean with error bars over a 5-fold cross-validation6. The
metrics used to evaluate the task models are accuracy for classification and IoU for segmentation.

5.1.1 Physically faithful versus physically unfaithful robustness validation

The leukocyte classification model, as displayed in the left matrix of Figure 4, has a critical drop for few
configurations, suggesting that it is relatively robust to processing induced dataset drift except for the
(ma,s,me) configuration. Note that diagonal elements serve as reference corresponding to test data that
was processed in the same way as the training data. The segmentation task model (left matrix in Figure 5)
displays a more heterogeneous pattern with symmetries for certain combinations of data models, such as (bi,
u, me/ga) and (me, s, me/ga), which are mutually destructive to the task model performance. The average
performance of the task models drops from 0.82 to 0.8 between train and test data models for classification
and from 0.71 to 0.65 for segmentation. That is the average change from train to test data environment
calculated across all configurations for ISP as well as Common Corruptions. The results for individual
components of the data models can also be directly compared in Figures 4 and 5. For example, to understand
how changes in the demosaicing algorithm affect the segmentation model, we can look at the left box in
Figure 5 and focus on the column combinations 1-5-9, 2-6-10, 3-7-11 and 4-8-12 where the demosaicing is
varied but the other components of the data model stay fixed. Considering the training condition with the

6You can find a full description of task model hyperparameters and experimental setup in Appendix A.2.
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1 Drift synthesis with Φstat
Proc: Microscopy

Figure 4: 5-fold cross-validation results of the Raw-Microscopy drift synthesis experiments. Each cell contains
the average accuracy with a color coded border for the standard deviation. Task models were trained on
the data models on the vertical axis and then tested on processed data as indicated on the horizontal axis.
Numbers 1-3 left to the vertical axis denote the ranking of task models according to their average accuracy
across all test pipelines (respective corruptions). Stars denote the train pipeline under which the task model
performed best on the respective test pipeline/corruption. Full ranking results can be found in Tables 5
to 7 of Appendix A.3. Top-left: Varying the data model leads to mild performance drops except (ma,s,me).
Diagonal is ΦProc = Φ̃Proc. Top-Right: Comparison to the corruption benchmark at medium severity (level
3). The average performance drop is more than thirteen times higher compared to data model variations.
First column is ΦProc = Φ̃Proc. Bottom: Visual inspection of worst case (globally worst scoring) train/test
pipelines.

(bi,s,me) data model using Bilinear demosaicing (row 1), the task model performance drops from 0.7 (column
1) to 0.67 (column 5) IoU in response to Malvar2004 demosaicing and to 0.66 (column 9) IoU when using
Menon2007.

To demonstrate the limitation of post-hoc augmentations7, we compare the drift synthesis results to a popular
augmentation testing framework known as Common Corruptions Benchmark [43]. In machine learning
practice, augmentation users often assume that applying a corruption, for example ’blur’, to a processed
image will emulate the noise from a real-world camera system, for example blur from the lens or the denoising
component in the camera. However, this is not the case. It should not come as a surprise given the composition
of the optical data generating process (see Figure 1 and Section 4.2), that is v + ξ ∈ Φ̃Proc [XRAW] might
not hold true for any data model as we explain in Section 1.1. This has also been empirically demonstrated
in previous work [114–116]. Here we go one step further to show that physically unfaithful augmentation
testing can lead to wrong conclusions in model selection.

7We are only referring to limitations relating to robustness testing and model selection. Augmentations have important
empirically validated benefits in other applications such as regularization during training or semi- and self-supervised learning.
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1 Drift synthesis with Φstat
Proc: Drone

Figure 5: 5-fold cross-validation results of the Raw-Drone drift synthesis experiments. Each cell contains the
average IoU with a color coded border for the standard deviation. Task models were trained on the data
model on the vertical axis and then tested on processed data as indicated on the horizontal axis. Numbers
1-3 left to the vertical axis denote the ranking of task models according to their average IoU across all test
pipelines respective corruptions. Stars denote the train pipeline under which the task model performed
best on the respective test pipeline/corruption. Full ranking results can be found in Tables 5, 8 and 9 of
Appendix A.3. Left: Varying the data model leads to mixed performance drops. Diagonal is ΦProc = Φ̃Proc.
Right: Comparison to the corruption benchmark at medium severity (level 3). The average performance drop
is more than four times higher compared to data model variations. First column is ΦProc = Φ̃Proc. Bottom:
Visual inspection of worst case (globally worst scoring) train/test pipelines.

As we note in Appendix A.3, a direct apple-to-apple comparison is impossible due to the fundamental
limitation of post-hoc corruptions’ physical unfaithfulness. However, we make the comparison as plausible
as possible by only including corruptions that can be related to the ISP data model. Others, such as Fog,
Spatter, Motion, Snow, Frost were excluded8. In contrast to physically faithful test data, the performance
drops under corruptions are more severe across the board: from 0.82 to 0.55 for classification and from 0.71 to
0.49 for segmentation9. This is more than thirteen and four times as much as for the physically faithful drifts
synthesized with the data models considered here. We see similar gaps when considering the best models.
For example, the best performing microscopy data-task-model combo selected across all test ISPs ((ma,s,me)
with 0.83 average accuracy) has more than 20 percentage points gap compared to Common Corruptions
(0.62 average accuracy). For the segmentation task we make a similar observation where the best performing
drone data-task-model combo selected across all test ISPs ((ma,u,ga) with 0.68 average IoU) has more than
10 percentage points gap compared to Common Corruptions (0.55 average IoU) (see Appendix A.3 for full
tables.) The qualitative difference between physically faithful drift test cases and augmentation testing can
also be appreciated in the samples of the bottom rows of Figures 4 and 5. For each task we display a sample

8A comparative overview of included and excluded corruptions can be found in Figure 13 of Appendix A.3
9Results at additional severity levels for the common corruptions can be found in Appendix A.3.
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from the drift test configuration with the worst case performance drop between train and test data conditions.
We show the sample viewed from training data model (A), the test data model (B), and the difference
between both (|A-B|) along the red, green and blue channel. For both tasks, the drift artifacts (|A-B|) are
more localized than the artifacts obtained from augmentation testing. This makes sense, as changes in the
composition of the test data models ΦProc maintain the physical faithfulness of the remaining data model,
whereas augmentation testing spreads noise globally across all pixels which is not guaranteed to be physically
faithful.

5.1.2 Implications for model selection

Similarly, the conclusions for model selection diverge depending on whether physically faithful data or
corruptions are used. In terms of the average performance across all test conditions, none of the top-3 training
data models10 overlap between ISP and common corruptions on the classification task. For segmentation,
only one of the training data models (bi,s,ga) overlaps in the top-3 under ISP and common corruptions.
Similarly, the training data models under which task models perform best in individual testing conditions vary
widely between ISP and common corruptions, both for classification and segmentation. Why does physical
faithfulness matter in dataset drift testing? A test result is only as reliable as its constituting parts. If we are
to rely on robustness test results to decide whether to use a task model in a certain data environment or not,
we need to ensure the test cases represent real-world data models. If the test cases are not physically faithful,
the results based on them are of limited use to make decisions.

5.1.3 Data models and targeted generalization

Recent advances in learning theory by Krikamol Muandet conjecture the impossibility to design rational
learning algorithms that have the ability to successfully learn across heterogeneous environments [96]. Explicit
data models allow us to rethink the problem of generalization in a similar vein. With data models it is
possible to i) precisely specify individual environments and ii) observe what combinations of environments
and task model play together nicely. Rather than selecting task models with best average performance across
all heterogeneous test environments, we can serve the task model with the right data model depending on
which environment it is deployed in. When we analyze the columns of the matrices in Figures 4 and 5 we can
observe under what training data model (or ’environments’ in Muandet’s language) the task model performs
best in which testing environment. These configurations are marked by a star (⋆). For example, in the
case of classification we can observe that for a task model to perform well in (bi,u,me) and (bi,u,ga) test
data environments, the (ma,u,ga) training data environment is best (left matrix, Figure 4). However, for
the segmentation task, to perform best in the same testing data environments, the (bi,u,me) training data
environment is preferable (left matrix, Figure 5).

5.1.4 Use cases and limitations of drift synthesis

The most immediate use cases for drift synthesis is physically faithful, prospective validation without
measurement. In this scenario an engineer will have a task model as well as reference raw measurements. She
would then construct data models of interest, for example for two different microscopes across laboratory sites
s and t. She would then pipe the reference measurements through data models s and t to obtain two different
datasets and test the task models on them. She could observe the effect of the processing in lab site t from
a computer without ever having to take expensive measurements on site. Building up a catalogue of data
models, as we demonstrated in the experiments, then further allows to perform model selection or targeted
generalization management where the task model is paired with suitable data models during deployment. All
these applications presuppose access to raw data as well as knowledge of the data model specification so that
they can be constructed accordingly in software.

5.2 Drift forensics

Clear and precise specification of the limitations of use is a mandated requirement for many products that
can potentially contain machine learning components, such as software as a medical device [105, 106] or

10Denoted by the numbers 1-3 alongside the rows of the matrices in Figures 4 and 5
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2 Drift forensics with ∇θλ∥V − Ṽ ∥22 −L(Ṽ , Y )

Figure 6: (a): Test accuracy on the Raw-Microscopy test set after 20 epochs of adversarial search in the
data model for varying regularization weight parameters λ. The individual plots depict the various pipeline
parameter selections (left plot). Plot showing ℓ2-norm (of processed images between the adversarially
trained Φ̃

para
Proc and the default Φpara

Proc) versus attained accuracy of the task model (right plot). The metrics
are evaluated on the test set after 20 epochs of adversarial optimization for varying regularization weight
parameter λ. (c): Same for Raw-Drone. The individual plots depict the various data model parameter
selections. A lower regularization results in a bigger search space for adversarial optimization. Forensics loss
refers to the binary cross entropy and Dice loss used as the optimization objective for the segmentation task
model. (b): Processed samples from the drift forensics after 20 epochs with varying regularization weights λ.

autonomous vehicles [182]. Without knowledge and control over the data acquisition process in practice
this requirement cannot be met. An explicit, differentiable data model paired with raw data offers a viable
solution to this problem. Φpara

Proc enables the analysis of the task model’s susceptibility to dataset drift in
an interpretable manner using adversarial search. Related work, such as [147] also uses a differentiable raw
processing pipeline to propagate the gradient information back to the raw image. There, however, the signal
is used in a classical adversarial setup, to optimize adversarial noise on a per-image basis. In our work here,
gradient updates are not applied to individual images, but to the data model parameters. The goal of such
an analysis is to identify the parameter configurations of the data model under which the task model should
not be operated. The resulting adjustments correspond to plausible changes which reflect changes in data
model, for example due to changing camera ISPs. In order to limit the parameter ranges, we chose an explicit
constraint in the RGB space.

minimize
θ̃∈Θ

λ∥V − Ṽ ∥22 −L(Ṽ , Y ) , (9)

where V = Φpara
Proc(XRAW, θ) are the RGB images obtained from the original data model and Ṽ =

Φpara
Proc(XRAW, θ̃) are the RGB images obtained from adversarial search on the data model parameters.

Equation (9) maximizes the classification loss under a relaxed ℓ2-constraint controlled by the hyperparameter
λ ≥ 0. This procedure yields data model parameters that deteriorate the task model performance while
keeping the measured distortion minimal and the within constraints of physical faithfulness. All of the
pipeline’s parameters are optimized jointly to search for a task model’s overall data model related weaknesses.
Targeting select parameters is also possible and provides insight into a parameter’s effect on the task model’s
performance.

5.2.1 Sensitivity to data models

The left plot in block (a) of Figure 6 shows sensitivities of the classification task model to changes in the
data model parameters. With increased relaxation of the ℓ2-regularization, the accuracy declines exposing
configurations under which the task model deteriorates. As to be expected, the setting allowing for all
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parameters to be altered shows the biggest effect on the resulting performance. Individually, changes in the
black level configuration Φpara

BL and the denoising parameters Φpara
DN pose the greatest risk for task model

performance under a relaxed regularization weight. In contrast to the classification model the performance
drops for the segmentation model are less severe (top plot in block (c) of Figure 6). We hypothesize that this
is because classification problems are inherently discontinuous while inverse problems inherently allow for
more stable solutions [183], thus being less susceptible to instabilities.

5.2.2 Sensitivity in relation to magnitude

For comparison, the right plot in block (a) of Figure 6 shows the regularization weight λ against the resulting
ℓ2. Interestingly, a higher norm in the resulting RGB images does not directly translate to the most severe
performance degradation of the task model. At ℓ2 = 10−5, changes in the Gaussian blur parameters induce a
norm almost twice as large as the changes in the black level parameters. However, the corresponding drop
in accuracy caused by Gaussian blur is around one third less relative to black level. Similarly, at ℓ2 = 10−5,
the sharpening filter parameters incur a norm but do not lead to accuracy drops of the task model. This
underscores the importance of precise data models for dataset drift validation. Physically faithful yet small
changes, as visible in the samples in bottom row of Figure 6, in processed images can have larger impact on
the performance than large changes.

5.2.3 Use cases and limitations of drift forensics

A practical use-case of drift forensics looks follows: party s develops and trains a model and then licenses it
to party t for use. Party t wants to know what the data conditions are under which the task model performs
well and under which conditions it should not be used. Party s runs drift forensics and provides party t
with a forensic signature, as seen in Figure 6, detailing which parameters in the data model can be changed
and which should not be touched to maintain task model performance. Party t can use this information to
calibrate their data processing and knows which data settings to avoid for the specific task model. As with
the other drift controls, access to the raw data as well as data models is required to perform drift forensics.

5.3 Drift optimization

In the previous two experiments we demonstrated how raw data and a differentiable data model can be used
to identify and then modularly test for unfavorable data models that should be avoided during deployment
of the machine learning task model. The same mechanics can also be exploited to optimize the data itself,
effectively creating a beneficial drift. In the drift optimization setting, the gradient from the task model
ΦTask is propagated into the data model ΦProc to jointly optimize both of them. In the learned setting, the
data model parameters are jointly optimized with the task model parameters. In the frozen setting, only the
task model parameters are optimized and the data model parameters are kept fixed11.

5.3.1 Convergence and stability

In the left column (a) of Figure 7 these two scenarios are compared. The learned data model creates a
drift that improves stability of the learning trajectory. This is indicated by the blue line which displays the
validation accuracy against optimization steps for the first half of training (step 1439 corresponds to epoch
60). It exceeds that of the frozen data model (red line) by up to 25 percentage points in accuracy at a lower
variance. For the segmentation task (bottom row Figure 7) the stabilization effect cannot be observed. This
could be due to the low resolution of the problem itself as the drift optimization may not have a large effect
on enhancing the solid blocks of cars in the raw data. Other evidence further suggests that inverse problems
are inherently less unstable [183]. The results of the convergence and stability behavior under the different
settings can also be found as a tabular summary in Table 2.

11The initialization of Φpara
Proc (both frozen and learned) is set to standard values which can be found in Appendix A.1 as well

as in pipeline_torch.py of the code.
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3 Drift adjustments with Φpara
Proc

(a) Low intensity (0.001) XRAW with Φpara
Proc (b) High intensity (1.0) XRAW with Φpara

Proc
Frozen Learned Validation metric Frozen Learned Validation metric Raw comparison
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Figure 7: Low (a) and high (b) intensity images processed by a frozen and a learned pipeline. This type of
drift optimization would not be possible with processed data. The plots columns three and six display the
mean of validation metrics over five cross validation runs. Column seven shows additional results on raw
data for comparison. Error bars are reported as one standard deviation. Optimization step 1439 and 915
correspond to epoch 60 into training.

5.3.2 Helpful artifacts

In fact, the processed image from a learned data model with optimized drift (see learned column in block (a) of
Figure 7 for an example) can contain visible artifacts that aid stability and generalization vis-a-vis the image
from the frozen baseline data model which, arguably, looks cleaner to the human eye. A possible explanation
for the improved learning trajectory could be that a varying optimized drift automatically generates samples
akin to data augmentation. Such uses could further be explored in scarce data settings like fine tuning,
semi-supervised or few-shot learning. Having gradient access to the data model thus offers the opportunity to
optimize data generation itself for a given machine learning task. If learned data models are to be applied in
real-world applications, it thus appears likely that a tradeoff has to be made between human perceived visual
quality and artifacts that can be helpful to the task model.

Similar outcomes for stability and artifacts can also be observed for the reverse situation (high intensity 1.0
xRAW) in the right column (b) of Figure 7.

5.3.3 Raw and data models

We demonstrated how parametrized data models can be used to optimized drift under data model constraints.
Going beyond physically faithful drift controls, an interesting extension to drift optimization is training
directly on raw data to optimize task model performance. While in this manuscript we are concerned with
providing building blocks to emulate optical data models used in practice, training directly on raw opens
up the possibility to learn purely machine-optimized optical data processing free of existing data model
constraints. In the last column of Figure 7 an optimization directly on raw data is displayed for each task.
Results are reported across threefold cross-validation with error bars of one standard deviation. Like in
the other experiments the task model parameters are tuned as well (see task model training details in
Appendix A.2). For classification, a performance similar to the learned setting is achieved with a more volatile
optimization trajectory. For the segmentation task, the performance is not on par with either the learned or
frozen setting, but it appears plausible that this gap can be substantially reduced with further finetuning.
Learning directly on raw data thus appears as a promising direction for data model-free machine vision.

5.3.4 Use cases and limitations of drift optimization

Drift optimization can be used to squeeze out performance from a task model by creating drift that is helpful.
A common use case is the adjustment of imaging pipelines, such as microscopes, that have traditionally been
optimized for human end users, for example medical staff, which are increasingly being used in conjunction
with automated machine learning models, for example for cell detection. By adjusting the parameters in
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Microscopy Drone
Average accuracy Average IoU

Learned (low) 0.75 ± 0.09 0.59 ± 0.05
Frozen (low) 0.54 ± 0.21 0.59 ± 0.05
Learned (high) 0.78 ± 0.08 0.74 ± 0.04
Frozen (high) 0.67 ± 0.14 0.71 ± 0.05
Direct raw 0.75 ± 0.07 0.60 ± 0.07

Table 2: Tabular summary of the drift optimization results. The average accuracy and standard deviations
over cross-validation runs and training steps are displayed, summarizing both the stability and converge
trajectory for each setting.

the data models of existing optical laboratory infrastructure performance gains can be achieved. Due to the
improved convergence and stability of the optimization trajectory it can also potentially be used in situations
where compute is expensive or scarce altogther. However, these benefits do not hold across all tasks, as we
saw in the case of the segmentation model, and for cases where no data models are present, such as novel
or custom optical hardware, learning directly on raw data offers a promising exetension. This work targets
imaging infrastructure that uses ISPs causing data drift while also allowing access to raw sensor readouts.
The proposed data models enable engineers to emulate and control different data generating processes related
to ISPs in a cost-effective, physically faithful manner. These models save time and money and enable new
applications for data-model quality management. However, they only capture ISP-related drifts and require
extensions to model other factors. The ultimate goal could be to train on RAW data, with the current
pipeline serving as an interim solution until RAW data becomes more widely available.

6 Discussion

The main message we hope to convey in this manuscript is that black-box data models for images neither
have to be the norm in machine learning research nor in engineering. Leveraging established knowledge from
physical optics enables us to push the modelling goalpost further towards machine learning’s core ingredient:
the data. Paired with raw data, precise differentiable data models for images allow for advanced controls of
dataset drift, a common and far reaching challenge across many machine learning disciplines. Applications
beyond robustness validation in areas of machine learning that are also held back by black-box data, such as
federated learning and formal model certifications, appear opportune, too.

Drift synthesis allows the creation of physically faithful of drift test cases. In contrast to augmentation testing,
the performance drops for physically faithful test cases are less severe across the board for both uses cases in
our experiments, changing the conclusions we arrive at for model selection and enabling new ways to think
about generalization with targeted, data model specific deployment of task models. A plausible practical
application scenario of drift synthesis for machine learning researchers and practitioners is the prospective
validation of their task model to drift from different camera devices, for example microscopes across different
lab sites or autonomous vehicles, without having to collect measurements from the different devices. Drift
synthesis could also be interesting for other application domains that rely on data synthesis (semi- [88–90]
and self-supervised learning [91, 92]) or on precise data models (aleatoric uncertainty quantification [72–82],
out-of-distribution detection [34, 83–87]). While we cross-validated a substantial number of data model
variations in our experiments, it should be noted that further variations, for example by reordering or adding
steps, are possible. Furthermore, it should not be overlooked that dataset drift can also be caused by factors
outside the ISP data model, for example the optical components of a camera. Our current data models are
not yet capable of capturing factors that go beyond the ISP. Integrating work from lens manufacturing [133]
to expand the reach explicit data models offers a promising next step for drift synthesis.

Drift forensics allow the precise specification of data model limitations of use for a given machine learning task
model. Data models under which the task model should not be operated can be identified by gradient search
and then documented. In our demonstration, the setting allowing for all parameters to be altered shows the
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biggest effect on the resulting performance. Individually, changes in the black level configuration and the
denoising parameters pose the greatest risk for performance of the task model at hand. Interestingly, a higher
norm in the resulting RGB images does not directly translate to the most severe performance degradation
of the task model. This underscores the importance of precise data models for dataset drift validation. In
practice, clear specification of the limitations of use is a mandated requirement for many products that
can potentially contain machine learning components, such as software as a medical device [105, 106] or
autonomous vehicles [182]. Drift forensics with explicit data models can help to utilize the precision of
machine learning and data engineering to satisfy such regulatory constraints. Explicit data models combined
with gradient search may also be interesting to explore in areas such as formal model verification [55–71] to
obtain tighter error bounds. Other constraints beyond ℓ2 are feasible, depending on the particular use case to
be analyzed, and can be plugged into our code12

We also showed how differentiable data models can be used for drift optimization where the data generating
process is jointly optimized with the task model parameters. It leads to improved stability of the learning
trajectory on the classification task in both low and high intensity measurements. Interestingly, the processed
image from a learned data model can contain visible artifacts that aid stability and generalization vis-a-vis
the image from the frozen baseline data model which arguably looks cleaner to the human eye. In practice,
the extension of the gradient connection from the task model ΦTask to the data model ΦProc enables the
extension of machine learning right into the data generating process. Thus, data generation itself can be
optimized to best suit the task model at hand. Furthermore, the stabilization effect could prove useful for
learning problems where training is costly and speedup precious (for example large models or large datasets).
This capacity could also be exploited in other areas that deal with heterogenous training or deployment
environments, such as different clients in federated learning [97–99] or domain adaptation techniques [184].
However, the above drift adjustment benefits could only be observed for the classification task, not the
regression task, possibly due to the low resolution of the segmentation problem. How far we can push the
gradient into the real world is an interesting future direction for data modelling. Including more parts of the
data acquisition hardware into the data model and consequently the machine learning optimization pipeline
appears feasible [185] and represents an important next step in aligning machine learning with real world
data infrastructures.

Finally, raw data, which is already routinely used in optical industries [125–130], for representative machine
learning tasks has to become more accessible to researchers to align robustness research with physically
faithful data models and infrastructures. While most optical imaging devices support the extraction of raw
data and this procedure is well established in industry and physics, data collection procedures for machine
learning robustness research still have to catch up in order to make raw datasets and their benefits more
widely available. Norms around established benchmarking datasets of processed images, such as CIFAR
or ImageNet, can slow down this progress. To that end, we collected and publicly release two raw image
datasets in the camera sensor state. The assumptions with respect to the practicality of the procedures we
propose here are mild in our eyes. Raw subsets of data could be stored and then pulled in-code from cloud
storage, as demonstrated in the code that we provide, for the purposes of drift synthesis or drift forensics.
Learned data models obtained from drift adjustments could be calibrated directly on hardware such that the
bandwidth requirements would not change compared to current image acquisition and transmission. Better
APIs to optical hardware would allow more researchers and industries to make their raw data accessible and
service a culture of data modelling that can help overcome the limitations of machine learning in the pure
task model regime.

Use of Personal Data and Human Subjects The microscopy slides were purchased from a commercial
lab vendor (J. Lieder GmbH & Co. KG, Ludwigsburg/Germany) who attained consent. The drone dataset
does not directly relate to people. Instances with potential PIIs such as faces or license plates were removed.
Full datasheet documentation following [177] can be found in Appendix A.4.2.

Negative Societal Impact Machine learning risk management, such as the drift controls, can make ML
deployment possible and safer. More deployment translates to increases in automation. A net risk-benefit

12Argument args.adv_aux_loss in train.py
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analysis of automation is beyond the scope of this manuscript. What we do know is that steel can be cast
into ploughs and swords. We are against the use of our findings for the latter purpose.
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A Appendices

A.1 Data models details

A.1.1 Static data model Φstat
Proc

If not stated otherwise, writing the equation vc,h,w = ac,h,w + bc,h,w defines vc,h,w for all 1 ≤ c ≤ 3, 1 ≤ h ≤H
and 1 ≤ h ≤W .

Black level correction (BL) removes thermal noise and readout noise generated from the camera sensor.
The transformation is given by

ΦBL ∶ [0, 1]H,W → [0, 1]H,W , xRAW ↦ vBL, (10)

with

(vBL)2h+1,2w+1 = x2h+1,2w+1 − bl1

(vBL)2h,2w+1 = x2h,2w+1 − bl2

(vBL)2h+1,2w = x2h+1,2w − bl3

(vBL)2h,2w = x2h,2w − bl4,

By design of bl ∈ R4, black level correction ensures that vBL is again an element of [0, 1]H,W .

Demosaicing (DM) is applied to reconstruct the full RGB color image through interpolation. We use one
out of the three demosaicing algorithms BayerBilinear (ΦBil

DM), Menon2007 (ΦMen
DM ) and Malvar2004 (ΦMal

DM)
from the Python package color-demosaicing and denote this transformation by the map

ΦDM ∶ [0, 1]H,W → [0, 1]3,H,W , v ↦ vDM. (11)

White balance (WB) is applied to obtain a neutrally illuminated image. The transformation is given by

ΦWB ∶ [0, 1]3,H,W → [0, 1]3,H,W , v ↦ vWB, (12)

where wb ∈ [0, 1]3 adjusts the intensities by

(vWB)c,h,w = wbc ⋅ (vDM)c,h,w. (13)

Color correction (CC) balances the saturation of the image by considering color dependencies. Let
M ∈ R3,3 be the color matrix. The transformation is defined by

ΦCC ∶ [0, 1]3,H,W → R3,H,W , v ↦ vCC, (14)

where

vCC =
⎡⎢⎢⎢⎢⎢⎣

(vCC)1,h,w

(vCC)2,h,w

(vCC)3,h,w

⎤⎥⎥⎥⎥⎥⎦
=M

⎡⎢⎢⎢⎢⎢⎣

(vWB)1,h,w

(vWB)2,h,w

(vWB)3,h,w

⎤⎥⎥⎥⎥⎥⎦
. (15)

The entries of the resulting vCC are no longer restricted to [0, 1].
Sharpening (SH) reduces the blurriness of an image. We use the two methods sharpening filter (ΦSF

SH) and
unsharp masking (ΦUM

SH ) that are applied after a transformation of the view vCC to the Y UV -color space.
To convert the view to the Y UV -color space we use the skimage.color function rgb2yuv (ΦY UV ). The
sharpening filter

SF ∶ R3,H,W → R3,H,W , (16)
is defined by a channel-wise convolution

(SF (v))c,h,w = ((vc ⋆ k)h,w)c with k ∶=
⎡⎢⎢⎢⎢⎢⎣

0 −1 0
−1 5 −1
0 −1 0

⎤⎥⎥⎥⎥⎥⎦
(17)
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of the view
v =ΦY UV (vCC). (18)

For unsharp masking we use the ski.filters function unsharp_mask modeled by UM . To formally define
the sharpening we write

ΦSH ∶ R3,H,W → R3,H,W , v ↦ vSH (19)

where
vSH = algo ○ΦY UV (vCC) with algo ∈ {SH, UM}. (20)

Denoising (DN) reduces the noise in an image that is (partly) introduced by SH and transforms the
Y UV -color space view back to the RGB-color space. For the latter transformation, the skimage.color
function yuv2rgb (Φ−1

Y UV ) is used. We apply one out of the two methods Gaussian denoising (ΦGD
DN) and

Median denoising (ΦGD
DN). For Gaussian denoising, we apply a Gaussian filter (GF) with standard deviation

of σ = 0.5 from the scipy.ndimage package. For median denoising we apply a median filter (MF of size 3
from the scipy.ndimage package. Formally, this reads as

ΦDN ∶ R3,H,W → R3,H,W , v ↦ vDN (21)

where
vDN =Φ−1

Y UV ○ algo(vSH) with algo ∈ {GF, UM}. (22)

Gamma correction (GC) equilibrates the overall brightness of the image. First, the entries of the view
vDN are clipped to [0, 1] leading to

(vCP )c,h,w = (vDN)c,h,w 1{0≤(vDN)c,h,w≤1} + 1{(vDN)c,h,w>1}. (23)

Second, the brightness adjusting transformation is defined by

ΦGC ∶ R3,H,W → [0, 1]3,H,W , v ↦ vGC = (vCP )
1
γ (24)

for some γ > 0 applied element-wise. Note that zero-clipping is necessary for vGC to be well-defined.

In total, we define the composition

Φstat
P roc ∶ [0, 1]H,W ↦ [0, 1]3,H,W (25)

of the above steps
Φstat

Proc ∶=ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL (26)

and call Φstat
Proc the static pipeline.
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Figure 8: Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve pipelines used in the
drift synthesis experiments. The legend for abbreviations can be found in Figure 3b.
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A.1.2 Parametrized data model Φpara
Proc

Black level correction (BL) For the parametrized black level correction define the map

Φstat
BL ∶ [0, 1]H,W ×R4 → RH,W , (xRAW, θ1)↦ vBL =ΦBL(xRAW)∣bl=θ1 . (27)

and set Θ1 ∶= R4.

Demosaicing (DM) We first convert vBL to a three channel image [R, G, B] ∈ R3,H,W where the entries of
R, G and B are zero except

R2h+1,2w+1 = vBL2h+1,2w+1 , B2h,2w = vBL2h,2w
,

G2h+1,2w = vBL2h+1,2w
, G2h,2w+1 = vBL2h,2w+1 .

To parametrize ΦBil
DM define the map

Φpara
DM ∶ [0, 1]H,W ×R3,3,3 → R3,H,W , (vBL, θ2)↦ vDM (28)

with θ2 = [k1, k2, k3], where the kernels k1, k2, k3 ∈ R3,3 are separately applied to each color channel resuling
in

vDM1,h,w
= (R ⋆ k1)h,w

vDM2,h,w
= (G ⋆ k2)h,w

vDM3,h,w
= (B ⋆ k3)h,w .

The source code of BayerBilinear shows that the parameter choice

k1 = k3 =
⎡⎢⎢⎢⎢⎢⎣

0 0.25 0
0.25 1 0.25

0 0.25 0

⎤⎥⎥⎥⎥⎥⎦
and k2 =

⎡⎢⎢⎢⎢⎢⎣

0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25

⎤⎥⎥⎥⎥⎥⎦
(29)

leads to
ΦBil

DM =Φpara
DM (⋅, θ2). (30)

Towards the definition of the parameter space set Θ2 ∶= R3,3,3 ×Θ1.

White balance (WB) For the parametrized white balance define the map

Φpara
WB ∶ R

3,H,W ×R3 → R3,H,W , (vDM, θ3)↦ vWB =ΦWB(vDM)∣wb=θ3 (31)

and set Θ3 ∶= R3 ×Θ2.

Color correction (CC) For the parametrized color correction define the map

Φpara
CC ∶ R

3,H,W ×R3,3 → R3,H,W , (vWB, θ4)↦ vCC =ΦCC(vWB)∣M=θ4 (32)

and set Θ4 ∶= R3,3 ×Θ3

Sharpening (SH) We parametrize the sharpening filter configuration of the static pipeline, by using the
entries of k ∈ R3,3 defined in (17) as parameters leading to

Φpara
SH ∶ R3,H,W ×R3,3 → R3,H,W , (vCC, θ5)↦ vSH =ΦSH(vCC)∣k=θ5 (33)

and Θ5 ∶= R3,3 × θ4.

Denoising (DN) We parametrize the configuration where the Gaussian denoising method is applied.
Applying the Gaussian filter from scipy.ndimage with σ = 0.5 is equivalent to a convolution of the view in
the Y UV -color space with a specific kgauss ∈ R5,5. For the specific values of kgauss see K_BLUR at the code of
the parametrized pipeline. Therefore, to parametrize DN we define the map

Φpara
DN ∶ R

3,H,W ×R5,5 → R3,H,W , (vSH, θ6)↦ vDN =ΦDN(vSH)∣kgauss=θ6 (34)
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and set Θ6 ∶= R5,5 ×Θ5

Gamma correction (GC) Define the parametrized gamma correction by

Φpara
GC ∶ R

3,H,W ×R→ [0, 1]3,H,W , (vDN, θ7)↦ v = vGC =ΦGC(vDN)∣γ=θ7 . (35)

The following values were used to initialize Φpara
Proc (both "Frozen" and "Learned") in experiment Section 5.3:

1 class ParametrizedProcessing (nn. Module ):
2 """ Differentiable processing pipeline via torch transformations
3

4 Args:
5 camera_parameters ( tuple (list), optional ): applies given camera parameters in

processing
6 track_stages (bool , optional ): whether or not to retain intermediary steps in

processing
7 batch_norm_output (bool , optional ): adds a BatchNorm layer to the end of the

processing
8 """
9

10 def __init__ (self , camera_parameters =None , track_stages =False , batch_norm_output =True):
11 super (). __init__ ()
12 self. stages = None
13 self. buffer = None
14 self. track_stages = track_stages
15

16 if camera_parameters is None:
17 camera_parameters = DEFAULT_CAMERA_PARAMS
18

19 black_level , white_balance , colour_matrix = camera_parameters
20

21 self. black_level = nn. Parameter ( torch . as_tensor ( black_level ))
22 self. white_balance = nn. Parameter ( torch . as_tensor ( white_balance ). reshape (1, 3))
23 self. colour_correction = nn. Parameter ( torch . as_tensor ( colour_matrix ). reshape (3, 3))
24

25 self. gamma_correct = nn. Parameter ( torch . Tensor ([2.2]) )
26

27 self. debayer = Debayer ()
28

29 self. sharpening_filter = nn. Conv2d (1, 1, kernel_size =3, padding =1, bias= False )
30 self. sharpening_filter . weight .data [0][0] = K_SHARP . clone ()
31

32 self. gaussian_blur = nn. Conv2d (1, 1, kernel_size =5, padding =2, padding_mode =’reflect
’, bias= False )

33 self. gaussian_blur . weight .data [0][0] = K_BLUR . clone ()
34

35 self. batch_norm = nn. BatchNorm2d (3, affine = False ) if batch_norm_output else None
36

37 self. register_buffer (’M_RGB_2_YUV ’, M_RGB_2_YUV . clone ())
38 self. register_buffer (’M_YUV_2_RGB ’, M_YUV_2_RGB . clone ())
39

40 self. additive_layer = None

where
1 K_G = torch . Tensor ([[0 , 1, 0],
2 [1, 4, 1],
3 [0, 1, 0]]) / 4
4

5 K_RB = torch . Tensor ([[1 , 2, 1],
6 [2, 4, 2],
7 [1, 2, 1]]) / 4
8

9 M_RGB_2_YUV = torch . Tensor ([[0.299 , 0.587 , 0.114] ,
10 [ -0.14714119 , -0.28886916 , 0.43601035] ,
11 [0.61497538 , -0.51496512 , -0.10001026]])
12 M_YUV_2_RGB = torch . Tensor ([[1.0000000000 e+00 , -4.1827794561e -09 , 1.1398830414 e+00] ,
13 [1.0000000000 e+00 , -3.9464232326e -01 , -5.8062183857e -01] ,
14 [1.0000000000 e+00 , 2.0320618153 e+00 , -1.2232658220e -09]])
15

16 K_BLUR = torch . Tensor ([[6.9625e -08 , 2.8089e -05 , 2.0755e -04 , 2.8089e -05 , 6.9625e -08] ,
17 [2.8089e -05 , 1.1332e -02 , 8.3731e -02 , 1.1332e -02 , 2.8089e -05] ,
18 [2.0755e -04 , 8.3731e -02 , 6.1869e -01 , 8.3731e -02 , 2.0755e -04] ,
19 [2.8089e -05 , 1.1332e -02 , 8.3731e -02 , 1.1332e -02 , 2.8089e -05] ,
20 [6.9625e -08 , 2.8089e -05 , 2.0755e -04 , 2.8089e -05 , 6.9625e -08]])
21 K_SHARP = torch . Tensor ([[0 , -1, 0],
22 [-1, 5, -1],
23 [0, -1, 0]])
24 DEFAULT_CAMERA_PARAMS = (
25 [0. , 0., 0., 0.] ,
26 [1. , 1., 1.] ,
27 [1. , 0., 0., 0., 1., 0., 0., 0., 1.] ,
28 )

Note that the camera parameters are camera, and conversely in our case dataset, dependent and defined in
the dataset classes.
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A.2 Description of the task models ΦTask

Classification Segmentation

Φ
T

as
k

ResNet18 based on [180] U-Net++ based on [181]
trained with Adam [186] for 100 epochs trained with Adam for 100 epochs
learning rate: 10−4 learning rate: 7.5 ⋅ 10−5

mini-batch size: 128 mini-batch size: 12

Table 3: Summary of the training procedure for both task models.

Table 4: A set of random test samples for the segmentation task under learned processing. Top row: Targets,
middle row: predictions of the task model after the first epoch, last row: predictions of the task model after
the last epoch.

ResNet18 This model is designed to classify images from ImageNet [187] and has therefore an output
dimension of 1000. In order to use the model to classify images from Raw-Microscopy, we changed the output
dimension of the fully-connected layer to nine. The model was trained for 100 epochs using pre-trained ResNet
features. Hyperparameters were kept constant across all runs to isolate the effect of varying image processing
pipelines. For implementation the code provided at https://pytorch.org/hub/pytorch_vision_resnet/
was used. The model consists of 34 layers with approximately 11.2 million trainable parameters. The storage
size of the model is 44.725 MB.

U-Net++ The model was trained for 100 epochs using pretrained ResNet features as the encoder of the
U-Net++. Hyperparameters were kept constant across all runs to isolate the effect of varying image processing
pipelines. For implementation we used the code provided at https://github.com/qubvel/segmentation_
models.pytorch. The model has approximately 26.1 million trainable parameters. The storage size of the
model is 104.315 MB.
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Raw training In the drift optimization experiments of Section 5.3 the raw data is demosaiced using class
RawToRGB(nn.Module) from /processing/pipeline_torch.py in the data model code. Then task models
are tuned to raw data under the same regimes described above.

For a summary of the training procedure see Table 3.
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A.3 Additional results

A.3.1 Drift synthesis

Microscopy-ISP Microscopy-CC Drone-ISP Drone-CC
Rank Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score

1 ma,s,me 0.83 bi,u,me 0.63 ma,u,ga 0.68 ma,s,ga 0.60
2 ma,u,me 0.83 me,s,me 0.63 bi,s,ga 0.68 bi,s,ga 0.57
3 ma,u,ga 0.82 bi,u,ga 0.62 bi,s,me 0.67 me,s,ga 0.57
4 bi,s,me 0.81 ma,s,me 0.62 ma,s,me 0.67 ma,s,me 0.55
5 bi,u,me 0.81 me,u,me 0.62 me,u,ga 0.67 me,s,me 0.55
6 me,s,me 0.81 ma,s,ga 0.62 me,u,me 0.67 ma,u,ga 0.55
7 bi,s,ga 0.81 ma,u,me 0.61 ma,u,me 0.66 bi,s,me 0.54
8 me,s,ga 0.80 me,s,ga 0.60 ma,s,ga 0.66 ma,u,me 0.54
9 me,u,me 0.80 bi,s,me 0.59 bi,u,me 0.65 me,u,me 0.53
10 ma,s,ga 0.80 ma,u,ga 0.59 me,s,me 0.65 me,u,ga 0.51
11 bi,u,ga 0.79 bi,s,ga 0.58 me,s,ga 0.64 bi,u,me 0.48
12 me,u,ga 0.79 me,u,ga 0.58 bi,u,ga 0.61 bi,u,ga 0.46

Table 5: Rankings of task models from Section 5.1 trained on different data models (columns 2, 4, 6, 8)
according to their average accuracy or IoU (columns 3, 5, 7, 9) across all test pipelines respective corruptions.
ISP corresponds to drift synthesis with physically faithful data models, CC corresponds to common corruptions.

Microscopy-ISP
Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 ma,u,me ma,u,me ma,u,ga ma,u,ga ma,s,me ma,u,ga ma,u,ga ma,u,ga ma,u,me me,s,ga ma,u,ga ma,u,ga
2 ma,u,ga ma,u,ga bi,s,ga bi,s,ga bi,s,me me,s,ga ma,s,me ma,u,me ma,s,me ma,u,ga ma,u,me ma,u,me
3 bi,s,ga bi,s,ga ma,s,me ma,s,me bi,u,ga ma,s,ga ma,u,me ma,s,me bi,s,ga ma,s,ga ma,s,me ma,s,me
4 ma,s,me ma,s,me ma,u,me ma,u,me ma,u,me ma,s,me bi,s,ga me,u,me me,s,ga me,u,ga me,u,me me,u,me
5 bi,s,me bi,u,me me,u,me me,u,me bi,u,me ma,u,me me,u,me ma,s,ga bi,u,me me,s,me bi,s,ga bi,s,ga
6 bi,u,me me,u,me bi,u,me bi,u,me ma,u,ga me,s,me me,s,ga bi,s,ga ma,u,ga ma,u,me me,u,ga me,u,ga
7 me,s,me bi,s,me bi,s,me me,s,me me,s,me me,u,me me,s,me me,s,ga me,u,me ma,s,me me,s,me me,s,me
8 me,s,ga me,s,me me,s,me bi,u,ga bi,s,ga bi,u,me ma,s,ga me,s,me me,s,me me,u,me bi,s,me bi,s,me
9 me,u,me me,s,ga bi,u,ga bi,s,me me,s,ga me,u,ga bi,u,me bi,u,me bi,s,me bi,s,me me,s,ga me,s,ga
10 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,me bi,s,me ma,s,ga bi,s,ga ma,s,ga ma,s,ga
11 bi,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,s,ga me,u,ga me,u,ga me,u,ga bi,u,me bi,u,me bi,u,me
12 me,u,ga bi,u,ga me,s,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga

Table 6: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test pipeline (columns 2 - 13).

Microscopy-CC
Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,u,me ma,u,me bi,u,me bi,u,me ma,s,ga bi,s,ga bi,s,ga bi,s,ga me,s,me ma,s,me bi,s,ga
2 ma,u,ga ma,s,ga ma,s,ga me,u,me bi,u,me ma,u,me ma,u,ga bi,u,ga ma,s,me me,u,me ma,u,ga
3 bi,s,ga me,u,me me,s,me bi,u,ga me,s,me ma,u,ga ma,s,me me,u,ga bi,u,ga me,s,me ma,u,me
4 me,s,me me,s,ga ma,u,me me,s,me me,u,me bi,u,me ma,u,me ma,s,me ma,s,ga bi,u,ga ma,s,me
5 ma,s,me bi,u,me me,s,ga ma,s,me bi,u,ga me,u,me bi,u,me ma,u,me bi,s,me bi,s,ga me,u,me
6 me,u,me ma,u,ga me,u,me ma,u,me ma,s,me ma,s,me me,s,me bi,s,me bi,u,me bi,u,me me,s,ga
7 me,s,ga me,s,me bi,s,me ma,u,ga ma,u,me me,s,ga bi,u,ga bi,u,me me,s,ga ma,u,ga me,s,me
8 bi,u,me bi,s,me bi,u,ga me,s,ga me,s,ga ma,s,ga me,u,ga me,s,me ma,u,ga ma,s,ga bi,u,ga
9 bi,u,ga ma,s,me ma,s,me me,u,ga bi,s,me me,s,me me,u,me ma,s,ga me,u,ga bi,s,me bi,u,me
10 ma,s,ga bi,u,ga ma,u,ga ma,s,ga ma,u,ga bi,u,ga me,s,ga ma,u,ga bi,s,ga me,s,ga ma,s,ga
11 bi,s,me bi,s,ga bi,s,ga bi,s,me me,u,ga bi,s,me ma,s,ga me,u,me me,u,me me,u,ga me,u,ga
12 me,u,ga me,u,ga me,u,ga bi,s,ga bi,s,ga me,u,ga bi,s,me me,s,ga ma,u,me ma,u,me bi,s,me

Table 7: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test corruptions (columns 2 - 12).
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Drone-ISP
Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 bi,s,me bi,s,ga bi,u,me bi,u,me ma,u,ga ma,s,ga ma,u,ga ma,u,ga ma,s,me ma,s,ga ma,u,ga ma,u,ga
2 bi,u,me bi,s,me bi,s,me bi,s,me ma,s,me me,s,ga me,u,me me,u,me ma,s,ga me,s,ga me,u,me me,u,ga
3 ma,u,ga ma,u,ga bi,u,ga bi,u,ga bi,s,ga ma,s,me ma,u,me ma,u,me ma,u,ga ma,s,me ma,s,me me,u,me
4 bi,s,ga ma,s,me ma,u,ga ma,u,ga me,u,ga me,s,me bi,s,me bi,s,me bi,s,ga me,s,me me,u,ga ma,s,me
5 me,u,me me,u,ga me,u,me me,u,me ma,s,ga bi,s,ga ma,s,me ma,s,me me,u,ga bi,s,ga ma,u,me ma,u,me
6 bi,u,ga ma,s,ga bi,s,ga bi,s,ga ma,u,me ma,u,ga bi,s,ga bi,s,ga me,s,me ma,u,ga bi,s,me bi,s,me
7 ma,s,me ma,u,me ma,u,me ma,u,me me,u,me me,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,u,me bi,s,ga
8 me,u,ga me,s,ga ma,s,me ma,s,me me,s,me me,u,me bi,u,me bi,u,me me,u,me me,u,me bi,s,ga bi,u,me
9 ma,u,me me,u,me me,u,ga me,u,ga bi,s,me ma,u,me bi,u,ga ma,s,ga ma,u,me ma,u,me me,s,me ma,s,ga
10 me,s,me me,s,me me,s,me me,s,me me,s,ga bi,s,me ma,s,ga me,s,me bi,s,me bi,s,me bi,u,ga me,s,me
11 ma,s,ga bi,u,me me,s,ga ma,s,ga bi,u,me bi,u,me me,s,me bi,u,ga bi,u,me bi,u,me ma,s,ga bi,u,ga
12 me,s,ga bi,u,ga ma,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga

Table 8: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test pipeline (columns 2 - 13).

Drone-CC
Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,ga bi,s,ga ma,s,ga ma,s,ga
2 bi,s,ga me,s,ga me,s,ga me,s,ga me,s,ga bi,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,me ma,u,ga
3 me,s,ga bi,s,ga bi,s,ga me,s,me bi,s,ga ma,s,me bi,s,ga me,s,me ma,s,me ma,u,ga ma,s,me
4 ma,s,me me,s,me ma,s,me bi,s,ga ma,s,me ma,u,ga me,s,ga ma,s,me me,s,me me,u,ga bi,s,ga
5 ma,u,ga ma,u,ga me,s,me ma,u,ga me,s,me bi,u,me ma,u,me bi,s,me ma,u,me me,s,ga bi,s,me
6 bi,s,me ma,u,me ma,u,ga ma,u,me ma,u,ga bi,s,me me,s,me ma,u,me ma,u,ga bi,s,ga bi,u,me
7 me,u,ga me,u,me ma,u,me me,u,me bi,s,me me,s,ga ma,s,me ma,u,ga me,u,me bi,s,me me,s,ga
8 bi,u,me ma,s,me bi,s,me ma,s,me ma,u,me ma,u,me bi,u,me me,s,ga bi,s,me me,s,me me,u,me
9 ma,u,me bi,s,me me,u,me bi,s,me me,u,me me,u,me me,u,me bi,u,me me,u,ga me,u,me me,u,ga
10 me,u,me me,u,ga me,u,ga me,u,ga me,u,ga me,s,me bi,u,ga bi,u,ga me,s,ga bi,u,me me,s,me
11 me,s,me bi,u,me bi,u,me bi,u,me bi,u,me me,u,ga ma,u,ga me,u,ga bi,u,me ma,u,me ma,u,me
12 bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga

Table 9: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test corruptions (columns 2 - 12).

ISP Common corruptions benchmark [43]
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Figure 9: Experiment from Section 5.1 with weak severity (level 1) for the Common corruptions benchmark.
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ISP Common corruptions benchmark [43]

M
ic

ro
sc

op
y

Figure 10: Experiment from Section 5.1 with strong severity (level 5) for the Common corruptions benchmark.

ISP Common corruptions benchmark [43]
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Figure 11: Experiment from Section 5.1 with weak severity (level 1) for the Common corruptions benchmark.
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ISP Common corruptions benchmark [43]
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Figure 12: Experiment from Section 5.1 with strong severity (level 5) for the Common corruptions benchmark.
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Figure 13: A comparative overview of the physically faithful data models (ISPs, top-left) and the Common
Corruptions (CC, top-right) used in the the drift synthesis experiments of Section 5.1. A matching heuristic
based on possible visual perception of the drift artifacts (top-middle) is provided for readers who would like
to relate specific data models to specific corruptions. However, we emphasize that this is a purely qualitative
heuristic and has no metrological basis. Since CCs are not physically faithful it is not clear how to relate
them to actual variations in the optical data generating process. Finally, corruptions that were excluded from
the experiments in Section 5.1 are displayed (bottom). The CC examples where stitched from the original
paper [188] for authenticity.
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A.4 Datasets details

A.4.1 Data acquisition

In the following, core information on the two acquired datasets is provided. In Appendix A.4.2 you can also
find detailed datasheets for both datasets, following the documentation good practices introduced by [177].

Raw-Microscopy Assessment of blood smears under a light microscope is a key diagnostic technique for
many healthcare services such as cancer treatment and kidney failure as well as blood disorder detection
[189]. The creation of image datasets and machine learning models on them has received wide interest
in recent years [13, 190, 191]. Variations in the image processing can affect the downstream task model
performance [192]. Dataset drift controls can thus help to specify the perimeter of safe application for a task
model. A raw dataset was collected for that purpose. A bright-field microscope was used to image blood
smear cytopathology samples. The light source is a halogen lamp equipped with a 0.55 NA condenser, and
a pre-centred field diaphragm unit. Filters at 450 nm, 525 nm and 620 nm were used to acquire the blue,
green and red channels respectively. The condenser is followed by a 40× objective with 0.95 NA (Olympus
UPLXAPO40X). Slides can be moved via a piezo with 1 nm spatial resolution, in three directions. Focus
was achieved by maximizing the variance of the pixel values13. Images are acquired at 16 bit, with a 2560 ×
2160 pixels CMOS sensor (PCO edge 5.5). The point-spread function (PSF) was measured to be 450 nm
with 100 nm nanospheres. Mechanical drift was measured at 0.4 pixels per hour. Imaging was performed on
de-identified human blood smear slides (Ma190c Lieder, J. Lieder GmbH & Co. KG, Ludwigsburg/Germany).
All slides were taken from healthy humans without known hematologic pathology. Imaging regions were
selected to contain single leukoytes in order to allow unique labelling of image patches, and regions were
cropped to 256 × 256 pixels. All images were annotated by a trained hematological cytologist using the
standard scheme of normal leukocytes comprising band and segmented neutrophils, typical and atypical
lymphocytes, monocytes, eosinophils and basophils [193]. To soften class imbalance, candidates for rare
normal leukocyte types were preferentially imaged, and enrich rare classes. Additionally, two classes for
debris and smudge cells, as well as cells of unclear morphology were included. Labelling took place for
all imaged cells from a particular smear at a time, with single-cell patches shown in random order. Raw
images were extracted using JetRaw Data Suite features. Blue, red and green channels are metrologically
rescaled independently in intensity to simulate a standard RGB camera condition. Some pixels are discarded
complementary on each channel in order to obtain a Bayer filter pattern.

Raw-Microscopy for segmentation comes with 940 raw images, twelve differently processed variants totaling
11280 images and six additional raw intensity levels totaling 5640 samples.

Raw-Drone Automated processing of drone data has useful applications including precision agriculture
[194] or environmental protection [195]. Variation in image processing has been shown to affect task model
performance [111, 115], underlining the need for drift controls. For the purposes of this study, a raw car
segmentation dataset was created for the drone image modality. A DJI Mavic 2 Pro Drone was used,
equipped with a Hasselblad L1D-20c camera (Sony IMX183 sensor) having 2.4 µm pixels in Bayer filter
array. The lens has a focal length of 10.3 mm. The f-number was set to N = 8, to emulate the PSF circle
diameter relative to the pixel pitch and ground sampling distance (GSD) as would be found on images from
high-resolution satellites. The PSF was measured to have a circle diameter of 12.5 µm. This corresponds to a
diffraction-limited system, within the uncertainty dominated by the wavelength spread of the image. Images
were taken at 200 ISO, a gain of 0.528 DN/e−. The 12-bit pixel values are however left-justified to 16-bits, so
that the gain on the 16-bit numbers is 8.448 DN/e−. The images were taken at a height of 250 m, so that the
GSD is 6 cm. All images were tiled in 256 × 256 patches. Segmentation masks were created to identify cars
for each patch. From this mask, classification labels were generated to detect if there is a car in the image.
The dataset is constituted by 548 images for the segmentation task.

Raw-Drone for segmentation comes with 548 raw images, twelve differently processed variants totaling 6576
images and six additional raw intensity levels totaling 3288 samples.

13Figure 14 in Appendix A.4.1 provides an illustration of the imaging setup.
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Figure 14: (a) An illustration of the imaging setup. (b) Datasets visualization. (Top-left) RGB raw microscopy
classes are shown. (Top-right) Drone raw images are shown with the segmentation mask applied over it.
(Bottom) Different intensity realizations are shown for the microscopy case. Images on the top are directly
print out in the same scale of the original image. Images in the bottom row are normalized on their own min
and max values to highlight the role of noise levels on low intensity images.

Composition of Raw-Microscopy
Type of instances Image and label
Objects on images White blood cells
Type of classes Morphological classes
Number of instances 940
Number of classes 9
Image size 256 by 256 pixels
Image format .tif
Raw image format Please see Section 4.1

Class Proportion in %
Basophil (BAS) 1.91
Eosinophil (EOS) 5.74
Smudge cell / debris (KSC) 17.34
atypical Lymphocyte (LYA) 3.19
typical Lymphocyte (LYT) 24.47
Monocyte (MON) 20.32
Neutrophil (band) (NGB) 0.85
Neutrophil (segmented) (NGS) 22.98
Image that could not be assigned a class (UNC) 3.19

Composition of Raw-Drone
Type of instances Image and mask
Objects on images Landscape shots from above
Number of instances 548
Number of original images 12
Image size 256 by 256 pixels
Mask size 256 by 256 pixels
Original image size 3648 by 5472
Image format .tif
Mask format .png
Raw image format .DNG

Table 10: Summaries of the compositions of Raw-Microscopy and Raw-Drone
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A.4.2 Datasheets

We follow the datasheets documentation framework proposed in [177], using the template https:
//de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth from Christian
Garbin.

Datasheet for Raw-Microscopy

Motivation

For what purpose was the dataset created?

With Raw-Microscopy we provide a publicly available
raw image dataset in order to examine the effect of the
image signal processing on the performance and the
robustness of machine learning models. This dataset
enables to study these effects for a supervised mul-
ticlass classification task: the classification of white
blood cells (WBCs).

Who created this dataset (e.g., which team,
research group) and on behalf of which entity
(e.g., company, institution, organization)?

This dataset has been created by the Laboratory of
Applied Optics of the Micro-Nanotechnology group
at HEPIA/HES-SO, University of Applied Sciences
of Western Switzerland. Single-cell images were anno-
tated by a trained cytologist.

Who funded the creation of the dataset?

The creation of the dataset has been funded by
HEPIA/HES-SO.

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)?

An instance is a tuple of an image and a label. The
image shows a human WBCs and the label indicates
the morphological class of this cell. The following
eight morphological classes appear in the dataset: Ba-
sophil (BAS), Eosinophil (EOS), Smudge cell / debris
(KSC), atypical Lymphocyte (LYA), typical Lympho-
cyte (LYT ), Monocyte (MON), Neutrophil (band)
(NGB), Neutrophil (segmented) (NGS). The nith class
consists of images that could not be assigned a class
(UNC) during the labeling process.

How many instances are there in total (of each
type, if appropriate)?

The data set consists of 940 instances. For the pro-
portion of each class in the dataset see table 11.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of
instances from a larger set?

The dataset does not contain all possible instances.
It is limited to WBC classes normally present in the
peripheral blood of healthy humans. In order to cope
with intrinsic class imbalance in cell distribution, rare
cell class candidates such as Basophils were preferen-
tially imaged.

What data does each instance consist of?
“Raw” data (e.g., unprocessed text or images)
or features?

Each instance consists of an image of 256 by 256 pixels.
The image is a raw image in .tiff format.

Is there a label or target associated with each
instance?

Each instance is associated to a label, that indicates
the morphological class of the image.

Is any information missing from individual in-
stances?

No information is missing.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)?

No, relationships between individuals are not made
explicit.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)?

There are no recommended data splits. All the data
splits that we used for our experiments were randomly
picked.

Are there any errors, sources of noise, or re-
dundancies in the dataset?

https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth
https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth


To the best of our knowledge, there are no errors
in the dataset. However, a key source of variability
between slides from different laboratories and process-
ing times is stain intensity. The samples used in this
work all come from the same source, hence we assume
the preanalytic treatment and staining protocol to
be similar. As all images were obtained on the same
microscopy equipment, focus handling and illumina-
tion are identical for all samples. Image labelling was
performed by one trained morphologist with experi-
ence in hematological routine diagnostics. It is known
that morphology annotations are subject to inter- and
intra-rater variability. However, as we limit ourselves
to normal WBCs the labeling is expected to be stable.

Is the dataset self-contained, or does it link to
or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient
confidentiality, data that includes the content
of individuals non-public communications)?

The dataset consist of medical data, disclosing the
morphological classes of single human WBCs. In prin-
ciple, the distribution of cell types conveys information
on the health state of a patient.
However, the subjects in this dataset are fully de-
identified, so that the image data cannot be linked
back to the healthy donors of the scanned blood
smears. Furthermore, it is not disclosed which cell
image was taken from which blood smear, so that no
frequencies of individual cell types can be determined.
Additionally, we only consider cell types present in nor-
mal blood, so that no specific hematologic pathology
can be deduced from cell morphologies.

Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety?

No. The dataset does not contain data with any of
the above properties.

Does the dataset relate to people?

Yes. The dataset consist of images of human WBCs.

Does the dataset identify any subpopulations
(e.g., by age, gender)?

The donors of the blood smears used in this dataset
are fully deidentified, and no information on subpipu-
lation composition is provided.

Is it possible to identify individuals (i.e., one
or more natural persons), either directly or in-
directly (i.e., in combination with other data)
from the dataset?

No. It is not possible to identify individuals from an
image of their white blood cells or visa versa.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orien-
tations, religious beliefs, political opinions or
union memberships, or locations; financial or
health data; biometric or genetic data; forms
of government identification, such as social se-
curity numbers; criminal history)?

No. While the distribution of cell types for a specific
patient could reveal information about that patient’s
health status, isolated single-cell images of normal
leukocytes do not allow for this inference.

Any other comments?

See table 12 for a summary of the composition of
Raw-Microscopy.

Class Proportion in %
Basophil (BAS) 1.91
Eosinophil (EOS) 5.74
Smudge cell / debris (KSC) 17.34
atypical Lymphocyte (LYA) 3.19
typical Lymphocyte (LYT) 24.47
Monocyte (MON) 20.32
Neutrophil (band) (NGB) 0.85
Neutrophil (segmented) (NGS) 22.98
Image that could not be assigned a class (UNC) 3.19

Table 11: The proportion of the classes in Raw-
Microscopy.

Collection Process

How was the data associated with each instance
acquired?

Images of the dataset have been acquired directly
from a CMOS imaging sensor. They are in a raw
unprocessed format.

What mechanisms or procedures were used
to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software
program, software API)?



Imaging data have been obtained via a custom bright-
field microscope.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling
probabilities)?

Images have 256×256 pixel size and have been cropped
from larger images. The dataset corresponds to a selec-
tion of white blood cells in the acquired large images.
A sampling strategy aimed at increasing the propor-
tion of rare classes of white blood cells has been used.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)?

A research assistant has been involved in the data
collection process and has been compensated with a
monthly salary.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the instances
(e.g., recent crawl of old news articles)?

Data have been collected on a timeframe of two
months, corresponding to the availability of the phys-
ical samples to image. Data have been collected on
purpose for this work.

Were any ethical review processes conducted
(e.g., by an institutional review board)?

The microscopy data was purchased from a commer-
cial lab vendor (J. Lieder GmbH & Co. KG, Lud-
wigsburg/Germany) who attained consent from the
subjects included.

Does the dataset relate to people?

Yes. The dataset consists of microscopic images of
human white blood cells.

Did you collect the data from the individuals in
question directly, or obtain it via third parties
or other sources (e.g., websites)?

Data have not been obtained via third parties.

Were the individuals in question notified about
the data collection?

As the blood smear slides were bought from a com-
pany, notification to individuals of the data collection
has been performed by the company.

Did the individuals in question consent to the
collection and use of their data?

Yes, they did.

If consent was obtained, were the consenting
individuals provided with a mechanism to re-
voke their consent in the future or for certain
uses?

We do not know the conditions of consent adopted
by the selling company. However, we believe the com-
pany provided the individuals a complete freedom in
revoking their consent in the future, if desired.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted?

No, this kind of analysis has not been conducted.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, to-
kenization, part-of-speech tagging, SIFT fea-
ture extraction, removal of instances, process-
ing of missing values)?

Intensity scaled images are generated with Jetraw
Data Suite for both datasets, which applies a physi-
cal model based on sensor calibration to accurately
simulate intensity reduction. Microscopy Raw images
are extracted from RGB Microscopy data through a
pixel selection from images taken with three filters, in
order to have a Bayer Pattern. Pixels intensities are
rescaled with Jetraw Data Suite to match the mea-
sured transmissivities of a Bayer colour filters array.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?

Raw images are available in the dataset.

Is the software used to preprocess/clean/label
the instances available?

All code used in the experiments of this manuscript
is publicly available. Jetraw products that were used
for acquiring the data are commercially available.

Uses



Has the dataset been used for any tasks al-
ready?

The dataset has not yet been used.

Is there a repository that links to any or all
papers or systems that use the dataset?

The repository at https://github.com/
aiaudit-org/raw2logit associated to this work,
maintained by Luis Oala.

What (other) tasks could the dataset be used
for?

The dataset can be used to study the effect of image
signal processing on the performance and robustness
of any other machine learing model implemented in
PyTorch, designed for a supervised multiclass classifi-
cation task.

Is there anything about the composition of the
dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact
future uses?

To the best of our knowledge, we do not recognize
such impacts.

Are there tasks for which the dataset should
not be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties
outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset
was created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub)

A guide to access the dataset is available at https:
//github.com/aiaudit-org/raw2logit. Moreover,
the dataset can be downloaded anonymously and di-
rectly at https://zenodo.org/record/5235536 un-
der the doi: 10.5281/zenodo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

The dataset will be distributed under the Creative
Commons Attribution 4.0 International.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances?

No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining
the dataset?

Luis Oala on behalf of Dotphoton AG.

How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

By email address via
luis.oala@dotphoton.com.

Is there an erratum?

At the time of submission, there is no such erra-
tum. If an erratum is needed in the future it will
be accessible at https://github.com/aiaudit-org/
raw2logit.

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete in-
stances)?

Yes. The dataset will be enlarged wrt. the number of
instances.

If the dataset relates to people, are there ap-
plicable limits on the retention of the data
associated with the instances (e.g., were indi-
viduals in question told that their data would
be retained for a fixed period of time and then
deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to
be supported/hosted/maintained?

https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://zenodo.org/record/5235536
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit


Older versions will be supported and maintained in
the future. The dataset will continue to be hosted as
long as https://zenodo.org/ exists.

If others want to extend/augment/build on/-
contribute to the dataset, is there a mechanism
for them to do so?

For any of these requests contact either Luis
Oala (luis.oala@dotphoton) or Bruno Sanguinetti
(bruno.sanguinetti@dotphoton.com). For now, we do
not have an established mechanism to handle these
requests.

Composition of Raw-Microscopy
Type of instances Image and label
Objects on images White blood cells
Type of classes Morphological classes
Number of instances 940
Number of classes 9
Image size 256 by 256 pixels
Image format .tif
Raw image format Please see Section 4.1

Table 12: A summary of the composition of Raw-
Microscopy.

https://zenodo.org/


Datasheet for Raw-Drone

Motivation

For what purpose was the dataset created?

With Raw-Drone we provide a publicly available raw
dataset in order to examine the effect of the image
data processing on the performance and the robust-
ness of machine learning models. This dataset enables
to study these effects for a segmentation task: the
segmentation of cars. The dataset was taken with
specified parameters: sensor gain, point-spread func-
tion and ground-sampling distance, so that physical
models may be used to process the data. It also was
taken with a easily accessible and affordable system,
so that it may be reproduced.

Who created this dataset (e.g., which team,
research group) and on behalf of which entity
(e.g., company, institution, organization)?

The dataset was created by Bruno Sanguinetti and
Marco Aversa on behalf of the company Dotphoton
AG.

Who funded the creation of the dataset?

The data collection was funded by Dotphoton AG.
The calibration of the image characteristics was jointly
funded by Dotphoton AG and the European Space
Agency.

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)?

An instance is a tuple of an image and a segmentation
mask. The image shows a landscape shot from above.
The segmentation mask is a binary image. A white
pixel in this mask corresponds to a pixel within a
region in the image where a car is displayed. A black
pixel in this mask corresponds to a pixel within a
region in the image where no car is displayed.

How many instances are there in total (of each
type, if appropriate)?

The dataset consists of 548 instances.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of
instances from a larger set?

The dataset does not contain all possible instances.
Only images with at least one white pixel in the asso-
ciated segmentation mask are considered.

What data does each instance consist of?
“Raw” data (e.g., unprocessed text or images)
or features?

Both, the image and the segmentation mask consist
of 256 by 256 pixels. The image is a raw image in
.tif format and the the segmentation mask is in .png
format. The images are cropped sub-images of 12 raw
images in .DNG format, consisting of 3648 by 5472
pixels.

Is there a label or target associated with each
instance?

Each instance is associated to a binary segmentation
mask.

Is any information missing from individual in-
stances?

No information is missing.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)?

Since every image is a cropped sub-image of an origi-
nal image, several of these sub-images belong to the
same original image. All sub-images are disjoint, i.e.
no different images share a pixel from the original
image.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)?

There are no recommended data splits. All the data
splits that we used for our experiments were randomly
picked.

Are there any errors, sources of noise, or re-
dundancies in the dataset?

To the best of our knowledge, there are no errors in
the dataset. The segmentation mask is created by
hand and hence noisy, especially at the boundaries
between a region with a car and a region without a
car.



Is the dataset self-contained, or does it link to
or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient
confidentiality, data that includes the content
of individuals non-public communications)?

No. The dataset does not contain data of any of the
above types.

Does the data set contain data that, if viewed
directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety?

No. The dataset does not contain data with any of
the above properties.

Does the dataset relate to people?

The dataset does not relate to people. The drone data
was screened for PIIs such as faces or license plates
on cars and removed by the data collection team.

Any other comments?

See table 13 for a summary of the composition of the
Raw-Drone.

Collection Process

How was the data associated with each instance
acquired?

The data was collected by flying a drone and saving
the raw data. The calibration data for the drone’s
imager was acquired both under laboratory conditions
and using a ground-based calibration target, so that
it could be acquired under operating conditions.

What mechanisms or procedures were used
to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software
program, software API)?

To acquire the drone images, we used a DJI Mavic 2
Pro Drone, equipped with a Hasselblad L1D-20c cam-
era (Sony IMX183 sensor). This system has 2.4 µm
pixels in Bayer filter array. Images were taken with
the drone hovering for maximum stability. This sta-
bility was verified to be better than a single pixel by
calculating the correlation of subsequent images. The

objective has a focal length of 10.3 mm. We operated
this objective at an f-number of N = 8, to emulate
the PSF circle diameter relative to the pixel pitch
and ground sampling distance (GSD) as would be
found on images from high-resolution satellites. Oper-
ating at N = 8 also minimises vignetting, aberrations,
and increases depth of focus. The point-spread func-
tion (PSF) was measured to have a circle diameter
of 12.5 µm using the edge-spread function technique
and a ground calibration target.This corresponds to
σ = 2.52 px, which also corresponds to a diffraction-
limited system, within the uncertainty dictated by the
wavelength spread of the image. Images were taken
at 200 ISO, corresponding to a gain of 0.528 DN/e−.
The 12-bit pixel values are however left-justified to
16-bits, so that the gain on the 16-bit numbers is
8.448 DN/e−. The images were taken at a height of
250 m, so that the GSD is 6 cm. All images were tiled
in 256x256 patches. Segmentation color masks were
created to identify cars for each patch. From this
mask, classification labels were generated to detect if
there is a car in the image. The dataset is constituted
by 548 images for the segmentation task, and 930
for classification. Six additional intensity scales were
created with Jetraw.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling
probabilities)?

The entire dataset is presented.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)?

The dataset was taken by a company employee, com-
pensated by his salary. Labeling was performed by
both a company employee and a PhD student, who’s
PhD is funded by the company.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the instances
(e.g., recent crawl of old news articles)?

The dataset was taken as the initial step of writing
this article.

Were any ethical review processes conducted
(e.g., by an institutional review board)?

The dataset does not contain any elements requiring
an ethical review process.



Does the dataset relate to people?

The dataset does not relate to people. There are indi-
viduals on the images, but it is not possible to identify
these individuals.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, to-
kenization, part-of-speech tagging, SIFT fea-
ture extraction, removal of instances, process-
ing of missing values)?

No further processing was applied to the Raw-Drone
data.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?

Raw images are available in the dataset.

Is the software used to preprocess/clean/label
the instances available?

All code used in the experiments of this manuscript
is publicly available. Jetraw products that were
used for acquiring the data are commercially available.

Uses

Has the dataset been used for any tasks al-
ready? The dataset has not yet been used.

Is there a repository that links to any or all
papers or systems that use the dataset?

The repository at https://github.com/
aiaudit-org/raw2logit associated to this work,
maintained by Luis Oala.

What (other) tasks could the dataset be used
for?

The dataset can be used to study the effect of image
signal processing on the performance and robustness
of any other machine learing model implemented in
PyTorch, designed segmentation task.

Is there anything about the composition of the
dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact
future uses?

To the best of our knowledge, we do not recognize
such impacts.

Are there tasks for which the dataset should
not be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties
outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset
was created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub)

A guide to access the dataset is available at https:
//github.com/aiaudit-org/raw2logit. Moreover,
the dataset can be downloaded anonymously and di-
rectly at https://zenodo.org/record/5235536 un-
der the doi: 10.5281/zenodo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

The dataset will be distributed under the Creative
Commons Attribution 4.0 International.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances?

No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining
the dataset?

Luis Oala on behalf of Dotphoton AG.

https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://zenodo.org/record/5235536


How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

By email address via
luis.oala@dotphoton.com.

Is there an erratum?

At the time of submisson, there is no such erra-
tum. If an erratum is needed in the future it will
be accessible at https://github.com/aiaudit-org/
raw2logit.

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete in-
stances)?

Yes. The dataset will be enlarged wrt. the number of
instances.

If the dataset relates to people, are there ap-
plicable limits on the retention of the data
associated with the instances (e.g., were indi-

viduals in question told that their data would
be retained for a fixed period of time and then
deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to
be supported/hosted/maintained?

Older versions will be supported and maintained in
the future. The dataset will continue to be hosted as
long as https://zenodo.org/ exists.

If others want to extend/augment/build on/-
contribute to the dataset, is there a mechanism
for them to do so?

For any of these requests contact either Luis
Oala (luis.oala@dotphoton.com) or Bruno Sanguinetti
(bruno.sanguinetti@dotphoton.com). For now, we do
not have an established mechanism to handle these
requests.

Composition of Raw-Drone
Type of instances Image and mask
Objects on images Landscape shots from above
Number of instances 548
Number of original images 12
Image size 256 by 256 pixels
Mask size 256 by 256 pixels
Original image size 3648 by 5472
Image format .tif
Mask format .png
Raw image format .DNG

Table 13: A summary of the composition of Raw-
Drone.

https://github.com/aiaudit-org/raw2logit
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