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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Enveloped viruses encode specialised glycoproteins that mediate fusion of viral and host

membranes. Discovery and understanding of the molecular mechanisms of fusion have

been achieved through structural analyses of glycoproteins from many different viruses, and

yet the fusion mechanisms of some viral genera remain unknown. We have employed sys-

tematic genome annotation and AlphaFold modelling to predict the structures of the E1E2

glycoproteins from 60 viral species in the Hepacivirus, Pegivirus, and Pestivirus genera.

While the predicted structure of E2 varied widely, E1 exhibited a very consistent fold across

genera, despite little or no similarity at the sequence level. Critically, the structure of E1 is

unlike any other known viral glycoprotein. This suggests that the Hepaci-, Pegi-, and Pesti-

viruses may possess a common and novel membrane fusion mechanism. Comparison of

E1E2 models from various species reveals recurrent features that are likely to be mechanis-

tically important and sheds light on the evolution of membrane fusion in these viral genera.

These findings provide new fundamental understanding of viral membrane fusion and are

relevant to structure-guided vaccinology.

Background

Enveloped viruses encode specialised glycoproteins that undergo dramatic conformational

change to mediate fusion of viral and host membranes. To date, 3 distinct classes of fusion pro-

tein are known: Class-I, as found in, for example, influenzaviruses, retroviruses, and coronavi-

ruses [1–7]; class-II, in flaviviruses, alphaviruses, and bunyaviruses [8–14]; and class-III, in

rhabdoviruses, herpesviruses, and baculoviruses [15–18]. Mechanistic conservation suggests

each class of fusion protein arose from individual ancient progenitors that underwent genetic

transfer within the virome. However, subsequent evolutionary divergence has largely elimi-

nated sequence similarity between the glycoproteins within a given class. Therefore, mechanis-

tic/evolutionary grouping of fusion proteins cannot be inferred from primary sequence and is

only revealed by structural analysis. Moreover, determination of the structure of viral glyco-

proteins in both their pre- and postfusion states is critical to understanding the conformational
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rearrangements that drive membrane fusion. This knowledge has informed vaccinology [19–

21] and provided insights on fusion in eukaryotes [22].

However, there are viruses for which the mechanism of fusion remains unknown; for exam-

ple, the Hepaciviruses (e.g., hepatitis C virus (HCV)), Pegiviruses, and Pestiviruses (e.g.,

bovine viral diarrhoea virus (BVDV)), which are all members of the Flaviviridae family. While

orthoflaviviruses (e.g. dengue virus) possess class-II fusion proteins, the current structural

understanding of HCV and BVDV suggest distinct and, hitherto, unknown fusion mechanism

(s) [23–26]. Hepaci-, Pegi-, and Pestiviruses achieve fusion via the E1 and E2 glycoproteins,

which form heterodimers and act in concert. HCV and BVDV E2 are structurally distinct, rais-

ing the possibility that they have different fusion mechanisms. Here, we propose a common

fusion mechanism across the Hepaci-, Pegi-, and Pestiviruses. This is evidenced by high struc-

tural conservation in the glycoprotein E1, revealed by ab initio protein structure prediction.

Our comparison of E1E2 models from varied species provide insights on potential mechanism

and evolutionary origin.

Structural conservation of Hepaci-, Pegi-, and Pestivirus E1

We performed systematic genome alignment and annotation to generate matched E1E2 tar-

gets for AlphaFold protein structure prediction using the ColabFold platform [27,28] (total of

61 E1E2 targets), yielding high confidence E1E2 dimer models from 11, 3, and 10 Hepaci-,

Pegi-, and Pestiviruses, respectively (for a detailed description of AlphaFold modelling, see S1

Text and accompanying S1–S14 Figs). E2 models were structurally distinct between (and, to

some extent, within) viral genera, whereas E1 models exhibited high structural similarity (Fig

1A). These observations were supported by unbiased all-against-all analysis of structural simi-

larity using the DALI server [29] (Figs 1B and S15 and S1 Text). E1 has 3 conserved structural

units found across the viral genera (Fig 1C): (i) a central antiparallel beta-sheet; (ii) a helical

hairpin, which corresponds to the putative fusion peptide (pFP) in HCV [30–34]; and (iii) a

transmembrane proximal region.

AlphaFold/ColabFold automatically generates multiple sequence alignments based on

homology to the given target sequence [27,28]; protein structure is inferred using the evolu-

tionary relationships revealed in these alignments. Therefore, structural similarity between tar-

gets can be driven simply by primary sequence similarity (i.e., 2 closely related target proteins

are likely to yield similar structures). Consequently, agreement in structure prediction between

multiple homologous targets is not a guarantee of accuracy; they could all be similarly incor-

rect. However, if targets with little/no sequence similarity yield similar structures, there is

more confidence in their veracity. We, therefore, compared the sequence data underlying our

various E1E2 structure predictions. Hepacivirus E1E2 models draw heavily on HCV

sequences; however, with greater genetic distance (i.e., Pegi- and Pestiviruses), the structural

models become increasingly independent. Pestivirus E1E2 models share no overlap in their

underlying sequence data with Hepaci- or Pegiviruses (Fig 1D and 1E). Therefore, Hepaci-/Pegi-

and Pestivirus E1E2 models are completely independent, providing high confidence that their

apparent structural similarity is accurate. The high degree of E1 structural similarity across these

genetically divergent viral genera is highly suggestive of a shared mechanistically conserved fusion

mechanism.

Molecular architecture of E1

The predicted structure of E1 exhibits a conserved topology and compact architecture in close

apposition to the viral membrane, the approximate location of which is inferred by the posi-

tion of the E1 transmembrane domain (Fig 2A and 2B). Towards the N-terminus, a central
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Fig 1. Structural conservation of E1 across the Hepaci-, Pegi-, and Pestiviruses. (A) AlphaFold predicted E1 and E2

structures, shown as ribbon diagrams, for HCV, HCV-P, SPgV, and BVDV. Models are colour coded by pLDDT prediction

confidence. Host species silhouettes from PhyloPic. (B) Comparison and clustering of E1 and E2 (from 24 species) based on

structural similarity through correspondence analysis; the plot is a projection of the first 2 eigenvectors. Inset axes are enlarged

to highlight the E1 structural cluster. (C) Consistent features of E1 shared across genera. Left, structure of HCV E1 for context.

Ribbon diagrams of overlaid features for HCV, HCV-P, SPgV, and BVDV are accompanied by RMSD and sequence similarity

values by comparison to HCV. (D) Venn diagram demonstrating overlap in underlying MSA data used to generate predicted

structures for HCV, HCV-P, SPgV, and BVDV. The number of sequences (and percentage) overlapping with the HCV MSA is

provided. (E) The constituent sequences from each MSA, classified by source. The number of sequences in each MSA is

provided in parenthesis. Underlying numerical data are available in S1 File. BVDV, bovine viral diarrhoea virus; HCV,

hepatitis C virus; HCV-P, Hepacivirus-P; MSA, multiple sequence alignment; RMSD, root mean square deviation; SPgV,

Simian Pegivirus.

https://doi.org/10.1371/journal.pbio.3002174.g001
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beta-sheet sits on top of a distinctive helical hairpin motif (corresponding to the pFP), while

the C-terminus is composed of the transmembrane domain and proximal helices. These N and

C terminal modules are linked via a loop that bridges around and across the top of the protein.

The very N-terminus of E1 forms a structurally divergent tail, which may mediate species-spe-

cific interactions with E2 (see below). Notably, in this arrangement, the helical hairpin/pFP is

Fig 2. The molecular architecture of E1. (A) Ribbon diagrams of predicted E1 structures for HCV, HCV-P, SPgV, and BVDV; features are colour coded as

shown on the HCV structure, left. The approximate location of the outer leaflet of the viral membrane is inferred by the positions of the E1 transmembrane

domain. (B) Topology diagrams of above. Disulfide bonds are annotated as ancestral (found across all genera) or additional (genera/virus specific). (C) HCV

E1 was mutated to remove each of its 4 disulfide bonds, in turn, or to add additional bonds found in Pegiviruses. Each mutant E1E2 was assessed for expression

(either E1 or E2), CD81 receptor binding, E1E2 assembly, and pseudotyped virus infection. Mutated residues are numbered from the start of E1. Data are

expressed relative to H77 WT isolate E1E2, mean values n� 3; error bars indicate standard error. Asterisks denote degree of statistical significance compared

to WT (one-way ANOVA). Underlying numerical data are available in S1 File. BVDV, bovine viral diarrhoea virus; HCV, hepatitis C virus; HCV-P,

Hepacivirus-P; pFP, putative fusion peptide; SPgV, Simian Pegivirus; TM, transmembrane; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3002174.g002
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packed alongside the transmembrane domain, close to, or within, the presumed location of the

viral membrane.

E1 is crosslinked by various intramolecular disulfide bonds (Figs 2B and S16), two of which

appear to be “ancestral” being present in each genus. One of these ancestral bonds sits across

the inward and outward chains that form the first conserved N-terminal beta-strand; the other

secures the bridging loop to the central beta-sheet. E1 from Pestiviruses possess only these

ancestral intramolecular bonds; some Pestiviruses (e.g., atypical porcine Pestivirus) even lack

the second of these bonds. Hepaci- and Pegiviruses have various additional bonds; many of

these, however, appear to reiterate the interactions imposed by the ancestral bonds, sitting

within and proximal to the first beta-sheet, or linking the bridging loop to the N-terminal

region of E1. One additional disulfide bond crosslinks the tip of the helical hairpin/pFP; this

appears to be specific to the Hepaciviruses.

The HCV E1 model is consistent with experimental structures of various E1 peptide frag-

ments and, importantly, the recently reported cryoEM model of E1E2 [35,36]; the N-terminal

portion of E1, in particular, is in excellent agreement with the cryoEM model, in which the

predicted disulfide bonds 1, 2, and 3 are also confirmed (S17A and S17B Fig and S1 Text).

However, our model, and the recent cryoEM model, differs significantly from a previous crys-

tal structure of the N-terminal region of E1 (S17C Fig and S1 Text) [35,36]; whether this repre-

sents a crystallisation artefact or a functionally relevant alternative conformation requires

further investigation. Systematic comparison of our predicted E1 structures with entries in the

Protein Data Bank, AlphaFold/EBI, and the ESM Atlas Structure Databases revealed no signifi-

cant structural similarity, other than with the HCV E1 cryoEM structure [37]. This suggests

that E1 exhibits a unique protein fold. Moreover, the lack of similarity between E1 with other

viral glycoproteins is consistent with the notion that the Hepaci-, Pegi-, and Pestiviruses may

possess a novel fusion mechanism.

We explored the importance of E1 disulfide bonds through mutagenesis and antigenic/

functional characterisation in HCV E1E2 pseudotyped viruses (Fig 2C and 2D). Individual

loss of any of the 4 HCV E1 disulfide bonds did not negatively impact expression of E1 and E2

or affect binding to the CD81 receptor (which occurs via E2, without contribution from E1).

However, loss of C16–C35, an ancestral bond, or C38–C113, an additional bond, prevented

E1E2 dimer assembly and pseudotype infection. Notably, C47–C115 (ancestral, connecting

the bridging loop and beta-sheet, missing in some Pestiviruses) and C81–C90 (additional,

crosslinking the helical hairpin) were not essential for E1E2 dimerisation or infection.

To further explore our models, we mutated HCV E1 to introduce new disulfides, analogous

to the additional bonds found in E1 from distantly related Pegiviruses (Fig 2D). R4C-Q111C

and E24C I29C (analogous to bonds 1 and 4 in the SPgV E1 model) had limited impacts on E2

expression, CD81 binding, and E1E2 dimerisation; this suggests that the positioning of these

bonds is compatible with the predicted topology and structure of E1. R4C Q111C permitted

infection, albeit reduced (potentially due to lower levels of E1), whereas E24C I29C was nonin-

fectious despite normal expression/folding; this may indicate that E1E2 are locked in a prop-

erly folded, but inactive, state. Note, in vitro experimental methods are provided in S1 Text.

Structural conservation in E2

The high degree of predicted structural similarity in E1 would suggest that it performs a mecha-

nistically conserved role in membrane fusion, consistent with it possessing the putative fusion

peptide [30–34]. In contrast, E2 exhibits high structural divergence between, and even within,

viral genera. This, most likely, indicates that E2 mediates species-specific interactions with a par-

ticular host; indeed, each genera varies widely in tissue tropism (e.g., Hepaciviruses exclusively
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infect the liver, while Pegiviruses target bone marrow). Nonetheless, unbiased structural compari-

son identified some consistent elements across divergent E2 models (Fig 3A and 3B). Hepaci- and

Pegivirus E2 share a beta-sandwich fold with conserved topology and structure (originally

reported in the experimentally determined models of HCV [25,26]). This central element appears

to act as a scaffold around which various species-specific extensions and loops are arranged. This

beta-sandwich is, however, absent from Pestiviruses. Another consistent, yet minimal, feature is

an extended beta strand that corresponds to the Back Layer apparent in the crystal structures of

HCV E2 [25,38]. This region is important for HCV entry [38] and is present in E2 models across

each genus, suggesting mechanistic conservation. Finally, in all cases, the transmembrane domain

is predicted to adopt a helical hairpin conformation.

Notably, we also identified structural similarity between E1 and E2 (Fig 3C and 3D). The

topology and arrangement of the E1 beta-sheet and helical hairpin (the N-terminal module;

described in Fig 2) are mirrored in the C-terminal stem region and transmembrane domain of

E2. This is best exemplified by comparison of the E1 and E2 beta-sheet elements across viral

species; here, unbiased structural comparison supports similarity between the N-terminal

beta-sheet of Pestivirus E1 and the C-terminal beta-sheet of Hepacivirus E2 (Fig 3E—note

areas of similarity denoted by orange colouring in the heatmap—and 3F). We propose that

this topological/structural similarity may point to the evolutionary origin of E1E2, with an

ancient genetic duplication event from a progenitor E1-like fusion protein, giving rise to a

proto-E2 molecular partner, analogous to the domain duplication event evident in the N- and

C-terminal domains of retroviral capsids [39,40]. The E1E2 of Hepaci-/Pegi-/Pestiviruses

would have all arisen from this common ancestor. In this scheme, E1 may be responsible for

the primary fusion activity and, therefore, has a conserved structure, whereas E2 performs a

regulatory role and has been free to evolve structural elaborations that permit diversification of

host and tissue range.

The E1E2 interface

It has long been established that the folding and activity of E1E2 are interdependent, and we

expect conserved intermolecular communications to regulate and mediate membrane fusion.

Our models indicate that E1 wraps tightly around the transmembrane domain and stem

regions at the C-terminus of E2 with an interface composed of multiple E1 regions (Figs 4A,

4B, and S18 and S1 Text). For example, the E2 transmembrane domain packs against the heli-

cal hairpin/pFP of E1, while the E2 stem region abuts the bridging loop of E1. These various

interactions create an “ancestral” interface found in all E1E2 (Fig 4C) and are consistent with

the “stem in hand” model proposed by Torrents de la Peña and colleagues [35] when describ-

ing their recent structure of HCV E1E2. Notably, this ancestral interaction is centred around

the region of E2 that, we propose, originated through genetic duplication of E1 (Fig 3C).

Beyond the ancestral interface, there are additional genus/species-specific interactions.

Unique to Pestiviruses is a predicted E1E2 intermolecular disulfide bond formed between a

beta-hairpin, found directly upstream of the transmembrane proximal region in E1, and a

loop extending from the beta-sheet element in the stem of E2 (Fig 4C and 4D). Notably, this

region of E2 forms the interface of a disulfide stabilised E2–E2 homodimer in BVDV E2 crystal

structures [23,24]; whether a switch from E1E2 heterodimers to E2E2 homodimers [41] is nec-

essary for fusion requires further investigation. In Hepaci- and Pegiviruses, the very N-termi-

nus of E1 varies in length and conformation between species. This N-terminal tail makes

further contacts with species-specific loops extending from the base of E2; this mode of inter-

action is largely missing from Pestiviruses, where the N-terminal extension is absent from E1

(Fig 4E).
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Fig 3. Structural conservation in E2. (A) Bottom, ribbon diagrams of predicted E2 structures for HCV, HCV-P,

SPgV, and BVDV; consistent features are colour coded as shown on the HCV structure, left. Top, topology diagrams

for the conserved beta-sandwich scaffold found in all Hepaci- and Pegiviruses. (B) Ribbon diagrams of overlaid

features for HCV, HCV-P, SPgV, and BVDV are accompanied by RMSD and sequence similarity values by

comparison to HCV. (C) Structural conservation between the N-terminus of E1 and the C-terminal stem and

transmembrane domain of E2. Ribbon (left) and topology (right) diagrams of predicted HCV-P E1 and E2 structures

highlighting similarity. (D) Ribbon diagrams (rainbow colour coded blue to red, N to C terminus) of beta-sheet feature

conserved across E1 and E2 in HCV-P, SPgV, and BVDV. (E) Structural similarity heatmap for Hepaci-, Pegi-, and

Pestivirus E1 and E2 beta-sheet elements (as shown in D); orange denotes low distance and, therefore, high similarity.

(F) Structural conservation between Pestivirus E1 and Hepacivirus E2 beta-sheets demonstrated by superposition of

stated structures (annotated as dashed box on E; a full list of viruses, their accession numbers, and abbreviations are

provided in S2 File). Structures are shown in 2 opposite orientations, rainbow colour coding from N to C termini.

Underlying numerical data are available in S1 File. APV, Aydin-like Pestivirus; BVDV, bovine viral diarrhoea virus;
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CSFV, classical swine fever virus; HCV, hepatitis C virus; HCV-L, Hepacivirus L; HCV-P, Hepacivirus-P; RMSD, root

mean square deviation; SloHCV, Sloth Hepacivirus; SPgV, Simian Pegivirus.

https://doi.org/10.1371/journal.pbio.3002174.g003

Fig 4. The E1E2 interface. (A) Ribbon diagram of HCV E1E2 complex. (B) HCV E1E2 complex interaction interface in an “open book”

representation. Residues are colour coded by their shortest distance to the partner protein (Cα to Cα) as indicated by the colour key. The

approximate location of the outer leaflet of the viral membrane is inferred by the positions of the E1 and E2 transmembrane domains. (C)

Ribbon diagrams illustrating the “ancestral” E1E2 interface found in all genera; regions of contact/high proximity have been highlighted. (D)

Pestiviruses possess an E1E2 intermolecular disulfide bond, the position of which is marked by an asterisk on (C). (E) Ribbon diagrams

illustrating the “additional” species-specific interface between the extended tail of E1, found in Hepaci- and Pegiviruses, and loops at the base of

E2. BVDV, bovine viral diarrhoea virus; HCV, hepatitis C virus; HCV-P, Hepacivirus-P; SPgV, Simian PegivirusAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 4:Pleaseverifythatallentriesarecorrectlyabbreviated:.

https://doi.org/10.1371/journal.pbio.3002174.g004

PLOS BIOLOGY Evidence of a novel viral membrane fusion mechanism shared by the Hepaci-, Pegi- and Pestiviruses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002174 July 11, 2023 8 / 16

https://doi.org/10.1371/journal.pbio.3002174.g003
https://doi.org/10.1371/journal.pbio.3002174.g004
https://doi.org/10.1371/journal.pbio.3002174


Discussion

We have combined systematic curation of viral genome sequences with AlphaFold modelling

to perform a structural survey of the E1E2 glycoproteins from 60 diverse viruses and provide

models for 24 E1E2 complexes. These analyses revealed that the E1 protein from Hepaci-,

Pegi-, and Pestiviruses exhibits a unique but very consistent structure; this suggests that these

viruses share a potentially novel viral membrane fusion mechanism.

We have high confidence that these predicted structures are informative: AlphaFold per-

formed very well in benchmarking tests (S1 Fig and S1 Text), our predictions yield very consis-

tent E1 structures from completely independent datasets (Fig 1), and our models compare

favourably to the current best understanding of E1 and E1E2 based on experimental structures

(S17 Fig and S1 Text). There will, undoubtedly, be some inaccuracies in our models. However,

insights gained from the depth and breadth of structural comparisons in this study would be

difficult to achieve with classical structural biology.

A recurrent theme in our analysis is that of “ancestral” features of E1E2, found in each

genus, augmented with “additional” genus or species-specific elaborations. Delineating the

contributions made by “ancestral” elements is likely to provide fundamental mechanistic

insights. In this respect, Pestivirus E1, with only 1 or 2 intramolecular disulfide bonds and

lacking an N-terminal extension, may represent the simplest iteration of this fusion mecha-

nism. This would also be consistent with the ancient ancestral status of Pestiviruses apparent

in phylogenetic analyses [42].

Ultimately, while this work provides the first evidence of a potentially novel fusion mecha-

nism, there are many important questions left to answer. For example, we do not know

whether AlphaFold delivers a pre- or postfusion structure (or some intermediate form). How-

ever, the agreement of our models with various experimental structures of E2 and E1E2, which

required protein stabilisation with neutralising antibodies [25,26,35,43], supports the notion of

a prefusion state.

A full understanding of how E1E2 performs membrane fusion will require a detailed map-

ping of structure to function and an appreciation of the necessary conformational rearrange-

ments. Nonetheless, we can consider our findings in the context of various proposed models

of Hepaci- and Pestivirus fusion. By analogy to other well-described fusion mechanisms, we

would expect either E1 or E2 to be the primary fusogen, with a hydrophobic peptide capable of

inserting into host membranes; there remains significant debate in this area [24,44–46]. E2

from both HCV and BVDV possess hydrophobic regions that are candidate fusion peptides.

However, we observed significant heterogeneity in E2 length, sequence, and structure, such

that it is difficult to identify corresponding hydrophobic regions across all species; we would

expect strict conservation of a mechanistically essential fusion peptide. This would suggest that

E2 is not the primary fusogen.

On the contrary, E1 is structurally conserved and a putative fusion peptide has been identi-

fied in HCV (corresponding to the helical hairpin found in all species). This would argue in

favour of E1 being the primary fusogen. However, based on our structures and recent cryoEM

data [35], the helical hairpin/pFP is packed closely with the E1 and E2 transmembrane

domains and may be buried within the viral membrane. Consistent with this, the pFP can act

as a membrane anchor for E1 if the transmembrane domain is deleted [47]. Extraction of the

pFP from this environment, such that it can be inserted into a host membrane, would be

thermodynamically unfavourable. E1 is also small compared to class I-III fusogens (<200 resi-

dues, approximately 6.5 nm total height in our structures) and would have to undergo exten-

sive refolding to bridge the gap between viral and host membrane (approximately 20 nm). We

should, therefore, consider that E1E2 does not function in an analogous manner to known
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fusion machinery. Other uncharacterised viral fusion machinery, such as the surface glycopro-

tein of hepatitis B virus, also possess multiple transmembrane domains and no obvious fusion

peptide [48]. In these cases, we cannot exclude the possibility that membrane fusion is

achieved without insertion of a viral fusion peptide into the target host membrane or that it

requires the concerted action of multiple proteins.

Aside from the precise mechanism of fusion, we can also consider the means by which

E1E2 sense the molecular cues that trigger their activity. Hepaci- and Pestiviruses are known

to require acidic activation to achieve entry from the endosome, but prior events, such as

receptor engagement, are necessary to prime pH sensitivity [49–51]. Due to its intermediate

pKa value, histidine functions as a pH sensor in many viral fusion proteins [52]. We may

expect histidine residues fulfilling this role in E1E2 to be highly conserved, and yet no single

histidine residue is consistently found across all species. Thus far, receptor engagement (i.e.,

CD46 in BVDV and CD81/SR-B1 in HCV [53–55]) is only known to occur via E2; once again,

the sequence and structural divergence of E2 makes it difficult to identify commonalities that

may link receptor engagement with E1E2 fusion activity. Although, the cross-genera structural

conservation in the C-terminus of E2 (back layer and onward; Fig 3) may suggest that species-

specific receptor interactions are communicated to this region, which is in close proximity to

E1, providing the possibility for intermolecular crosstalk. Notably, the only residues conserved

across all species are the E1 cysteine residues that form the “ancestral” disulfide bonds (Fig 2).

There is evidence that disulfide isomerisation may be important for Hepaci- and Pestivirus

entry [23,24,51,56,57]. Therefore, some of these ancestral bonds may be broken and/or shuf-

fled during the conformational rearrangements necessary for fusion.

Finally, there remain overarching questions around the evolution of membrane fusion in

these viruses. Structural/topological similarity between E1 and E2 (Fig 3) may suggest that

E1E2 originated in an ancient genetic duplication event; might a primordial fusion apparatus

only containing E1 exist elsewhere in the virome or beyond? Also, how does Hepaci-/Pegi-/

Pestivirus evolutionary history relate to the Orthoflavivirus genus (distant ancestors, also in the

Flaviviridae family), which exhibits a class-II membrane fusion protein? Did these genera

diverge from one another due to the acquisition/emergence of alternative membrane fusion

mechanisms?

We expect the structural insights gained through this study will provide a platform for

wide-ranging investigations on these questions, and further our understanding of viral mem-

brane fusion mechanisms. This will not only deliver fundamental knowledge but also guide

structure-based design of antiviral interventions and vaccines.

Supporting information

S1 Text. A detailed account of the AlphaFold strategy used in this work and the associated

quality control assessments. Detailed in vitro experimental methods are also provided.

(DOCX)

S1 File. Excel spreadsheet containing the underlying numerical data for Figs 1B, 1E, 2D,

3E, S1B, S1C, S1D, S3, S10, S14, S15, and S18C.

(XLSX)

S2 File. Excel spreadsheet summarising the viral species used in this study, their sequence

accession numbers, and abbreviated names.

(XLSX)

S1 Fig. Benchmarking of AlphaFold against relevant viral targets. (A) AlphaFold predicted

structures superposed with their cognate experimental structure from the protein database
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(PDB codes are provided for each structure; TBEV, tick-borne encephalitis virus). In each

case, the lower structure represents the AlphaFold model colour coded by RMSD from its

experimentally determined partner structure. Blue indicates disagreement, as denoted in the

colour key. (B) MolProbity scores of all AlphaFold benchmarking models before and after

AMBER relaxation. Each data point represents an individual model, n = 50 (5 candidate mod-

els per viral target). Lower values indicate higher model quality. (C) AlphaFold model confi-

dence plotted against MolProbity score for all benchmarking structures (n = 50, with rank 1

models shown in blue). The negative correlation indicates higher model quality with higher

confidence scores (linear correlation). (D) Comparison of MolProbity scores for AlphaFold

structures and their cognate experimental structures. Asterisks indicate degree of statistical sig-

nificance (t test). Underlying numerical data are available in S1 File. Further description can

be found in S1 Text.

(TIF)

S2 Fig. Hepacivirus NS5B phylogenetic tree. Subclades are numbered and colour coded; spe-

cies in bold text represent clade-specific reference viruses. E1 and E2 annotations from these

reference viruses were propagated throughout aligned whole genome sequences of each sub-

clade. Further description can be found in S1 Text.

(TIF)

S3 Fig. Protein lengths of E1 and E2 from diverse Hepaci-, Pegi-, and Pestiviruses. Each

data point represents an individual viral species, n = 32, 15, and 13, respectively. Underlying

numerical data are available in S1 File. Further description can be found in S1 Text.

(TIF)

S4 Fig. Hepacivirus E1 monomer AlphaFold models. Residues are colour coded by pLDDT

prediction confidence. Models are arranged in order of descending prediction confidence.

Further description can be found in S1 Text.

(TIF)

S5 Fig. Pegivirus E1 monomer AlphaFold models. Residues are colour coded by pLDDT pre-

diction confidence. Models are arranged in order of descending prediction confidence. Fur-

ther description can be found in S1 Text.

(TIF)

S6 Fig. Pestivirus E1 monomer AlphaFold models. Residues are colour coded by pLDDT

prediction confidence. Models are arranged in order of descending prediction confidence.

Further description can be found in S1 Text.

(TIF)

S7 Fig. Hepacivirus E2 monomer AlphaFold models. Residues are colour coded by pLDDT

prediction confidence. Models are arranged in order of descending prediction confidence.

Further description can be found in S1 Text.

(TIF)

S8 Fig. Pegivirus E2 monomer AlphaFold models. Residues are colour coded by pLDDT pre-

diction confidence. Models are arranged in order of descending prediction confidence. Fur-

ther description can be found in S1 Text.

(TIF)

S9 Fig. Pestivirus E2 monomer AlphaFold models. Residues are colour coded by pLDDT

prediction confidence. Models are arranged in order of descending prediction confidence.
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Further description can be found in S1 Text.

(TIF)

S10 Fig. Model quality metrics for E1 and E2 monomer models. pLDDT prediction confi-

dence (upper plots) and MolProbity scores (lower plots) for E1 and E2 models from diverse

Hepaci-, Pegi-, and Pestiviruses. Each data point represents an individual viral species, n = 32,

15, and 13, respectively. Dashed line on upper right plot indicates pLDDT = 70 cutoff that was

used to select viruses for modelling of E1E2 complexes. Underlying numerical data are avail-

able in S1 File. Further description can be found in S1 Text.

(TIF)

S11 Fig. Hepacivirus E1E2 complex AlphaFold models. Residues are colour coded by

pLDDT prediction confidence. Models are arranged in order of descending prediction confi-

dence. Further description can be found in S1 Text.

(TIF)

S12 Fig. Pegivirus E1E2 complex AlphaFold models. Residues are colour coded by pLDDT

prediction confidence. Models are arranged in order of descending prediction confidence.

Further description can be found in S1 Text.

(TIF)

S13 Fig. Pestivirus E1E2 complex AlphaFold models. Residues are colour coded by pLDDT

prediction confidence. Models are arranged in order of descending prediction confidence.

Further description can be found in S1 Text.

(TIF)

S14 Fig. Model quality metrics for E1 and E2 complex models. pLDDT prediction confi-

dence (upper plots) and MolProbity scores (lower plots) for E1 and E2 modelled as a monomer

or in a complex. Each data point represents an individual viral species, n = 24. Asterisks indi-

cate degree of statistical significance (t test). Underlying numerical data are available in S1 File.

Further description can be found in S1 Text.

(TIF)

S15 Fig. Unbiased structural comparison and clustering of E1 and E2 models. All against all

comparison was performed on either E1 or E2 (derived from E1E2 complex models) using the

DALI server. The heat map (right) provides pairwise distances indicating structural similarity

(orange denoting low distances and, therefore, high similarity). Structures are also clustered by

similarity, as denoted by the dendogram (left). Boxes are drawn to group structures with high

similarity. The position of HCV is additionally highlighted. Underlying numerical data are

available in S1 File. Further description can be found in S1 Text.

(TIF)

S16 Fig. E1 intramolecular disulfide bonds. (A) Ribbon diagrams illustrating the location of

the ancestral and additional disulfide bonds described in Fig 2. (B) Linear representation of

HCV E1 sequence (H77 isolate), annotated with the position of each disulfide bond.

(TIF)

S17 Fig. Comparison of HCV AlphaFold E1 model with experimentally determined struc-

tures. (A) E1 model compared to cognate cryoEM (PDB 7T6X) and peptide structures (2KNU

and 4N0Y); superposition was achieved by alignment of structure and sequence. (B) Compari-

son of predicted E1E2 disulfide bonds with 3 experimentally determined structures. Bonds in

black text are in agreement; red text indicates disagreement. Dashes indicate disulfides that

were absent from the protein construct; NR, not resolved. (C) The N-terminal portion of
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AlphaFold HCV E1 model and the cognate crystal structure (PDB:4UOI). Further description

can be found in S1 Text.

(TIF)

S18 Fig. Comparison of the E1E2 interface in Hepaci-, Pegi-, and Pestiviruses. (A) Ribbon

diagrams of the E1E2 complex from HCV, HCV-P, SPgV, and BVDV. (B) HCV E1E2 complex

interaction interface in an “open book” representation. Residues are colour coded by their

shortest distance to the partner protein (Cα to Cα) as indicated by the colour key. Symbols

annotate contact sites between E1 and E2. The approximate location of the outer leaflet of the

viral membrane is inferred by the positions of the E1 and E2 transmembrane domains. (C)

Plots provide E1 and E2 per residue shortest distance to partner protein (i.e., proximity of any

given E1 residue to E2, and vice versa) for HCV, HCV-P, SPgV, and BVDV. Symbols relate to

sites of contact, as annotated in (B). Lines are colour coded by structural features as in main

text 2A (E1) and 3C (E2). Underlying numerical data are available in S1 File. Further descrip-

tion can be found in S1 Text.

(TIF)
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