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Abstract
This paper draws its motivation from applications in geophysics, agricultural,
and environmental sciences where empirical evidence of slow decay of correla-
tions have been found for data observed on a regular lattice. Spatial ARFIMA
models represent a widely used class of spatial models for analyzing such data.
Here, we consider their generalization to conditional autoregressive fractional
integrated moving average (CARFIMA) models, a larger class of long memory
models which allows a wider range of correlation behavior. For this class we
provide detailed descriptions of important representative models, make the nec-
essary comparison with some other existing models, and discuss some impor-
tant inferential and computational issues on estimation, simulation and long
memory process approximation. Results from model fit comparison and predic-
tive performance of CARFIMA models are also discussed through a statistical
analysis of satellite land surface temperature data.
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1 INTRODUCTION

Long memory (LM) processes are known to play a significant role in many scientific disciplines. Historically, these
processes were first introduced by Kolmogorov (1941) to model scaling behavior in turbulence. In parallel, Wiener con-
sidered extension of the Wiener process to more general diffusion processes, including fractional Brownian motion.
Subsequently, the subject was brought to the attention of a wider audience by the pioneering works of Mandelbrot and
colleagues who defined the notion of fractional Gaussian noise (Mandelbrot & van Ness, 1968) as a model for the LM
observed by Hurst in the Nile river flood records. A similar path-breaking role can also be attributed to Granger for studies
in economics (Granger, 1980).

Since these early contributions, different approaches have been introduced to model LM in temporal and spatial data.
In the temporal case, fractional time series models (see, e.g., Beran et al., 2013) and regression models (see, Geweke
& Porter-Hudak, 1983) have become increasingly popular with applications in many areas, as for example, astronomy
(Newcomb, 1985), hydrology (Hurst, 1951), econometrics (Baillie et al., 1996; Porter-Hudak, 1990), biology (Mandelbrot
& Wallis, 1969), meteorology (Haslett & Raftery, 1989) and environmental sciences (Burrough, 1981; Sørbye & Rue, 2017),
and telecommunication (Beran et al., 2013; Doukhan et al., 2003). Further applications and theory in time series are also
reviewed in Cox (1984), Beran (1992), and Samorodnitsky (2006).
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The simplest processes with LM are stationary processes with correlations decaying hyperbolically. In particular, their
autocorrelation function, decaying as a power law in the lag variable, sums to infinity for large lag values. Because of
this slow decay, LM processes are also referred to as long range dependent (LRD) processes. Two well-known classes of
stationary time series processes with slowly decaying correlations are the fractional ARIMA(p, d, q)model, introduced by
Granger and Joyeux (1980) and Hosking (1981), and the fractional exponential—FExp(s)—model of Beran (1993). With
the inclusion of the fractional (LM) parameter d, these models are a natural generalization of standard ARIMA models
defined in Box and Jenkins (1970) and of the Exponential model of Bloomfield (1973). The development of a theory
of statistical inference for these models has become a very active field of research in the past years. In particular, the
models became fashionable through time and favored also the development of new approaches for modeling spatial data
with LM.

The notion of spatial LM dates back to the works of Smith (1938) and Whittle (1956, 1962) on agricultural data.
In the geostatistical framework, Matheron (1973) also developed the mathematical theory for intrinsic and self-similar
processes; however, the practical significance of these topics have not been fully recognized until Mandelbrot’s pioneering
work (see, comments in Beran et al., 2013). Further proposals of spatial models with long-range dependence have been
formulated in Atmospheric sciences (see, e.g., Anh et al., 2000; Beran et al., 2009; Gneiting, 2000; Kashyap & Lapsa, 1984;
Kohli, 2016Lin et al., 2007; ), Oceanography (Percival et al., 2008), ground water flow (Guo et al., 2009), statistical physics
(Wang, 2009), and image analysis (Anh & Lunney, 1995). More theoretical details can be found also in Leonenko (1999),
Gneiting and Schlather (2004), Lavancier (2006), and Mateu et al. (2007).

Several papers on spatial LM have appeared in the last decade. However, as highlighted by Robinson (2020), the topic
has not been developed as systematically or comprehensively as LM time series and, to the best of our knowledge, there
are no comprehensive surveys available in the spatial framework. Some distinctive issues arising in the standard spatial
statistics, as for example those regarding inference on second-order properties of stationary random fields, have been
studied far more under short memory than LM. Furthermore, we have also found that some of the theoretical results
achieved for LM random fields appeared in less known journals or dissertations and, accordingly, a complete literature is
not readily available or properly quoted in scholarly publications.

Our work thus provides an overview of LM random fields for both interested researchers who want to enter this
developing field, and experts who would like to compare some of the models presented in the literature. In particular, our
paper makes contributions summarized as follows:

• New class of LM models. By exploiting the stochastic properties of conditional spatial models (Cressie, 1993; Ippoliti
et al., 2013), we define the new class of conditional autoregressive fractional integrated moving average (CARFIMA)
models which includes some existing LM models (e.g., spatial ARFIMA) as special cases.

• Comprehensive review. By introducing the CARFIMA models, we make the necessary comparison with some impor-
tant representative models existing in the literature, and discuss some inferential and computational issues both on
estimation and LM process approximation.

• Future directions. We discuss some theoretical aspects of LM random fields, analyze the limitations of existing meth-
ods, and suggest possible future research directions in terms of modeling strategies, parameter estimation and spatial
interpolation.

The remainder of the manuscript is organized as follows. Section 2 provides an introduction to conditional random
fields, while Section 3 provides details on LM random fields. In Section 4, we introduce and discuss the class of Gaussian
conditional LM models through different examples. Model parameter estimation is then discussed in Section 5, and sim-
ulation results are presented in Section 6 to compare different estimation methods. In Section 7, we analyze land surface
temperatures, addressing computational issues in an interpolation problem. Section 8 briefly discusses approximating
a conditional LM process with a Conditional Autoregressive (CAR) model or Gaussian Markov random field (GMRF).
Finally, Section 9 concludes the paper with a discussion and suggestions for future research.

2 CONDITIONAL SPATIAL MODELS FOR A REGULAR LATTICE

Suppose that X = {Xt, t ∈ Zk
, k ≥ 1} is a weakly stationary real-valued random field with zero mean, covariance function,

Rx(u) = Cov (Xt,Xt+u), and correlation function, rx(u) = Rx(u)∕𝜎2
x , where 𝜎2

x = Rx(0). The spectral density function of X
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is defined as follows

fx(𝝀) = (2𝜋)−k
∑

u∈Zk

Rx(u) e−iu′𝝀
, 𝝀 ∈ Tk

, Tk = [−𝜋, 𝜋]k.

We consider the situation in which the data, x = {Xt, t ∈ }, are observed on a finite lattice such that x may be regarded
as a partial realization of X . This means that for each t ∈ , xt is an observed value of Xt.

The question of constructing suitable finite parameter stochastic models for the observed data has attracted much
attention lately and several different models have been introduced—see, Guyon (1995) and Cressie (1993). As discussed in
Ippoliti et al. (2013), the existing models may be summarized under the following three broad headings: (1) Simultaneous,
(2) Unilateral, and (3) Conditional.

The simultaneous models were proposed by Whittle (1954) and express Xt for each t as a linear combination of its
neighbors plus a random white noise error, 𝜖t. Although an aim is to generalize the standard autoregressive models for
time series (k = 1) to a random field, as pointed out in a pioneering paper by Besag (1974), this class of models suffers
from severe logical difficulties; for example, the error 𝜖t is serially correlated with all observations.

The unilateral models (see Martin, 1996; Tjostheim, 1978, 1983), depend on the choice of site ordering.
Although they enjoy some useful properties, see Yao and Brockwell (2006), and references therein, they can appear
contrived.

The conditional models, have the advantage of being justified in the classical linear least-squares interpolation
theory for random fields (Rozanov, 1967). Below we give a brief account of the conditional approach, especially
the CAR and CAR moving average models, CARMA. Note that every Simultaneous autoregressive, SAR, model
is also a CAR but not vice versa, and for k ≥ 2, the class of CAR models is larger than that of the SAR mod-
els. Similarly, although every Unilateral autoregressive, UAR, model is a CAR, the converse is not true and there
are CAR’s which do not admit a UAR representation. Hence the class of CAR models is larger than that of UAR
models.

Suppose that the covariance function Rx(u) is absolutely summable and the spectral density function is
“non-vanishing”

∑

u∈Zk

|Rx(u)| <∞, fx(𝝀) ≠ 0, 𝝀 ∈ Tk
. (1)

Then, see Guyon (1995), f −1
x (𝝀) = 1∕fx(𝝀) exists for all 𝝀 ∈ Tk and admits a Fourier series expansion. Let

fix(𝝀) = (2𝜋)−2kf −1
x (𝝀),

denote the inverse spectral density function (Yuan & Subba Rao, 1993). Then, fix(𝝀) admits a Fourier expansion as follows

fix(𝝀) = (2𝜋)−k
∑

u∈Zk

Rix(u) e−iu′𝝀
, 𝝀 ∈ Tk

. (2)

Here,

Rix(u) = (2𝜋)−2k
∫Tk

eiu′𝝀fix(𝝀) d𝝀, (3)

defines the inverse covariance function. The corresponding inverse correlations are defined by rix(u) = Rix(u)∕Rix(0).
Suppose that for a fixed t ∈ Zk Xt is unknown. As in Rozanov (1967),

̂X t = −
∑

j∈Zk⧵{0}

rix(j)Xt−j, (4)

defines the linear least squares interpolator of Xt for all t, and

𝜂t =
∑

j∈Zk

rix(j)Xt−j, (5)
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the corresponding interpolation error process. Note that under the additional assumption that X is Gaussian,

̂X t = E
(

Xt|Xt−j, ∀ j ∈ Z
k ⧵ {0}

)
,

defines the conditional expectation of Xt, given the knowledge of all its neighbors. We also have E(𝜂t Xt+j) = 0 for all j ≠ 0,
E(𝜂tXt) = E(𝜂2

t ) = 𝜎2
𝜂

= 1∕Rix(0) and E(𝜂t 𝜂t+j) = 𝜎2
𝜂

rix(j). We may also write

Xt = ̂X t + 𝜂t, (6)

where ̂X t is uncorrelated with 𝜂t.
Note that Equation (5) provides a two-sided CAR representation of Xt with 𝜂t as the error term. This representation

may be inverted to give a two-sided conditional moving average (CMA) representation for Xt in terms of the interpolation
error process, 𝜂t, as follows

Xt =
∑

u∈Zk

rx(u)𝜂t−u. (7)

The representations (5) and (7) parallel the one-sided autoregressive and moving average representations for a time series
with the innovation process 𝜖t as random error. However, whereas in time series, the problem is that of prediction of an
unobserved future value from a knowledge of the past, in space the problem is that of explaining the observation at a given
site in terms of its neighbors. These two representations also bring out a fundamental difference between analyses of time
series and spatial data. A main purpose of fitting a model in time series is to reduce an observed correlated process to a
purely random white noise error term. By contrast, the corresponding aim in the conditional approach to constructing a
model for spatial data is to transform a correlated observed process to an error process, 𝜂t, which, while correlated itself,
is uncorrelated with all the neighbors Xt−j, j ≠ 0 of Xt, except Xt itself.

We also have

fx(𝝀) =
𝜎

2
𝜂

(2𝜋)k
∑

u∈Zk rix(u) e−iu′𝝀
, (8)

f
𝜂
(𝝀) =

𝜎

2
𝜂

(2𝜋)k
∑

u∈Zk

rix(u) e−iu′𝝀
. (9)

The following variance decomposition readily follows from Equation (6)

Var(Xt) = Var
(
̂X t

)
+ Var(𝜂t) = {Rx(0)Rix(0)} + Rix(0)−1

.

The first term to the right of this equation gives the variance of Xt that may be explained from a knowledge of its neighbors
and the second term the unexplained variance. As in standard regression analysis, the ratio

 = Var
(
̂X t

)
∕Var(Xt) = 1 − {Rx(0)Rix(0)}−1

, (10)

provides an R2 measure of the interpolability of the process and it can be used as an index of linear determinism to gain
an understanding of how much of the variability of Xt can be explained from a knowledge of all its neighbors, Xt−u, u ≠ 0.

Equations (8) and (9) show that appropriate conditional finite parameter models for X may be constructed by in turn
specifying suitable models for fx(𝝀). As is well known (Guyon, 1995), the CAR models are specified by requiring that the
inverse correlations, rix(u), vanish outside a finite neighborhood, Sp, of Xt. The order of the neighborhood set is denoted
by p, and is defined sequentially by the maximum distance between the origin and a point in Sp. Thus, for example, the
first-order neighbors of a site are those four sites which are adjacent to it; and the second order neighbors are these plus
the four diagonally adjacent sites.

The CAR process admits a linear representation as follows

Xt +
∑

j∈Sp

𝛼jXt−j = 𝜂t,
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in which 𝛼j = 𝛼−j = rix(j), 𝜂t is the interpolation error process and

Var(𝜂t) = 𝜎2
𝜂
= {Rix(0)}−1

.

Its spectral density function may then be written as (Besag, 1974)

fx(𝝀) =
𝜎

2
𝜂

(2𝜋)k
{

1 + 2
∑

j∈Sp
𝛼j cos(j′𝝀)

} .

This CAR model has the important Markov property that even when a knowledge of all the neighbors of Xt is
available, only those in a finite set of neighbors, Sp, are relevant for its interpolation, and in view of this property,
it is also said to define a Gauss Markov random field, GMRF. Since its introduction by Besag (1974), the class
of CAR models has witnessed much development (see, Rue & Held, 2005) and recognized to provide a flexi-
ble class of conditional models for spatial data. It is, however, also known to suffer from the following three
limitations.

Limitation 1. As noted by Besag and Kooperberg (1995), a CAR does not generate significant correlations,
except at the boundary of its parameter space. Consequently, the index  typically takes fairly small values
(see, Bhansali & Ippoliti, 2005) and a CAR may fail to explain a substantial proportion of the variability of an
observed dataset.

Limitation 2. Although the correlations of a CAR decay at an exponential rate, they can on occasions
decrease very slowly (Besag, 1981).

Limitation 3. A CAR does not apply to situations in which the conditional dependence of Xt on its neigh-
bors is not merely confined to a finite set, but it extends to a possibly infinite set of sites in such a way
that the degree of this dependence decreases as a function of the distance to the neighbor. Although, as
further discussed below, a GMRF may still be used in such situations for approximating the underlying
conditional dependence structure, such a course of action need not necessarily be warranted or applica-
ble in all situations; for example, it may not be parsimonious in its use of parameters, or, see Rue and
Tjelmeland (2002), Fontanella et al. (2008), and Song et al. (2008), specialist techniques may need to
be invoked.

The class of conditional CARMA models was introduced by Ippoliti et al. (2013) in response to these three limitations.
It is defined by the following equation

∑

j∈Sp∪0
𝛼jXt−j = v0

∑

j∈Sq∪0
𝛽j𝜂t−j,

in which 𝜂t is the interpolation error process of Xt, v0 = 1∕
∑

j∈Sq∪0 𝛽jrix(j) is a proportionality constant, the 𝛼j and 𝛽j are
real coefficients such that if

A(z) =
∑

j∈Sp∪(0)
𝛼j zj

, B(z) =
∑

j∈Sq∪(0)
𝛽j zj

, z ∈ k
, 𝛼0 = 𝛽0 = 1,

are two symmetric finite Laurent series (Ahlfors, 2021) defined on the k-dimensional complex plane, k, then A(z) and
B(z) have no common factors, A(z) = A(z−1), B(z) = B(z−1), and for |z| = 1, A(z) ≠ 0, B(z) ≠ 0. Note that the conditions
on A(z) and B(z) imply that 𝛼j = 𝛼−j and 𝛽j = 𝛽−j for all j ≠ 0.

The spectral density function of Xt is given by

fx(𝝀) =
𝜎

2
𝜂

v0

(2𝜋)k
B(e−i𝝀)
A(e−i𝝀)

, (11)
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and it may be viewed as proportional to a ratio of two CAR spectral densities functions. The correlations and inverse
correlations satisfy the Yule-Walker equations

∑

j∈Zk

𝛼jrx(u − j) = 0, all u ∉ Sp, (12)

∑

j∈Zk

𝛽jrix(u − j) = 0, all u ∉ Sq. (13)

The CAR is a special case with Sq = ∅. However, if Sq ≠ ∅, Limitation 3 with the CAR can be overcome as the rx(u) do
not vanish in a finite neighborhood. Also, numerical results given in Ippoliti et al. (2013) demonstrate that for Sq ≠ ∅ a
CARMA can generate non trivial correlations and Limitations 1 and 2 of CAR may be mitigated.

The CMA model is also a special case with Sp = ∅. Now, rx(u) = 0, for all u ∉ Sq.
Ippoliti et al. (2013) show that a CARMA can arise under certain operations on a CAR. Thus, the correlations of a

process obtained by summing two CARs admit the same structure as that of a CARMA. Similarly, smoothing or sampling
a CAR gives rise to a CARMA correlation structure.

It may be noticed that CAR, CMA, and CARMA models postulate that the spectral density of Xt is a rational function
of z = e−i𝝀. An alternative approach is suggested by Bloomfield (1973), who introduced the class of exponential models
for a time series. We note also that an example of an exponential spectral density also occurs in the work of Baxter (1962).
More recently, this class of models has attracted attention in the literature of LM time series; see for example, Beran (1993)
and Moulines and Soulier (1999), among others. An important property of this class of models is that the logarithm of the
spectral density admits a finite Fourier expansion,

log fx(𝜆) =
m∑

s=−m
cse−i𝜆

,

where m denote the order of the model and the cs are called cepstral correlations, see Bogert et al. (1963). For spatial data,
Solo (1986) has considered a two-dimensional analogue of this specification and pointed out its advantages for modeling
certain properties of spatial data such as separability and isotropy. For more recent interest in this class of models for
spatial data see Kohli (2016).

More generally, the k-dimensional stationary random field, X , satisfying conditions given in Equation (1), follows a
Conditional Exponential, CEXP, model of order m ≥ 0, if the logarithm of its spectral density function, log fx(𝝀), admits
a finite Fourier series expansion as follows

log fx(𝝀) =
m∑

s=−m
cs e−is′𝝀

, for all 𝝀 ∈ Tk
. (14)

It readily follows that, for each fixed u ∈ Zk, Xt admits a CAR representation, (5) and a CMA representation (7) in
which the coefficients rix(u) and rx(u) are some functions of the cepstral correlations, cs. However, neither admits the
Yule-Walker equations (12) and (13) satisfied by a process following a CARMA model. In this sense, the class of CEXP
models provides an alternative to the class of CARMA models for spatial data.

It may be observed that the conditional models described above are parametric in the sense that the spectral density
function, fx(𝝀), of each model is a function of a finite number of parameters. The latter will be unknown for the observed
dataset, x, and further statistical inferences will be based on estimated parameters. An alternative “non-parametric”
approach has attracted some attention lately. In this approach, the observed data are assumed to be a realization of a
process admitting the CAR representation (5), and a GMRF of a suitable finite order is fitted for approximating the
underlying stochastic structure of the observed process. This approach draws on the success of an autoregressive model
fitting approach for time series, see Parzen (1969) and Berk (1974), but now applied to lattice spatial processes. A driv-
ing idea is that the risk of bias due to truncating this expansion at a suitable finite value could be off-set by the risk
of an increase in the variance due to fitting a model of an undue higher order. A variety of different approaches have
been suggested in the literature for determining a suitable GMRF to use. Thus, Besag and Kooperberg (1995) adopt
the Kullback–Leibler information for assessing the extent to which a GMRF may approximate an arbitrary random
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field. Rue and Tjelmeland (2002) show, however, that while this approach provides a good approximation to the corre-
lations within the neighborhood, Sp, used in estimating the GMRF, it is poor at approximating correlations outside of
this neighborhood. The last-referenced authors suggest the use of an alternative matched correlation (MC)approach for
this purpose. By contrast, Cressie and Verzelen (2008) adopt a prediction point of view for finding an optimal GMRF.
They suggest doing this by finding that GMRF which gives the best prediction of an individual component from a
knowledge of other components. A conditional-mean least squares criterion is introduced for this purpose and its per-
formance relative to the MCs approach is also investigated. Verzelen (2010) has introduced a model selection criterion
based on this last approach, but in which a penalty term is added. This author gives a lower bound on the penalty term
such that, for an observed dataset, a best trade-off is obtained between the aforementioned increased bias due to choos-
ing a too small GMRF and increased variance due to choosing a too large GMRF. Little is currently known, however,
about the behavior of this approach with an observed dataset. In addition, there has also been interest, see Lindgren
et al. (2011), in approximating a continuous Matern random field by a GMRF. It should, nevertheless, be emphasized
that since the spectral density, fx(𝝀), of a GMRF is continuous and bounded for all 𝝀 ∈ Tk, the stochastic structure of a
GMRF differs from that of conditional LM models described in Section 4. By contrast, at an empirical level, the question
of which approach to adopt requires further investigation and we consider this question in Section 8. It is also perti-
nent to note that Dutta and Mondal (2021) consider the usefulness of a lattice approximation for continuous fractional
Gaussian fields.

3 LM RANDOM FIELDS

An important mathematical property of the CARMA, CEXP and associated parametric models introduced in Section 2
is that their respective spectral density functions, fx(𝝀), belong to the class of real analytic functions. This result, in turn,
implies that the correlations, rx(u), and inverse correlations, rix(u), of each of this class of models converge to 0 at an
exponential rate as u →∞, meaning that there exist 𝜓1 and 𝜓2 with 0 < 𝜓1, 𝜓2 < 1, and bounded constants M1 and M2
such that, for all u,

|rx(u)| ≤ M1𝜓
ũ
1 , |rix(u)| ≤ M2𝜓

u
2 , (15)

where ũ =
∑

i |ui| denote the L1 norm of vector u. It is now standard practice, see Beran et al. (2013), to refer to such
processes as possessing short memory, and to distinguish them from stationary processes whose correlations decay at a
subexponential rate, for example, polynomial or logarithmic. The latter class of processes, by contrast, are said to possess
LM. Their distinguishing feature is that the correlations decay so slowly that their covariances are not summable, that is,
it is possible to find an mk

⊂ Zk such that

∑

u∈mk

|Rx(u)| → ∞, as mk →∞,

and, consequently, the first part of condition (1) fails to hold. Lavancier (2006) and Beran et al. (2013) have considered
the formal mathematical question of how to make precise this last stated property. These authors, in particular, define a
LM random field as a stationary process whose covariances, Rx(u), decay at a polynomial rate as follows

Rx(u) ∼ ||u||−𝜏(||u||) b
(

u
||u||

)
, 0 < 𝜏 < k. (16)

Here, ||u|| denote the Euclidean norm of u, b (u∕||u||) is a continuous function on the unit sphere in Zk and(||u||) is
slowly varying at infinity. It is common to assume that (⋅) is also bounded, and it can be replaced by a constant, C,
say. This need not necessarily be the case, however, and(⋅) could, for example, be a logarithmic function and in which
case the correlations decay at a mixture of polynomial and logarithmic rates. In the boundary case, in which, 𝜏 = 0 and
(⋅) is a logarithmic function, the correlations decay at a logarithmic case. An example of a random field where this last
property holds is given in Bouchaud et al. (2014).

As for a time series, an alternative approach to defining a LM random field is based on the behavior of its spectral
density function at the origin. In this approach, a random field, X , is said to possess LM, if its spectral density function,
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8 of 36 FERRETTI et al.

fx(𝝀), is continuous everywhere except at the origin, where it admits a pole of the following form

fx(𝝀) ∼ ||𝝀||𝜏−k


(
1

||𝝀||

)
b
(
𝝀

||𝝀||

)
, 0 < 𝜏 < k, 𝝀→ 0. (17)

These two definitions are known to be equivalent when k = 1, see, for example, Zygmund (2003). If, k = 2, (⋅) is
bounded and 𝜏 = 2 − 2d, d ∈ (0, 1), then it readily follows that condition (16) specifies that as u →∞, the covariances,
Rx(u) decrease to 0 at a polynomial rate

Rx(u) ∼ C||u||2d−2
, as u → ∞

where C is a bounded constant. Also, now condition (17) specifies that fx(𝝀) diverges to infinity at the origin as follows

fx(𝝀) ∼ C||𝝀||−2d
, as 𝝀→ 0.

Doukhan et al. (1996) have extended the classical Zygmund result to bivariate Fourier series by establishing that these
two conditions are equivalent. For further discussion on the equivalence between the behavior of the spectral density at
the origin and the asymptotic decay of the autocovariance function, see also Lighthill (1962), Beran (1994), Stein (1999),
and Samorodnitsky (2006).

As a typical example of data admitting a long-memory behavior, Figure 1 shows land surface temperatures collected
during daytime by the Terra instrument onboard the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite
on August 4, 2016 (Level-3 data). The data are on (256 × 256) regular lattice with 65,536 observations and represent a
portion of bigger dataset analyzed in Heaton et al. (2019). The variation of the land surface temperature is one of the
most important components of climatic and environmental changes, affecting organisms and ecosystems from local to
global scales (Peng et al., 2018). The land surface temperature controls the effective radiating temperature of the Earth’s
surface. Its derivation is fundamentally influenced by the extreme heterogeneity of most natural land surface, such as
atmospheric temperature and humidity variations, clouds and large aerosol particles. However, the recent advancements
in remote sensing have made the acquisition of land surface temperatures data at high spatial resolution feasible.

To check the behavior of the spectral density function, Figure 2a represents the logarithm of the periodogram I(𝜆1, 𝜆2),
here used as a sample version of fx(𝜆1, 𝜆2), versus the log-frequencies. The plot shows that the points are scattered around
a straight line and the negative slope suggests that the spectral density has a pole at the origin of the order ||𝝀||−1.35, giving a
rough estimate of d equal to 0.68. However, this plot implicitly assumes that the LM parameter is the same in all directions
while the data show a clear anisotropic structure. To this purpose, Figure 2b,c shows the values of the periodograms in
log-log-coordinates obtained from the row and column series. In this case, the negative slopes suggest that an estimate

F I G U R E 1 Land surface temperatures. The satellite data are observed over a (256 × 256) regular lattice.
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FERRETTI et al. 9 of 36

F I G U R E 2 Log-periodogram versus the log-frequencies. Figure (a) refers to the isotropic case while figures (b) and (c) explore the
existence of possible different long memory dependence in the North-South and East-West directions.

of d in the North-South and East-West directions are, respectively, equal to ̂d1 = 0.90 and ̂d2 = 0.76. In all cases the LM
parameters appear quite large for the raw data suggesting a slower convergence of the correlation coefficients in Equation
(7)—that is, the estimated LM parameters provide a measure of persistence or memory (Beran et al., 2013).

There exists a substantial literature on LM time series. The existing approaches to modeling LM for spatial data mainly
follow a unilateral approach and are based on the time series literature. In Section 4 below, we consider how to construct
Conditional LM, CLM, models for spatial data on a regular lattice. For simplicity, a univariate Gaussian process, indexed
in t = (s, t) ∈ Z2, will be considered henceforth.

4 CLM MODELS

The inverse correlations, rix(u) are readily seen to play an important role in the conditional approach to constructing
stochastic models for X . It will be useful, therefore, to introduce the class of conditional LM models for a random field by
first defining the generating function, Φ(z), of inverse correlations as follows

Φ(z) =
∑

u∈Zk

rix(u) zu
.

We assume below that Φ(z), z ∈ 2 may be factorized as follows

Φ(z1, z2) = ΦS(z1, z2) ΦL(z1, z2), (18)

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2817 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [29/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 36 FERRETTI et al.

where ΦS(z1, z2) =
∑
(u,v)∈Z2 𝜓u,v zu

1 zv
2 is a real analytic function such that, 𝜓0,0 = 1, ΦS(z1, z2) > 0 for |z1| = |z2| = 1.

It readily follows that the coefficients, 𝜓u,v, decrease to 0 at an exponential rate, that is, |𝜓u,v| ≤ 𝜈|u|+|v| with 0 < 𝜈 < 1.
Possible examples for ΦS(z1, z2) are:

(a) ΦS(z1, z2) is a polynomial as in GMRFs;
(b) ΦS(z1, z2) is a rational function of finite symmetric Laurent series; and
(c) ΦS(z1, z2) is an exponential function.

Furthermore, we also assume that ΦL(z1, z2) =
∑
(u,v)∈Z2 𝜃u,v zu

1 zv
2, with 𝜃0,0 = 1, and ΦL(z1, z2) = 0 for |z1| = 1 and

|z2| = 1. Below, we consider different specifications for Φ(z1, z2) and show that these give rise to different types of condi-
tional LM models on a regular lattice. To this purpose, let L be a shift operator on an index, such that L1Xs,t = Xs−1,t and
L2Xs,t = Xs,t−1. In addition, let L = (L1 + L2), L1 = (L1 + L−1

1 ) and L2 = (L2 + L−1
2 ).

Example 1. Conditional isotropic Fractionally Integrated (FI) noise process.
Koul et al. (2016) consider an isotropic FI random field, Zs,t, defined as follows

(
1 − 1

4
L
)
𝜏

Zs,t = 𝜖s,t, 0 < 𝜏 < 1∕2, (19)

where 𝜖s,t is a sequence of uncorrelated random variables, each with mean 0 and variance 𝜎2
𝜖

, and 𝜏 denotes
the order of fractional integration.

These authors show in the cited reference that the left-hand side of equation (19) may be written as

∑

(u,v)∈Z2

au,vZs−u,t−v, (20)

where

au,v =
∞∑

j=0
𝜓j(d)pj(u, v), (21)

𝜓j(d) = Γ(j − d)∕Γ(−d)Γ(j + 1), and pj(u, v) are j-step transition probabilities of the symmet-
ric nearest-neighbor random walk {Wk, k = 0, 1, …} on Z2, with transition probabilities
P (W1 = (u, v)|W0 = (0, 0)) = 1∕4, |u| + |v| = 1. In addition, the representation given in (20) above may be
inverted to write Zs,t as a moving average

Zs,t =
∑

(u,v)∈Z2

bu,v 𝜖s−u,t−v,

where

bu,v =
∞∑

j=0
𝜃j(−d)pj(u, v), (22)

and
∑
(u,v)∈Z2 b2

u,v < ∞. An implication of the fact that the bu,v are square summable, is that the random field
defined in equation (19) is stationary with mean 0, and spectral density function

fz(𝜆1, 𝜆2) =
𝜎

2
𝜖

(2𝜋)2
22𝜏{(1 − cos(𝜆1)) + (1 − cos(𝜆2))}−2𝜏

, (𝜆1, 𝜆2) ∈ [−𝜋, 𝜋]2. (23)

It also readily follows from this Equation (23), that as (𝜆2
1 + 𝜆

2
2)→ 0,

fz(𝜆1, 𝜆2) ∼ C (𝜆2
1 + 𝜆

2
2)
−2𝜏
,

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2817 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [29/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FERRETTI et al. 11 of 36

and the random field defined by Equation (19) admits LM. In addition, proposition 5.1 of Koul et al. (2016)
shows also that as

(
u2 + v2) →∞,

bu,v ∼ C (u2 + v2)−1+𝜏
, 0 < 𝜏 < 1∕2.

It may be noticed that the process defined in equation (19), and considered by Koul et al. (2016), provides a
simultaneous representation of an isotropic random field admitting LM. We show below that it is also possible
to adopt a conditional approach to define LM for this class of processes.

Suppose that Xs,t is a completely symmetric GMRF of order 1

(
1 − 𝜙L

)
Xs,t = 𝜂s,t, (24)

where 𝜂s,t is the interpolation error. If |𝜙| < 1∕4, Xs,t is stationary, but for 𝜙 = 1∕4, it is nonstationary. In the
latter case, however, Xs,t, defines (see Besag & Kooperberg, 1995) an intrinsic CAR of order 1 and intrinsic
order 0. We show below that even when 𝜙 = 1∕4, it is possible to define a stationary LM process as follows.

Consider the equation

(
1 − 1

4
L
)d

Xs,t = 𝜂s,t, 0 < d < 1, (25)

where d denotes the LM parameter. The moving average and autoregressive representations of Xs,t are as
follows

∑

(u,v)∈Z2

au,vXs−u,t−v = 𝜂s,t, (26)

Xs,t =
∑

(u,v)∈Z2

bu,v 𝜂s−u,t−v, (27)

where the au,v and the bu,v are as defined above in Equations (21) and (22). A comparison of Equations (26) and
(27) with (5) and (7) shows that the bu,v now define the correlations of Xs,t and the au,v define the corresponding
inverse correlations. The spectral density function of Xs,t is given by

fx(𝜆1, 𝜆2) =
𝜎

2
𝜂

(2𝜋)2

{
sin2

(
𝜆1

2

)
+ sin2

(
𝜆2

2

)}−d

∼ C (𝜆2
1 + 𝜆

2
2)
−d
, for (𝜆1, 𝜆2)→ 0. (28)

In a personal communication, D. Surgailis has confirmed that the decay rate for the bu,v given in Equation
(22) above continues to hold for all 𝜏 ∈ (0, 1). Moreover, the au,v satisfy a similar decay rate, as follows

au,v ∼ C (u2 + v2)−1−𝜏
, 0 < 𝜏 < 1.

We note also that despite their apparent similarity, the models given in Equations (19) and (25) are radically
different. Thus, the conditional model in (25) does not admit a simultaneous representation. This follows
by recognizing that its spectral density function, fx, say, for brevity, does not admit a factorization as fx =
|Q|−2, where Q denotes a Laurent polynomial corresponding to the generating function of the coefficients of
a simultaneous autoregressive process, and that this last condition is necessary for a stationary random field
to admit a simultaneous representation. By contrast, the simultaneous model, (19), does admit a conditional
representation as follows

ΦL(L1,L2) Zs,t = 𝜂s,t,

where ΦL(L1,L2) =
(

1 − 𝜙1,0L − 𝜙2,0(L2
1 + L−2

1 + L2
2 + L−2

2 ) − 𝜙1,1L1L2

)
𝜏

, and with 𝜙1,0 = 2m𝜙 = 2∕5, 𝜙2,0 =
−m𝜙2 = −1∕20, 𝜙1,1 = −2m𝜙2 = −1∕10, m = (𝜙0,0)−1 = (1 + 4𝜙2)−1 = 4∕5 and 𝜎2

𝜂

= 𝜎2
𝜖

m−d.
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12 of 36 FERRETTI et al.

It is also relevant to note that if 𝜏 = 1,ΦL(L1,L2) gives the polynomial of a completely symmetric intrinsic
CAR of order 1 and neighborhood order, p = 3. The latter process may thus be interpreted as the limit of a
completely symmetric SAR with parameter 𝜙 = 1∕4. As shown in Rue and Held (2005), this intrinsic CAR
process gives the parametrization of the thin-plate spline. □

Example 1 specifies that the LM parameter, d, is the same in all directions. In some applications, however, this spec-
ification may be too restrictive and where may be plausible to specify differing LM parameters in the “horizontal” and
in the “vertical” dimensions. An example is given in a study of ground water flow and contaminant transport by Guo
et al. (2009) who discuss random fields with a stronger memory parameter in the direction of the flow. In addition, Beran
et al. (2009) consider the possibility of fitting a nonisotropic LM dependence. Example 2 below demonstrates how this
aim may be achieved by specifying a pair of LM parameter, d1 and d2, instead of a just a single memory parameter, d, as
is done in Example 1.

Example 2. Conditional FI noise with separable fractional difference parameters.
Consider a separable GMRF of order 2 of the following form

(
1 − 𝜙1,0L1

) (
1 − 𝜙0,1L2

)
Xs,t = 𝜂s,t. (29)

As Xs,t is separable, we may write the spectral density function of Xs,t as

fx(𝜆1, 𝜆2) =
𝜎

2
𝜂

4𝜋2 f1(𝜆1) f2(𝜆2),

where

f1(𝜆1) = (1 − 2𝜙10 cos(𝜆1))−1 and f2(𝜆2) = (1 − 2𝜙01 cos(𝜆2))−1
.

Hence, it readily follows that the process defined by Equation (29) is stationary if |𝜙01| < 1∕2 and |𝜙10| < 1∕2.
If, however, 𝜙10 = 1∕2 and 0 < 𝜙01 < 1∕2, then f1(𝜆1) tends to infinity as 𝜆1 tends to 0 but f2(𝜆2) remains
bounded. Thus, now fx(𝜆1, 𝜆2) is unbounded at the origin but only along the axis defined by 𝜆1. Conversely,
if 𝜙01 = 1∕2 and 0 < 𝜙10 < 1∕2, f2(𝜆2) tends to infinity as 𝜆2 tends to 0 while f1(𝜆1) remains bounded, and
now fx(𝜆1, 𝜆2) approaches infinity at the origin, but only along the axis defined by 𝜆2. In the situation when
𝜙01 = 𝜙10 = 1∕2, fx(𝜆1, 𝜆2) tends to infinity, as (𝜆1, 𝜆2) tends to (0, 0). We show below that in this last situation,
it is still possible to define a stationary process admitting LM.

Suppose that Xs,t follows a separable LM model given below

(
1 − 1

2
L1

)d1
(

1 − 1
2

L2

)d2
Xs,t = 𝜂s,t, 0 < d1, d2 < 1∕2, (30)

where 𝜂st denotes the interpolation error process of Xs,t and d1 and d2 are a pair of memory parameters which
may take different values along the horizontal and vertical axes. The spectral density function of Xs,t is as
follows

fx(𝜆1, 𝜆2) =
𝜎

2
𝜂

4𝜋2

{
2sin2

(
𝜆1

2

)}−d1
{

2sin2
(
𝜆2

2

)}−d2

. (31)

We show next that the conditional process, Xs,t, defined in Equation (30), admits a representation as follows

(1 − L1)𝜏1(1 − L2)𝜏2 Zs,t = 𝜖s,t. (32)

This last process is also called a separable fractional noise process and it has previously attracted much atten-
tion in the literature: see Boissy et al. (2005), Shitan (2008), Ghodsi and Shitan (2009), Beran et al. (2009), and
Guo et al. (2009), among others. Its spectral density function is as follows:

fz(𝜆1, 𝜆2) =
𝜎

2
𝜖

4𝜋2

{
4sin2

(
𝜆1

2

)}−𝜏1
{

4sin2
(
𝜆2

2

)}−𝜏2

. (33)
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FERRETTI et al. 13 of 36

A comparison of the right-hand sides of Equations (31) and (33) shows that apart from a multiplying
constant of 𝜎2

𝜂

occurring in (31) and 𝜎

2
𝜖

2−(𝜏1+𝜏2) occurring in (33), the spectral shapes of these two pro-
cesses are the same, provided 𝜏1 = d1 and 𝜏2 = d2; moreover, if, in addition, 𝜎2

𝜖

= 𝜎2
𝜂

2𝜏1+𝜏2 the two spectra
coincide. The correlations and inverse correlations, rx(u), rix(u) and rz(u) and riz(u) of Xs,t and Zs,t are the
same and may be derived from the results given in Gradshteyn and Rhyzhik (1965) and Hosking (1981).
We have

rx(u, v) =
Γ(d1 + u)Γ(1 − d1)Γ(d2 + v)Γ(1 − d2)
Γ(d1)Γ(1 − d1 + u)Γ(d2)Γ(1 − d2 + v)

,

and

rix(u, v) =
Γ(−d1 + u)Γ(1 + d1)Γ(−d2 + v)Γ(1 + d2)
Γ(−d1)Γ(1 + d1 + u)Γ(−d2)Γ(1 + d2 + v)

.

Also, on using the approximation, Γ(a + x)∕Γ(a + y) ∼ ax−y, for a →∞, we also have, for (u, v)→ ∞,

rx(u, v) ∼
Γ(1 − d1)Γ(1 − d2)

Γ(d1)Γ(d2)
|u|2d1−1|v|2d2−1

,

and

rix(u, v) ∼
Γ(1 + d1)Γ(1 + d2)
Γ(−d1)Γ(−d2)

|u|−1−2d1 |v|−1−2d2
.

□

It may be noticed that the interpolation error process, 𝜂s,t, occurs on the right of Equations (25) and (30). An implication
of this specification is that the short memory components of the processes defined in Examples 1 and 2 are not being
explicitly modeled and, in the factorization (18) of Φ(z1, z2), ΦS(z1, z2) is trivially set equal to 1. It is possible to specify a
non-trivial ΦS(z1, z2), by replacing 𝜂s,t by a short memory process, Ys,t. Examples 4.3 and 4.4 given below illustrate this
possibility by specifying that Ys,t follows a CAR and CMA model, respectively.

Example 3. Diagonally symmetric CARFIMA(2, d1, d2, 0) model.
Suppose that the LM component of the observed process, Xs,t, is the same as that of the process considered
on the left hand side of equation (30) but its right-hand side is replaced by a second order CAR model with
diagonally symmetric structure. The model is represented as follows

(
1 − 1

2
L1

)d1
(

1 − 1
2

L2

)d2
Xs,t = Ys,t, 0 < d1, d2 < 1∕2, (34)

where Ys,t is a diagonally symmetric CAR(2),

A(L1,L2)Ys,t = 𝜂s,t,

with A(L1,L2) = 1 − 𝛼1,0L1 − 𝛼0,1L2 − 𝛼1,1L1L2 and 𝛼1,1 = −𝛼0,1𝛼1,0. The spectral density function of Xs,t is given
by

fx(𝜆1, 𝜆2) =
𝜎

2
𝜂
(1 − cos(𝜆1))−d1 (1 − cos(𝜆2)−d2

4𝜋2
(
1 − 2𝛼0,1 cos(𝜆1) − 2𝛼1,0 cos(𝜆2) − 4𝛼1,1 cos(𝜆1) cos(𝜆2)

) . (35)

An important feature of this model is that Xst represents a conditional form of the following
LM separable unilateral AR(1) process (Martin, 1986) which is also known as the Pickard process
(Pickard, 1980)

(1 − L1)𝜏1(1 − L2)𝜏2 Zs,t = Ws,t,
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14 of 36 FERRETTI et al.

where

Ws,t =
(
1 − 𝜗1,0L1

)−1(1 − 𝜗0,1L2
)−1

𝜖s,t

=
(
1 − 𝜗1,0L1 − 𝜗0,1L2 − 𝜗1,1L1 L2

)−1
𝜖s,t,

𝜗1,1 = −𝜗0,1𝜗1,0 and, as in Example 2, 𝜖s,t is a sequence of uncorrelated random variables, each with mean 0
and variance 𝜎2

𝜖

.
It is straightforward to show that the spectral density function of Zs,t is given by

fz(𝜆1, 𝜆2) =
𝜎

2
𝜖

4𝜋2

{
4sin2

(
𝜆1

2

)}−𝜏1
{

4sin2
(
𝜆2

2

)}−𝜏2 |||1 − 𝜗1,0 ei𝜆1 |||
−2|||1 − 𝜗0,1 ei𝜆2 |||

−2

=
𝜎

2
𝜖

4𝜋2

(
1 + 𝜗2

1,0
)−1(1 + 𝜗2

0,1
)−1

{
4sin2

(
𝜆1

2

)}−d1
{

4sin2
(
𝜆2

2

)}−d2

×
⎧
⎪
⎨
⎪⎩

1 − 2
𝜗1,0

1 + 𝜗2
1,0

cos(𝜆1) − 2
𝜗0,1

1 + 𝜗2
0,1

cos(𝜆2) − 4
𝜗1,0𝜗0,1(

1 + 𝜗2
1,0

)(
1 + 𝜗2

0,1

) cos(𝜆1) cos(𝜆2)
⎫
⎪
⎬
⎪⎭

−1

=
𝜎

2
𝜖

C(1 − cos(𝜆1))−𝜏1 (1 − cos (𝜆2)−𝜏2

4𝜋2
(
1 − 2𝜌1,0 cos(𝜆1) − 2𝜌0,1 cos(𝜆2) − 4𝜌1,1 cos(𝜆1) cos(𝜆2)

) . (36)

where C = 2−(d1+d2)(1 + 𝜗2
1,0)

−1(1 + 𝜗2
0,1)

−1, 𝜌1,0 = 𝜗1,0∕(1 + 𝜗2
1,0), 𝜌0,1 = 𝜗0,1∕(1 + 𝜗2

0,1) and 𝜌1,1 = −𝜌0,1𝜌1,0.
A comparison of the right-hand sides of Equations (35) and (36) shows that the two spectra coincide if 𝜏1 = d1
and 𝜏2 = d2, 𝜎2

𝜖

= 𝜎2
𝜂

C−1, 𝛼0,1 = 𝜌0,1 and 𝛼1,0 = 𝜌1,0.
Parameter estimation for the Pickard process has been considered in several different studies; some rele-

vant references for the least squares estimation and for maximum likelihood estimation are Beran et al. (2009),
Sethuraman and Basawa (1995) and Boissy et al. (2005). In addition, Ghodsi and Shitan (2009) have studied
the normalized periodogram of the process with the aim of paralleling the work of Hurvich and Beltrao (1993)
for a time series. □

Equations (8) and (9) show that the observed process, Xs,t, and its interpolation error process, 𝜂s,t, are in an inverse
relationship with each other in that the spectral density function of the former is proportional to the reciprocal of
the latter, and vice versa. A suitably scaled version of the interpolation error process is accordingly also called the
inverse process of Xs,t, see Battaglia (1983). Moreover, the inverse process of a standard autoregressive model for a time
series is also known to follow a standard moving average process (see Bhansali & Ippoliti, 2005) and this property is
at the heart of a model selection procedure for moving average models suggested in Bhansali (1983). In the follow-
ing example, this property is also utilized by specifying that the short memory process, Ys,t, follows a CMA model
which is also the model followed by the interpolation error process of the short memory process, Ys,t, considered in
Example 4.

Example 4. The diagonally symmetric CARFIMA(0, d1, d2, 2) model
Suppose that Xs,t satisfies the same LM model as that specified by Equation (34) in Example 4, but Ys,t follows
a diagonally symmetric CMA(2) model. The model is expressed as follows

(
1 − 1

2
L1

)d1
(

1 − 1
2

L2

)d2
Xs,t = Ys,t, (37)

where with B(L1,L2) = 1 + 𝛽1,0L1 + 𝛽0,1L2 + 𝛽1,1L1L2,

Ys,t = B(L1,L2) 𝜂s,t.

The spectral density function of Xs,t is given by

fx(𝜆1, 𝜆2) =
𝜎

2
𝜂

(
1 + 2𝛽0,1 cos(𝜆1) + 2𝛽1,0 cos(𝜆2) + 4𝛽1,1 cos(𝜆1) cos(𝜆2)

)

4𝜋2 (1 − cos(𝜆1))d1 (1 − cos (𝜆2)d2
. (38)
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FERRETTI et al. 15 of 36

It may be observed that, apart from a slight change of notation, the polynomial B(L1,L2) defined above and
the polynomial A(L1,L2) occurring in Example 4 are the same. However, whereas the latter occurs in the
denominator of the spectral density function of the process defined in Example, the former occurs in the
numerator of Equation (38). This last result, nevertheless, accords with the inverse relationship between the
class of CMA processes considered in this example and the CAR processes considered in Example 4. Let

Zs,t = (1 − L1)−𝜏1(1 − L2)−𝜏2 Ws,t, (39)

be a unilateral MA(1) process, where

Ws,t =
(
1 + 𝜑1,0L1

) (
1 + 𝜑0,1L2

)
𝜖s,t,

and 𝜖s,t is a sequence of uncorrelated random variables, each with mean 0 and variance 𝜎2
𝜖

. The spectral density
of Zs,t is given by

fz(𝜆1, 𝜆2) =
𝜎

2
𝜖

C
(
1 + 2𝜌1,0 cos(𝜆1) + 2𝜌0,1 cos(𝜆2) + 4𝜌1,1 cos(𝜆1) cos(𝜆2)

)

4𝜋2 (1 − cos(𝜆1))𝜏1 (1 − cos (𝜆2)𝜏2
, (40)

where C = 2−(𝜏1+𝜏2)(1 + 𝜗2
1,0)(1 + 𝜗

2
0,1), 𝜌1,0 = 𝜗1,0∕(1 + 𝜗2

1,0), 𝜌0,1 = 𝜗0,1∕(1 + 𝜗2
0,1) and 𝜌1,1 = 𝜌0,1𝜌1,0. On com-

paring equations (38) and (40), it readily follows that the two spectra are identical if 𝜏1 = d1, and 𝜏2 = d2,
𝜎

2
𝜖

= 𝜎2
𝜂

C−1, 𝛽0,1 = 𝜌0,1, 𝛽1,0 = 𝜌1,0 and 𝛽1,1 = 𝜌1,1.
The LM property of the process Zs,t follow by noting that

Zs,t =
(
1 + 𝜑1,0L1

) (
1 + 𝜑0,1L2

)
𝜉s,t,

where

𝜉s,t = (1 − L1)−d1(1 − L2)−d2
𝜖s,t,

is a separable fractional difference noise process considered previously in Example 2. This process is known
to admit LM with spectral density function given on the right-hand side of Equation (33). The covariance
function, Rz(u, v), of Zs,t is related to the corresponding covariance function, R

𝜉
(u, v), say, of 𝜉s,t, as follow

Rz(u) = (1 + 𝜑2
1,0) R

𝜉
(u) + 2𝜑1,0

(
R
𝜉
(u − 1) + R

𝜉
(u + 1)

)
,

and

Rz(v) = (1 + 𝜑2
0,1) R

𝜉
(v) + 2𝜑0,1

(
R
𝜉
(v − 1) + R

𝜉
(v + 1)

)
.

Hence, it follows that as (u, v)→ ∞,

Rz(u, v) ∼ C u−2𝜏1+1v−2𝜏2+1
,

where C denotes a bounded constant.
Moreover, since Zs,t and Xs,t are equivalent, the latter also admits LM. The LM property of Zs,t also follows

more readily by observing that it is a finite linear combination of 𝜉s,t. The latter, by Example 4, admits LM and
hence so does Zs,t. Moreover, since Xs,t is equivalent to Zs,t, it also admits LM. □

Example 2 considered earlier introduces a two-parameter LM model for specifying differing LM behavior in the “hor-
izontal” and the “vertical” dimensions. An alternative approach for achieving this aim is suggested in Example 5 below
in which a GMRF of order 1 with only a single memory parameter is specified, but differing autoregressive coefficients
for the neighbors along the rows and the columns are allowed for.

Example 5. FI CAR(1) model with differing row and column coefficients
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16 of 36 FERRETTI et al.

The model considered is

(
1 − 𝜙1,0L1 − 𝜙0,1L2

)d
Xs,t = 𝜂s,t. (41)

where for some 𝜇 ∈ (−1∕4, 1∕4), 𝜙1,0 = 1∕4 + 𝜇, 𝜙0,1 = 1∕4 − 𝜇 and 𝜂s,t denotes the interpolation error
process of Xs,t. Following example 2 in Koul et al. (2016), Xs,t admits a moving average representation
as follows

Xs,t =
∞∑

j=0
𝜓j(−d)

j∑

k=0

(
j
k

)
𝜙

k
01𝜙

j−k
10 𝜂s−k,t−j−k.

Its spectral density function is given by

fx(𝜆1, 𝜆2) =
𝜎

2
𝜂

2−d

(2𝜋)2

{(1
2
+ 2𝜇

)
sin2

(
𝜆1

2

)
+

(1
2
− 2𝜇

)
sin2

(
𝜆2

2

)}−d

. (42)

Hence, we have, as (𝜆1, 𝜆2)→ 0

fx(𝜆1, 𝜆2) ∼ C
{(1

2
+ 2𝜇

)
𝜆

2
1 +

(1
2
− 2𝜇

)
𝜆

2
2

}−d
. (43)

An implication of this last result is that the memory parameter for the unequal coefficient model considered
here is the same as that for the completely symmetric model (25) considered in Example 1. Nevertheless,
the spectral density functions of the two models differ. In particular, the multiplying factors,

(
1
2
+ 2𝜇

)
and

(
1
2
− 2𝜇

)
occurring in front of the two sine-squared terms on the right of Equation (42) are not present in

Equation (28). These factors enable differing weights to be given to the two sine-squared terms. Thus, for
0 < 𝜇 < 1∕4, the first term to the right of (42) is given greater weight than the second term. Conversely,
for −1∕4 < 𝜇 < 0, the second term is given a greater weight than the first. At an empirical level, the extent
to which the presence of 𝜇 influences the LM behavior of the model considered in this example and that
considered in Example 1 requires further investigation. □

As demonstrated in Examples 1–5, the conditional approach to specifying LM random fields enables a more general
class of models to be deployed than has hitherto been possible by either the simultaneous or the unilateral approaches; for
example, the use of fractional differencing which is used in the unilateral approach may be avoided and yet an equivalent
model could be specified. Moreover, these examples also suggest the following generic approach to specifying the factor
ΦL(z1, z2) occurring in Equation (18):

As in Equation (11), let Sp denote a finite neighborhood of (0, 0) and let

A(z1, z2) =
∑

(s,t)∈Sp∪(0,0)
𝛼s,t zs

1zt
2, (z1, z2) ∈ 2

,

denote a symmetric finite Laurent series defined on the two-dimensional complex plane, 2, such that A(z1, z2) =
A(z−1

1 , z−1
2 ). A necessary condition for A(z1, z2) to define a stationary Gauss-Markov random field is that A(z1, z2) > 0 on

the two-dimensional unit circle, |z1| = |z2| = 1. Let, 𝛼s,t denote the values of 𝛼s,t for which A(z1, z2) = 0, |z1| = |z2| = 1
vanishes on the unit circle. We may then set, with 0 < d < 1 denoting the LM parameter,

ΦL(z1, z2) =
⎛
⎜
⎜⎝

∑

(s,t)∈Sp∪(0,0)
𝛼s,t zs

1zt
2

⎞
⎟
⎟⎠

d

.

Also, ΦS(z1, z2) could be specified as a real analytic function following one of the standard conditional models discussed
in Section 2.
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FERRETTI et al. 17 of 36

5 ESTIMATION OF CONDITIONAL LM RANDOM FIELDS

There has been much development on the question of how to estimate the memory parameter, d, of a
fractionally-differenced stationary time series with a review of the existing methods may be found in Palma (2007) and
Giraitis and Robinson (2003), among others. As discussed in these references, the existing methods may be grouped
under the following three broad approaches: (1) Parametric; (2) Nonparametric; (3) Semi-parametric. In the parametric
approach, the observed time series is typically assumed to be a realization of a LM process, Xt, say such that its dth frac-
tional difference, Yt, say, follows an ARMA or an Exponential model of known order. As discussed in the pioneering work
of Fox and Taqqu (1986), Dahlhaus (1989), and Giraitis and Surgailis (1990), a maximum likelihood, or an equivalent
procedure, is then used for estimating the parameters of the model specified for Yt together with the fractional-difference
parameter.

In the more realistic situation in which the order of the process is unknown, the use of Akaike’s information crite-
rion (AIC), or a related model selection criterion, may also be considered for determining the order to adopt; see, for
example, Beran et al. (1998). The nonparametric approach, by contrast, only specifies the behavior of the theoretical spec-
tral density function near the origin. The memory parameter is then estimated, see Geweke and Porter-Hudak (1983), by
regressing the logarithm of the periodogram of the observed time series on the logarithm of the frequency. Early work on
the semi-parametric approaches combined the parametric and nonparametric approaches by specifying only the behavior
of the spectral density near the origin. A truncated form of the Whittle likelihood, which is defined only for a frequency
band close to the origin, is then employed for estimating the memory parameter; see, for example, Robinson (1995a).

More recent work, by contrast, specifies that the dth fractionally-differenced time series, Yt, admits an infinite expo-
nential, or autoregressive representation. The memory parameter together with the parameters of the specified parametric
model for Yt, are then estimated by a regression, or a maximum likelihood, procedure, in which the finite order to adopt
is determined by a model selection criterion; however, the specified model for Yt, is assumed to be of an infinite order and
the sampling properties of the estimates are studied by assuming that the fitted order approaches infinity simultaneously,
but sufficiently slowly, with the length of the observed time series.

We explain below how the three approaches described above may be generalized for estimating the parameters of a
conditional LM random field.

5.1 Exact maximum likelihood

Assume that Xt follows either a CARFIMA(p, d, q) model or a CARFIMA(p, d1, d2, q). Also, let  ⊂ Z2 be an (n1 × n2)
lattice with n sites and let xs,t be the process observed at sites s = 1, … ,n1; t = 1, … ,n2. Each row of the lattice is mapped
lexicographically into (N2 × 1) vectors xs =

[
xs,1, xs,2, … , xs,n2)

]′ that are stacked one on the top of the other to form the
(n × 1) vector x =

[
x′1, x

′
2, … , x′n1

]′. Then, the Gaussian log likelihood function of X is given by

log L(𝝎) = −n
2

log 2𝜋 − 1
2

log |Rx| −
1
2

x′R−1
x x, (44)

where Rx is the (n × n) covariance matrix of X dependent on the unknown model parameters collected in the vector 𝝎.
Under suitable regularity conditions on fx(𝜆1, 𝜆2)—see, for example, Beran et al. (2013) and Palma (2007), the ML

estimator of 𝝎 is consistent and asymptotically Gaussian, with asymptotic variance given by the inverse of the Fisher
information matrix J(𝝎), with (i, j)th element given by Ji,j(𝝎) = 1

2
tr

(
R−1

x R(i)
x R−1

x R(j)
x

)
, where tr(⋅) is the trace operator and

R(i)
x = 𝜕Rx∕𝜕𝜔i. Note that closed form expressions of the information matrix are in general difficult to obtain and, hence,

J(𝝎) is often calculated numerically.
A main difficulty in implementing MLE is that, in practice, the datasets may be extremely large and may have miss-

ing values. This makes likelihood inference impracticable, since exact Cholesky decompositions require O(n3) operations.
One possibility to overcome the problem is to take advantage of using separable covariance functions for which the
dimension of the covariance matrices to be inverted is reduced dramatically. For a separable fractional autoregressive
specification of the model, the asymptotic normality of the ML estimator was proved by Sethuraman and Basawa (1995).
Another possibility is to view the observed data as a partial realization from a Gaussian random field on a periodic lattice.
In particular, if toroidal boundary conditions are assumed, then Rx is block circulant with circulant blocks and can be eas-
ily diagonalized with a two dimensional discrete Fourier transform—see, for example, Dryden et al. (2002) for inference
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18 of 36 FERRETTI et al.

on CAR models, Ippoliti et al. (2013) for spatial processes with rational spectral density functions or Stroud et al. (2017)
for stationary Gaussian processes observed on a large lattice with missing values. This approach has a number of compu-
tational advantages since the eigenvalues, matrix-vector multiplications and quadratic forms can be computed efficiently
in O(n log n) operations by exploiting the FFT. Thus ML estimation can be carried out efficiently by maximizing the
log-likelihood over the valid parameter space, that is, subject to the covariance matrix being strictly positive definite. In
general, this can be ensured by checking numerically all its eigenvalues are positive.

5.2 Whittle likelihood method

When working with processes for which an exact likelihood is hard to compute or is not analytically tractable, Whittle
estimation represents another useful approach for estimating the model parameters.

Assume that both the covariance matrix, Rx, and the spectral density function, fx(𝜆1, 𝜆2), are functions of an
unknown vector 𝝎 of model parameters. Then, the Whittle method evaluates the likelihood by means of the following
approximations

log |Rx| ≈
n1−1∑

j1=0

n2−1∑

j2=0
log{4𝜋2fx(𝜆1, 𝜆2,j2 )},

and

x′R−1
x x ≈

n1−1∑

j1=0

n2−1∑

j2=0

Ix(𝜆1,j1 , 𝜆2,j2)
fx(𝜆1,j1 , 𝜆2,j2)

,

where Ix(𝜆1,j1 , 𝜆2,j2) is the periodogram

Ix(𝜆1,j1 , 𝜆2,j2) =
1

4𝜋2n

|||||

n1∑

s=1

n2∑

t=1
xs,t ei(s𝜆1,j1+t𝜆2,j2 )

|||||

2

,

with discrete Fourier frequencies 𝜆1,j1 = 2𝜋j1∕n1 and 𝜆2,j2 = 2𝜋j2∕n2, and jk = 1, … ,nr, for r = 1, 2. The negative Whittle
likelihood can thus be written as

log L(𝝎) ≈ −

[ n1∑

j1=1

n2∑

j2=1
log

{
4𝜋2fy(𝜆1,j1 , 𝜆2,j2)

}
+

n1∑

j1=1

n2∑

j2=1

Iy(𝜆1,j1 , 𝜆2,j2)
fy(𝜆1,j1 , 𝜆2,j2)

]
. (45)

The properties of Whittle estimation have been studied extensively. For example, Hannan (1973) proved the consis-
tency and asymptotic normality of the Whittle estimator for the class of linear processes and his results were subsequently
extended by Rice (1979). Then, Fox and Taqqu (1986) and Giraitis and Surgailis (1990); Giraitis and Taqqu (1999) studied
its properties in the presence of long-range dependence, and showed that both for LM Gaussian processes and nonlin-
ear processes the estimator is consistent but does not necessarily have a limiting multivariate normal distribution after
standardization. More recently, considering a separable fractional autoregressive process, Boissy et al. (2005) proved the
consistency of the Whittle estimator in the spatial context. Theoretical results for the multidimensional periodogram can
be found, for example, in Porcu et al. (2009).

A difficulty in implementing both ML and Whittle estimation is that the order (p, q) is invariably unknown, and,
for an observed spatial series, there may not even be a true value of this order. The question of model choice has been
considered by different authors by relying on model selection criteria, such as AIC or Bayesian Information criterion
(BIC). Schmidt and Tcherning (1995) and Crato and Ray (1996) analyzed, by Monte Carlo experiments, the performance
of various model selection criteria for both ARMA and ARFIMA models. Beran et al. (1998) investigated model choice
criteria for stationary and nonstationary, fractional and nonfractional autoregressive processes. These authors have shown
that while the AIC criterion does not provide a consistent order selection procedure for this class of processes, the BIC
is consistent for such processes. On the other hand, to the best of our knowledge, there are no comparable results on the
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FERRETTI et al. 19 of 36

asymptotic sampling properties of information criteria in the spatial framework. However, the use of information criteria
suggests further alternative strategies for estimating LM models as described in the next section.

5.3 CARFI method

In this section we discuss an alternative approach to the estimation of d in which the short-memory process is postulated
to follow an infinite CAR process and a CARFIMA(p, d, 0) model is fitted to an observed spatial series, where p is such
that p → ∞ simultaneously but sufficiently slowly with n. This approach extends to the spatial context the FAR method
introduced by Bhansali and Kokoszka (2001) and Bhansali et al. (2006) in a LM time series framework.

In common with the FAR method, our differenced process is postulated to follow an infinite order autoregressive
model such that an estimate of d is constructed by fitting a hierarchical family of CAR models with increasing order
p = p(n), such that p(n)→∞, p(n)∕n → 0, as n → ∞.

In the following, it is thus assumed that Xs,t is a realization of a two-dimensional stochastic process defined by

ΦL(L1,L2)Xs,t = Ys,t,

where Y is a stationary short-memory process satisfying

Ys,t =
∑

(u,v)∈Z2

𝛼u,v Ys−u,t−v + 𝜂s,t, (46)

with a bounded spectral density at the origin and an exponential decaying autocorrelation function. For example, if
ΦL(L1,L2) =

(
1 − 𝜙̃L

)
𝜏 , the process X has spectral density

fx(𝜆1, 𝜆2) =
𝜎

2
𝜂

(2𝜋)2
ΦL(e−i𝜆1

, e−i𝜆2)−1 A(e−i𝜆1
, e−i𝜆2)−1

,

with A(e−i𝜆1
, e−i𝜆2) =

∑
(u,v)∈Z2 𝛼u,ve−i𝜆1ue−i𝜆2v. For estimation purposes the summation is confined to a finite set Sp such

that X can be thought of as a realization of a CARFIMA(p, 𝜏, 0)—or a CARFIMA(p, 𝜏1, 𝜏2, 0)—whose parameters can
be estimated by ML or Whittle likelihood and the order determined by appealing to the AIC, or BIC, criterion. Under
several assumptions, and in the framework of time series, Bhansali et al. (2006) have shown that the FAR estimate of the
LM parameter is asymptotically normal and that that this estimator is asymptotically superior to the nonparametric and
semiparametric described below. Unfortunately, there are no theoretical results about the asymptotic properties of this
estimator in the framework of random fields.

Considering the likelihood procedures described above, one may argue that the knowledge of the complete structure
of the short-memory process Ys,t might be a rather restrictive assumption for many practical applications. Little is known
on the behavior of model diagnostic criteria in the presence of spatial LM and this is clearly undesirable in applied studies
where misspecifications of the short-run dynamics (i.e., the CARMA part) may result in inconsistencies in the estimate
of the parameter d (or d1, d2) which only relates to the long-run behavior of the series and can be the only parameter of
interest for many applications. These considerations thus motivate the introduction of a number of methods which seek
to estimate the LM parameter(s) under few prior assumptions concerning the spectral density of Xs,t and, in particular,
without specifying a finite parameter model for the short memory process Ys,t. The estimators considered below have
been developed in the frequency domain and have led to the specification of log-periodogram regressions.

5.4 Geweke and Porter-Hudak method

A widely used procedure in time series analysis is known as the Geweke and Porter-Hudak (GPH) method. This estimator
is due to Geweke and Porter-Hudak (1983), and it is based on the observation that if in (17), the function is considered
as a constant C, for all 𝝀, log fx(𝝀) follows a linear function of log𝝀 in a neighborhood of the origin, and, hence, an estimate
of 𝜏 may be found by regressing log-periodogram on log𝝀. As a result, the GPH estimator belongs to the so-called class of
narrowband estimators because fx(𝝀) is evaluated only in the neighborhood of zero frequency. The extension of GPH to
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the spatial domain was considered by Shitan (2008) and Ghodsi and Shitan (2016) for the separable fractional processes
of Equations (32) and (39), and by Wang (2009) for the isotropic model of Equation (25).

Suppose, for example, that X is a separable LM unilateral ARMA model considered by Shitan (2008) and Ghodsi and
Shitan (2016), with spectral density function

fx(𝜆1, 𝜆2) =
|||||
2 sin

(
𝜆1

2

)|||||

−2d1 |||||
2 sin

(
𝜆2

2

)|||||

−2d2

fy(𝜆1, 𝜆2), 0 < d1, d2 < 1∕2. (47)

Then, by taking the log of the spectral density function, it follows that

log{fx(𝜆1, 𝜆2)} = log{fy(0, 0)} − d1 log
{

4sin2(𝜆1∕2)
}

− d2 log
{

4sin2(𝜆2∕2)
}
+ log

{
fy(𝜆1, 𝜆2)∕fy(0, 0)

}
.

By adding the log of the periodogram, Iy(𝜆1,j1 , 𝜆2,j2), to both sides and rearranging gives

log {Ix(𝜆1,j1 , 𝜆2,j2)} = log{fy(0, 0)} − d1 log
{

4sin2 (
𝜆1,j1∕2

)}
− d2 log

{
4sin2 (

𝜆2,j2∕2
)}

+ log
{

fy(𝜆1,j1 , 𝜆2,j2)∕fy(0, 0)
}
+ log

{
Ix(𝜆1,j1 , 𝜆2,j2)∕fx(𝜆1,j1 , 𝜆2,j2)

}
.

To motivate a log-periodogram regression, Geweke and Porter-Hudak (1983) argued that log
{

Ix(𝜆1,j1 , 𝜆2,j2)
}
−

log
{

fx(𝜆1,j1 , 𝜆2,j2)
}

turns into an iid sequence and that, following Brillinger (1974),

Ix(𝜆1,j1 , 𝜆2,j2)
fx(𝜆1,j1 , 𝜆2,j2)

∼ 𝜒2
2 as min(n1,n2) → ∞,

where 𝜒2
2 represents a chi-square distribution with two degrees of freedom for which we have

E
[

log
{ Ix(𝜆1,j1 , 𝜆2,j2)

fx(𝜆1,j1 , 𝜆2,j2)

}]
= 𝜓(1),

where 𝜓(⋅) is the digamma function and 𝜓(1) = 0.57722 is the Eulero’s constant. Accordingly, this suggests to consider
the terms

𝜖j1,j2 = log
{ Ix(𝜆1,j1 , 𝜆2,j2)

fx(𝜆1,j1 , 𝜆2,j2)

}
+ 𝜓(1),

as regression errors with zero mean and constant variance 𝜋2∕6 (Brillinger, 1974). Furthermore, since for frequencies
𝜆1,j1 and 𝜆2,j2 , in the neighborhood of zero, fy(𝜆1,j1 , 𝜆2,j2) ∼ fy(0, 0), the term fy(𝜆1,j1 , 𝜆2,j2)∕fy(0, 0) becomes negligible and the
log-periodogram regression can be expressed as

log {Ix(𝜆1,j1 , 𝜆2,j2)} = c − d1 log
{

4sin2 (
𝜆1,j1∕2

)}
− d2 log

{
4sin2 (

𝜆2,j2∕2
)}
+ 𝜖j1,j2 ,

where c = log{fx(0, 0)} + 𝜓(1), j1 = 1, … ,m1, j2 = 1, … ,m2 and m1 and m2 are bandwidth hyper-parameters selecting
the smallest Fourier frequencies around the origin. In addition, since sin(𝜆r,jr∕2) ∼ 𝜆r,jr∕2, for jr∕nr → 0 and r = 1, 2, the
LM parameters could be estimated by considering the following regression

log{Ix(𝜆1,j1 , 𝜆2,j2)} = c − 𝜏1 log 𝜆1,j1 − 𝜏2 log 𝜆2,j2 + 𝜖j1,j2 .

where now 𝜏1 = 2d1 and 𝜏2 = 2d2. Estimation of the LM parameter d using a nonseparable fractional differential operator
is also straightforward and leads to the following log-periodogram regression

log {Ix(𝜆1,j1 , 𝜆2,j2)} = c − d log{sin2(𝜆1,j1∕2) + sin2(𝜆2,j2∕2)} + 𝜖j1,j2 .
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The SEs of the model parameters can be obtained by following the classical theory on model regression. The intuitive
explanation is that most of the residuals in the GPH regression are approximately uncorrelated, and this turns out to be
enough to obtain a result analogous to an i.i.d. situation. In principle, results from time series analysis (Beran et al., 2013)
directly apply to the separable case while results for the nonseparable case can be found in Wang (2009). We note further
that only the lowest 𝜅1 and 𝜅2 harmonic frequencies are involved to fit the regression in GPH. An optimal choice of 𝜅r as
positive integers which tend to infinity slower than nr for r = 1, 2 was proposed, for example, by Ghodsi and Shitan (2016)
with 𝜅r =

√
nr following Geweke and Porter-Hudak (1983) in time series. In contrast, Wang (2009) chose 𝜅r equal to n4∕5

r
as suggested by Hurvich et al. (1998). However, there exist some difficulties in applying the GPH estimator in that, in
practical applications, the method exhibits high variability and it is not easy to determine an optimal band of frequencies
over which the regression is performed.

5.5 Fractional exponential method

As opposed to the GPH, which uses a limited amount of the spectral density at low frequencies, the fractional exponential
(FEXP) method finds an estimate of the LM parameters from the use of the full spectrum and it thus represents a broad-
band estimator. Since all the frequencies are used in estimation, the difficult question of how to determine an optimal
band of frequencies as in the GPH is no longer applicable here.

In the framework of time series, the FEXP method was first discussed by Janacek (1982) and then by Moulines
and Soulier (1999) and Hurvich and Brodsky (2001). In space, this semiparametric estimator was recently extended by
Kohli (2016) for random fields observed on a regular lattice. In this case, the logarithm of the spectral density of the
short-memory process is postulated to possess an infinite Fourier series expansion. Hence, if X is a LM process with spec-
tral density function, say as in Equation (47), an estimator of the LM parameters and of the Fourier coefficients, cs, say,
is found by first truncating the infinite Fourier series at some finite value as in Equation (14), and then by applying an
ordinary linear least-squares procedure for the following log-periodogram regression

log{Ix(𝜆1,j1 , 𝜆2,j2)} ≈ c0,0 − d1 log
{

4sin2(𝜆1,j1∕2)
}
− d2 log

{
4sin2(𝜆2,j2∕2)

}

+ 2
p1∑

r=1
cr,0 cos(𝜆1,j1 r) + 2

p2∑

l=1
c0,l cos(𝜆2,j2 l)

+ 2
p1∑

r=1

p2∑

l=1
c(+)r,l cos(𝜆1,j1 r + 𝜆2,j2 l) + 2

p1∑

r=1

p2∑

l=1
c(−)r,l cos(𝜆1,j1 r − 𝜆2,j2 l) + 𝜖j1,j2 ,

where m = (p1, p2) is the order of the model, cr,l = c−r,−l represent the two-dimensional cepstral coefficients of the random
field and, as for GPH, the term 𝜖j1,j2 is assumed to be an asymptotically independent and identically distributed sequence
of random errors. If m tends to infinity, then one obtains a perfect approximation, provided that the estimates cs converge
fast enough to the true values. The latter is guaranteed by preventing that m grows too fast, since otherwise there would
be too many parameters to estimate. In general, there are K = (2p1p2 + p1 + p2 + 1) cepstral coefficients to be estimated.
A challenge in the FEXP method is the choice of model order m. Paralleling works in time series studies, Kohli (2016)
suggests the use of global and local versions of Mallow’s C criterion (Hurvich, 2001) and the corrected Akaike’s informa-
tion criterion (AICc) of Hurvich and Tsai (1989), though no theoretical justifications are given for the use of such criteria.
As for the GPH, Kohli (2016) computes the standard errors of the model parameters by following the classical theory on
model regression.

It is finally worth noting that the FEXP approach bears some similarity to the CARFI approach, in that both meth-
ods approximate the short memory process by truncating either an infinite Fourier series expansion or an infinite order
autoregressive model. However, the CARFI approach is likelihood-based and it may be expected to be asymptotically
more efficient than the regression-based approach.

5.6 Other methods

Two of the early methods for estimating the LM parameter are graphical and are based on the use of the rescaled range
(R/S) statistic and/or the variance-time plot (Beran et al., 2013). A main difficulty in using the graphical methods is
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22 of 36 FERRETTI et al.

that, especially for moderate values of n, they typically have large biases. In another semiparametric approach, see for
example, Künsch (1987), Robinson (1995b), and Frias et al. (2008), a precise parametric form for the spectral density of
the random field Xs,t is not specified and it is assumed to be of the form given in Equation (17) but with considered as a
continuous function of the LM parameter in a neighborhood of the origin. Thus, this approach combines the parametric
and nonparametric methods discussed above and it is often called local Whittle. However, this method suffers from the
same difficulties as described for the nonparametric approach in that the bandwidth of frequencies must be chosen in an
arbitrary fashion.

6 MODEL PARAMETER ESTIMATION: A SIMULATION STUDY

To illustrate the efficacy of the different estimators in estimating the LM parameter, we provide a comparison within a
simulation study based on realizations from a wide range of CARFIMA(p, d1, d2, q) models, where p and q take values
over the region 0 ≤ p, q ≤ 2. The aim here is to compare the overall performance of different estimators over a wide
range of models, rather than point out which estimators are best for certain models. In particular, considering the general
representation

(
1 − 1

2
L1

)d1
(

1 − 1
2

L2

)d2
Xs,t = Ys,t,

we simulate realizations from the following different generating models

I. CARFIMA(0, d1, d2, 0) where Ys,t = 𝜂s,t.
II. CARFIMA(1, d1, d2, 0) where

(
1 − 0.2L1 − 0.2L2

)
Ys,t = 𝜂s,t.

III. CARFIMA(2, d1, d2, 0) where
(

1 − 0.2L1 − 0.2L2 + 0.08L1L2

)
Ys,t = 𝜂s,t.

IV. CARFIMA(0, d1, d2, 1) where Ys,t =
(

1 + 0.2L1 + 0.2L2

)
𝜂s,t.

V. CARFIMA(1, d1, d2, 1) where
(

1 − 0.2L1 − 0.2L2

)
Ys,t =

(
1 + 0.2L1 + 0.15L2

)
𝜂s,t.

VI. CARFIMA(0, d1, d2, 2) where Ys,t =
(

1 + 0.2L1 + 0.2L2 + 0.08L1L2

)
𝜂s,t.

VII. CARFIMA(2, d1, d2, 2) where
(

1 − 0.2L1 − 0.2L2 + 0.08L1L2

)
Ys,t =

(
1 + 0.2L1 + 0.1L2 + 0.05L1L2

)
𝜂s,t.

Note that all models have moderate AR and MA coefficients so as not to favor a priori any of the model fitting methods.
Furthermore, we note that each model has  = 1 + 2 + 3 parameters with 1 from Sp, 2 from Sq plus 𝜎2

𝜂

, d1 and d2.
For each generating model, we set d1 = d2 = 0.3 and 𝜎2

𝜂

= 1 and the following methods of LM parameters estimation are
compared:

1. GPH The LM parameters d1 and d2 were estimated by least squares estimation on a general multiple regression model
as defined in Section 5.4. Different bandwidths, (𝜅1, 𝜅2) = (n

b1
1 ,n

b2
2 ) with b1 = b2 = 2∕5, 3∕5, 4∕5 were used to fit the

regression model.
2. CARFIMA(1, d1, d2, 1) The parametric method estimates the LM parameters by Gaussian maximum likelihood and

assumes that the simulated random field truly follows a fixed CARFIMA(1, d1, d2, 1) process, whether or not the
generated model was of this particular form.

3. CARFIMA(2, d1, d2, 2) Same as above, but a CARFIMA(2, d1, d2, 2) was fitted.
4. CARFIMA AIC In this case, we consider a CARFIMA(p, d1, d2, q)model with p, q = 0, 1, 2. The model for which the

LM parameters is estimated by Gaussian maximum likelihood is selected by minimizing the AIC

AIC(p, q) = −2 log L(𝝎) + 2 .

5. CARFIMA BIC Same as above, but the LM parameters obtained by the maximum likelihood estimation were selected
by minimizing the BIC.
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FERRETTI et al. 23 of 36

BIC(p, q) = −2 log L(𝝎) + (1 + ln n) .

6. CARFI AIC In this approach, a CARFI(p, d1, d2)model with p = 0, 1, 2, 3, 4, 5 is considered. The model for which the
LM parameters were estimated by the maximum likelihood was selected by minimizing

AIC(p) = −2 log L(𝝎) + 2(1 + 3).

7. CARFI BIC Here the procedure used is the same as above, except that the AIC is replaced by the BIC.

BIC(p) = −2 log L(𝝎) + (1 + ln n)(1 + 3).

Note that the choice of estimating CARFIMA(1, d1, d2, 1) and CARFIMA(2, d1, d2, 2) models is considered because
they coincide with two true generating processes (see models V and VII above) and, accordingly, simulation results may
provide information about possible effects of model selection on the estimation of d1 and d2. A further reason is that they
correspond to under- or over-fitting the generated process and the results may again provide some information about how
misspecification of the short-memory model structure influences the estimation of LM parameters.

Focusing on bias, SE, and the root mean square error (RMSE) for the parameters, the following tables provide, for
each model and method, estimation results from 100 simulations on a (128 × 128) lattice. In general, parametric methods

T A B L E 1 Bias, SD, and root of mean square error (RMSE) of GPH estimator of d1 and d2 for different bandwidths (𝜅1, 𝜅2) = (n
b1
1 ,n

b2
2 )

in 100 simulations of various Gaussian models on a (128 × 128) lattice.

GPH

Bias SD RMSE

(b1,b2) d̂1 d̂2 d̂1 d̂2 d̂1 d̂2

I: CARFIMA(0, d1, d2, 0) (2∕5, 2∕5) −0.051 −0.088 0.267 0.237 0.272 0.253

(3∕5, 3∕5) 0.042 0.014 0.069 0.084 0.081 0.085

(4∕5, 4∕5) 0.002 −0.001 0.027 0.028 0.027 0.028

II: CARFIMA(1, d1, d2, 0) (2∕5, 2∕5) 0.032 −0.016 0.235 0.234 0.238 0.234

(3∕5, 3∕5) 0.160 0.153 0.080 0.068 0.179 0.167

(4∕5, 4∕5) 0.294 0.291 0.028 0.025 0.295 0.292

III: CARFIMA(2, d1, d2, 0) (2∕5, 2∕5) −0.049 −0.086 0.267 0.237 0.271 0.252

(3∕5, 3∕5) 0.061 0.033 0.069 0.084 0.092 0.090

(4∕5, 4∕5) 0.177 0.173 0.027 0.028 0.179 0.175

IV: CARFIMA(0, d1, d2, 1) (2∕5, 2∕5) −0.048 −0.085 0.267 0.237 0.271 0.251

(3∕5, 3∕5) 0.063 0.035 0.069 0.084 0.094 0.091

(4∕5, 4∕5) 0.164 0.160 0.027 0.028 0.166 0.163

V: CARFIMA(1, d1, d2, 1) (2∕5, 2∕5) 0.027 −0.017 0.231 0.232 0.232 0.232

(3∕5, 3∕5) 0.182 0.170 0.080 0.065 0.199 0.182

(4∕5, 4∕5) 0.456 0.452 0.029 0.025 0.457 0.453

VI: CARFIMA(0, d1, d2, 2) (2∕5, 2∕5) −0.046 −0.083 0.267 0.237 0.271 0.251

(3∕5, 3∕5) 0.073 0.045 0.069 0.084 0.101 0.095

(4∕5, 4∕5) 0.185 0.181 0.027 0.028 0.187 0.184

VII: CARFIMA(2, d1, d2, 2) (2∕5, 2∕5) −0.013 −0.038 0.242 0.212 0.242 0.216

(3∕5, 3∕5) 0.088 0.074 0.076 0.083 0.116 0.111

(4∕5, 4∕5) 0.358 0.356 0.024 0.029 0.359 0.357

Note: Bold indicate the values of the bandwidths, (𝜅1, 𝜅2), for which the RMSE is minimized.
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appear to perform better than GPH. In all simulated models, the bias and SEs obtained by parametric methods are much
smaller than the bias and SEs obtained by GPH. Table 1 shows the results of GPH for different bandwidths and, as it can be
noticed, the RMSE is minimized for (𝜅1, 𝜅2) =

(
n3∕5

1 ,n3∕5
2

)
. Hence, to facilitate the comparison of the different estimators,

only the results for these bandwidths are reported henceforth.
In particular, considering Table 2, we note that the fixed order CARFIMA(1, d1, d2, 1) and CARFIMA(2, d1, d2, 2) per-

form very well for models V and VII. However, the same thing does not happen for all other generating models, especially
for CARFI models, for which both the variance and the bias are much larger. This result is due to the fact that the above
fixed order models coincide with the generating models V and VII, respectively, and in all other cases a problem of over-
or under-fitting occurs. For example, the effect of the fitting a CARFIMA(2, d1, d2, 2) model to any of the models I-VI is
given by an increase in the SEs. For model VII, instead, fitting a fixed CARFIMA(1, d1, d2, 1) with a smaller number of
parameters determines a clearly increase of the bias. These results suggest that, when a model with too many parameters
is fitted, the additional parameters attempt to model the LM component, effectively altering the generated value of d1 and
d2. At the same time, the variance in estimating the LM parameters increases because of the excess variability introduced
by the estimation of the redundant parameters. It should be noted, however, that the situation here is slightly different
from when a pure short memory is being over-fitted in which case the estimation of additional parameters increases the
variance but does not unduly influence the bias in estimating the nonzero parameters. On the other hand, when a model
with too few parameters is fitted, the short memory component is not adequately modeled and this introduces bias in the
estimation of d1 and d2 because the spectral density of the generated process is being approximated by the spectral density
of the underparametrized model. The variance in estimating d1 and d2 is, however, reduced because fewer parameters are
estimated. Consider now the CARFI method and its relative behavior in comparison with the fitting of CARFIMA mod-
els, with order selected by the AIC or the BIC criterion. The method of fitting a fractional CAR model is seen to provide
good results for all models, but especially for models I−III, where the generated model for Y is a finite CAR.

It should be noted, however, that the CARFIMA BIC and AIC methods have a smaller mean squared error for models
for which we have q > 0. This finding is probably not surprising because if the selected model coincides with the gen-
erated model the resulting estimates of d1 and d2 are expected to be asymptotically efficient. It should be emphasized,
nevertheless, that the full CARFIMA models were fitted only up to order 2 and the chance of selecting an incorrect model
is quite small in our simulations. As regards the question of whether the AIC or BIC criterion should be used for imple-
menting the CARFI method suggested in this paper, the simulation results appear to favor the latter, probably because
the AIC criterion is known to frequently select an “overparametrized” model resulting in a large mean square error as
explained above when discussing possible effects of overfitting the simulated models.

Finally, we note that the results reported here refer to a (128 × 128) lattice. As expected, for smaller lattices the bias, the
SEs and the RMSE are larger in magnitude for all models, though their values appear to be consistent with the conclusions
drawn here.

7 LAND SURFACE TEMPERATURE DATA

Here, we continue the statistical analysis started in Section 3 to see if LM models can be useful to fit the data. The land
surface temperature image, represented in Figure 1, has pixel values ranging from 30.01 to 55.41◦ C, with sample mean
48.02, and sample SD 2.53. In order to consider a more realistic scenario, missing data are considered to test the perfor-
mance of the fitted model in terms of interpolation. In particular, we consider two designs where the observations are
missing at blocks or at random. We thus suppose that the lattice can be partitioned as  = 1 ∪ 2, where 2 contains
u ≪ n grid-points for which Xs,t is unknown, and 1 contains g = n − u sites for which Xs,t is known. Assuming that the
sites are reordered, so that 2 = {g + 1, g + 2, … ,n}, we write

X =

[
Xo

Xm

]
,

where Xo is the (g × 1) vector of variables observable at the g grid locations and Xm is the (u × 1) vector of the remaining
variables to be predicted. In our case study, we consider a percentage of about 12% for the missing data, such that we work
with a training set of g = 57,536 observations and a test set of u = 8000 pixels. Figure 3 shows the patterns of the missing
data for the two designs considered.
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26 of 36 FERRETTI et al.

F I G U R E 3 Left. Land surface temperature with data missing at random; Right. Land surface temperature with data missing at blocks.
Missing data are represented as NaN in dark blue color.

To reconstruct the missing data, the linear interpolator is written in terms of the precision matrix

Px = R−1
x =

[
Poo Pom

Pmo Pmm

]
,

and, as in Fontanella et al. (2008), it is represented by the following expectation

̃X = E[Xm|Xo = xo] = 𝝁m − P−1
mmPmo(xo − 𝝁o),

with conditional variance

𝚵 = Var[Xm|Xo = xo] = P−1
mm.

Since in our case the ratio u∕n ≈ is small, this interpolator is much quicker and more accurate than the usual kriging
interpolator which, because of the required inversion of the (g × g)matrix Roo, appears difficult to apply in this study. For
a CAR model, Px is sparse and there exist a direct specification. In contrast, there is no simple direct specification of Px
for a CARFIMA model. However, following Equation (3), the elements of its first row can be obtained by the inverse FFT
of fix(𝜆1, 𝜆2) and the full circulant matrix Px reconstructed row-by-row since, as it is known, each row of the matrix is a
right cyclic shift of the row above.

For modeling purposes, an exploratory analysis of the data suggest that the mean of the process can be represented
by a parametrized linear deterministic spatial trend function. For simplicity, the index of linear determinism  and the
empirical covariances are thus computed from the mean-corrected data at the available sites, using the Fourier transform
on the full lattice with the missing values set to 0. The numbers of pairs are obtained from the two-dimensional Fourier
transform of the incidence matrix of the observed sites.

Considering for example the case of missing at blocks, Figure 4 shows the periodogram of X smoothed by using the
two-dimensional form of the Daniell window (Priestley, 1981) with length (5, 5). The periodogram shows a high peak at
the origin with ridges along the North-South and East-West directions. The analysis of the low-lag sample correlations,
represented in Table 3, also shows that these are high for neighboring sites and that they then drop away quite slowly.
Furthermore, the correlations are slightly larger between columns than between rows; however, they do not suggest strong
asymmetries. A similar pattern is found for the design in which the data are missing at random, though the correlations
are smaller in this case—the low lag correlations are Rx(0, 1) = 0.749, Rx(1, 0) = 0.795, Rx(1, 1) = 0.669, Rx(0, 2) = 0.621
and Rx(2, 0) = 0.676. Finally, the nonparametric estimates (Bhansali & Ippoliti, 2005) of  are 0.95 for the case of missing
at blocks and 0.81 for the missing at random.

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2817 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [29/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FERRETTI et al. 27 of 36

F I G U R E 4 Land surface temperature with missings at blocks. Sample periodogram smoothed by using a two-dimensional Daniell
window.

T A B L E 3 Land surface temperature.

v

4 0.469 0.494 0.520 0.546 0.570 0.576 0.579 0.577 0.566

3 0.502 0.533 0.564 0.594 0.626 0.639 0.646 0.637 0.609

2 0.538 0.576 0.617 0.662 0.711 0.740 0.738 0.694 0.635

1 0.577 0.626 0.684 0.762 0.855 0.883 0.808 0.710 0.632

0 1 0.903 0.771 0.676 0.612

−4 −3 −2 −1 0 1 2 3 4

u

Note: Sample correlations at lags (u, v), u = −4, … , 4, v = 0, … , 4.

Several CARFIMA(p, 𝜏, 0) and CARFIMA(p, 𝜏1, 𝜏2, 0), with 0 ≤ p ≤ 2, and several completely symmetric and homo-
geneous CAR(p) models, with 1 ≤ p ≤ 9, were fitted to the data using the Whittle likelihood. As described in Section 5,
this approach is not expensive computationally and, based on the periodogram computed as described above, also pro-
vides a naive solution to the problem of estimating the model parameters in the presence of missing data. Considering the
design with missing at blocks, the comparison of the AIC and BIC values suggests that the following CARFIMA(1, d, 0)
model

(
1 − 2

5
L + 1

20
(L2

1 + L−2
1 + L2

2 + L−2
2 ) +

1
10

L1L2

)d (
1 − 𝛼1,0L1 − 𝛼0,1L2

)
Zs,t = 𝜂s,t,

provides the best fit to the data, where, Zs,t, is now the mean-corrected process,ΦL(L1,L2) is the same fractional operator
discussed in Example 1 andΦS(L1,L2) is the polynomial of a homogeneous CAR(1) process. The model has AIC = 1404.8
and BIC = 1405.2 (the value is divided by 100) with the following four estimated parameters (and standard errors):
̂d = 0.434 (0.003), 𝛼̂0,1 = 0.355 (0.003), 𝛼̂1,0 = 0.092 (0.002) and 𝜎̂

2
𝜂
= 0.342(0.001). Among the completely symmetric

CARs, the AIC (1416.2) and BIC (1416.9) suggest that a CAR(6) with 7-parameters is necessary. In contrast, a parsimo-
nious first order CAR with 3-parameters is preferred among the class of homogeneous processes. In this case, however,
the AIC (1495.4) and BIC (1495.8) are much larger and the short memory parameters 𝛼’s, are very close to the stationary
limit of the CAR. Similar comments hold also for the design in which the data are missing at random with the difference
that a second order structure (i.e., p = 2) is necessary for the short-memory part of the LM model and for the class of
homogeneous CAR models.
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T A B L E 4 Interpolation results from the estimated long memory models.

Missings at blocks Missings at random

xm X̃m xm X̃m

Min 34.65 37.44 32.93 34.79

Max 55.41 52.43 54.19 54.38

 0.93 0.95 0.81 0.78

I1 — 0.15 — 0.01

I2 — 1.01 — 1.02

I3 — 1.49 — 0.61

I4 — 0.73 — 0.97

Note: For each design, xm refers to the statistics computed on the true data and ̃Xm predicted values.

To evaluate the performance of the selected model in terms of predictions we use the following statistics:

I1 =
1
u
∑

i∈2

Yi − ̃Y i
̂
𝜉i

, I2 =

√√√√√ 1
u
∑

i∈2

(
Yi − ̃Y i

)2

̂
𝜉

2
i

,

I3 =
√

1
u
∑

i∈2

(
Yi − ̃Y i

)2
, I4 = Corr(Ym, ̃Ym),

where ̂
𝜉

2
i is the ith estimated model conditional variance, 2 is the set of sites containing the missing observations and

u is its cardinality. When predictions are accurate, we expect that I1 is close to 0 and that the weighted RMSE I2 is close
to 1. In addition, the RMSE I3 should be small and I4, being a measure of correlation between true and predicted data,
should be close to 1. Interpolation results from the estimated models are shown in Table 4 which provides the values of
the indices I1 − I4 and some summary statistics for the distribution of true and predicted values. In general, it seems there
are some difficulties in predicting the lower temperatures. It also appears more difficult to predict the process when the
data are missing at blocks. In this case, in fact, the index I1 shows a small bias and the index I3 is more than twice that of
missing values at random. Finally, although the value of index I4 is lower, it is still reasonably high. The values of of the
 statistic provided by the estimated models are also reasonably close to the values estimated nonparametrically.

8 APPROXIMATING CONDITIONAL LM PROCESSES BY GMRFS

In this section, we discuss the problem of approximating a LM Gaussian process. In particular, our investigation aims to
empirically explore the extent to which an LM conditional random field can be approximated by a GMRF. This investiga-
tion is relevant when a dataset could be considered as a realization of an LM process, but a GMRF is used to fit the data
without explicitly acknowledging the presence of LM. The task is also important in Bayesian spatial modeling, where a
GMRF can be used to represent correlations directly estimated from observed data or consistent with prior knowledge
(see, e.g., Rue & Tjelmeland, 2002).

In the following, it is thus assumed that the observed data represent a realization of a LM spatial process admitting
the CAR representation of Equation (5) and that a GMRF of a suitable finite order can be fitted for approximating the
underlying stochastic structure of the observed process.

One approach to approximating a Gaussian LM process is to fit a GMRF that closely approximates its correlation
function. To improve the results obtained using the Kullback–Leibler divergence (Besag & Kooperberg, 1995), Rue and
Tjelmeland (2002) proposed a MC approach that enhances the accuracy of the approximation beyond the neighborhood
Sp. This approach aims to match the correlation structure of the LM process with that of the GMRF, resulting in a more
accurate approximation. This method ensures that all sample (or theoretical) covariances of a LM process and the esti-
mated theoretical covariances of the GMRF are as similar as possible in a weighted least-squares sense. In this case, the
approximation is achieved by minimizing the function
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MC(Ry,Rx|𝜶) =
∑

(u,v)∈

[
Rx(u, v) − Ry(u, v| 𝜶)

]2
𝜚(u, v), (48)

where 𝜚(u, v) is a user-defined weighting function of the lag-distance. A possible weighting function with 𝜚(u, v)decreasing
with u = (u, v) uses the reciprocal lag distance weights 𝜚(u) = 1∕ (||u|| + 1).

Spectral densities and covariance functions are related through Fourier transforms. Although analyzing the variability
of a process using the covariance function and spectral density may be considered equivalent, they offer different ways of
studying the process, and spectral analysis may provide some advantages over analysis based on the covariance function
(Stein, 1999). Hence, if we denote the spectral density function of the LM process as fx(𝜆1, 𝜆2), and the spectral density
function of the GMRF as fy(𝜆1, 𝜆2), we can use the Chi-square distance, inspired by the MC approach and following Song
et al. (2008), as a measure of discrepancy between fx and fy

MSDF(fx, fy|𝜶) =
n1∑

j1=1

n2∑

j2=1

[(
fx(𝜆1,j1 , 𝜆2,j2) − fy(𝜆1,j1 , 𝜆2,j2 |𝜶)

)2

fx(𝜆1,j1 , 𝜆2,j2)

]
. (49)

In the following, we discuss the efficacy of the GMRF approximation through a simulation study based on the MC criterion
(48) and the Matched Spectral Density Function (MSDF) criterion (49). Additionally, we consider the effect of fitting a
hierarchical family of GMRFs with increasing order, with p chosen using the AIC and BIC criteria. Similar to the CARFI
method described in Section 5.3, we choose the value of p to obtain an adequate finite order approximation of the given
LM process, rather than as an estimator of an unknown true order. The simulation is conducted by assuming that the
Gaussian random field belongs to the general class of CARFIMA process whose parametrizations are reported in the
following Table 5.

In particular, models M1 and M2 represent a fractionally differenced Gaussian noise (FGN) with two different values
for the LM parameter. Models M3 and M4 represent two parametrizations of CARFIMA(1, d1) models with a CAR(1)
structure for the short-memory component. Finally, model M5 also represents a FGN but with a separable structure of
the correlation function. Note that, apart from model M5, all the models reported in Table 5 have a completely symmetric
structure.

To evaluate the approximation of the correlation function of the first four models, we fit a sequence of completely
symmetric GMRFs up to order 9 with a maximum of 10 parameters. For model M5, instead, homogeneous CARs are fitted
with p = 1, … , 5. As discussed in Section 5, in order to derive computationally efficient algorithms, the two-dimensional
FFT is used to perform the approximation task on a toroidal lattice. Note that to evaluate the MC and the MSDF crite-
ria of Equations (48) and (49), we do not need to generate the data from the LM spatial process while this is necessary
to evaluate the effect of penalizing the Whittle likelihood through the AIC and BIC criteria. Furthermore, for simplicity,
we only plot the approximation provided by the MC and the MSDF criteria since, for GMRFs fitted by using the Whit-
tle likelihood, an exact fit of the correlation function is only achieved within the neighborhood Sp (see Cressie, 1993;
Dempster, 1972).

Regarding the nonseparable models M1 and M2, the first two panels of Figure 5 show that a good fit of the corre-
lation functions of the LM-generating models can be achieved by fitting a CAR(9) using either the MC or the MSDF
criteria. There exist small differences between the two criteria with a possible advantage of MSDF which also does
not require the use of weights. The use of AIC and BIC suggest that selecting the correct generating model can be

T A B L E 5 Parameter structure of the simulated long memory models.

Models # Par d d1 d2 𝜶1,0 𝜶0,1 𝝈
2
𝜼

M1 2 0.35 — — — — 1

M2 2 0.95 — — — — 1

M3 4 0.3 — — 0.18 0.18 1

M4 4 0.7 — — 0.18 0.18 1

M5 3 — 0.40 0.30 — — 1

Note: # Par denotes the number of model parameters.
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30 of 36 FERRETTI et al.

F I G U R E 5 Correlation functions of the generating long memory models M1-M6 (dashed black curve) and of the conditional
autoregressive model providing the best approximation among the models fitted with increasing order p = 1, … , 9. The fit shown in blue
correspond to the CM criterion while the fit shown in red correspond to the matched spectral density function criterion.

difficult, especially with the increasing of the LM parameter d. In fact, for d = 0.35, model M1 is correctly selected by
AIC with a percentage of 73% (BIC 100%) which, however, drops to 2% (BIC 22%) for model M2, where d = 0.95. Results
from fitting the GMRFs using the Whittle likelihood, also suggest that as d gets larger, and close to 1, both AIC and
BIC favor the fit of a first order CAR. In this case, the estimated autoregressive coefficient of the CAR(1) is very close
to the stationary limit of 0.25 such that the approximation is essentially provided by a completely symmetric Intrinsic
CAR(1).

Regarding the models M3 and M4, the last two panels of Figure 5 show that, in principle, it is possible to obtain a good
approximation of the correlation function by fitting higher-order GMRFs using the MC or the MSDF criteria. However,
as shown for model M4, the approximation gets much worse for larger values of d. Fitting the GMRFs using the Whittle
likelihood, shows that both AIC and BIC have some difficulties to select correctly the generating LM model. This is
especially true for model M3, and for small values of d in general. For model M3, in fact, AIC selects the correct model in
the 20% of cases while BIC has only a 3% of correct classification. The model selection procedure improves substantially
for BIC when d gets larger. For model M4, in fact, the percentage raises to 96% but for AIC the percentage is still small
and close to 16%. Compared with models M1-M2, the bias of the estimated LM parameters are larger for models M3 and
M4 and this may be due to the presence of a positive autoregressive component which can make difficult the distinction
between the short and LM components. This phenomenon is known in time series literature (Beran et al., 1998) and
might explain the behavior of the information criteria in the model selection procedure. Among the class of CAR models,
both AIC and BIC suggest that second-order or third-order GMRFs must be generally preferred to fit the data generated
by models M3 or M4.

Regarding the separable model M5, Figure 6 shows that it is difficult to obtain a good approximation of the correla-
tion function of the LM models by using both the MC and the MSDF criteria, even fitting higher-order GMRFs. In the
separable case, both the AIC and BIC criteria are able to select the generating model with a percentage of 100%. Com-
paring the fit of the different GMRFs using the Whittle likelihood, the AIC and BIC criteria also suggest that higher
order CARs are necessary to model the generated data, with a preference of CAR(8) and CAR(9) for larger values of
d1 and d2.

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2817 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [29/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FERRETTI et al. 31 of 36

F I G U R E 6 Correlation functions along different directions of the generating long memory model M5 (dashed black curve) and of the
selected homogeneous conditional autoregressive models. The fit shown in blue correspond to the CM criterion while the fit shown in red
correspond to the matched spectral density function criterion.

9 DISCUSSION AND SUGGESTIONS FOR FUTURE WORK

Much analysis of spatial data focuses on stochastic modeling. Polynomial regressions can explain some trend in the data,
but residuals typically exhibit a stochastic structure. On the lattice, this stochastic component may be modeled paramet-
rically by relying on the class of conditional ARMA models (Ippoliti et al., 2013), which also includes the Simultaneous
and Unilateral modeling approaches of Whittle (1954) and Tjostheim (1978).

In some cases, however, we may need to allow for a greater degree of persistence or “memory.” One way of doing this is
to consider stationary spatial processes whose autocorrelations are not absolutely summable or whose spectral densities
are unbounded. We can regard these processes as LM processes and for them we have introduced the class of CARFIMA
models. This represents a new class of models which, as shown in Section 4, can include known LM models as special
cases.

Parameter estimation for CARFIMA models was discussed in Sections 5 and 6 where, within a simulation framework,
we have studied the performance of parametric and semiparametric estimators of the LM parameter. The simulations
have confirmed that asymptotic results are valid for maximum likelihood estimation (MLE) under the assumption that
the assumed parametric model is correct. Hence, in order to be applicable in practice, parametric approaches have to be
combined with an appropriate model choice criterion and in this paper we have explored the use of simple information
criteria such as AIC and BIC. Within the semiparametric framework, the use of these information criteria has also led
to the proposal of the CARFI method for which we have shown that the difference between the parametric and this
semiparametric approach is likely to be small.

In practical applications, the exact Gaussian MLE can be difficult to manage numerically as it requires the computa-
tion of the inverse of the covariance matrix as well as its determinant. To overcome this problem, we have assumed toroidal
boundary conditions to evaluate the likelihood in O(n log n) steps. However, the correlations depend on the size of the
lattice, and might be unrealistic for sites a long way apart on the planar lattice but close on the torus. This problem can be
overcome by embedding the planar lattice in a bigger torus lattice but further studies are needed to fully understand edge
effect on parameter estimation. Several other approaches have been proposed in literature of spatial statistics to overcome
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this large matrix problem (see, e.g., Sun et al., 2012 for a discussion). Examples include imposing tapering the covariance
matrix, using composite likelihoods, truncating the spectral representation of a random field, modeling the realizations
by a latent process with reduced dimension, and approximating the random field with a Gaussian Markov random field.
Section 8 was partly dedicated to the study of this latter approach but the use of other methods in the context of LM needs
to be investigated. On the other hand, imposing separability on covariance functions can significantly reduce the dimen-
sion of the covariance matrices that need to be inverted, hence they can alleviate the computational problem. A further
advantage is that when a separable structure is assumed for a CARFIMA model, closed form expressions for the correla-
tions and inverse correlations are in general possible to obtain. In contrast, for nonseparable structures, there is no known
analytic formula for the correlations and inverse correlations and their computation must be carried out numerically.

Compared to parametric estimation, semiparametric methods have the advantage of providing consistent estimates
without the necessity of specifying a fixed functional form of the spectral density. These methods are valid for a wide
range of processes and have the appealing property of being invariant to the presence of a nonzero mean or being robust to
nonstandard behavior of the spectral density function implied, for example, by a pole. However, although semiparametric
estimators are asymptotically unbiased, they can have a considerable finite sample bias and the main price to pay for the
greater generality that these methods allow is a slower rate of convergence compared with that achieved by parametric
alternatives; we note that this discussion also prompts the other important issue of bandwidth selection. One way to avoid
or reduce the finite sample bias is to consider a tapered periodogram, for example, in the definition of the GPH or the
local Whittle estimator. To overcome such problems, various bias and variance reduction techniques, such as tapering and
pooling, have been proposed in the time series literature and this will be considered for future work also for CARFIMA
models.

By considering a dataset of land surface temperatures, we have shown that CARFIMA models warrant consideration
when fitting spatial models to environmental data observed on regular lattices. However, the data considered in Section 7
pose several challenging statistical issues which require further investigation.

For example, we have considered a simple solution to overcome the difficulties encountered in model parameter
estimation in the presence of missing data. Estimating the LM parameter in the presence of missing data is a much
less studied problem with sparse literature and the development of both parametric and semiparametric estimators is
worth considering for future work. Extensions of the methods proposed in Chan and Palma (1998), which introduces a
state-space representation of an ARFIMA model, or those proposed in Martin (1984) for correlated Gaussian processes
could be of interest since estimates of the missing values can also be obtained if required.

In this paper we have concentrated on some properties of LM models. Topics for further work on CARFIMA models
include investigating efficient methods for checking model adequacy and obtaining predicted values for large lattices.

Another problem which would require further investigation regards the computation of the SE of the model param-
eters. Computing them evaluating the Jacobian and the Hessian matrix is possible but it requires special attention to
avoid numerical problems. To this purpose, alternative approaches, based for example on bootstrap, could be worth
considering.

The MA representation of the conditional random field is particularly important because it is the usual tool for ana-
lyzing the persistence of the process and care has to be taken in partitioning the parameter space. Accordingly, another
topic for future work includes investigating the presence of possible different sources of nonstationarity. Often, stationar-
ity is not a realistic assumption, or it is at least uncertain. This makes identification of stochastic LM even more difficult,
because typical LM features may be confounded with nonstationary components. Identifying and assessing possible LM
components is thus essential for correct inference about the nonstationary components and one main question here is
whether there is evidence for a systematic or stochastic (e.g., in the sense of random walk) trend in the data. Since visual
distinction between deterministic, stochastic and spurious trends can be very difficult, a class of semiparametric frac-
tional CAR models can be proposed that includes deterministic trends, Intrinsic CARs and stationarity with short and
long range dependence. By extending in the spatial domain results reported in Beran et al. (1998), this approach could
help the data analyst to decide whether the observed process contains a stationary short- or long-memory component, a
spatial “difference” stationary component, and or a deterministic trend component.

Further methods for approximating CARFIMA models also need to be explored. Since the LM implies that the spec-
tral density function has a singularity at the origin, theoretically it would not be possible to approximate this spectral
density by a short memory process, which implies a continuous and bounded spectral density at the origin. However, in
applications, it may still be convenient to find a GMRF which gives a good enough approximation. Exploring the extent
to which this argument is valid for approximating a LM conditional random field would be relevant in all cases in which
a GMRF is fitted to the data by not recognizing explicitly the presence of LM. This is would be especially important

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2817 by U

ni C
hieti Pescarale, W

iley O
nline L

ibrary on [29/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FERRETTI et al. 33 of 36

in interpolation problems as the inverse of the precision matrix involved in the conditional expectation (i.e., the linear
predictor) is sparse and would allow to work with very large lattices. Preliminary simulation results in Section 8 have
shown that the goodness of the approximation depends on the complexity of the covariance structure of the LM process
and that the metric used to measure the discrepancy between LM Gaussian random fields and GMRFs can be an impor-
tant part of the study. The performance of other metrics based on the interpolation theory given in Section 2 could also be
explored in the future. Possible examples may consider the maximization of the index of linear determinism or different
forms of multivariate R2 measures. This approach has attractive properties when the goal is to predict missing values and
parallels the conditional approach proposed by Cressie and Verzelen (2008). Within this framework, theoretical results in
Stein (1999), and the lattice approximation approach proposed by Dutta and Mondal (2021) for approximating continuous
fractional Gaussian fields, also need to be considered.

Finally, topics for further work refer to the modeling of long-range dependence both in multivariate and in space-time
contexts. For the former case, extensions of multivariate CAR models on a regular lattice (Ippoliti et al., 2018) to LM
appears straightforward. For spatiotemporal models, early studies were first attempted by Haslett and Raftery (1989), Frias
et al. (2006, 2009). Possible extensions can be thought along the research line of the Bayesian Generalized Spatio-Temporal
Structural Equation model of Ippoliti et al. (2012) and Gamerman et al. (2022), where spatial and temporal long range
dependence structures can be introduced at different levels of the hierarchy and for the different processes specified
within the state-space formulation. In this case, efficient parameter estimation of the LM parameter could be obtained by
following, for example, Chopin et al. (2013) and Liseo et al. (2001).
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