
A GAUSSIAN PROCESS BASED DATA MODELLING AND FUSION 
METHOD FOR MULTISENSOR COORDINATE MEASURING MACHINES  

 
Mingyu Liu, Benny Cheung*, and Ze Li 

Partner State Key Laboratory of Ultra-precision Machining Technology, 
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic 

University, Kowloon, Hong Kong 
*Corresponding author 

INTRODUCTION 
Multisensor measurement technology is an 
emerging technology which makes use of 
combinations of two or more different types of 
sensor probes so as to further enhance the 
measurement capability of the traditional single 
sensor coordinate measurement machines (CMMs). 
The sensors can complement each other’s 
limitations and improve the measurement accuracy. 
Nowadays, the applications of multisensor CMMs 
are becoming more and more widespread and 
many CMM manufacturers are developing 
multisensor CMMs in their advanced production 
lines. For instances, ZEISS O-INSPECT [1] equips 
with a contact sensor, imaging sensor and white 
light distance sensor, which is able to provide a fast 
inspection by the image sensor and high accuracy 
3D measurement results by the contact sensor and 
white light distance sensor. Werth VideoCheck [2],  
is designed  to equip with many kinds of sensors 
such as trigger probe, fiber probe and video sensor 
which provides the measurement ability of small 
features with the help of the small-diameter fiber 
probe in the scale down to 20 µm, as well as a 
quick checking with the fast trigger probe and image 
sensor. Hexagon Optiv Classic [3] provides a vision 
sensor and a tough trigger probe, while Nikon [4] 
enhances the true 3D multi-sensor measurement by 
combining vision sensor, laser auto-focus sensor, 
tactile sensor and rotary indexer. The measurement 
range, resolution and flexibility are largely enhanced 
by the complementary of the different 
characteristics of various sensors. 

The combination of different types of sensors 
extends the measurement ability such as accuracy 
and measurement range of the CMMs. However, 
most of the multisensor CMMs are lack of an 
optimal strategy to perform multisensor 
measurement and fusion of data from different 
sensors. Some of the studies for multisensor CMM 
focused on complementary measurement for 
special geometrical features. Nashman et al. [5] 
used a camera sensor to locate and measure the 
feature such as object edges, corners and centroids 
while the touch sensor was used to measure other 
part of the object. The touch sensor was highly 

accurate with little noise. However, it could not 
measure sharp features such as edges and corners. 
Combining these two sensors enable the capability 
to gather high bandwidth global information and to 
obtain high accurate measurement information. 
Zexiao et al. [6] used a multi-probe system which 
consists of a structure light sensor and a trigger 
probe to measure multiple features including edges. 
However, the edges were not directly measured 
while they were generated by fitting the surfaces 
using the measured points on the relatively smooth 
surfaces instead.  

This paper presents a Gaussian process based 
data modelling and data fusion (GP-DMF) method 
which first estimates the mean surfaces and 
uncertainties of the datasets obtained from different 
sensors and combines the two measurement data 
into a single one with associated uncertainty. A 
series of simulation and measurement experiments 
have been conducted to verify the technical 
feasibility of the method. The results show that the 
fused data with a lower uncertainty are obtained. 
The proposed GP-DMF method attempts to provide 
a generalized data-orientation multi-sensor 
measurement method which does not rely on the 
sensor itself and this makes it having potential to be 
used in a wide application fields.   
 
GAUSSIAN PROCESS BASED DATA 
MODELLING AND FUSION METHOD 
The proposed data modelling and fusion method is 
shown in FIG. 1. The measurement datasets from 
different sensors are firstly modelled with Gaussian 
Process (GP) modelling. Hence, the mean surfaces 
and their associated uncertainties are determined. 
The mean surfaces are registered into a common 
coordinate system with the iterative closest point 
(ICP) method. As a result, the two datasets are 
fused together using the maximum likelihood 
method.  

The measurement process can be considered 
as a Gaussian process (GP) which is a stochastic 
process with a mean function m and a covariance 
function k, and it can be expressed as Eq. (1) [7].  

~ ( , )f GP m k   (1) 

 



 
FIGURE 1. Diagram of the data modelling and 
maximum likelihood data fusion method  

 
In the present study, the Gaussian process 

modelling is undertaken by using the Gaussian 
processes for machine learning (GPML) toolbox [8]. 
The mean function is chosen to be zero mean since 
the underlying surface is supposed to be unknown 
and the covariance function is chosen to be squared 
exponential function since the measured surface is 
targeted to be continuous freeform surface. 

Although the coordinate information of the 
sensors equipped with the multisensor CMMs can 
be calibrated with a standard artifact [9], there is still 
residual error for the relative position for the 
sensors. The registration process aims to minimize 
the residual error and the ICP [10] method is used 
in this study.  

The mean surface and the associated 
uncertainty are then fused together with a Bayesian 
inference based maximum likelihood method. For 

two measurement data  1mz  and 2mz , which can be 

determined by  

   1 1 1mz z σ= ±    (2) 

  2 2 2mz z σ= ±    (3) 

where 1z and 2z  are the measurement results and 

1σ  and 2σ  are the associated uncertainties. The 

sensor models are given by the Gaussian likelihood 
function as shown below: 
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The log of above function is: 
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From Bayes’ theorem, the fused best estimate 
is given by 
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The fused result can be derived by Eq. (8) while 
Eq. (9) shows the standard deviation which 
represents the fused uncertainty.  
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Eq. (8) and Eq. (9) show that the fused data 
represent the overall best estimated measurement 
result with a lower uncertainty than both original 
data. The fusion of the two measurement data is 
illustrated in Fig. 2. Eq. (8) and Eq. (9) also show 
that when one measurement is more accurate than 
another one, the weighting for the more accurate 
one is much larger than the other one in a quadratic 
relation. When the measurement uncertainty for the 
less accurate sensor is more than three times of the 
accurate one, the influence of the less accurate one 
is insignificant for the overall result.  

 

 
FIGURE 2. Fusion of two Gaussian distributions 
[11] 
  
EXPERIMENT VERIFICATION WITH SIMULATED 
SURFACES 
Two simulated sinusoidal surfaces with different 
levels of measurement noises are designed which 
are determined by Eq. (10). 
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where 
m

N is the measurement noise, for data set 1, 

0.01
m

N = mm, for data set 2, 0.005
m

N = mm. 

FIG. 3 and FIG. 4 show the mean surfaces and 
the estimated uncertainties of the data set 1 and 
data set 2 after Gaussian Processing modelling. 
The result shows that the simulated measurement 
noise is well modelled by the Gaussian Process in 
the covariance. 

After the Gaussian Process data modelling, the 
two datasets are then fused with the maximum 
likelihood method and the result is shown in FIG. 5. 
The result shows that the fused uncertainty value is 
smaller than both original measurement data. The 



uncertainty for dataset 1 is 10 µm while the 
uncertainty for dataset 2 is 5 µm, which is much 
smaller than dataset 1. The fused data is 4.5 µm 
which only shows small improvement than the 
dataset 2. The deviation from fused mean surface to 
design surface is shown in FIG. 6 and the result 
shows that the deviation is well covered by the 
uncertainty coverage in the fused data.  

 (a) 

 (b) 
FIGURE 3. Mean and uncertainty of dataset 1  

 (a) 

 (b) 
FIGURE 4. Mean and uncertainty of dataset 2  

 (a) 

 (b) 
FIGURE 5. Fused mean surface and uncertainty.  

 
FIGURE 6. Deviation from fused mean surface to 
design surface. 
 
EXPERIMENTAL VERIFICATION WITH A 
MULTISENSOR CMM MACHINE  
To verify the proposed GP-DMF method, a series 
measurement experiments were conducted on a 
Werth multisensor CMM machine. A workpiece was 
designed, machined, measured and followed by the 
data processing procedure. The workpiece was 
designed to be a sinusoidal surface and it was 
machined by a CNC machine. The machine surface 
was measured by a laser sensor and a trigger probe. 
FIG. 7 shows the measurement process using the 
laser sensor of the CMM machine.  



 
FIGURE 7. Measurement process using the laser 
sensor  
 

The measurement starts with the laser sensor 
and a series sampling points were obtained as 
shown in FIG. 8.  

 
FIGURE 8. Sampling points using laser sensor 
 

The mean surface and the estimated 
measurement uncertainty for the measured dataset 
using Gaussian process are shown in FIG. 9. It is 
interesting to note that the measurement uncertainty 
for the laser sensor is quite large (from 26 to 32 µm) 
which may be caused by the surface characteristics 
such as reflection.  

A CAD model was generated as shown in 
FIG. 10 by using the mean surface of the laser 
scanned data so as to guide the measurement of 
the trigger probe. The sampling data using the 
trigger probe is shown in FIG. 11.The mean surface 
and the estimated uncertainty for the measurement 
data of the trigger probe after Gaussian process are 
shown in FIG. 12. The results show that the 
uncertainty range is about 6-8 µm which is much 
smaller than that from the laser sensor. FIG. 13 
shows the mean surface and uncertainty after data 
fusion, and it shows that there is only a small 
amount of improvement in the fused uncertainty..  

 

(a) 

(b) 
FIGURE 9. Mean surface and estimated uncertainty 
for the measured data from laser sensor  
 

 
FIGURE 10. CAD model generated from the mean 
surface of the measured data of the laser senor 

 
FIGURE 11. Sampling points using trigger probe 
 

 



(a) 

(b) 
FIGURE 12. Mean surface and estimated 
uncertainty for the data from trigger probe 

(a) 

(b) 
FIGURE 13. Fused mean surface and estimated 
uncertainty 
 
CONCLUSION 
This paper presents a Gaussian process based 
data modelling and fusion (GP-DMF) method and 
the effectiveness of the method is verified in a 
simulation and real measurement experiment. The 
result shows that the fused result has a lower 

measurement uncertainty. The proposed method is 
technically feasibility to be used to enhance the 
measurement ability for multisensor CMMs.   
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