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Abstract
We review the introduction of several types of projection filters. Projection structures
coming from information geometry are used to obtain a finite dimensional filter in
the form of a stochastic differential equation (SDE), starting from the exact infinite-
dimensional stochastic partial differential equation (SPDE) for the optimal filter. We
start with the Stratonovich projection filters based on the Hellinger distance as intro-
duced and developed in Brigo et al. (IEEE Trans Autom Control 43(2):247–252,
1998, Bernoulli 5(3):495–534, 1999), where the SPDE is put in Stratonovich form
before projection, hence the term “Stratonovich projection”. The correction step of
the filtering algorithm can be made exact by choosing a suitable exponential family as
manifold, there is equivalence with assumed density filters and numerical examples
have been studied. Other authors further developed these projection filters and we
present a brief literature review. A second type of Stratonovich projection filters was
introduced in Armstrong and Brigo (Math Control Signals Syst 28(1):1–33, 2016)
where a direct L2 metric is used for projection. Projecting on mixtures of densities
as a manifold coincides with Galerkin methods. All the above projection filters lack
optimality, as the single vector fields of the Stratonovich SPDE are projected optimally
but the SPDE solution as a whole is not approximated optimally by the projected SDE
solution according to a clear criterion. This led to the optimal projection filters in
Armstrong et al. (Proc Lond Math Soc 119(1):176–213, 2019, Projection of SDEs

Communicated by Nihat Ay.

B Damiano Brigo
damiano.brigo@imperial.ac.uk

John Armstrong
john.1.armstrong@kcl.ac.uk

Bernard Hanzon
b.hanzon@ucc.ie

1 Department of Mathematics, King’s College London, London, UK

2 Department of Mathematics, Imperial College London, London, UK

3 Mathematical Science, University College Cork, Cork, Ireland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41884-023-00108-x&domain=pdf
http://orcid.org/0000-0003-1636-8654


J. Armstrong et al.

onto submanifolds. “Information Geometry”, 2023 special issue on half a century of
information geometry, 2018), based on the Ito vector and Ito jet projections, where
several types of mean square distances between the optimal filter SPDE solution and
the sought finite dimensional SDE approximations are minimized, with numerical
examples. After reviewing the above developments, we conclude with the remaining
challenges.

Keywords Stochastic partial differential equations · Stochastic differential
equations · SPDEs projection on a submanifold · Stratonovich projection · Itô-vector
projection · Itô-jet projection · Nonlinear filtering · Projection filters · Stratonovich
projection filters · Optimal projection filters

Mathematics Subject Classification 62M20 · 93E11 · 60G35 · 62B10 · 58J65 ·
60H10 · 65D18 · 58A20

1 Introduction and history

1.1 Information geometry as the differential geometric approach to statistics

Information Geometry is an informal term to describe the differential geometric
approach to statistics, or more precisely to study the differential geometric prop-
erties of sets of probability distributions, on which a manifold structure is usually
built, leading to so called statistical manifolds. A list of references, far from being
comprehensive, describing the evolution of the discipline include Rao [48], inter-
preting the Fisher matrix for a parametric family of distributions as a Riemannian
metric on the given finite-dimensional statistical manifold, the dimension being usu-
ally related to the number of parameters. It is important for our paper to point out that
the Fisher information matrix is related naturally to the Hellinger distance on more
general infinite-dimensional spaces of probability measures, a distance based on the
L2 structure of sets of square roots of probability densities. Aggarwal [1], Amari [3],
Barndorff-Nielsen [13] and Pistone and Sempi [47] are other important references that
contributed to the development of information geometry and are related to this article,
although this list is far from being comprehensive.

1.2 Information geometry and filtering dynamics

Our work concerns the application of information geometry to approximation of
dynamics of probability distributions, in most cases stemming from the stochastic
filtering problem.

To state it in basic terms, in stochastic filtering one observes a random signal per-
turbed by random noise. The unperturbed random signal cannot be observed but needs
to be estimated. For example, the perturbed signal could be the radar reading of the
position of a spacecraft, which would not provide the exact position of the spacecraft
due to several disturbances (“noise”) in the radar observations. It would then be neces-
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sary to estimate the real position of the spacecraft from the noisy radar readings. This
is a filtering problem. A filtering algorithm was used in the Apollo 11 mission (Cipra
[24]), the first human landing on themoon. Filtering has also applications in areas such
as water level estimation and prediction, submarine navigation, econometrics, target
tracking and many others. A good historical book on filtering with an eye to appli-
cations is Jazwinski [36], see also Maybeck [43], while the mathematical aspects are
considered fully in Liptser and Shiryayev [41]. More recent monographs on filtering
are Ahmed [2] and Bain and Crisan [12].

The general solution of the filtering problem at a given time is given by the prob-
ability density of the unperturbed state of the system at that time, conditional on the
perturbed observations up to the given time. When the unobserved signal and the
observed signal evolve in continuous time, the filter density follows a stochastic par-
tial differential equation (SPDE). It has been shown that this probability density, the
solution of the SPDE, does not evolve in a finite dimensional statistical manifold,
except in very special cases. For example, if the dynamics of the unobserved system is
linear, the observations are linear, the noises are Gaussian and the initial condition of
the unperturbed signal is also Gaussian (or deterministic), then the filter is Gaussian
and its density can be characterized by a finite dimensional set of parameters, namely
the mean vector and variance-covariance matrix of the resulting Gaussian distribution.
This leads to the celebrated Kalman filter. However, this does not happen usually, in
the non-linear case, and the filter is infinite dimensional in general, as shown for the
cubic sensor example by Hazewinkel et al. [34].

1.3 Classic projection filters: Stratonovich–Hellinger projection

Enters information geometry. Can information geometry provide us with a method to
approximate the infinite-dimensional filter with a finite-dimensional approximation
that is close to the original filter? The idea to apply the Fisher Metric and Hellinger
distance to this problem was first sketched in an article of Hanzon [32] while he
was working at the Technical University of Delft. Hanzon suggested to project the
SPDE equation in Stratonovich form for the evolution of the filter density onto a finite
dimensional statistical manifold, using the Fisher metric/Hellinger distance. We call
this “Stratonovich projection” and it consists in projecting the separate vector fields
of the SPDE corresponding to the drift and diffusion part of the Stratonovich ver-
sion. The projected equation would describe a finite dimensional density evolution,
called projection filter, approximating the full filter evolution associated with the opti-
mal filter. The paper was presented to a conference in Lancaster whose proceedings
were edited by Christopher T. J. Dodson, in a volume with the almost prophetic title
“Geometrization of Statistical Theory”. The following year, on August 22, 1988, Han-
zon presented the idea at a seminar in Tokyo University called “The Projection Filter”
while visiting Shun’ichi Amari. A few years later, in 1991, Hanzon and a PhD student
Ruud Hut also from Technical University of Delft, wrote the paper Hanzon and Hut
[31] with new results on the projection filter on Gaussian densities, showing that for
the Gaussian family the projection filter coincides with a heuristic-based family of
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finite dimensional filters, the assumed density filters, previously studied by Kushner
[38], see also [43].

The projection filter idea was formulated precisely, extended and made fully
rigorous in subsequent works, during the PhD studies of Damiano Brigo with
Bernard Hanzon at the Free University of Amsterdam and with Francois LeGland at
IRISA/INRIA, in Rennes, France, in 1993–1996 [16]. In these studies it was shown,
among other things, that exponential families played a very particular role in the pro-
jection filter, allowing for the correction step of the filtering algorithm to be exact,
and also fully generalizing the equivalence to the assumed density filters. The filters
were tested numerically on some examples. During his PhD, Brigo also authored other
papers on small observation noise for the Gaussian projection filter [15, 17] and on
approximations of the Fokker–Planck–Kolmogorov equation, as well as formulations
of the filter in discrete time using the Kullback Leibler information, with application
to volatility modeling in finance [18]. The main results on the projection filters were
published later in Brigo et al. [19, 20].

One of the key issues, from the start, was making sure that the given approx-
imated equation for the filter density would stay on the chosen statistical manifold.
The Stratonovich projection ensured this, but scholars had been studying the behaviour
of stochastic differential equations on manifolds independently of the filtering appli-
cation above. Among those, we refer to Elworthy [27], Emery [29], and more recently
Hsu [35]. We also notice that Elworthy et al. would discuss geometric aspects of
filtering theory in [28], although their book does not deal with projection filters.

1.4 Classic projection filters: Stratonovich-direct L2 projection

Brigo returned to the filtering problem as a side project in 2011 after he moved from
a managing director position in the financial industry to a full academic position as
Gilbart Chair at the Department of Mathematics of King’s College London, earlier in
2010. There, in 2011 he met a new colleague, John Armstrong, a differential geometry
PhD fromOxford who had worked on almost Kähler geometry and who also had spent
several years in the financial industry and was now turning to a full-time academic
career. Brigo explained the filtering problem to Armstrong, who grasped immediately
the essential ideas and themathematics. Brigo had alreadywritten a preprint on his new
idea of applying the direct L2 structure without square roots to obtain a new type of
projection filter, showing equivalence with Galerkin-based filters when usingmixtures
of distributions. Armstrong refined the idea and implemented the filter numerically,
studying the cubic sensor problem. This led to a second wave of projection filters
based on the direct L2 metric as opposed to the Hellinger distance. It turned out that,
as anticipated in the preprint, while the original Hellinger-based filters worked well
with exponential families, being equivalent to assumed density filters, the direct L2

filters worked best with mixture families, being equivalent to Galerkin-based filters.
This research went on in 2011–2013 and was published in Armstrong and Brigo [6].
By 2012 Brigo had moved to Imperial College. During the review of [6], one of the
reviewers asked in which sense, or according to which criterion, the projection filter
was providing an optimal approximation of the true filter.
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1.5 Is the classic projection filter an optimal approximation?

The essence of the problem of optimality of the approximation was based on the way
the filtering equation was projected in the projection filter works published until then,
mainly [6, 19, 20]. There are two stochastic calculi, Ito and Stratonovich. The two
different calculi are suited to different applications, but from a probabilistic point
of view the Ito calculus has a more clear interpretation of the stochastic equation
coefficients in termsof localmean and local standarddeviation, linked to themartingale
property. Also, it is believed that even when one works with Stratonovich calculus,
under the formalism one can argue that it is still the Ito calculus that “does all the
work” [49, Chapter V.30, p. 184]. The problem with Ito calculus is that it violates
the chain rule for change of variables. When changing variables, one has to use Ito’s
formula, involving a second order term in the transformation.

The true, infinite dimensional filter equation (taking the form of a stochastic partial
differential equation, or SPDE) had always been written in Stratonovich form in the
previous projection filter works, because in a Stratonovich stochastic equation the two
parts describing the drift term and the diffusion coefficient term obey the chain rule
under change of variables. This means that they can be interpreted as vector fields
and be projected without problems on the tangent space of a submanifold, obtaining
vector fields in the submanifolds that would form the approximating finite dimensional
stochastic differential equation.

Projecting directly the Ito equation does not work, because the change of variables
includes second order terms that do not resemble the behaviour of vector fields. Pro-
jection becomes then impossible to perform directly in Ito form. One could re-write
the Ito true filter stochastic equation in Stratonovich form, project it, obtain a finite
dimensional approximated filter, and transform back this approximate filter equation
from Stratonovich to Ito form. But in what sense is this approximation optimal? What
criterion does it minimize?

More in detail, the projection of a vector field always provides the best approxima-
tion of the original vector field. But a stochastic equation is given by two terms, the
drift and the diffusion part, and if one puts the equation in Stratonovich form, the drift
and the diffusion coefficients become described by two vector fields and as such can
be projected. As the two vector fields are projected, each projected vector field will
be the best approximation of the original vector field, but what does this mean for the
solution of the stochastic equation as a whole? The stochastic equation is not just the
pair of vector fields. In fact, when the equation is in Ito form, the drift and the diffusion
coefficients interact when changing variables or coordinates, involving second order
terms in the transformation. The fact that Stratonovich is “less good” probabilistically
means that putting together two optimal projections of the coefficients to form a sin-
gle Stratonovich equation does not provide a solution that is optimal in a probabilistic
sense, for example in mean square.
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1.6 Finding optimal projection filters

Armstrong had previously noticed that an Ito equation behaved exactly as a geometric
object he was familiar with, called a 2-jet. Brigo, while helping Armstrong in devel-
oping the 2-jet interpretation of stochastic differential equations, started looking at
the Schwartz Morphism as studied in Emery [29] and found it to be very close to the
2-jet approach. The 2-jet interpretation was published in Armstrong and Brigo [7, 8],
which led next to Armstrong and Brigo investigating how one could project a stochas-
tic differential equation on a sub-manifold in an optimal way. Based on Ito Taylor
expansions, two different projections satisfying two different types of optimality were
found, the Ito-vector and the Ito-jet projections. The Ito-jet projection is superior in
terms of optimality, in that it has a higher order of optimality in a precise sense. These
results were presented at ICMS in Edinburgh by Armstrong and Brigo [5], at a con-
ference co-organized in 2015 again by Dodson, this time with Frank Critchley and
Frank Nielsen. The two projections were studied further and some technical problems
concerning tubular neighborhoods were solved with the help of the then PhD stu-
dent Emilio Rossi Ferrucci, leading to the publication Armstrong et al. [10], see also
Armstrong et al. [9], where Rossi Ferrucci helped re-derive the optimal projections
through constrained optimizations as opposed to Ito Taylor expansions, and where
ambient coordinates are used.

In this last paper [10], information geometry comes back as an application of the
now optimal projections both in Hellinger distance and direct L2 metric, comparing
them in a numerical case with the traditional Stratonovich projection of previous
works. It turns out that Stratonovich is also optimal for a particular criterion that is,
however, not a particularly interesting or natural one, so that the Ito-jet projection filter
should be preferred in general.

In this paper we will first present a literature review of projection filtering as done
by other authors, following the original papers [19, 20], and then we will explain the
basic ideas of the optimal projection filters as compared to the Stratonovich ones.
We will finally sketch future problems where information geometry might give a
contribution. For the reader’s convenience, we summarize the different projection
filtering approaches in Table 1.

2 Other works based on the classic projection filters

Our original work on projection filters was further studied and applied to several fields
by subsequent authors. Here we mention only a few examples to illustrate the breadth
of the possible use of information geometry and dynamics in applications.

Jones and Soatto [37] briefly mention the projection filter as one of the possible
algorithms for on-line estimation in the context of visual-inertial navigation, mapping
and localization. Lermusiaux [40] mentions the projection filter as a possible tool for
estimation of uncertainties for ocean dynamics. Kutschireiter et al. [39] apply the pro-
jection filter to continuous time circular filtering. Projection filters have been applied
to quantum systems for example in van Handel and Mabuchi [52] and in Gao et al.
[30]. Ma et al. [42] apply projection filters to hazard position estimation. Vellekoop
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Table 1 A simplified classification of projection filters (PFs)

Metric → Hellinger Direct L2

Projection ↓
Stratonovich projection Stratonovich “classic” PF Stratonovich “classic” PF

Exponential families [19, 20] Mixture families [6]

Ito-vector projection Optimal Ito-vector PF Optimal Ito-vector PF

Gaussian family [10] Gaussian family [10]

Exponential families? Mixture families?

Ito-jet projection Optimal Ito-jet PF Optimal Ito-jet PF

Gaussian family [10] Gaussian family [10]

Exponential families? Mixture families?

and Clark [53] extend the projection filter theory to deal with changepoint detection.
Tronarpand and Särkkä [51] present a projection filter for systems with discrete time
measurement having arbitrary likelihoods. Surace and Pfister [50] apply the Gaussian
projection filter to estimate the parameters of a partially observed diffusion. Harel et
al. [33] apply the assumed density filters, equivalent to the projection filters, to the fil-
tering of optimal point processes with applications to neural encoding. Azimi-Sadjadi
and Krishnaprasad [11] apply projection filter algorithms to navigation. Bröcker and
Parlitz [23] apply projection filter techniques to address noise reduction in chaotic time
series. Zhang et al. [54] apply the Gaussian projection filter as part of their estimation
technique to deal with measurements of fiber diameters in melt-blown nonwovens.
The projection filter further attracted the attention of the Swedish Defense Research
Agency, that summarized and studied it in 2003 in the report [14].

3 Optimal projection filters for non-linear filtering via information
geometry

We studied the application of the new projections to nonlinear filtering via information
geometry in Armstrong et al. [10]. Here we summarize the results of that paper,
showing how our new projection methods work for stochastic filtering. As explained
in the introduction, this enhances optimality of the approximations compared to our
previous works in [6, 19, 20].

Let us first summarize the filtering problem for diffusions. One has a signal X that
evolves according to a SDE, and observes a process Y which is a function of this signal
plus noise.

The filtering problem consists in estimating the signal X given the present and
past observations Y . If t is the current time, the solution of the filtering problem is
the probability density of the state Xt conditional on the observations from time 0
to time t , call this density pt . The density pt follows the Kushner–Stratonovich (or
alternatively theZakai) stochastic partial differential equation (SPDE) that, under some
technical assumptions, can be seen as a stochastic differential equation in the infinite
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dimensional L2 space of square roots of densities (Hellinger metric) or of densities
themselves (direct L2 metric).

The process we wish to approximate on a low dimensional manifold is pt , evolv-
ing in the L2 infinite dimensional space, while the submanifold M where we seek
approximation is a finite dimensional family of probability densities parametrized by
θ , acting as coordinates: M = {p(·, θ), θ ∈ � ⊂ R

n}. We aim at finding a SDE for
θ such that p(·, θt ) approximates the optimal filter pt (·) in an optimal way.

3.1 The Kushner–Stratonovich equation

We suppose that the state Xt ∈ R
m of a system evolves according to the Itô stochastic

differential equation:

dXt = f (Xt , t) dt + σ(Xt , t) dWt

where f and σ are smooth R
m valued functions and Wt is a Brownian motion. One

typically adds growth conditions to ensure a global existence and uniqueness result
for the signal equation, see for example [6] and references therein for the details.

We suppose that an associated process, the observation process, Yt ∈ R
d evolves

according to the equation:

dYt = b(Xt , t) dt + dVt

where b is a smooth R
d valued function and Vt is a Brownian motion independent

of Wt . Note that the filtering problem is often formulated with an additional constant
in terms of the observation noise. For simplicity we have assumed that the system is
scaled so that this can be omitted.

The filtering problem is to compute the conditional distribution of Xt given a prior
distribution for X0 and the values of Y for all times up to and including t .

Subject to various bounds on the growth of the coefficients of this equation, the
assumption that the distribution has a density pt and suitable bounds on the growth of
pt one can show that pt satisfies the Kushner–Stratonovich SPDE:

dpt = L∗
t pt dt + pt [b(·, t) − Ept (b(·, t))]T [dYt − Ept (b(·, t))dt] (1)

where Ep denotes the expectation with respect to the density p,

Ep[ψ] =
∫

ψ(x)p(x)dx, Ep[φ(·, t)] =
∫

φ(x, t)p(x)dx,

and the forward diffusion operator L∗
t is defined by:

L∗
t φ = − ∂

∂xi
[ fi (x, t)φ] + 1

2

∂2

∂xi∂x j
[ai j (x, t)φ] (2)
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where a = σσ T . Note that we are using the Einstein summation convention in this
expression.

In the event that the coefficient functions f and b are all linear and σ is a deter-
ministic function of time one can show that so long as the prior distribution for X
is Gaussian, or deterministic, the density p will be Gaussian at all subsequent times.
This allows one to reduce the infinite dimensional equation (1) to a finite dimensional
stochastic differential equation for the mean and covariance matrix of this normal
distribution. This finite dimensional problem solution is known as the Kalman filter.

For more general coefficient functions, however, Eq. (1) cannot be reduced to a
finite dimensional problem [34]. Instead one might seek approximate solutions of (1)
that belong to some given statistical family of densities. This is a very general setup
and includes, for example, approximating the density using piecewise linear functions
to derive a finite difference approximation or approximating the density with Hermite
polynomials to derive a spectral method. Other examples include exponential families
(considered in [19, 20]) and mixture families (considered in [4, 6]).

Our projection theory tells us how one can find good approximations on a given
statistical family with respect to a given metric on the space of distributions. We
illustrate this by writing down the Itô-vector and Itô-jet projection of (1) for the L2

and Hellinger metrics onto a general manifold.1

A good part of the classic filtering literature focuses on the very specific case
of seeking approximate solutions using Gaussian distributions. The idea of approx-
imating the solution to the filtering problem using a Gaussian distribution has been
considered by numerous authors who have derived variously, the extended Kalman fil-
ter [46], assumed density filters [38] and Stratonovich projection filters [19]. Some of
these are related, for example the assumed density filters and Stratonovich projection
filters in Hellinger metrics for Gaussian (and more generally exponential) families
coincide [20]. Using our projection methods, we have been able to derive projec-
tion filters which outperform all these other filters also in the specific Gaussian case
(assuming performance is measured over small time intervals using the appropriate
Hilbert space metric).

We will be using L2 geometry here. More generally, for the geometry of approxi-
mations to the infinite dimensional filtering problems based on L2 or Orlicz charts we
refer for example to [6, 10, 19–22, 44, 45].

3.2 Stratonovich projections

The Stratonovich projection filters have been abundantly studied in [19, 20] in
Hellinger metric, and in [6] in direct metric, see also references in Sect. 2 for the
Hellinger case. Here we briefly summarize them. To shorten notation, we will omit
time dependence when obvious from the context, so p = pt , b = b(·, t), and so on.
For this method, the optimal filter SPDE is given by putting the optimal filter equation

1 Note that it is also possible to consider projecting the Zakai equation. However, as explained in [6], one
expects that projecting the Kushner–Stratonovich equation will lead to smaller error terms in direct metric,
whereas the projected equations are the same in Hellinger metric. See [6] for a discussion.
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(1) in Stratonovich form, obtaining

dp = L∗ p dt − 1

2
p [|b|2 − Ep{|b|2}] dt + p [b − Ep{b}]T ◦ dY . (3)

For convenience, let us rewrite this as

dp = A dt + B ◦ dY . (4)

This is a Stratonovich SPDE. The P in SPDE and the particular type of SPDE we
have imply that, in general, the solution p will not belong to any finite dimensional
family of densities M = {p(·, θ), θ ∈ � ⊂ R

n}. As every computer implementation
is inherently finite dimensional, we need a way to get pt approximated through a finite
dimensional density p(·, θt ) for all times t .

Now, with the Stratonovich filter SPDE equation above, one can do something very
simple. Since the Stratonovich SPDE satisfies the chain rule, A and B behave like
two vector fields in a suitable function space. So the equation is characterized by a
“dt” vector field A and a “dYt” vector field B. These are two separate vector fields
and for the time being we are content with dealing with them separately, but as we
will discuss later this is not a choice without consequences. Dealing with A and B
separately, one can project them on the tangent space of M = {p(·, θ), θ ∈ � ⊂ R

n}
(direct metric) or of their square roots (Hellinger metric) obtaining, in the direct metric
case for example,

dp(·, θt ) = �p(·,θt )[A] dt + �p(·,θt )[B] ◦ dY (5)

where � is the tangent space projection at the denoted point for the manifold M .
Applying the chain rule gives immediately a finite dimensional SDE for dθt from
the above equation, where the coefficients are known and where the SDE can be
implemented easily in a finite dimensional setting, giving a finite dimensional filter.

This is basically the L2 direct metric or Hellinger projection filter in a nutshell,
it has been studied and implemented in [6, 19, 20] and by a number of subsequent
authors, as summarized in Sect. 2.

We conclude the summary of the Stratonovich projections by saying that they do
satisfy an optimality criterion, although it is a criterion that is somewhat unnatural and
not helpful. It requires to run an artificial filter in negative time and to include it into
the criterion to be minimized. This is summarized in Table 2.

3.3 Itô-vector projections

Let us go back to our exact filter equation in Stratonovich form (4):

dp = A dt + B ◦ dY .

Now in the Stratonovich projection filters we projected separately the vector fields A
and B obtaining a projected equation. By nature, the projection is the best (optimal)
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approximation for A and B separately on the chosenmanifold tangent space. However,
does this translate into an optimality of the solution p(·, θt+δt ) as an approximation
of the exact pt+δt for say small δt , given that we had the optimal filter up to t and
now we wish to approximate the next step δt (in most cases t = 0 as we will seek an
optimal approximation from time 0)? In other terms, is there a norm ‖ · ‖ for which
we can say that in some sense

θt+δt ≈ argminθ ‖pt+δt − p(·, θt+δt )‖ (6)

so long as δt is small? This is a very legitimate question, and it comes from the fact
that the two vector fields of a SDE or SPDE (A and B in our example) interact in a
very specific way in determining the solution. If we agree it is the Ito solution we are
considering primarily [49, Chapter V.30, p. 184], note that to transform a Stratonovich
SDE into an Ito one with the same solution, the drift A is modified by terms involving
partial derivatives of the term B. In the Ito form, therefore, there is no neat separation
into two vector fields. Not just that, but the behaviour of the solution of the SDE or
SPDE as a whole is more than the behaviour of the two separate vector fields A and B.
This is why the optimality of the separate projections of A and B does not guarantee
any optimality of the type sought in (6). Consider then (1) and write it as

dp = Cdt + BdYt .

Again, this is a SPDE, this time in Ito form, and has an infinite dimensional solution
in general.

The Ito-vector projection sets out to approach the problem starting from a criterion
like (6). It does not resort to a Stratonovich version of the Kushner–Stratonovich
equation but keeps the original Ito version.

Let us choose a norm for the space of densities, ‖ · ‖ which might be the direct
metric or the Hellinger metric.

Given the diffusion term in the approximating equationminimizing (but not zeroing)
the δt term of the expansion for themean square difference Et [‖pt+δt − p(·, θt+δt )‖2],
wefind the drift term thatminimizes the (δt)2 termof the samedifferencewhile holding
the earlier diffusion term fixed. Note that the δt order term is minimized, not zeroed,
so that we do not attain (δt)2 convergence.

As a bonus, we also minimize the order 1 Taylor expansion (in t) of the norm of the
expectation of the difference between the optimal filter pt+δt and p(·, θt+δt ), namely
‖E[pt+δt − p(·, θt+δt )]‖.

To achieve (δt)2 convergence, rather than δt convergence, we will need the Ito-jet
projection.

Finally, the expectation Et is necessary because one should not forget that p and
p(·, θ) are random objects. The randomness of p, in particular, comes from Y and the
random θ is supposed to capture it optimally.
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3.4 Itô-jet projection

The Ito jet projection uses the notion of metric projection.
The metric projection of a general density p in L2 onto the manifold M is the

closest point on M to p and is denoted by π(p). This is not a vector projection, it is
a projection of a point onto the submanifold M . Given that the metric projection is,
according to the chosen metric, the best we can ever do in approximating p on M , as
it is the closest point on M to p, we can try to find a projection filter that gets as close
as possible to the metric projection. In other term, our criterion has changed to

θt+δt ≈ argminθ ‖π(pt+δt ) − p(·, θt+δt )‖. (7)

The Ito jet projection satisfies the following optimality criterion: it zeros the δt
term and minimizes the (δt)2 term of the Taylor expansion of the mean square of
the distance in L2 or M between π(pt+δt ) and p(·, θt+δt ). This is the most optimal
projection we derived and it converges with order (δt)2, as opposed to the (δt)1 of the
Ito vector projection.

Again, in real applications we won’t have the optimal filter at time t so we will start
our approximation directly at time t = 0. This is reflected in the summary Table 2
where t = 0 and we call δt with the name t , assuming it is small.

3.5 Comparison of filters

In [10] we compare the different projection filters with each other in a case of cubic
sensor perturbing a linear system (where,without perturbation, theKalmanfilterwould
work well). In other words, the state equation is trivial, dX = dW , while the observa-
tion function is b(x) = x + εx3. For small ε, this will be close to a linear system and
the extended Kalman filter and other Gaussian filters are supposed to perform well.
We make the comparison in [10], comparing the different projection filters with the
extended Kalman filter and with the Ito assumed density filter (ADF) with assumed
Gaussian density. We refer to the paper for the full details.

In [10] we compare first the direct L2 residuals for the various methods. The Itô-
vector projection in the direct L2 metric results in the lowest residuals over short
time horizons. The Stratonovich projection comes a close second. Over medium time
horizons, the Itô-jet projection out performs the Itô-vector projection. The projection
methods out-performed all other methods like extended Kalman filter or assumed
density filters.

Second, in [10] we compared the Hellinger residuals for different filters, where
projection filters are w.r.t. the Hellinger metric. This second analysis indicates that the
Itô ADF and the Itô-jet projection are almost indistinguishable in their performance,
and we explain why in [10]. Over the short term, the Itô-vector projection gives the
best results. Over medium term, the Itô-jet projection and the Itô ADF give the best
results.

We also note that in previous works such as [6, 19, 20] where we only studied
the Stratonovich projection filter, filtering problems for systems like the cubic and
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quadratic sensors were studied. For such systems, the optimal filter density would
often turn out to be bimodal and a projection filter based on a manifold consisting of
mixtures of two Gaussians or of exponential families with fourth order polynomial
exponents would track the optimal filter well, while approximated filters such as the
Extended Kalman filter, Gaussian Assumed Density filters and even particle filters
with the same number of parameters as the projection filters would fare worse than
the projection filters in terms of L2, Hellinger or Lévy–Prokhorov norms of errors.

We may conclude that information geometry based filters contributed in a relevant
way to finite dimensional approximations of the optimal filter.

4 Conclusions and further work

The notion of projecting a vector field onto a manifold is unambiguous. By contrast,
there are multiple distinct generalizations of this notion to SDEs, as summarized in
Table 2.

The two Itô projections we recalled in this review can both be derived from mini-
mization arguments. However, the Itô-jet projection has some clear advantages.

• The Itô-jet projection is the best approximation to the metric projection of the
true solution and leads to a mean-squared error of order O(t2). By contrast, the
Itô-vector projection only tracks the true solution with an accuracy of O(t) for the
mean-square error.

• The Itô-jet projection gives a more intuitive answer than the Itô-vector projection
for the low dimensional example of the cross-diffusion considered in [10].

• The Itô-jet projection gives better numerical results in the longer term than the
Itô-vector projection in our application to filtering.

• The Itô-jet projection has an elegant definition when written in terms of 2-jets,
which is described in [10].

The Stratonovich projection satisfies an ad hoc minimization that is less appealing
than the ones of the Itô projections, since it requires a deterministic anchor point at
time 0 and negative time copies of the processes. The Itô-jet and Itô-vector projection
arguments allow one to derive new Gaussian approximations to non-linear filters, and
new exponential and mixture filters more generally, although the more general cases
have not been explored in [10]. Some of the possibilities with different projections,
metrics and manifolds are shown in Table 1. This could be investigated in further
work to complete the table. In the Gaussian case we do explore in [10] applying the
methods summarized in this review, unlike previous Gaussian approximations to non-
linear filters, the projection approximations are derived by fully explicit minimization
arguments rather than heuristic arguments. Thus, the notion of projecting an SDE onto
a manifold, coupled with information geometry, is able to give new results even for
this well-worn topic of approximate Gaussian nonlinear filtering.

A further important investigation line could be in deriving approximations based on
approximating bases that are not made of densities or their square roots. Working with
densities has the advantage of allowing information geometry to act clearly, but at the
same time puts strong constraints on the approximating bases. As a simple example,
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Table 2 Projections and the associated optimality criteria

Projection Optimality property

Itô-vector (i) Minimizes order 1 Taylor expansion (in t) of norm of the expectation of
the difference between pt and p(·, θt ), namely ‖E[pt − p(·, θt )]‖

(ii) Given the diffusion term in the approximating equation minimizing
(but not zeroing) the t term of the expansion for the mean square
difference E[‖pt − p(·, θt )‖2], finds the drift term that minimizes the t2

term while holding that diffusion term fixed. Order O(t) convergence

Itô-jet Zeroes t term and minimizes t2 term of Taylor expansion of the mean
square of the distance in L2 or M between π(pt ) and p(·, θt ). Order
O(t2) convergence

Stratonovich Similar to Itô vector but for the Taylor series of the “time-symmetric” mean
square difference between p and its lower dimensional approximation

p(·, θt ): 1
2

(
E[‖p−t − p(·, θ−t )‖2] + E[‖pt − p(·, θt )‖2]

)
where

negative time processes are defined ad hoc by propagating a second input
Brownian motion backward in time

one might wish to use “mixtures” of Hermite polynomials, which are not densities,
as a basis for the approximation. One might wish to investigate to what extent it is
possible to use non-density bases while retaining an information geometric approach.

The above development might potentially ease another fundamental problem that
remains to this day: controlling the long term error of the projection filter compared to
the optimal filter. This is a very difficult problem in general. Again in an information
geometry setting, when the unobserved signal process X is a finite-stateMarkov chain,
Cohen and Fausti [25] derive results on awell-controlled error, based on ergodic theory
and symplectic structures. This result builds on their previous work [26]. The theory
needs to be extended to the diffusion setting we have been using here, but this is a
promising result in controlling the long term error between the optimal filter and the
projection filter.
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