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Abstract: Electrostatic traveling wave (ETW) methods have shown promising performance in dust
mitigation of solar panels, particle transport and separation in in situ space resource utilization, cell
manipulation, and separation in biology. The ETW field distribution is required to analyze the forces
applied to particles and to evaluate ETW design parameters. This study presents the numerical
results of the ETW field distribution generated by a parallel electrode array using both the charge
simulation method (CSM) and the boundary element method (BEM). A low accumulated error of the
CSM is achieved by properly arranging the positions and numbers of contour points and fictitious
charges. The BEM can avoid the inconvenience of the charge position required in the CSM. The
numerical results show extremely close agreement between the CSM and BEM. For simplification,
the method of images is introduced in the implementation of the CSM and BEM. Moreover, analytical
formulas are obtained for the integral of Green’s function along boundary elements. For further
validation, the results are cross-checked using the finite element method (FEM). It is found that
discrepancies occur at the ends of the electrode array. Finally, analyses are provided of the electric
field and dielectrophoretic (DEP) components. Emphasis is given to the regions close to the electrode
surfaces. These results provide guidance for the fabrication of ETW systems for various applications.

Keywords: boundary element method; cell manipulation and separation; charge simulation method;
dielectrophoretic force; parallel electrodes; electric field calculation; electrostatic traveling wave

1. Introduction

An electrostatic traveling wave (ETW) field can be produced by a set of electrodes,
insulated from each other and connected to AC poly-phase voltage sources. Either neutral
or charged fine particles brought into such a field move due to the action of electric
forces, gravitational forces, and other forces related to their different physical properties.
The ETW method originates from dielectrophoresis (DEP), first defined by Pohl as the
interaction between non-uniform electric fields with polarized particles and liquids [1,2].
The researchers who followed have developed a generalized theory for calculating DEP
and explored its various practical applications, such as the precipitation and dispersion of
liquid [3,4]. Recently, this electrokinetic phenomenon has been applied in many diverse
areas, such as xerographic particle transport in electrophotography, dust mitigation of
solar panels, cell manipulation and separation in biology, and lunar particle transport and
separation [5–10].

A theoretical understanding of particle movement in the ETW conveyer system will
allow design and operating parameter evaluation. These particles are subject to many
forces, including the Coulomb force, dielectrophoretic (DEP) force, gravitational force,
friction, image force, and possibly fluid drag. Of these, the Coulomb and DEP forces are
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predominant, and their analysis requires the accurate calculation of the electric field [11,12].
The Accurate prediction of the ETW electric field distribution is, therefore, essential.

1.1. Background of the Electric Potential Problem

The ETW field is generally produced by an array of parallel electrodes with the same
width and thickness, insulated from each other, and connected to an AC, poly-phase
voltage source. Figure 1 shows a diagram of a typical electrode system for particle transport
and separation. A four-phase rectangular wave voltage source is often used in ETW
systems [13–15], and is used here as an example in the calculations.
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Figure 1. Diagram showing the typical application system and applied voltage.

The electrode length is much larger than both the electrode width and the gap between
the electrodes, and the electric field model can be simplified to a 2D problem in the x–y plane,
as shown in Figure 2. In phases 2 and 4, Dirichlet conditions φ = 0 can be designated on
x = 0. In phases 1 and 3, the symmetry leads to the Neumann condition: ∂φ/∂n = 0. Thus,
the 2D electrostatic problem can be described by Laplace’s equation ∆φ = 0, associated
with the boundary conditions on the electrode surfaces, which vary in time according to
the system function.
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array. D is the electrode width, p is the electrode pitch, and δ is the electrode thickness. The voltage
on the boundaries is the example at phase 2.

1.2. Methods Development

Several approximate analytical and numerical methods have been proposed for the
solution of the electric field produced by this particular arrangement of electrodes. In
1996, Wang and co-workers [16] used Green’s theorem to calculate the electric field for 2D
electrode arrays. Morgan and co-workers [17,18] developed Fourier series methods and
the finite element method (FEM) for calculating DEP and traveling wave forces generated
by interdigitated electrode arrays. Sun and co-workers [19] completed an analytical solu-
tion using the Schwarz–Christoffel mapping method without any approximation of the
boundary conditions. Gauthier and co-workers [20] developed a Fourier series method to
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calculate DEP force with two facing electrode arrays. However, in all these papers, either or
both of the following two approximations have been applied: (1) the electrode boundaries
are set as a line without considering the electrode shape, and (2) a linear potential varia-
tion between electrodes is assumed. These approximations deviate from reality in certain
conditions and restrict the application scope of their methods.

In this paper, we present two alternative approaches, the charge simulation method
(CSM) and the boundary element method (BEM), to calculate the electric field distribution
in such an electrode arrangement. A similar approach to BEM, a boundary integral solution
of a potential problem, has been obtained and has high computation efficiency using the
Nyström method [21]. The CSM and BEM methods have the benefit of no requirement for
any approximation of the boundary conditions or the electrode shape and can accurately
predict the electric field on the electrode edges and gaps efficiently. The formulas we
derived can be adapted to various designs and parameters easily.

2. Theory of the Charge Simulation Method (CSM)
2.1. Basic Principle

The charge simulation method is based on the concept of discrete charges, which
has proven to be very powerful and efficient for solving many electrostatic problems [22].
Masuda and Kamimura [23] used a similar substitute charge method to calculate the electric
field of parallel cylindrical electrodes.

The CSM is a numerical method for the application of the Trefftz method for the
solution of the boundary value problem (BVP) in an electrostatic field where the partial
differential equation is satisfied perfectly while the boundary conditions are satisfied
approximately [24,25].

The basis of the CSM is the use of a group of discrete, fictitious charges as particular
solutions of Poisson equations, where the distributed charges on the boundary are replaced
by these discrete charges arranged outside the boundary. The fictitious charges are shown
as the hollow circles in the first quadrant inside the boundary, and (xf

(i), yf
(i)) represents

the position of the i-th fictitious charge. Using the method of images, the image fictitious
charges are applied in the other three quadrants, and the positions can be easily obtained
according to the symmetries. In the CSM, the solution of Laplace’s equation depends on the
determination of the values of these fictitious charges. The arrangement of fictitious charges
and contour points is illustrated in Figure 3. The contour points are on the boundary of
electrodes with known potentials, which can be used in the equations to solve the unknown
fictitious charges. The contour points are shown as the symbol × on the boundary, and
(xe

(i), ye
(i)) represents the position of the i-th contour point. Γe and Γf represent the e-th

and f -th boundaries, while Γe
′

and Γf
′

are the image boundaries, respectively. r1, r2, r3,
and r4 are the distances between the contour point and the fictitious charge and image
fictitious charges. d1, s1, s2, and δ are simulation parameters that are used to determine
the positions of contour points and fictitious charges, which can be referred to in the
following calculations.
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The potential resulting from the superposition of discrete charges must be equal to the
boundary potential φC on the electrode surfaces:
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φ f =
w

∑
e=1

(
n

∑
i=1

P(i,j)
e, f Qj

f

)
(1)

where P(i,j)
e, f is the associated potential coefficient that can be found from the fundamental

solution of Poisson’s equation, and it only depends on the related position between the
calculating point and the n-th fictitious charge.

P(i,j)
e, f = − 1

2πε0
· ln
√(

x(i)e − x(j)
f

)2
+
(

y(i)e − y(j)
f

)2
(2)

Qj
f is the value of the j-th fictitious charge on the f -th electrode. n is the total number of

fictitious charges in an electrode. w is the total number of electrodes. Since there is a unique
solution to this boundary value problem, the potential can be found unambiguously from
Equation (1), where ε0 is the permittivity of air and (x(i)e , y(i)e ) and (x(j)

f , y(j)
f ) represent the

positions of the i-th fictitious charge of the e-th electrode and the j-th points on the surface
of the f -th electrodes.

The application of Equations (1) and (2) leads to a system for w electrodes, each with
N discrete charges: 

P11 P12 . . . P1w
P21 P22 . . . P2w

...
...

. . .
...

Pw1 Pw2 . . . Pww




Q1
Q2

...
Qw

 =


φ1
φ2

...
φw

 (3)

where the elements of the submatrices are

Pe f =


P(1,1)

e, f P(1,2)
e, f . . . P(1,N)

e, f

P(2,1)
e, f P(2,2)

e, f . . . P(2,N)
e, f

...
...

. . .
...

P(N,1)
e, f P(N,2)

e, f . . . P(N,N)
e, f

 (4)

Q f =
[
q(1)f q(2)f . . . q(N)

f

]T
(5)

φ f =
[
φ f φ f . . . φ f

]T
(6)

where q(j)
f is the value of the fictitious charge of (x(j)

f , y(j)
f ). φ f is the potential of the f -th

electrode. Equation (3) can be expressed in a simplified form:

P Q = φ (7)

where P is the potential coefficient matrix, Q is the column vector of unknown charges, and
φ is the potential of the points on the electrode boundary.

2.2. Implementation of CSM

Considering the symmetry of the electrode array and the applied voltage, the method
of images can be used to simplify the analysis. Based on the center position of o in Figure 3,
the boundaries are evenly distributed in the four quadrants of the coordinate, and the
fictitious charges in the first quadrant are used as the origin charges. The combination of
the associated potential coefficient of the fictitious line charges and its image fictitious line
charges in the other three quadrants (see Figure 3) can be expressed as follows:

P(i,j)∗
e, f =

{
1

2πε0
ln r2r3

r1r4
for phase 2 and 4

1
2πε0

ln 1
r1r2r3r4

for phase 1 and 3
(8)
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where

r1 =

√(
x(i)e − x(j)

f

)2
+
(

y(i)e − y(j)
f

)2
(9a)

r2 =

√(
x(i)e + x(j)

f

)2
+
(

y(i)e − y(j)
f

)2
(9b)

r3 =

√(
x(i)e + x(j)

f

)2
+
(

y(i)e + y(j)
f

)2
(9c)

r4 =

√(
x(i)e − x(j)

f

)2
+
(

y(i)e + y(j)
f

)2
(9d)

The two definitions of the associated potential coefficient in (8) are automatically
satisfied with Dirichlet and Neumann conditions, respectively. Formula (2) is a generalized
expression for each situation.

In this way, Equation (7) can be modified as follows:
P11
∗ P12

∗ . . . P1,w/2
∗

P21
∗ P22

∗ . . . P2,w/2
∗

...
...

. . .
...

Pw/2,1
∗ Pw/2,2

∗ . . . P∗w/2,w/2




Q1
Q2

...
Qw/2

 =


φ1
φ2

...
φw/2

 (10)

where the submatrices are given by

Pe f
∗ =


P(1,1)∗

e, f P(1,2)∗
e, f . . . P(1,N/2)∗

e, f

P(2,1)∗
e, f P(2,2)∗

e, f . . . P(2,N/2)∗
e, f

...
...

. . .
...

P(N/2,1)∗
e, f P(N/2,2)∗

e, f . . . P(N/2,N/2)∗
e, f

 (11)

After obtaining the value of the fictitious charge in each position, the potential above
the electrodes can be found with the following:

φ(x, y) = P∗(x, y)Q (12)

where
P∗(x, y) =

[
P(1)∗(x, y) P(2)∗(x, y) . . . P(N/2)∗(x, y)

]
(13)

Q =
[
q(1) q(2) . . . q(N/2)

]T
(14)

and

P(n)∗(x, y) =

{
1

2πε0
· ln r2(x,y)r3(x,y)

r1(x,y)r4(x,y) for phase 2 and 4
1

2πε0
· ln 1

r1(x,y)r2(x,y)r3(x,y)r4(x,y) for phase 1 and 3
(15)

where

r1(x, y) =
√(

x− x(n)
)2

+
(
y− y(n)

)2 (16a)

r2(x, y) =
√(

x + x(n)
)2

+
(
y− y(n)

)2 (16b)

r3(x, y) =
√(

x + x(n)
)2

+
(
y + y(n)

)2 (16c)

r4(x, y) =
√(

x− x(n)
)2

+
(
y + y(n)

)2 (16d)

n represents the n-th fictitious charge. The electric field comes from the differentiation
of the potential φ(x, y) with respect to x and y:
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Ex(x, y) = −∂P
∂x

Q (17)

and
Ey(x, y) = −∂P

∂y
Q (18)

2.3. Accuracy Evaluation

The modified standard norm error [26] is introduced for the evaluation of accu-
racy, which is defined by the sum of the deviation of potential at contour checkpoints,
calculated from

Error =

√√√√ m

∑
i=1

[
V − φi(xi, yi)

V

]2

/m (19)

where φi (xi, yi) is the calculated potential at the i-th checkpoint, m is the total number of
checkpoints, and V is the corresponding surface potential of the electrode (i.e., applied
voltage on the electrode). This accuracy criterion is more rigorous than the maximum
deviation previously used [23]. The electrode configuration parameters are as previously
used by Kawamoto [27]. The width of the electrode is 300 µm, the pitch is 600 µm,
and the amplitude of the voltage is 800 V. The following calculations are based on the
same parameters.

The accuracy of the CSM is affected by the number and placement of fictitious charges
and contour points. Normally, the collocated contour points are evenly spaced along
the horizontal and vertical axes with pitches of d1 and δ1. The distance between the
fictitious charge and the boundary, vertically and horizontally, are represented by s1 and
s2, respectively:

s1 = k1d1 (20)

s2 = k2δ1 (21)

Here, k1 and k2 are the assignment factors deciding the position of fictitious charges.
In Table 1, n1 and n2 represent D/d1 and δ/δ1, respectively, the numbers of contour points
along the length and width of each electrode boundary. The total number of checkpoints is
250. Different combinations of n1, n2, k1, and k2 were tested to estimate the CSM numerical
calculation accuracy. Phases 3 and 4 are symmetrical to phases 1 and 2 with different
polarity, so the accumulated error are the same and only shown for phases 1 and 2 in
Table 1. Evaluations and simulations were implemented on a personal computer with a
2.9 GHz processor and 16 GB RAM using Wolfram Mathematica. The calculation time for
the CSM to obtain the error results is also presented.

Table 1. Standard norm error on each electrode in two different phases with a varying number of
calculating points for the CSM.

Calculating parameters k1 = 1/6
k2 = 1/6

n1 = 200
n2 = 10

n1 = 150
n2 = 10

n1 = 100
n2 = 10

n1 = 100
n2 = 15

n1 = 100
n2 = 20

Standard norm error
Phase 1 0.03% 0.04% 0.07% 0.08% 0.12%

Phase 2 0.02% 0.03% 0.05% 0.03% 0.09%

Time 11.6 s 7.6 s 3.9 s 4.1 s 4.5 s

Calculating parameters n1 = 200
n2 = 10

k1 = 1/6
k2 = 1/6

k1 = 1/5
k2 = 1/5

k1 = 1/3
k2 = 1/3

k1 = 1/2
k2 = 1/2

k1 = 1/3
k2 = 1/6

Standard norm error
Phase 1 0.03% 0.03% 0.04% 0.06% 0.06%

Phase 2 0.02% 0.02% 0.03% 0.05% 0.04%

Time: 12.0 s 12.1 s 12.3 s 12.1 s 12.1 s
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The small accumulated errors confirm the accuracy of the CSM. By the appropriate
arrangement of n1, n2, k1, and k2, the accumulated error can be decreased to as low as 0.02%.
By keeping k1 and k2 constant, it is found that an increase in the simulation points can
improve the calculation accuracy; however, further increases may impair this, as illustrated
by the last three columns. This is because overly dense points may lead to an ill-conditioned
matrix and a decrease in the solution accuracy. The test results with different combinations
of k1 and k2 show that a reasonable arrangement of k1 and k2 can increase the accuracy of
the CSM further.

3. Theory of the Boundary Element Method (BEM)
3.1. Formulation

In the CSM, it may be challenging to arrange the fictitious charges properly, which
affects the accuracy of the results. In contrast, the BEM does not rely upon fictitious charges,
and only boundary discretization is required. Figure 4 illustrates the basic parameters for
deploying the BEM. P and Pi are integration and observation points, respectively. Γ∗l is the
electrode surface in the first quadrant of the coordinate system. r1, r2, r3, and r4 are the
distances between the integration point and the observation points and image fictitious
charges. Using Green’s second identity with the appropriate fundamental solution, a
boundary integral equation can be found as follows [28]:

ciu(Pi) =
∫
Γ

∂u(P)
∂n

G(P, Pi)dΓ−
∫
Γ

∂G(P, Pi)

∂n
u(P)dΓ (22)

where u(P) is the solution of ∇2u = 0 for P ∈ Ω. and

ci =


1 for Pinsidetheregion Ω
1/2 for Ponthesmoothboundary Γ
0 for Poutsideutheregion Ω

and
G(P, Pi) =

1
2π

ln
1
r1

(23)
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Figure 4. Electrode geometry for the BEM and the method of images.

Equation (23) is the fundamental solution, where r1 is the distance between points P
and Pi. Denoting the boundary of the electrodes as Γ1, Γ2, . . . , Γw, it can be deduced from
Equation (22) that

ciu(Pi) =
w

∑
l=1

∫
Γl

∂u(P)
∂n

G(P, Pi)dΓ−
w

∑
l=1

∫
Γl

∂G(P, Pi)

∂n
u(P)dΓ (24)

On account of the relation in [29],∫
Γl

∂G(P, Pi)

∂n
dΓ = (1− ci)δkl , forPi, P on the boundary Γk, Γl , resp. (25)
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where δkl is the Kronecker delta, and noting that u(P) = ul (constant) on the boundary Γl,
it follows that

w

∑
l=1

∫
Γl

u(P)
∂G(P, Pi)

∂n
dΓ =

w

∑
l=1

ul(1− ci)δkl = (1− ci)uk (26)

Using Equations (24) and (26), this can be transformed into

uk =
w

∑
l=1

∫
Γl

∂u
∂n

G(P, Pi)dΓ (27)

In addition, G in Equation (27) can be replaced with a modified fundamental solution
Gs, that is,

Gs(P, Pi) =

{
1

2π ln r2r3
r1r4

for phase 2 and 4
1

2π ln 1
r1r2r3r4

for phase 1 and 3
(28)

where
r1 =

√
(x− xi)

2 + (y− yi)
2 (29a)

r2 =

√
(x + xi)

2 + (y− yi)
2 (29b)

r3 =

√
(x + xi)

2 + (y + yi)
2 (29c)

r4 =

√
(x− xi)

2 + (y + yi)
2 (29d)

Equation (29a–d) can be interpreted by the method of images, as shown in Figure 4.
As a consequence, Equation (27) can be simplified to

uk =
w/2

∑
l=1

∫
Γ∗l

∂u
∂n

Gs(P, Pi)dΓ (30)

Equation (30) reduces the unknowns, remarkably, to 25% of those in the original
Equation (27).

The discretization of (30) yields

u(i)
k =

w/2

∑
l=1

N

∑
j=1

∫
Γ∗l,j

∂u(P)
∂n

Gs(P, Pi)dΓ =
w

∑
l=1

N

∑
j=1

(
∂u
∂n

)(j)

l

G(i,j)
k,l (31)

where

G(i,j)
k,l =


1

2π

∫
Γ∗l,j

ln r2r3
r1r4

dΓ for phase 2 and 4

1
2π

∫
Γ∗l,j

ln 1
r1r2r3r4

dΓ for phase 1 and 3
(32)

(
∂u
∂n

)(j)

l
is assumed to be constant in each boundary element and needs to be solved.

Accordingly, a linear equation system can be established with Equations (30) and (32):

G11
G21

G12
G22

.

.
.
.

G1,w/2
G2,w/2

. . . . .

. . . . .

. . . . .
Gw/2,1 Gw/2,2 . . Gw/2,w/2





u(1)
n

u(2)
n
.
.
.

u(w/2)
n


=



s1
s2
.
.
.

sw/2

 (33)
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where

Gkl =



G(1,1)
k,l

G(2,1)
k,l

G(1,2)
k,l

G(2,2)
k,l

.

.
.
.

G(1,N)
k,l

G(2,N)
k,l

. . . . .

. . . . .

. . . . .
G(N,1)

k,l G(N,2)
k,l . . G(N,N)

k,l


(34)

u(l)
n =

[(
∂u
∂n

)(1)
l

(
∂u
∂n

)(2)
l

. . .
(

∂u
∂n

)(N)

l

]T
(35)

sl =
[
ul ul . . . ul

]T (36)

Equation (33) can be written more concisely as follows:

GUn = S (37)

where Un is the solution vector representing the normal derivative of the potential on the
electrode surfaces.

Using the obtained normal derivative ∂u/∂n on the electrode surfaces, the potential of
P in the region Ω can be found by Equation (24) with ci = 1:

u(Pi) =
w

∑
l=1

∫
Γl

∂u(P)
∂n

G(P, Pi)dΓ−
w

∑
l=1

∫
Γl

∂G(P, Pi)

∂n
u(P)dΓ (38)

The second term on the RHS of (38) vanishes due to u(P) = ul on Γl and∫
Γl

∂G(P, Pi)

∂n
dΓ = 0, for Pi inside the region Ω and P on the boundary Γl (39)

Consequently, Equation (38) can be reduced to

u(Pi) =
w

∑
l=1

∫
Γl

∂u(P)
∂n

G(P, Pi)dΓ (40)

Equation (40) can be simplified further by replacing G with Gs as follows:

u(Pi) =
w/2

∑
l=1

∫
Γ∗l

∂u(P)
∂n

Gs(P, Pi)dΓ (41)

Discretization of Equation (41) gives the following:

u(Pi) = GKUn (42)

where
GK = [G1, G2, . . . , Gw/2], Gl =

[
G(1)

l , G(2)
l , . . . , G(N)

l

]
l = 1, 2, . . . , w/2

(43)

with

G(j)
l =


1

2π

∫
Γ∗l,j

ln r2r3
r1r4

dΓ, for Phase 2 and 4

1
2π

∫
Γ∗l,j

ln 1
r1r2r3r4

dΓ, for Phase 1 and 3
j = 1, 2, . . . , N (44)

and
Un =

[
u(1)

n , u(2)
n , . . . , u(w/2)

n

]T
(45)

Therefore, the x, y components of E can be calculated as follows:
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Ex(Pi) = −
∂GK
∂xi

Un (46a)

and
Ey(Pi) = −

∂GK
∂yi

Un (46b)

The computation efficiency can be improved further by solving the integrals (32)
analytically with the approach given in [30]. However, more convenient results can be
obtained for the evaluation of the integrals. An illustration of the integral model is shown
in Figure 5. Parameter s is the arclength of a linear segment, and the integral point P (x, y)
moves along the linear segment. (x0, y0) is the coordinate of the segment midpoint, and
(xi, yi) is the coordinate of the observation point.
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The position of P (x, y) can be denoted by

x = x0 + βs, y = y0 + δs (47)

where β = ny, δ = −nx. It is worth mentioning that the normal vector always points to the
left as s increases, and β2 + δ2 = 1. The integral of (32) can be expanded as the sum form of
four integrals related to r1, r2, r3, and r4, respectively. By this notation, each of the integrals
relevant to (32) can be written as

1
2π

∫
Γ

ln
1

|Pi − P|dΓ =
1

2π

γ/2∫
−γ/2

ln
1√

(x0 + βs− xi)
2 + (y0 + δs− yi)

2
ds (48)

where γ is the length of the element. Moreover, by the substitution

s = t− κ, κ = β(x0 − xi) + δ(y0 − yi) (49)

The integral of (48) is equivalent to

1
2π

γ/2∫
−γ/2

ln 1√
(x0+βs−xi)

2+(y0+δs−yi)
2
ds = − 1

4π

κ+γ/2∫
κ−γ/2

ln
(
t2 + u2)dt

= − 1
4π

[
t ln
(
t2 + u2)− 2t + 2uarctan(t/u)

]t=κ+γ/2
t=κ−γ/2

= − 1
4π


κ ln (κ+γ/2)2+u2

(κ−γ/2)2+u2 +
γ
2 ln

{[
(κ + γ/2)2 + u2

][
(κ − γ/2)2 + u2

]}
−2γ + 2u

(
arctan κ+γ/2

u − arctan κ−γ/2
u

)


(50)

where
u = δ(x0 − xi)− β(y0 − yi) (51)

Equation (50) is valid for u 6= 0. When u = 0, the following result can be employed:
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1
2π

γ/2∫
−γ/2

ln 1√
(x0+βs−xi)

2+(y0+δs−yi)
2
ds = − 1

2π [t ln|t| − t]t=κ+γ/2
t=κ−γ/2

= − 1
2π

[
κ ln
∣∣∣ κ+γ/2

κ−γ/2

∣∣∣+ γ
2 ln

∣∣κ2 − γ2/4
∣∣− γ

] (52)

When P0(x0, y0) and Pi(xi, yi) coincide, we have κ = u = 0, and the corresponding
singular integral can be obtained easily using Equation (52):

1
2π

γ/2∫
−γ/2

ln
1√

(x0 + βs− xi)
2 + (y0 + δs− yi)

2
ds =

γ

2π

(
1− ln

γ

2

)
(53)

Thus, the integrals of (32) can be found by proper linear combinations of the analytical
solutions (50), (52), or (53). By this approach, no numerical quadrature is required, and the
BEM algorithm can be implemented with very high efficiency.

3.2. Comparison of CSM, BEM, and FEM

The two above-mentioned approaches were used to calculate the electric field.
Figures 6 and 7 show the electric field at the height of 50 µm above an electrode surface
with 8 and 16 electrodes, respectively. Clearly, the BEM and CSM produce highly consis-
tent results, which confirms their validity. The code for the CSM can be found from the
Supplementary Material.
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Figure 7. Comparison of the electric field at the height of 50 µm above the 16 electrodes using the
BEM and CSM.

In order to quantify the comparison for the accuracy of the CSM and BEM, the same
process for calculating the error for the BEM was applied, and the results are shown in
Table 2. n1 and n2 are the numbers on each long side and short side of boundary elements.
It is clear that the CSM has slightly higher accuracy than the BEM. The CSM only needs
4.5 s to achieve the accuracy of 0.12% at phase, while the BEM needs 12 s. However, the
CSM needs time to set up the positions of fictitious charges manually, which might be
time-consuming for complex boundary conditions. The BEM does not need pre-processing,
and the image method reduces unknown elements to 25% of those in the original equations,
which greatly improves the computation efficiency of the BEM.
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Table 2. Standard norm error on each electrode in two different phases with a varying number of
calculating points for the BEM.

Calculating parameters n1 = 200
n2 = 10

n1 = 150
n2 = 10

n1 = 100
n2 = 10

n1 = 100
n2 = 15

n1 = 100
n2 = 20

Accumulated error
Phase 1 0.13% 0.16% 0.19% 0.19% 0.18%

Phase 2 0.10% 0.12% 0.15% 0.14% 0.13%

Time 12.0 s 8.1 s 4.9 s 5.3 s 5.4 s

The finite element method (FEM) is frequently used to solve electrostatic problems [31,32].
The accuracy of the FEM is related closely to the quality of the calculating mesh used; at the
edge of the conductors, extremely fine meshing is required, while further away from the
electrodes, it can be coarser [33]. The area in the eight-electrode model was divided into
two areas (blue and grey) by the rectangular boundary around the electrodes, as shown in
Figure 8. A triangular mesh was applied. The element size outside the rectangular area is
set as extremely fine, while the mesh size is set to be smaller than 4 × 10−6 m inside the
rectangular area.
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Comparisons between the electric field obtained by the CSM, BEM, and FEM for 8
and 16 electrodes are shown in Figures 9 and 10. All methods are in good agreement in
the central electrode region. However, the FEM results show significant deviation from the
CSM and BEM on both sides, especially at the corners of the electrodes. It is clear that the
CSM and BEM have higher accuracy than the FEM in solving this BVP. In addition, mesh
generating is time-consuming with the FEM, and the impact of the increase in electrode
number is more severe.
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Figure 10. Comparison of the electric field at the height of 50 µm above the 16 electrodes using the
CSM, BEM, and FEM.

In addition, the FEM has a large deviation from the CSM and BEM in the area of the
shear distribution of the electric field.

4. Electric Field and Dielectrophoretic Component Analysis
4.1. Distribution of Potential and Electric Field

The distribution of potential and electric field direction above eight electrodes in
phases 1 and 2 are shown as contour lines and arrows in Figure 11a,b, from the BEM. The
black bars on the bottom of the two figures signify each of the eight electrodes. The field line
directions can be used to predict the particle motion when the Coulomb force dominates.
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The electric field components Ex and Ey of eight electrodes in phase 2 are calculated
and shown in Figures 12 and 13, which accurately include the edge effect on the end
of electrode arrays. For the field of a large number of parallel electrodes, the periodic
symmetry of the field allows us to extend the solution with the same phase relationship by
simply repeating the periodic solution (in the middle range of the calculated field) in the
positive and negative x-directions.
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4.2. Electric Fields with Different Electrode Thickness

Figure 14 compares the electric field magnitude with electrode thicknesses of 18 µm
and 180 µm while maintaining the other model parameters the same. The electric field
is evaluated at heights of 50 µm, 500 µm, and 1mm above the surface of the conveyor.
At the height of 50 µm, the maximum value of the electric fields is similar. However,
Figure 14b shows that electrodes with larger thickness have higher electric fields and that
the difference is more distinct at higher altitudes. The effect of electrode thickness on the
electric field is instructive for the design of ETW system electrode configurations.
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4.3. Dielectrophoretic Component Analysis

The dielectrophoretic force has received increasing attention in particles or biological
cell separation [34] and carbon nanotube manipulation [35]. The DEP force acts on particles
with a dipole moment in a non-uniform electric field. The time-averaged force on the
particle can be calculated as follows [17]:〈

Fdep

〉
=

1
4

vRe
[
α∇
(

Ẽ · Ẽ∗
)]
− 1

2
vRe

[
α∇×

(
Ẽ× Ẽ

∗)]
(54)

where Ẽ is a general complex amplitude of the electric field, * indicates a complex conjugate,
v is the volume of the particle, and α is the effective polarizability related to particle and
dielectric permittivity. In our case, the electric field is constant and calculated independently
in each phase, so there is no phase variation, and the second term on the right side of
Equation (54) is zero. Figure 15 shows the DEP potential

(
Ẽ · Ẽ∗

)
as contour lines and

vector direction <Fdep> as arrows.
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4.4. Real Case of Using Dielectrophoresis

For the manipulation and transport of particles or biological cells, the theoretical
analysis of different forces is crucial for the design and optimization of the conveyor system.
For example, the charged particle can have both a Coulomb force and a dielectrophoretic
force, and the two different forces may drive the particle to move in different directions.
Figure 16 compares DEP and Coulomb forces acting on ballotini particles of various sizes
and a charge of 10% of the saturation charge in the air. The saturation of particles is
calculated by the relation of Pauthenier [36].

qm = 4πr2ε0
3εp

εp + 2
Ec (55)

where Ec is the dielectric strength of air and Ec ≈ 3× 106 V/m; r is the particle size and εp
is the relative dielectric permittivity of the particle. The real Clausius–Mossotti factor for
the particle is assumed as 0.5. The position of the particle is fixed at the middle of the first
electrode and half of the width of the electrode above the surface of the electrode, which
has the largest DEP force in the y direction. Because the DEP force is volume related, it
becomes more dominant as the particle size increases. The comparison is useful for the
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design of a system to decide the dominance force on the particle. Further analysis could be
obtained, for example, on the trajectory simulation by the action of the two forces.

Micromachines 2023, 14, x FOR PEER REVIEW 18 of 20 
 

 

becomes more dominant as the particle size increases. The comparison is useful for the 
design of a system to decide the dominance force on the particle. Further analysis could 
be obtained, for example, on the trajectory simulation by the action of the two forces.  

 
Figure 16. Comparison between DEP and Coulomb force. 

5. Conclusions 
The CSM and BEM were explored for the numerical solution of the electric field for 

an interdigitated, rectangular electrode array with a specified thickness. These two meth-
ods are readily implemented with the method of images and can achieve high computa-
tional efficiency and accuracy. In addition, analytical solutions for the integral of Green’s 
function along the boundary elements are derived. These analytical formulas are benefi-
cial to the efficient implementation of the BEM and can be utilized for the general 2D BEM 
of electrostatic problems. 

The boundary conditions used in the CSM and BEM numerical calculation do not 
require simplification. Electric field and DEP component analysis with 8- and 16-electrode 
systems were provided, which showed accurate results near the electrode surface. These 
results can be used for the design of different ETW electrode configurations for particle 
transport and biological cell manipulations. The FEM results were compared with those 
of the CSM and BEM and showed differences at the electrode ends, indicating that the 
FEM may not be suitable for determining the electric field in systems with sharp bounda-
ries. Moreover, the CSM and BEM are less time-consuming. Overall, the CSM and BEM 
are more general numerical methods for dealing with electrostatic field problems and can 
be adapted readily to more complex boundary conditions, such as a 3D model of the elec-
trode array. 

This accurate evaluation of the electric field could potentially benefit the analysis of 
particles and cells in transport and separation, as the estimation of particle trajectory is 
highly sensitive to the electric field.  

Supplementary Materials: The code for the boundary element method can be downloaded from 
https://notebookarchive.org/2022-12-3piktmq. 

Author Contributions: Conceptualization, Y.Y., Y.L. and J.C.; methodology, Y.Y. and Y.L.; software, 
Y.Y. and Y.L.; validation, Y.Y., Y.L. and K.H.; formal analysis, Y.Y. and S.S.; writing—original draft 
preparation, Y.Y.; writing—review and editing, Y.Y., Y.L., J.C., K.H., S.S. and Y.W.; visualization, 
Y.Y.; supervision, J.C., K.H. and Y.W.; project administration, J.C. and Y.W. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Figure 16. Comparison between DEP and Coulomb force.

5. Conclusions

The CSM and BEM were explored for the numerical solution of the electric field for an
interdigitated, rectangular electrode array with a specified thickness. These two methods
are readily implemented with the method of images and can achieve high computational
efficiency and accuracy. In addition, analytical solutions for the integral of Green’s function
along the boundary elements are derived. These analytical formulas are beneficial to
the efficient implementation of the BEM and can be utilized for the general 2D BEM of
electrostatic problems.

The boundary conditions used in the CSM and BEM numerical calculation do not
require simplification. Electric field and DEP component analysis with 8- and 16-electrode
systems were provided, which showed accurate results near the electrode surface. These
results can be used for the design of different ETW electrode configurations for particle
transport and biological cell manipulations. The FEM results were compared with those of
the CSM and BEM and showed differences at the electrode ends, indicating that the FEM
may not be suitable for determining the electric field in systems with sharp boundaries.
Moreover, the CSM and BEM are less time-consuming. Overall, the CSM and BEM are more
general numerical methods for dealing with electrostatic field problems and can be adapted
readily to more complex boundary conditions, such as a 3D model of the electrode array.

This accurate evaluation of the electric field could potentially benefit the analysis of
particles and cells in transport and separation, as the estimation of particle trajectory is
highly sensitive to the electric field.

Supplementary Materials: The code for the boundary element method can be downloaded from
https://notebookarchive.org/2022-12-3piktmq.
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