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Abstract 
While writing this abstract I received an email, which I promptly 
answered. When I returned my attention to the abstract, I struggled 
to regain my flow of writing. In order to understand this deficit in 
performance associated with switching from one task to another, or 
"switch cost", cognitive neuroscientists use task switching paradigms 
to recreate similar experiences. However, many researchers may be 
familiar with the difficulties that accompany modifying an established 
paradigm to suit their experimental design, or even the challenge of 
creating a new, unvalidated paradigm to perturb a particular aspect of 
cognitive function. This software tool article introduces a novel task 
switching paradigm for use and adaptation in online and 
neuroimaging task switching studies. The paradigm was constructed 
with a flexible, easily-adapted framework that can accommodate a 
variety of designs. This paradigm utilizes three psychometrically 
opposed but visually similar tasks- the Digit Span, the Spatial Span, 
and the Spatial Rotation. In two Use Cases we demonstrate the 
reliable nature of overall task performance and the dependence of 
switch costs on certain task parameters. This task framework can be 
adapted for use across different experimental designs and 
environment, and we encourage researchers to modify the task 
switching game for their experiments.
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Introduction
Switch costs are defined as the deficit in task performance incurred when switching between one task and another.1,2

Behavioral switch costs are observed when comparing successive trials in which participants switch between tasks to
those where the same task was repeated. This switch cost can be viewed as a result of the increasing demand on executive
function incurred by restructuring one mental “task set” (the goals, rules, and attentional focus unique to one task) to a
different one.3,4 Put simply, switch costs may be a result of interference in cognitive restructuring processes. Neuroim-
aging studies classify the reconfiguration process as a result of the changes in brain network activity and functional
connectivity that reflect the changes in task set.5,6 The neural correlates of each task set may be considered the brain state
unique to each task set.

Many studies have investigated how unique, overlapping, dissociable, and predicative these brain states are.7–10 To
determine how unique the brain states for each task set are, Soreq et al built a classifier that identifies which working
memory task a participant was completing based on their brain states.11 They showed that behaviorally distinct aspects of
working memory mapped to distinct but densely overlapping patterns of activity and connectivity within the brain,
known as themultiple demand cortex.12,13 The differingmental processing characteristics that underpin participant’s task
performance are known as psychometric characteristics,14 and three tasks used in Soreq et al’s study- the Digit Span,
Spatial Span, and Spatial Rotation- maximized the psychometric distance across orthogonal factors- visuospatial
reasoning and verbal reasoning.15 Though all tasks recruited the multiple demand cortex, brain states could be separated
according to the working memory processes recruited by each task, showing a high correspondence among behavioral
constructs and resulting working memory subprocesses.11,16,17

This invites the follow-up question “How does the brain reconfigure between these different brain states?” The
literature here is sparser, with a lack of studies that model how neural networks reconfigure when transitioning from
one discrete task to another (referred to as “set switching” or “context switching”18). In future studies we hope to
characterize the trajectory neural networks take to effectively switch between tasks. Therefore, we created a cued task
switching paradigm that aims to generate a behavioral and physiological switch cost for use in experiments that will
characterize, model, and modulate the switch cost. We chose three psychometrically opposed tasks from Soreq et al11

to force distinct reconfiguration from one brain state to the next. Rather than switching between stimulus response
mappings or rules, our task switches between entire task sets, similar to.19 Yet our task differs from to Allport’s set-
shifting task by shifting among different, psychometrically opposed working memory tasks, rather than rules or
stimuli within a task. These differences were introduced with the aim of inducing large set shifts observable by fMRI,
where future studies may explore how neural networks reconfigure to meet the demands of different workingmemory
tasks.

Two versions of the task exist- one is written in JavaScript to collect behavioral data online, and the other is written in
Python for use in neuroimaging studies. These versions are designed to be highly similar to one another.We describe both
in detail below, then present the results of two pilot studies. The pilot studies observe that, though the two versions of the
task do not consistently induce a switch cost, the paradigm operates within an optimal difficulty range, and participants do
not exhibit learning effects. Though our task does not produce traditional switch costs, we believe this paradigm is useful
given its highly adaptable, multi-modal, open-source nature.

REVISED Amendments from Version 1

In response to feedback received during peer review, we have updated the text’s Methods section and further contextu-
alized our work within existing task switching literature. The first addition to the Methods section details the different
implications of including varying inter trial intervals in neuroimaging or online versions of the task. Our second addition to
the Methods section clarifies how we defined and computed switch costs. To contextualize this work within wider task
switching literature, we added sentences in the Introduction and Limitations to ensure readers are aware that results from
our experiment may not generalize to task switching studies with more standard designs. In the Introduction and
Limitations sections, we state that our paradigm does not consistently introduce a switch cost, and we clarified that our
task design does not permit comparison of switch vs restart costs, normixing costs, whichmay have influenced the ability to
induce switch costs. Further additions to the introduction emphasized how and why our paradigm is intentionally different
frommost task switching paradigms. These additions state our paradigmenables investigators to study research questions
traditional task switching paradigmsare notwell-suited to investigating, such as evaluating theneural correlates of large set
shifts.

Any further responses from the reviewers can be found at the end of the article
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Methods
Implementation
In this section, we first provide a description of each of the three tasks’ features. Then, we detail how the overall task is
compiled, and what sections may be modified to suit different experimental designs.

Task Descriptions
The cued task switching paradigm switches between three tasks- a Spatial Rotation, Spatial Span, and Digit Span task.
Variants of these tasks have been created and implemented over the years.10,20 The essential components of each task are
clarified below.

All tasks use a similar stimuli presentation and response framework to reduce visual and motor confounds. Stimuli are
created using normed pixel units, and the screen angle is standardized to reduce color variation across devices. Stimuli are
presented on a 6x6 grid in the middle of the screen. To ensure the tasks are visually similar, each task’s stimulus grid
flashes cells and contain numbers, even if not strictly necessary for the task. After presentation is complete, the stimulus
grid disappears, and three answer grids appear in a row across the screen. One of the answer grids contains the correct
answer, and the other two have one of the cells from the correct answered shifted, meaning two of the three grids’ answers
are incorrect by one cell (Figure 1).

Digit Spanmeasures verbal working memory capacity. In this task, a sequence of 6 numbers within a shaded box on the
stimulus grid appears one after another. One of the three answer grids will contain the correct sequence of numbers, and
the other two will be correct except for one digit. This is a variant of theWAIS-R intelligence test that evaluates working
memory.20 Spatial Span tests visuospatial working memory capacity. 6 squares flash digits appearing in a random
sequence, one after another, in the stimulus grid. The correct answer grid will display the same sequence of numbers that
flashed in the stimulus grid, while the other two display a sequence that is incorrect by one cell. Finally, Spatial Rotation
measures the ability of the participant to mentally rotate objects in memory. Similar to the Spatial Span, shaded cells
appear one after another, though in this task the previous cells continue to flash with each new addition. The resulting end
stimulus is a flashing grid of 6 cells. The answer grids contain a 90, 180, or 270-degree rotation of the final grid, with two
of the three answer grids incorrect by one cell. Gifs showing trials of each task can be found here: https://github.com/
daniellekurtin/task_switching_paradigm/tree/master/TaskGifs.

Compiling the paradigm
We describe the implementation of the task switching paradigm as created for our experimental use, rather than the
software package as a whole.We provide the software package as an example of how it may be implemented and used for
an experiment.

Running the main:py script initiates an implementation of the task switching paradigm. The paradigm consists of blocks
composed of a sequence of tasks. Each task is composed of a run of trials. Trials consist of stimuli and answer grids
(Figure 1). Runs are set up so that the last run on one block continues as the first run on another block. For example, if the
last run within a block consists of 9 trials of Digit Span, then the break could occur on trial 7, and after the break, the
remaining two trials would be the first two trials of the next block. This approach maximizes the number of task switches
in each block while keeping the number of runs balanced across each of the three task types. Themain:py implementation
begins with a popup to record participant and session information (taskSwitching:participant_gui:py). After the popup is
dismissed, a scanner sync process is initiated, creating a Pythonic interface for neuroimaging experiments. Thenmain:py
constructs a demo that participants may play multiple times to ensure their familiarity with how to play the tasks. The
demo’s parameters are set by taskSwitching:ExperimentTaskSwitch class (and its parent taskSwitching:Experiment
class), with trials determined by main:py. Then, main:py constructs a new task blueprint using the default parameters
set by taskSwitching:ExperimentTaskSwitch class. If desired, implementations may specify the types of tasks the
paradigm will switch between, the length of the cue cards, the number of trials per task, the duration of each stimuli,
andmore, as demonstrated in the tutorial construction. A pseudorandomized list of trials, runs, and blocks are constructed
based on the provided specifications, ensuring there are an equal number of switches for each task type. Each task’s trials
are instances of classes unique to each task type: taskSwitching.TrialDigitSpan, taskSwitching.TrialSpatialSpan, and
taskSwitching.TrialSpatialRotation. Parameters may be set at the Experiment, Component, Trial, or specific trial task
level, with the later parameters overriding earlier ones where there are conflicts. Values that can be set in this way include
how stimuli and answers are created and displayed, and for how long.

Trials are instances of Components, and cue cards, instructions, and breaks are also components. taskSwitching. Components
include the following: taskSwitching.ComponentRest determines the rest screen; taskSwitching.ComponentStart is the screen
before participants begin the task switching game; taskSwitching.ComponentInfoCard creates the cue cards that prompt a task
switch; and taskSwitching.ComponentTrialGap fixes the screen that appears between trials.
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As aforementioned, trials consist of stimuli and their answer grids, which are constructed according to the
taskSwitching:Grid class. Finally, as the task is played, information is saved to a.csv file. What is saved and the file
format is set by the taskSwitching:Experiment class.

Figure 1. Depiction of how A. trials build into a run of a task. These tasks form B. blocks, which together,
compose C. a session. This depiction represents the task described in the manuscript, but all components shown
can be changed to suit the needs of other experiments.
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Operation
This task is executable in a Pythonic environment. Touch events (i.e., participant’s responses) can be collected via button
box, through keyboard strokes, and by mouse clicks. Responses minimize motor confounds through requiring a single
button press or click to select an answer grid for all three tasks.Wewill now describe theworkflow and design features for
both the neuroimaging and online versions.

Neuroimaging studies
The paradigm begins with a participant GUI that requires entering the participant ID, age, gender, and session ID (fields
can be adjusted depending on specific study needs). Participants then play a demo that includes each of the tasks at least
once. The demo includes performance feedback: after participants select an answer grid, a green box will highlight either
the correct answer grid, or the space it would occupy. This gives participants a better understanding of how well they
comprehend the task’s rules. After a loading screen the participant is presented with a cue card stating they may press any
button on the button box to begin. Once a button is pressed, the first cue card is presented, followed by the first trial of that
task. After the first stimulus is finished, there is a variable delay before participant responses are enabled. Participants then
have awindow to respond. Once the participant selects their answer grid, the other two disappear, and the first answer grid
is held on the screen for the remainder of the response window. This serves two purposes. First, by eliminating the other
answer grids, we provide feedback that their answer has been recorded, preventing repetitive button presses. Second, we
eliminate the potential for participants to compare their answer to the other answer girds. Once the trial is over, there is a
variable intertrial interval (e.g. 100 to 1100 msec) to introduce a jitter. The jitter is used to improve reliability of fMRI
signals, and increase the spatio-temporal resolutions.21 For online studies, we recommend researchers include a jitter-
induced delay related regressor in models of BOLD activity, and remove jitter during offline studies as recommended by
Ref. 22 for response-cue trial intervals. The number of trials per run range is modifiable (5-10 might be a reasonable
number for fMRI experiments). Once the task is complete, a cue card stating “Next Task: [Digit Span/Spatial Span/Spatial
Rotation]” is displayed to indicate which task is next. There are no task repeats (i.e., if the previous task was the Digit
Span, the next would be either the Spatial Span or Spatial Rotation). The duration of the cue card is a random choice of
either 0.5 or 4.0 seconds, though the number of cue cards and their length can be varied. This enables future investigation
into the effects of short vs long cue presentation on neural network dynamics and task performance. After the trials within
the block are complete, a break occurs (though the presence and/or duration of a break can bemodified). The break screen
contains a centered fixation cross, and a countdown until the task restarts. Once all blocks are complete, the task quits, and
data is saved in a.csv file. Participant reaction time is computed as the difference betweenwhen they submit an answer and
when a response was enabled for that trials. Reaction time is measured in seconds with hundred-millionths period
precision.

Online studies
Our version of the task switching paradigm is hosted on the University of Surrey’s web servers. The university servers
serve three main functions: enabling participants to access and play the task, recording their performance, and storing
“task blueprints” (Figure 2). These “task blueprints” are pre-compiled sessions (the order of tasks, the number of trials per
task, etc), and are the same as the tasks generated locally. Uploading the task blueprints is simple, and reduces the burden
on the server. These blueprints are created using serve� trial� sequences:py, with dependencies and scripts used to
communicate among servers located in thewww folder of the paradigm’s repository. Participants access the task from the
link http://www.task-switching-game.surrey.ac.uk. They are walked through a tutorial with written instructions and
accompanying animations. Participants then play the same demo described in the above section. After the demo,
participants are invited to either play it again, or continue on to the main task. Once they continue, they read an ethics
statement and fill out consent checklists and their participant information (participant ID, age, sex). Next, they receive the
instruction to “Press next to begin.” At this stage the online version of the task is as the neuroimaging version, except it
consists of one, 20-minute long block, and answer selection is done using the mouse (the task is configured to work using
a keyboard, mouse, or button box).

Use Case 1: Online study
The study was advertised on SONA, a participant recruitment and experiment management system that connects
participants to ongoing studies. Participants could sign up and play the task switching game, and were awarded course
credit for completion. All participants gave informed consent. This study was conducted with ethical approval by the
University of Surrey Ethics Committee.

Parameters for this use case are as follows:

• Delay from stimulus end to participant response window: 0.15 s
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• Participant response window: 3.0 s

• Block break: 120.0 s

• Response mode: mouse

• Inter-trial interval: 100-1100 msec

• Cue card length: 0.5 or 4.0 s

• Number of trials per occurrence: 6-9 trials

• Range of trials: 176-187

Data analysis was conducted using the :csv file output by the online task in a MATLAB environment. Non-normally
distributed performance data was normalized by computing the z-score with a center of zero and one standard deviation.
Switch task types are defined as the first trial after a switch between tasks, and stay trial types are all other trials.
Occurrence refers to the number of times a participant has played a task. For example, if the task starts with a Digit Span,
then switches to the Spatial Rotation, then back to the Digit Span, the occurrences would be 1, 1, 2. Linear mixed effects
models are used to assess the effect of task type, occurrence, and trial type on behavioural performance, with subjects
included as random effects. Post-hocs are evaluated using T-tests.

Results
Data cleaning The total number of online participants was n=87, with a mean age of 19.68, and all participants were
university students. We removed any sessions with less than 100 trials (n=7). There were no participants that had>20%

Figure 2. Schematic of various servers used to execute the online version of the paradigm and their broad
functions. Participants accessed the task using a link that can be opened via web browsers using either a mobile
device or computer (though we specified we prefer that participants used a computer).
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omissions in any task. We removed participants that performed below chance level for any task (n=19), leaving us with a
final cohort of 61 participants (n=52 females). Each participant had an average of 178.9 trials (sd=12.37) overall.

Overall performance-reaction time and accuracy Performance was evaluated using accuracy and mean reaction time
(MRT) (Table 1). Kolgov-Smirnov tests show both accuracy (D(1509)=0.55, p≤0.0001) and MRT (D(10909)=1,
p≤0.0001) are non-normally distributed, and were thus normalized.

There was a significant effect of task type on accuracy (F[2,1503]=10.8, p=2.1e-05). Post-hoc T-tests show each task’s
accuracy is significantly different than the others, with Digit Span performing 12.6% and 4.8% better than Spatial Span
(t(502)=-9.6, p=3.1e-20) and Spatial Rotation (t(502)=-3.6, p=3.7e-04) respectively, (Figure 3A). Spatial Rotation
performancewas 7.8% higher than Spatial Span performance (t(502)=-6.1, p=5.5e-11). There was no significant effect of
occurrence on accuracy (F[1,1503]=2.6, p=0.10) (Figure 3B).

There was a significant effect of occurrence on MRT (F[1,1481]=8.4, p=0.004) (Figure 3D). A Bland-Altman plot was
created to investigate whether the effect of occurrence was a result of unreliable RT recording or learning effects. There
are no remarkable effects on the data, as shown in the (Figure 4A). There was no significant effect of task type on MRT
(F[2,1481]=0.1, p=0.92) (Figure 3C).

Switch Cost There is a significant overall switch cost in accuracy (t(1447)=3.0, p=0.003) (Figure 5A) but not MRT
(t(811)=0.85, p=0.39) (Figure 5B). Because there is an effect of task type on accuracy, we looked at whether there was an
effect of switch on each task’s performance. After Bonferroni correction for multiple comparisons, there is a significant
switch cost in Spatial Span (F[1,120]=7.4, p=0.008) and Spatial Rotation (F[1,120]=7.4, p=0.007) accuracy, but not Digit
Span (F[1,120]=0.25, p=0.62) Figure 5C-E).

We also sought to determine whether switch cost was influenced by switch type- the six possible combinations of how
one task may switch to another. For example, a switch fromDigit Span to Spatial Span is one switch type, and vice versa,
another. We found a significant effect of switch type (F[1,425]=6.8, p=0.009) on accuracy but not MRT (F[1,405]=1.3,
p=0.26). Post-hoc ttests found no significant differences in accuracy per switch type after Bonferroni corrections for
multiple comparisons.

Discussion
In this first online pilot of the task switching paradigmwe found task type influenced accuracy. The better performance in
the Digit Span compared to the Spatial Span is not surprising. A study of 44,600 participants playing a range of cognitive
tasks online found that, when playing the Digit Span, the average number of stimuli remembered by participants is
7, whereas the average number of stimuli remembered for the Spatial Span is 6.20 This means that, using our 6x6 grid, the
number of stimuli to retain for the Digit Span is well within the abilities of our population. The discrepancy in
performance between the Digit Span and Spatial Rotation is less clear. However, in a previous study comparing
performance between working memory tasks that greatly resemble the Digit Span and Spatial Rotation, performance
on the Digit Span analog was significantly better than their analog visuospatial task.23 Finally, the difference in
performance between the Spatial Span and the Spatial Rotation may be a result of participant’s ability to form effective
strategies for each task. A study byGardony et al investigatedmental rotation tasks and found that, as difficulty increased,
cognitive strategies shifted in order to meet the demands of the task.24 Participants playing the Spatial Span can more
easily rely on recognition strategies than in the Spatial Rotation, where participants not only need to recall patterns, but
perform amental rotation of the patterns as well. The additional demands of the Spatial Rotation taskmay have resulted in
the discrepancy between Spatial Span and Spatial Rotation performance.

We found an influence of occurrence on MRT. The greatest difference in MRT per occurrence is between occurrence
1 and 7. MRT in occurrence 7 is 6% faster than during occurrence 1; a marginal improvement over the duration of the
experiment.

Table 1. Behavioral performance for the first online pilot.

Overall
mean � sd

Digit Span
mean � sd

Spatial Span
mean � sd

Spatial Rotation
mean � sd

MRT (ms) 1826.5 � 501 1837.7 � 505 1826.2 � 489 1813.1 � 511

Accuracy 60.57% � 22 66.31% � 23 53.68% � 21 61.51% � 21
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The switch cost in accuracy, but not reaction time, demonstrates a partial success of our aim to create a task switching
paradigm that forces a behavioral switch cost. The presence of switch costs in accuracy, but not reaction time, may be a
function of the responsewindow imposed on participants. A study byHughes et al found that switch accuracy fell 29%by
introducing a response time window,25 but this switch cost did not extend to reaction time. Our response window of three
seconds is likely enough to induce a time pressure on participants, as well as the added switch cost in accuracy, but not
reaction time. The explicit cues informing participants a switch is about to occur may have reduced the behavioral switch
cost. A study byMerian also using a random, cued, task switching paradigm reported a smaller switch cost than the switch
cost observed in a study by Monsell without random task switches.1,26 Tornay and Milan compared the two studies and
hypothesized that the cue for a change in task gives participants time to suppress the current task set. This initiates the
cognitive restructuring process of task switching, thus increasing participants’ ability to quickly reconfigure to the
demands of the new task.4 Our cue card intervals of 0.5 and 4.0 seconds were likely long enough to allow participants to
suppress the currently active task set when the cue card is shown. This preparatory process may decrease the switch cost,
but not the cognitive restructuring process of switching. We did not collect neuroimaging data for this study, but we plan
to in the future, and will investigate this arm of research.

Due to an error in the data collection process, we were unable to assess how the variation in cue card presentation length
effected participant’s performance. Because of the potentially significant influence this variability may have had on
participant’s performance, we standardized the cue card length from 4.0 seconds to 0.5 seconds, and conducted a second
round of data collection. The results from this second use case are detailed below.

Use Case 2: Online study with standardized cue card length
As a result of our inability to calculate the impact of cue card length onMRT and accuracy, we standardized the cue card
length to be 0.5 seconds. Our data collection and analysis were conducted using the same methods as above.

Figure 3. Violin plots show accuracy A. per task type and B. occurrence, as well as MRT A. per task type and
D. occurrence. The top and bottom edges of the grey boxes represent the 25th and 75th percentiles, with themean
being the white dot. Extension of the whiskers limits outliers. A kernel density estimate of the data provides the
edges to the violin plot, and individual data points are dark blue. ∗ denotes significance at p≤0:05 after Bonferroni
correction for multiple comparisons.
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Results
Data cleaning The total number of online participants was n=40, and all participants were university students. We
removed any sessions with less than 100 trials (n=4). We also removed participants that had>20% omissions in any task
(n=0), participants that performed below chance level for any task (n=3), leaving us with a final n=33 (n=31 females)
Each participant had an average of 182 trials (sd = 3.35) overall.

Overall performance-reaction time and accuracy Accuracy and MRT were used to evaluate performance (Table 2).
Kolgov-Smirnov tests show both accuracy (D(825)=0.55, p=4.4e-215) and MRT (D(825)=1, p≤0.0001) are non-
normally distributed.

There was a significant effect of task type (F[1,819]=3.1, p=0.047) (Figure 5A), but not occurrence (F[1,819]=0.01,
p=0.94) (Figure 6B), on accuracy. Post-hoc T-tests show each task’s accuracy is significantly different than one another,
with Digit Span performing 14.9% and 5.5% better than Spatial Span (t(274)=-5.6, p=4.9e-08) and Spatial Rotation
(t(274)=-3.4, p=7.8e-04), respectively. Spatial Rotation performance was 9.34% higher than Spatial Span performance
(t(274)=-9.1, p=2.3e-17).

There was a significant effect of occurrence on MRT (F[1,813]=12.0, p=0.0006) (Figure 6D). A Bland-Altman plot was
created to investigate whether the effect of occurrence was a result of unreliable RT recording or learning effects. There

Figure 4. Bland-Altman plots of the difference inmean reaction time between the first and second half of the
session per participant (y-axis) against the mean reaction time (x-axis) for the (A.) first and (B.) second Use
Cases. Plots show the mean (solid line), 95% confidence limits (dashed lines), and the data points (blue points).
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are no remarkable effects on the data, as shown in the (Figure 4B). There was no significant effect of task type on MRT
(F[2,813]=0.39, p=0.67) (Figure 6C).

Switch cost There is no significant switch cost in accuracy (t(791)=-0.69, p=0.49) (Figure 7A) or MRT (t(469)=-0.34,
p=0.73) (Figure 7B). There was no significant effect of switch type on accuracy (F[1,229]=0.01, p=0.92).

Discussion
This online pilot sought to evaluate performance on the task switching paradigm and see how the standardization of cue
cards influenced performance.

Therewas high similarity between the first and second pilot, with both pilots showing an effect of occurrence onMRT and
task type on accuracy. However, the switch cost in the Spatial Span and Spatial Rotation observed in the first pilot was not
present in the second. The loss of switch cost is surprising, especially given that the cue card length was standardized to
0.5 seconds as opposed to 4.0 second, suggesting that switch costs may by driven by a longer cue card.

This is supported by a task switching study by Periánez and Barcelo27 that studied the role of exogenous (cues) and
endogenous (task-set activation) in the behavior and EEG markers of switch costs. Their experimental paradigm
randomly varied the cue-trial interval (CTI) between participants as either 800 or 2000 ms. They found that the shorter
CTI did not consistently lead to a greater switch cost, and in fact, influenced a cue-switch benefit. The results from our
study are similar- Use Case 1, which had CTIs of either 500 ms or 4000 ms, exhibited a greater switch cost than in Use
Case 2,which solely hadCTIs of 500ms. Their EEG results suggest this phenomenamay be a result of reduced P3 activity
that arises from an interplay between time-dependent endogenous (anticipatory task set reconfiguration) and exogenous
(cue) factors.We suggest future studies utilize the neuroimaging compatibility of our task switching paradigm to replicate
this finding.

Figure 5. Violin plots show switch costs in A. accuracy, B. MRT, and C. accuracy per task type. The top and
bottom edges of the grey boxes represent the 25th and 75th percentiles, with the mean being the white dot.
Extension of the whiskers limits outliers. A kernel density estimate of the data provides the edges to the violin plot,
and individual data points are dark blue. ∗ denotes significance at p≤0:05 after Bonferroni correction for multiple
comparisons.
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Limitations
This task contains two visual confounds. First, in the Spatial Span and Digit Span the boxes disappear after the initial
presentation; in the Spatial Rotation, they build upon one another. The resulting end image is a visually more complex
image. This confound is unavoidable due to the nature of the Spatial Rotation task. Second, the stimuli in the Digit Span
present in half the time as the stimuli for the Spatial Span and Spatial Rotation, 0.25 seconds as opposed to 0.50 seconds,
respectively. This difference was implemented after rounds of piloting the task, where it was noticed the Digit Span was
markedly easier than the other two tasks. By reducing the stimulus presentation timewe increase the difficulty of theDigit
Span, making it more comparable to the other two tasks. This is important, as cognitive load influences the brain network
activity and connectivity within a task.28 Though the piloting of this taskwas performedwith healthy control participants,
future researchers may want to assess differences between healthy control and patient populations. Mixing costs may be
more sensitive to between-group variability,29 and one limitation of our task structure is that it does not permit the
exploration of mixing costs. Moreover, the current design did not allow repeats blocks of the same task (for example, this
order would not occur: Digit Span, Spatial Span, Spatial Span, Spatial Rotation), and therefore cannot investigate the
difference in switch vs restart costs.19 Future researchers are invited to adapt the paradigm’s design to allow repeat task

Table 2. Behavioral performance for the second online pilot.

Overall
mean � sd

Digit Span
mean � sd

Spatial Span
mean � sd

Spatial Rotation
mean � sd

MRT (ms) 1844.0 � 496 1872.5 � 481 1821.6 � 519 1831.5 � 492

Accuracy 60.34% � 23 68.02% � 22 53.16% � 21 62.50% � 21

Figure 6. Violin plots show accuracy A. per task type and B. occurrence, as well as MRT A. per task type and
D. occurrence. The top and bottom edges of the grey boxes represent the 25th and 75th percentiles, with themean
being the white dot. Extension of the whiskers limits outliers. A kernel density estimate of the data provides the
edges to the violin plot, and individual data points are dark blue. ∗ denotes significance at p≤0:05 after Bonferroni
correction for multiple comparisons.

Page 12 of 22

F1000Research 2022, 11:377 Last updated: 01 MAR 2023



blocks, to investigate switch vs restart costs, and explore whether introducing mixed-task blocks induces switch costs not
seen in this version of the paradigm.

Finally, our task differs frommost variants of task switching paradigms, and this should be taken into consideration when
comparing results from this task to literature using different paradigms.

Future researchers are encouraged to modify these parameters as it suits their task. The task switching paradigmwas built
with flexibility in mind, so it may be easily adapted to various experimental designs.

Conclusions
Searching for “task switching paradigms” reveals a staggering amount of task designs, theories, and neuroimaging data.
The quantity and heterogeneity of experimental designs address specific facets of switch costs, and by proxy, cognitive
function. The authors are not aware of an existing framework that can be adapted easily to suit the demands of different
experiments, leaving researchers to either re-use old tasks or create entirely new ones to suit their experimental designs.
We needed to construct a novel task switching paradigm, and chose to create one within a framework that can be adapted
to suit the needs of different experiments. Here we introduce a flexible software package to create task switching
paradigms. It can accommodate nuanced designs within a stable and robust framework for on or offline studies, and is
compatible with neuroimaging methods. The task switching paradigm does induce minimal switch costs, but efforts are
underway to improve the switch cost.

Data availability
Repository: Task Switching Paradigm. https://github.com/daniellekurtin/task_switching_paradigm with anMIT license.

This project contains the following underlying data:

• rawdata_pilot4.csv. (Data downloaded from the task server for Use Case 1.)

• rawdata_pilot5.csv. (Data downloaded from the task server for Use Case 2.)

Data are available under the terms of the repository’s MIT license.

Software availability
Source code available from: https://github.com/daniellekurtin/task_switching_paradigm with an MIT license.

Figure 7. Violin plots show switch costs in A. accuracy andB.MRT. The top and bottomedges of the grey boxes
represent the 25th and 75th percentiles, with the mean being the white dot. Extension of the whiskers limits
outliers. A kernel density estimate of the data provides the edges to the violin plot, and individual data points are
dark blue.
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This paper presents a well-motivated objective – to design and make available a well-controlled 
task-switching paradigm that can be used in multiple contexts (eg., imaging and online studies) 
and with different groups. This will facilitate the comparison of findings across studies and 
participant groups. 
 
The authors put substantial effort into making the three tasks similar in visual presentation and 
response requirements, so that differences between them can be attributed to different cognitive 
processes rather than sensory or motor processes. They select three visual tasks that have 
previously established psychometric properties and focus on digit span, spatial span, and spatial 
rotation, with a multiple-choice response format (i.e., given 3 options and have to select the 
correct response). The design includes short blocks of trials (7-10 trials) on the same task. Each 
block begins with a cue card that indicates which task will be performed. Task order is 
pseudorandomised, as the same task is not repeated across two blocks. The duration of the cue 
card is variable, the duration of each target card is not specified, but the response grid appears 
after variable delay. Once the participant selects one of the three options, the others disappear 
and after another variable interval, the next trial appears. The first data set shows significant 
accuracy and RT differences between tasks, and a significant ‘switch cost’ on accuracy but not RT. 
The second data set is run with a fixed cue duration (0.5 secs) and the effect of the task is found 
again, but no ‘switch cost’ in either accuracy or RT. 
 
The paper is generally very well-written, and the data are clearly presented with good quality, 
analytical figures. However, I found that there are many weakly justified decisions in the paradigm 
development that question whether the paradigm can produce data comparable to the vast 
volume of task-switching literature available and therefore weaken the potential impact of the 
paper. My concerns are mainly related to the fact that the design of the task-switching paradigm, 
the choice of tasks, the timing parameters, the response options, and the conditions are not 
consistent with any of the multiple paradigm structures available. Moreover, the paradigm itself 
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did not produce robust switch effects, which questions its usefulness as a task-switching 
paradigm. 
 
There are many well-established variants of the task-switching paradigm (e.g., Grange and 
Houghton1, Jamadar et al.2, Karayanidis and McKewen3). These produce somewhat different ways 
to measure switch costs and additional measures of interest. The paradigm used here is probably 
most similar to that used by Allport et al.4, but with significant differences to make comparisons 
difficult. The paper does not actually specify how ‘switch cost’ is measured. An example trial 
sequence is: Task A: 1 2 3 4 5 6 7, Task B: 1 2 3 4 5 6 7 8 Task C: 1 2 3 4 5 6 7, etc. I can only assume 
that trial 1 in each block is considered the ‘switch’ trial. However, it’s not clear which of the other 
trials are used as the ‘repeat’ trial, e.g., is it trial 2, the average of all other trials, etc. This will 
impact the value of the repeat trial, and therefore switch cost estimation. 
 
Allport and Wylie5 showed that these paradigms produce both switch and restart costs, as the first 
trial of each block produces poorer performance whether the task switches or not. Without 
occasional repeat blocks, e.g., Task A A B C C B A, it is impossible to differentiate between the 
switch and restart costs. In addition, this paradigm does not allow estimation of mixing cost (the 
difference between repeat trials in a single-task vs a mixed-task block), a measure that has been 
found to be more sensitive to variability in some groups (e.g., ageing, see Karayanidis and 
McKewen3, Karayanidis et al.6). 
 
Another major concern is the timing parameters. The paradigm includes very slow trials – the 
exact inter-trial interval is not specified but appears to be in the order of seconds – and substantial 
jitter. Monsell and colleagues7,8 have shown that timing, jitter, etc can result in measurable 
changes in outcomes. Ruge et al.9 reviewed the fMRI task-switching literature and concluded that 
timing variations used to adapt the paradigm to fMRI timing can significantly impact the cognitive 
control processes being activated. 
 
Finally, the tasks themselves are very different from the tasks typically used in task-switching 
paradigms. In previous studies, tasks tend to involve a simple visual stimulus (e.g., letter, number, 
shape) that requires a 2-choice decision with a discrete response associated with that decision on 
each trial (e.g., is the letter a vowel or a consonant, press left for vowel, right for consonant). Here, 
the stimulus is a matrix and different types of exemplars appear over time. So, the stimulus 
involves a sequence of processes that evolve over time (how long?). The response is not the result 
of a discrete decision associated with that target. It involves the outcome of a process of 
comparing three different matrices against the representation of the stimulus held in working 
memory and selecting which is the closest match. The set of cognitive operations involved is very 
different to those in typical task-switching paradigms, and the memory-related operations are 
likely to drown out any effects of task-switching that only apply to the first trial of each block. This 
may account for the weak switch effects reported. Moreover, any such task-switching processes 
are not tightly timed to an event (e.g., cue) so will not be readily targeted by event-related fMRI or 
EEG measures. In addition, this paradigm is likely to produce a lot of motion, especially eye 
movements, which may create artefacts for fMRI as well as EEG. 
 
Overall, the aim of the paper is sound, the approach well-executed, and the concept of designing 
paradigms that can be used across platforms and labs is highly commendable. The paradigm 
appears suited to investigating the cognitive and neural processes engaged by three different 
visual attention tasks – spatial span, digit span and visual rotation. However, in my opinion, it is 
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not suited to measuring the cognitive and neural processes involved in task-switching. 
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Reviewer Expertise: Cognitive control processes, task-switching paradigm, cognitive ageing, 
behavioural and EEG measures. I do not have sufficient expertise to evaluate the software code.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to state that I do not consider it to be of an acceptable scientific standard, for 
reasons outlined above.

Author Response 19 Jul 2022
Danielle Kurtin 

Response to Prof Frini Karyanadis’s Peer Review Report 
 
Prof Karyanadis provided a thorough summary of our manuscript and its intent to introduce 
a novel task switching paradigm for use in online or neuroimaging studies. She captured 
the careful design we implemented to reduce visual and motor confounds, the discrete 
nature of the visual working memory tasks the paradigm switches among, as well as the 
results of our two Use Cases. 
 
We thank her for the careful reading of the manuscript and for the valuable comments. We 
appreciate her main concerns centre around our task design and how it diverges from 
existing literature, the task’s timing, the study’s results, and considerations on how we 
define and evaluate switch costs. We have addressed Prof Karyanadis’s concerns in our new 
version of the manuscript and have responded to each concern below. 
 
Our paradigm’s design is different from the existing literature 
 
Our task’s different experimental design draws three concerns from Prof Karyanadis - that 
its novelty and difference make comparison to existing literature difficult, that its design 
cultivates memory-related processes rather than switching processes, and that switch 
events are not tightly timed to a cue. In this section, we address each concern in turn. 
 
We understand Prof Karyanadis’s concern that it may be difficult to compare our paradigm 
to existing task switching literature that utilizes standard task switching frameworks. This 
paradigm is intentionally different from most task switching paradigms so one can study 
research questions traditional task switching paradigms are not well-suited to investigating 
– in our case, evaluating the neural correlates of large set shifts. In the likely event there are 
other researchers who also need a new paradigm to meet the needs of their research 
question, we created our paradigm in an easily modifiable framework so that fewer entirely 
new paradigms need to be created. We acknowledge we may not have made this 
paradigm’s differences and their impact clear enough. To ensure readers are aware that 
results from our experiment may not generalize to task switching studies with more 
standard designs, we have added the following sentences (in bold) to the Introduction: "This 
invites the follow-up question “How does the brain reconfigure between these different brain 
states?” The literature here is sparser, with a lack of studies that model how neural networks 
reconfigure when transitioning from one discrete task to another (referred to as “set switching” or 
“context switching” (Kim et al 2012). In future studies we hope to characterize the trajectory 
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neural networks take to effectively switch between tasks. Therefore, we created a cued task 
switching paradigm that aims to generate a behavioral and physiological switch cost for use in 
experiments that will characterize, model, and modulate the switch cost. We chose three 
psychometrically opposed tasks from Soreq et al (2021) to force distinct reconfiguration from one 
brain state to the next. Rather than switching between stimulus response mappings or rules, 
our task switches between entire task sets, similar to Allport et al (1994). Yet our task 
differs from to Allport's set-shifting task by shifting among different, psychometrically 
opposed working memory tasks, rather than rules or stimuli within a task. These 
differences were introduced with the aim of inducing large set shifts observable by fMRI, 
where future studies may explore how neural networks reconfigure to meet the demands 
of different working memory tasks." 
 
We have also added another sentence in the Limitations section, to ensure readers consider 
the difference in our paradigms to most others in their interpretation of results and 
application of this paradigm to other studies: "Finally, our task differs from most variants of 
task switching paradigms, and this should be taken into consideration when comparing results 
from this task to literature using different paradigms." 
 
Prof Karyanadis’s second point centres around a concern that the paradigm probes 
memory, rather than switch-related processes. We agree that these shifts in working 
memory processes are different than the common 2-choice decision tasks, both in terms of 
the number of cognitive operations required and the three, rather than two, response 
options. Nevertheless, we intentionally switch between three psychometrically opposed 
working memory tasks because we wanted to investigate the neural correlate of large set 
shifts, which could not be possible using more standard task switches, such as stimulus-
response or rule switches. 
 
Regarding Prof Karyanadis’s third point that there is not an event to which we can identify 
the task switch events, we would like to highlight that our Cue Cards precede each switch, 
and are timed cues by which we can localize task switching events. Figure 1 provides a 
visual depiction of how a Cue Card precedes a set of trials that build into a run of a task 
before another Cue Card announces a switch to the next run of trials of a different task. 
 
Task timing 
 
We understand Prof Karyanadis has two concerns regarding task timing, with the first being 
that we do not specify a precise intertrial interval (ITI). We do not specify a specific ITI 
because, as described in the Neuroimaging studies section, the ITI varies randomly 
between 100 to 1100 msec. Should future researchers wish to change this, the task was 
created to be easily customizable, and we remark in several places that all task parameters 
(such as the ITI) can be changed to suit the researcher. 
 
Second, we understand Prof Karyanadis’s concern about the influence the variable ITI exerts 
on cognitive control processes or fMRI analysis. To ensure readers are aware of the impact 
of adding a variable ITI, we have included the following sentence: “For online studies, we 
recommend researchers include a jitter-induced delay related regressor in models of BOLD 
activity, and remove jitter during offline studies as recommended by [1] for response-cue trial 
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intervals.” in the Neuroimaging study section. 
 
Study results 
 
We acknowledge Prof Karyanadis is unsure whether a task switching paradigm qualifies as 
such if it does not induce switch effects. As with any study, the results are the one aspect of 
an experiment that cannot be controlled. We argue that the absence of positive results does 
not invalidate the design of the paradigm. 
 
We also would like to highlight that we did pilot our work to identify suitable task 
parameters that induce a switch cost. Before conducting any Use Cases, we determined 
which parameters would ensure above-chance and below-ceiling performance in each task. 
For example, literature has shown most healthy young adults can remember 7 digits in a 
digit span [2], but we use 6x6 grids for the working memory tasks, meaning that the 
number of stimuli participants are asked to remember for the digit span should be within 
their ability. Early piloting showed that, when 6 stimuli were presented at the standard 0.5 
seconds per stimuli, participants exhibited ceiling effects. We, therefore, shortened the 
stimuli presentation time for digit span stimuli to 0.25 seconds, with the intent to 
standardize performance across tasks. 
 
With these parameters, we began conducting Use Case 1. In Use Case 1, the cue cards 
preceding each task were either 4.0 or 0.5 seconds. We observed a switch cost in accuracy 
but not reaction time, and, based on literature showing short cue cards induce switch costs 
[3][4], we chose to standardize our cue card duration to 0.5 seconds in an attempt to induce 
a switch cost in both accuracy and reaction time. Though we did not observe a switch cost 
after standardizing our cue card duration, in our discussion for the second Use Case we 
suggest that our negative results may be due to an interplay between endogenous, 
preparatory processes and exogenous, cue-driven processes [5]. Because of the 
customizable nature of the paradigm, we encourage future researchers to pilot the task 
using parameters (cue cards, length of time stimuli are presented, the number of tasks, etc) 
suitable for their experiment and assess the presence of a switch cost. 
 
Switch costs 
 
We thank Prof Karyanadis for identifying that we did not fully specify how we measure 
switch cost. We have clarified this in the manuscript in the Use Case 1 section as follows: 
“Switch task types are defined as the first trial after a switch between tasks, and stay trial types 
are all other trials.” 
 
We appreciate that our task design does not permit a comparison of switch vs restart costs, 
nor mixing costs, and how this may have influenced our ability to induce switch costs. We 
have added the following sentences to our Limitations section to make this clearer to 
readers: “Though the piloting of this task was performed with healthy control participants, future 
researchers may want to assess differences between healthy control and patient populations. 
Mixing costs may be more sensitive to between-group variability [6], and one limitation of our 
task structure is that it does not permit the exploration of mixing costs. Moreover, the current 
design did not allow repeats blocks of the same task (for example, this order would not occur: 
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Digit Span, Spatial Span, Spatial Span, Spatial Rotation), and therefore cannot investigate the 
difference in switch vs restart costs [7]. Future researchers are invited to adapt the paradigm’s 
design to allow repeat task blocks, to investigate switch vs restart costs, and explore whether 
introducing mixed-task blocks induces switch costs not seen in this version of the paradigm.” 
 
Finally, to make it abundantly clear to readers that our paradigm does not consistently 
introduce a switch cost, we have included the following sentence at the end of the Software 
Tool Article’s Introduction: “The pilot studies observe that, though the two versions of the task 
do not consistently induce a switch cost, the paradigm operates within an optimal difficulty 
range, and participants do not exhibit learning effects. Though our task does not produce 
traditional switch costs, we believe this paradigm is useful given its highly adaptable, multi-
modal, open-source nature.”. 
 
We hope this response addresses Prof Karyanadis’s concerns surrounding our Software 
Tool Article Manuscript. We appreciate her insight, and the changes we have made as a 
result of her review have improved and strengthened the manuscript. 
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