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Abstract

Topological quantum computation provides an architecture for encoding quantum

information in such a way as to be theoretically robust to local noise. Logical

qubits are encoded in topological degrees of freedom typically in spin-lattice models.

Excitations in the spin-lattice models manifest as anyons, generalisations of bosons

and fermions that exist in two dimensions. Proposals for experimental realisation of

these topological systems have previously relied on perfect anyon creation in a time-

independent manner or in the case of time-dependent proposals have primarily relied

on adiabatic, therefore slow, dynamics. The aim of this thesis is to use quantum

control to create anyons and encode logical qubits in topological systems without

the requirement for adiabaticity and long timescales.

First, we demonstrate the creation of abelian anyons using time-dependent

controls in the toric code model, a system that is useful as a quantum memory. We

show that this may be done within arbitrarily short timescales at the expense of

larger magnitude control pulses. Additionally, we investigate the robustness of our

protocol in the face of theoretical errors in anyon creation.

Secondly, we investigate the creation of non-abelian anyons in the Kitaev

honeycomb model. By fermionising a time-dependent version of the model we

demonstrate how optimal control theory can allow for anyon creation in faster-

than-adiabatic time. Moreover, we show that the particular method we develop to

achieve this scales only linearly in the number of spins in the lattice.

Thirdly, we investigate defect creation in the surface code, a generalisation

of the toric code that does not require periodic boundary conditions. Optimal

quantum control is used to show how defects may be created faster than with the

typical adiabatic procedures. Additionally, a method using mapping of dynamical

Lie algebras is used to demonstrate that optimal control techniques may be extended

to operations whose dynamics require solving in a large Hilbert space.
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Chapter 1

Background

1.1 Introduction

In recent decades we have seen great progress in the understanding of the theoretical

benefits provided by the storage of quantum information, as well of the possible imple-

mentation of fault-tolerant quantum computation. Ever since it was shown that there

exist quantum algorithms that perform with an exponential speed-up when confronting

problems that are not efficiently solvable in the classical regime, well-known examples of

which include integer factorisation [1] and database searching [2], the pursuit of a quantum

computer with fully programmable individual qubits has been broad with many different

candidates for viable qubits being investigated. Moreover, while these algorithms require

qubits to be stored temporarily, the long-term storage of quantum states is a useful part

of protocols such as quantum key distribution and state teleportation [3, 4].

The candidates for the physical realisation of logical qubits include photons, trapped

ions, optical lattices, quantum dots [5, 6, 7, 8] amongst others [9, 10, 11]. Though many of

these qubits have been demonstrated as workable, there are nevertheless major obstacles

for moving towards large-scale quantum computers due to the problems of decoherence

and error corrections. Decoherence leads to loss of quantum superposition states, one of

the key characteristics of quantum states that are exploited by many quantum algorithms.

In addition, though fault-tolerant quantum computation is possible if a reliable enough

21
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error-correction protocol is in place [12], most valid error-correcting protocols rely on the

probability of error occurrence being small; typically on the scale of 10−4 to 10−6 [13].

It is in order to avoid these limitations right down at the hardware level that topological

quantum systems have been a favoured proposal for the implementation of quantum

computation [4, 12, 13]. In a topological quantum computer, the logical qubits are encoded

in global topological degrees of freedom meaning that in principle they should be robust in

the face of local noise [14]. The basic building blocks of topological quantum computation

are anyons, generalisations of bosons and fermions which arise in two-dimensional systems.

Our goal in this thesis is to use quantum control, a field that is comprised of numerous

theoretical methods designed to realise desired quantum dynamics [15, 16, 17, 18, 19], to

implement creation and manipulation of anyons and anyon-like entities. We start with a

brief description of anyons and their applicability to quantum computation, followed by

an overview of the field of quantum control.

1.2 Anyons and topological quantum computation

While in three spatial dimensions all particles are known to be bosonic or fermionic, such

that particle exchange leads to a gain of +1 and −1 phase respectively to the physical

system’s wave function, in two dimensions more exotic behaviour is permissible [20, 21, 22].

One can consider particle exchange from a purely topological perspective. In three spatial

dimensions, two particles being exchanged twice is topologically equivalent to one particle

winding completely around another [23]. In three dimensions any winding path can be

deformed continuously - i.e. is topologically equivalent - to the path of no movement at

all. This shows that no nontrivial statistics are present and only a phase factor of 1 or

−1 is possible after particle exchange.

The two-dimensional case demonstrates more exotic behaviour however. Here not

only is the notion of a clockwise and anticlockwise winding well-defined, but the winding

of one particle around another is no longer topologically equivalent to the particles not

moving at all, as it is impossible to deform one path continuously into the other without



23 1.2. Anyons and topological quantum computation

Figure 1.1: Winding path of identical particles around another. It is clear that while paths
γ0, γ1 and γ2 are equivalent topologically in three dimensions, this is not the case when
restricted to only two dimensions.

an intersection. This is illustrated in Fig. 1.1.

The exchange of two particles leads to the wave function gaining an extra phase factor

eiθ. When looking at a more general system of N particles, phase factors are introduced

when n particles are exchanged in a certain direction. When this direction is positive a

factor of einθ is gained whereas in the anticlockwise direction it is a factor of e−inθ. This

value of θ can be understood in a clear way when one investigates the Aharonov-Bohm

effect [24] which shows how a particle in a solenoidal magnetic field can gain a phase factor

in the wave function independently of the path that it takes, therefore in a topological

manner. The phase that is gained through this effect is known as a Berry phase [25].

The only transformation that takes place in the case of such abelian anyons is gaining

of a phase. Another variety of anyonic quasiparticles, known as non-abelian anyons, are

particularly useful for quantum computation. Here rather than a phase being gained, the

wave function is acted on by a non-trivial unitary gate.

In the case of non-abelian anyons, we can consider their paths to be worldlines that

start and finish at certain times. Particle exchanges can then be thought of as braids in

those lines and so we can immediately see how the non-abelian property arises [23]. As

an example, with three anyons, the braiding of the the first two followed by the latter

two is not homotopically equivalent to carrying those operations out in the reverse order
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Figure 1.2: Schematic of particle exchange as braiding of worldlines. We can see that the
operations σ1, which exchanges the first two particles, and σ2, which exchanges the latter two,
do not commute with each other.

(see Fig. 1.2). It is these braiding operations that allow unitary gates to be performed on

anyons and therefore computation to be possible. A degenerate ground space in a system

with a gapped Hamiltonian therefore is a sine qua non of using non-abelian anyons for

quantum computation as one would require no change in the energy of the system after

particle braiding [26].

In addition to braiding, it is also useful to consider systems with anyons in terms of the

number of particles present, in such a way that allows us to consider two anyons together

as another anyon. This is known as fusion and for a given system there will be a set of

fusion rules that govern such behaviour. The general formulation of fusion rules is given

by

a× b =
∑
c

N c
abc (1.1)

where N c
ab is an integer that is generally 0 or 1 and a, b and c are the possible anyons in

a system [14]. A simple example of a fusion rule would be a× b = 1 + c meaning that the

fusion of anyons a and b results in either the trivial particle 1 (no anyon) or the anyon c.

If we have that α× β = 1 then this means that α and β are antiparticles that annihilate.

There exist numerous anyonic models with different fusion rules such as the Ising model

[27] as well as the Fibonnaci anyon model [28]. While Fibonnaci anyons allow for universal

gate implementation, Ising anyons have been found to be more experimentally accessible

as there have been experimental proposals for their realisation as Majorana zero modes

[14, 29, 30, 31]. Moreover, it is possible in certain systems to integrate the topological



25 1.3. Quantum control theory

robustness offered by Ising anyons with non-topological mechanisms in order to achieve

universality, therefore making the experimental realisation of such anyons desirable [32].

Implementing quantum computation with non-abelian anyons generally involves cre-

ating anyons, braiding them and fusing them in order to realise state initialisation, gate

implementation and measurement respectively [26, 33].

1.3 Quantum control theory

It is well known that the dynamics of a closed quantum system, that is, a system where

energy is not considered to dissipate into an environment, are characterised by unitary

dynamics which arise out of the Schrödinger equation

iU̇(t) = H(t)U(t) (1.2)

where H is the, possibly time-dependent, Hamiltonian of the system and U(t) is the

time-evolution operator such that a general time-evolving state is |ψ(t)⟩ = U(t) |ψ(0)⟩

[34]. Here, as in the rest of this work, natural units are used such that ℏ = 1.

The field of quantum control theory is principally focused on working to achieve cer-

tain desired dynamics within the framework of a physical system whose natural dynamics

arise out of a defining Hamiltonian [15, 18]. Typically this system’s internal Hamiltonian

is considered the drift Hd, while controllable interactions are considered control Hamil-

tonians Hc,j and these latter terms are coupled with time-dependent control functions

fj(t) which determine differing dynamics depending on how they are designed. Thus a

typically considered time-dependent Hamiltonian is

H(t) = Hd +
∑
j

fj(t)Hc,j. (1.3)

Such control functions fj(t) are often known as control pulses or simply the controls. At

times, particularly when intended for implementation of adiabatic dynamics, the control

function is often a linear function known as a ramp.
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In short, the aims of quantum control are: to assess the dynamics of a quantum system

and to engineer these dynamics in such a way as to achieve a desired goal, the simplest of

which is to transform one state into another non-identical state and the most challenging

of which is to implement exactly the required unitary dynamics [15]. Optimal control

seeks to realise the desired dynamics in such a way as to optimise a certain figure of

merit, typically the fidelity for state transfer

F := | ⟨ψtarget|ψ⟩ |2 (1.4)

or, for the case of full unitary dynamics, the gate fidelity

F =
1

d

∣∣∣Tr
(
U †
targetU

)∣∣∣ . (1.5)

Among the many known techniques of quantum control, examples that we utilise in

our work include the well-tested gradient ascent pulse engineering method, or GRAPE

algorithm [35, 36], more information on which is presented in Appendix A, and deter-

mining the space of all possible implementable unitary dynamics of a given Hamiltonian

system using dynamical Lie algebras [15, 37, 38].

1.4 Scope of the thesis

Thus far in the literature, the investigation of topological quantum systems in the time-

dependent regime has primarily been limited to adiabatic protocols. In our work we hope

to use the methods of quantum control to implement protocols in topological quantum

systems and see if our methods can provide certain benefits to anyon creation and similar

operations, such as improving on the long timescales required by adiabaticity.

Quantum control has a proven track record of successfully speeding up adiabatic evo-

lution in a wide range of scenarios [31, 39, 40, 41, 42] suggesting its potential suitability

for creating anyons in topological systems. A common challenge for implementation of

quantum control techniques is that they are often complex and resource-intensive, which
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can limit their scalability.

We seek to use techniques that allow not only for an improvement on adiabatic

timescales, but also robustness in the face of errors that inevitably become possible when

time-dependence is introduced into a system’s Hamiltonian. Additionally, there is an aim

to ensure scalability of quantum control methods as, in topological systems, we routinely

aim to control the dynamics of a system comprising of many-body interactions between

qubits in a lattice.

Our principal goal is to successfully overcome what seems initially to be an inherent

paradox at the heart of using quantum control for encoding and manipulating quantum

information in topological systems. This is that if the encoding is robust to errors, how

challenging must it be to enforce desired transformations? Conversely, if it possible to

enforce desired transformations through engineering particular dynamics, how robustly

encoded is the logical information?

The work of this thesis is divided into three main sections, each concerned with a

different spin-lattice system which is capable of exhibiting non-trivial topological order.

The second chapter looks at the toric code, a lattice system consisting of four-body

interactions whose four-fold degenerate ground state allows for the encoding of logical

qubits and can be used as a quantum memory. In this system abelian anyons can be

made manifest as excitations in the Hamiltonian and we present a method of creating

and annihilating anyons in finite time using control functions and discuss the method’s

advantages and limitations. We then proceed to reliably test how robust the encoded

logical information would be, looking at various potential error models.

In the third chapter we are concerned with creating non-abelian anyons in the Kitaev

honeycomb model [43], a lattice system comprised primarily of two-body interactions. We

seek to extend the well-known fermionisation of the model to the time-dependent case and

use this method to allow for anyon creation in faster than adiabatic times. The scalability

of this method for large lattices is also discussed in detail.

In the fourth chapter we look at a generalisation of the toric code known as the surface

code, a system which no longer relies on periodic boundary conditions and in which logical
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gates can be performed on encoded quantum information. Anyon-like defects in the model

which have previously been created and manipulated using adiabatic protocols are created

using quantum control and we present a utilisation of dynamical Lie algebras to allow for

the implementation of such techniques on a large number of qubits within a lattice. This

newly developed method is generalisable to certain other types of control problems where

it would be unfeasible to solve the full system dynamics without great computational

resources.

We conclude with a summary of our results as well as a reflection on their signifi-

cance for experimental implementation of topological qubits. We call attention to certain

proposals that could take advantage of the methods presented in this thesis.

The work in Chapter 3 is primarily based on, and uses assets and text from, the

following published article:

Omar Raii, Florian Mintert, and Daniel Burgarth ‘Scalable quantum control and non-

Abelian anyon creation in the Kitaev honeycomb model’ Physical Review A, 106(6):062401,

12 (2022) [44]
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Creating abelian anyons in the toric

code

Various examples of topological models have been put forward that display both abelian

and non-abelian anyonic behaviour [43, 45] and the Kitaev toric code is a tremendously

elegant example of a model wherein abelian anyons are made manifest and which allows

for the encoding of 2g logical qubits, depending on the genus g of the torus in question

[45].

Anyon creation in topological systems such as these is generally assumed to be an

idealised procedure [12, 23, 43] in the sense that anyons which are created, either as

errors or otherwise, are done so in the infinitely quick regime. In this chapter, we use

quantum control methods to steer toric code dynamics in such a way that desired anyon

creation/annihilation is achieved in a finite, time-dependent and thus more experimen-

tally realistic fashion. Given the nature of topological systems, this is not necessarily a

straightforward endeavour; it cannot be taken for granted that many of the attractive

topological properties of a system that exist for certain configurations of the Hamiltonian

will remain when time-dependent changes are taken into account. Ground state degener-

acy for instance, a determining property of topologically protected systems, is typically

lifted when Hamiltonians are varied in finite systems [46], as the toric code lattices we

investigate will be. The key question is if a topological state is robust against local errors,

29
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how can we create anyons and go further in creating anyon-strings and performing logical

gates in a time-dependent manner without causing global errors? While local errors are

not supposed to affect the overall stability of logical qubits in topological systems, the use

of quantum control in anyon creation means there is time for errors to spread. We seek

to investigate the effects of local errors spreading in the toric code and the possibility of

these leading to logical errors.

Thus far in the literature, the effect of small perturbations to the toric code Hamilto-

nian is well-known in terms of its effects on logical qubit stability [43, 47]. In addition,

the creation of anyons in the toric code due to thermalisation has been analysed [48, 49]

and the effects of unwanted anyons, with various modifications of the toric code suggested

as systems that can for example increase quantum memory lifetime, have been studied

in depth [47, 50]. However, though architecture for experimental realisation of the toric

code has been proposed [51], anyon creation (or, analogously, annihilation) in a finite time

setting has yet to be closely looked at, still less while in the presence of errors that are

intrinsic to the Hamiltonian, which will be necessary for experimental implementations of

this quantum memory.

In this chapter we begin by briefly reviewing the toric code, also known as the double

quantum model, in Section 1. We proceed in Section 2 to present a mechanism for anyon

creation in a finite time manner using pulses of arbitrarily bounded magnitude and in

Section 3 we investigate this mechanism’s resilience to errors. We discuss how to create

anyons in this system in a time-dependent way and see how robust the anyonic states

are in the presence of errors. Section 4 briefly discusses the possibility of generalising

to multiple anyon creation and Section 5 presents results about the resilience of time-

dependent anyon creation in the presence of intrinsic Hamiltonian errors, which are then

compared with numerical results in Section 6. The final two sections discuss how intrinsic

errors in the model affect correctability of unwanted anyonic eigenstates.
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2.1 Description of the toric code

The toric code is comprised out of spin-1/2 particles on the edges of a quadrilateral lattice

with periodic boundary conditions. Each lattice is defined by m× n plaquettes, and the

number of plaquettes is equivalent to the number of vertices, with mn of each. The

number of spins that comprise this lattice N is equal to the sum of the total number of

plaquettes and vertices, and thus N = 2mn.

2.1.1 Hamiltonian and ground states

The Hamiltonian is constructed using four-body interacting operators acting on spins

residing either on a given vertex or plaquette. Vertex operators acting on a vertex v are

defined with Pauli X interactions as Av = Xv1Xv2Xv3Xv4 while plaquette operators on a

plaquette p are defined as Bp = Zp1Zp2Zp3Zp4 using Pauli Z interactions.

The Hamiltonian of the toric code system is then

HTC = −JA
∑
v

Av − JB
∑
p

Bp. (2.1)

where the JA and JB correspond to interaction strengths and and energy gap which will

be taken to be unity in the chosen units. As it is comprised of the sum of commuting

operators, it is straightforwardly diagonalisable. Where plaquette and vertex operators

overlap they do so on exactly two spins and, as a result of the double anticommutation,

they overall commute. As the Pauli matrices square to the identity the eigenvalues of

each operator in the summand are ±1, hence the ground state energy of the toric code

Eg is the negative of the total number of vertices and plaquettes and thus Eg = −N .

The state, defined up to normalisation as

|g1⟩ =
∏
v

(1 + Av) |0⟩⊗N , (2.2)

where 1 is the identity, is a ground state as it is stabilised by every vertex operator,

which is to say that Av |g1⟩ = |g1⟩ for all vertices v. This is due to the property A2
v = 1.
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Moreover, it is also stabilised by every plaquette operator, so that Bp |g1⟩ = |g1⟩ for all

plaquettes p. This is due to the fact that each Bp commutes with every Av, as well as the

fact that

Bp |0⟩⊗N =

(∏
j

Zj

)
|0⟩⊗N = |0⟩⊗N . (2.3)

2.1.2 Anyons in the toric code

Anyons emerge in the code as excitations above the ground state. For example, if a

Pauli X were to act on a certain spin on the lattice, the new state would correspond to

another energy eigenstate but with sign-flipped eigenvalues for the overlapping plaquette

operators. The same applies for Z operations and vertex operators. It is exactly these

excitations which are anyons either on plaquettes (m-anyons) or on vertices (e-anyons) as

shown in Fig. 2.1. The energy penalty for excitation and anyon pair creation is 4 in the

units of the interaction factor J .

Av

Bp

e e

m

m

Figure 2.1: A toric code lattice showing an example of a vertex operator Av and a plaquette
operator Bp. An m-anyon pair (bottom right) is created by a Z operation on a spin (light red).
An extended string of a pair of e-anyons (bottom left) are created by X rotations acting on
two adjacent spins. Periodic boundary conditions mean that the top edges of the lattice are
identical to the bottom edges while the leftmost edges are identical to the rightmost edges.

These anyons can be created and annihilated using the same process and anyon strings
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may be extended by repeating the appropriate Pauli operation on successive adjacent

spins. As Pauli operators square to the identity this leaves two anyons at the end of a

string. Loops may be created by anyon strings and by extension, anyons may also be

wound around one another. The geometry of the anyon strings is not directly measurable

and therefore only the positions of the anyons are physically meaningful. When anyons

of the same type overlap on the same local vertex or plaquette they annihilate and so the

fusion rule describing this

e× e = 1 (2.4)

m×m = 1 (2.5)

shows that the e and m-type anyons are their own antiparticles. While the winding of

two identical anyons of the same type around one another leads to no extra phase factor

being gained by a state’s wave function, thus making both anyon describes bosonic in

terms of their statistics, fusing one of each type of anyon

e×m = ε (2.6)

gives a new type of anyon which is fermionic in terms of exchange statistics. From these

three fusion rules all other possible fusion rules may be obtained for the three types of

abelian anyons.

The topology of the anyon strings is crucial in distinguishing between states that are

not locally distinguishable. If an m-anyon pair is created, after initialising in the ground

state (2.2), and is extended until the pair of anyons overlap and annihilate on a string

that forms a closed loop on the torus, another eigenstate is reached that also has vacuum

anyon charge and is orthogonal to the ground state (2.2).

The total degeneracy of the ground state is fourfold, matching the four different topo-

logical configurations of closed loops on a torus (see Fig. 2.2). These four states allow

the encoding of quantum information as logical qubits, with a closed loop of Pauli X
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Figure 2.2: Schematic of the four different possible ground states. The topologically closed
loops on the tori show paths for an m-anyon pair creation, transport and annihilation
operation that reaches a different state in the degenerate ground space. Two logical qubits can
be encoded using these states and they are |00⟩ , |01⟩ , |10⟩ and |11⟩ from left to right.

operations making up a logical gate X̄ and similarly a closed loop of Pauli Z operations

making up a logical gate Z̄. The toric code is therefore useful as a quantum memory

where anyon creation and annihilation may be necessary as part of active error correction

or the performing of logical X and Z gates.

2.2 Anyon creation with bounded pulses

While it is clear that creating anyons in an ideal manner, infinitely quickly, highlights

how simple anyon creation in the toric code model is and how the stability of the states

which exhibit anyonic behaviour is guaranteed under the Hamiltonian, it is not yet clear

whether this is the case if instead anyons were to be created in a more realistic time-

dependent fashion. The whole process of anyon creation is henceforth reconsidered as a

control problem.

The initial aim is to create an m-anyon pair via an X operation that is coupled to a

time-dependent control f(t). We wish to evolve from the ground state |g1⟩ to the anyonic

eigenstate |m⟩ = Xj |g1⟩ which would correspond to two anyons on the plaquettes that

act on the j-th spin. The Hamiltonian is now

H(t) = HTC + f(t)Xj. (2.7)

This problem effectively reduces the Hilbert space of interest to two dimensions spanned
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by the initial state and the target state. The reduced Hamiltonian is

Hreduced(t) =

⟨g1|H(t) |g1⟩ ⟨g1|H(t) |m⟩

⟨m|H(t) |g1⟩ ⟨m|H(t) |m⟩

 =

−N f(t)

f(t) −N + 4

 . (2.8)

The equivalent simpler Hamiltonian H̃(t) = −2Z + f(t)X, differing from (2.8) only

by (−N + 2)1, is now the object of interest, where the time-dependent control function

f(t) in (2.8) is identical to the control in (2.7). The desired evolution is from the ground

state of −2Z to its excited eigenstate (|0⟩ → |1⟩).

2.2.1 Constant and piecewise-constant control

Let us begin by initially assuming a constant control such that f(t) = f . The unitary

time evolution at some time t would then be

U(t) = cos
(√

4 + f 2t
)
1 +

2i sin
(√

4 + f 2t
)

√
4 + f 2

Z −
if sin

(√
4 + f 2t

)
√

4 + f 2
X. (2.9)

Thus the fidelity between the evolved state at time t and the target state would be

F(t) = | ⟨1|U(t) |0⟩ |2 =
f 2 sin2

(√
4 + f 2t

)
4 + f 2

. (2.10)

While this can get arbitrarily close to unity with larger and larger magnitudes of f , in

principle perfect fidelity cannot be achieved. If the control were instead piecewise constant

however, perfect fidelity could be achieved with as few as two different constant values.

For each value of fj in the Hamiltonian, evolution would correspond to a unitary

Uj = exp(−i(−2Z + fjX)tj) (2.11)

where tj is the time of evolution for which the Hamiltonian is constant. If we insist

that evolution is such that the initial state is evolved to a state that is in a certain

sense ‘as orthogonal as possible’, that is, the earliest time t = tj such that the fidelity
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(2.10) is maximised, then this time interval is half the period of the dynamics induced by

the Hamiltonian; thus tj = π

2
√

4+f2
j

. For this general form of evolution, using two such

unitaries gives the following general form for fidelity:

F = | ⟨1|U2U1 |0⟩ |2 =
4(f1 − f2)2

(4 + f 2
1 ) (4 + f 2

2 )
. (2.12)

This evaluates to unity if and only if f1 = − 4
f2

. It is therefore shown that a time-dependent

control defined as

f(t) =


f1 0 ≤ t ≤ t1

−4f−1
1 t1 < t ≤ T

(2.13)

gives the required state evolution at time T where

T = t1 + t2 =
π

2
√

4 + f 2
1

+
π

2
√

4 + (− 4
f1

)2
. (2.14)

The simplest example of such a time-dependent control is where f1 = 2 meaning that

f2 = −2 and T = 2t1 = π
2
√
2
.

2.2.2 Pulses of arbitrarily bounded magnitude

A piecewise constant control comprised of a two values where one pulse size is required

to be four times the negative reciprocal of the other immediately sets a lower bound on

pulse magnitude for any given upper bound. In other words if |fj| ≤M for a real M then

4

M
≤ |fj| ≤M (2.15)
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which is only valid so long as M ≥ 2. The total time taken for the required evolution

T = t1 + t2 is also bounded from below by π
4

as

lim
|f1|→0

 π

2
√

4 + f 2
1

+
π

2
√

4 + (− 4
f1

)2

 = lim
|f1|→∞

 π

2
√

4 + f 2
1

+
π

2
√

4 + (− 4
f1

)2


=
π

4
. (2.16)

In order to achieve the required evolution for pulses of any magnitude M , including those

with M < 2, we outline a procedure that may be followed to produce a pulse that achieves

this.

A constant pulse unitary evolution on the initial state |0⟩ is equivalent in the Bloch

sphere picture of rotation around an axis of eigenstates of H = −2Z + fX. This axis

may be parametrised by the state vector cos
(
θ
2

)
|0⟩+ sin

(
θ
2

)
|1⟩, along with its orthogonal

complement sin
(
θ
2

)
|0⟩ − cos

(
θ
2

)
|1⟩, as it lies on the x-z plane where tan(θ) = −f

2
. If

θ divides π
2

exactly then a repeated procedure of using pulses of amplitude f and −f ,

switching signs every multiple of time interval t = π

2
√

4+f2
, will achieve the required

evolution. Geometrically this is equivalent to rotating the ‘north pole’ of the Bloch sphere

around two axes, one at θ to the north pole and the other at −θ repeatedly until the ‘south

pole’ is reached (see Fig. 2.3).

The following procedure therefore gives an algorithm that implements anyon creation

in the toric code using a square wave pulse f(t) whose magnitude can be arbitrarily

bounded and still achieve the evolution in finite time: a) For a given bound M , pick an

amplitude f such that tan−1(−f
2
) divides π

2
. There are infinitely many such f for any

bound. b) Let the time-dependent control in the Hamiltonian be set to a square-wave

pulse that alternates between f and −f at every time interval t1 = π

2
√

4+f2
. c) After

a total of n = π
2|θ| intervals and a total time of T = π2

8|θ| cos θ the required evolution is

achieved.

It is reasonable to compare the total time taken using this method with the time that

would be taken if there were no time-independent Z part in the Hamiltonian. Were this
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|0⟩

|1⟩

cos
(
θ
2

)
|0⟩+ sin

(
θ
2

)
|1⟩

θ−θ

Figure 2.3: Evolution from the state |0⟩ (green) to |1⟩ is geometrically equivalent to rotation
of the unit vector pointing due north around the axis determined by the state vector
cos
(
θ
2

)
|0⟩+ sin

(
θ
2

)
|1⟩ and the axis determined by cos

(
θ
2

)
|0⟩ − sin

(
θ
2

)
|1⟩ in alternate fashion. If

θ divides π
2 exactly, then |1⟩ is always reachable with a finite number of rotations.

to be the case, achieving the required evolution would simply be a matter of waiting half

the time period of the natural evolution of the Hamiltonian fX. This time period, tX , is

π
2|f | and the ratio between tT and tX is given by

tT
tX

=
π2

8|θ|
cos(θ) · 2|f |

π

=
π| sin θ|

2|θ|
(2.17)

which approaches π
2

(approximately 1.5) as θ vanishes. This means that in the worst case

scenario, with a smaller and smaller f bound, this method takes only about one and a

half times as long to achieve the required state evolution as the ideal optimal method,

given that bound f , as shown in Fig. 2.4.

2.2.3 Multiple anyon creation

In general performing error correction on logical qubits would require a process of creating

(annihilating) many anyons or creating (annihilating) strings of nontrivial length. The
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Figure 2.4: Comparison between the theoretically optimal time for state evolution tX in blue
for given values of the parameter θ = tan−1(−f

2 ) and the real time tT in yellow, which includes
the drift from −2Z in the Hamiltonian. Inset: Ratio between times tX and tT for increasing
θ. For the worst case scenario where θ → 0 the theoretically optimum time is only
approximately 1.5 times faster.

natural preference would be for this to be either one single process or otherwise a quick

and efficient protocol. The problem however does not simplify as easily as the creation of

one anyon pair in that the Hilbert space of interest only reduces to the size of 2L where

L is the length of an anyon string by number of qubits acted on.

The procedure developed for single anyon creation can however be used as part of a

step-by-step process for creating an anyon string of arbitrary length. These steps only

require two types of pulses: a square-wave pulse as previously described for creating the

single anyon-pair and a constant pulse for extending an anyon pair by one plaquette (or

vertex) length. The extension of an anyon string is a simpler process due to the lack of

energy penalty, so that the reduced Hamiltonian is simply

Hreduced =

−N + 4 f(t)

f(t) −N + 4

 . (2.18)

The time taken to move from one anyonic state to an anyonic string state of identical

energy lengthened by one spin qubit operation would simply be t1 = π
2|f | .

In general, for any particular bounded pulse, the total time taken for creating a string
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of length L where L is the ‘qubit distance’ of the anyon string would therefore be

T = n
π

2
√

4 + f 2
+ (L− 1)

π

2|f |
(2.19)

where n = ⌈ π
2θ
⌉ and f = −2 tan θ.

2.2.4 Logical operations

The toric code allows for the encoding of two logical qubits as well as the possibility of

performing the logical gates X̄ and Z̄. These correspond to a series ofX or Z operations on

the spins of the lattice carried out in the string that corresponds to a non-contractible loop.

Though the problem of performing an X̄ gate on a logical qubit as a single operation scales

exponentially with the length of the lattice, using the described step-by-step method, the

problem becomes tractable in that the same pulses may be used for anyon creation and

annihilation, in combination with the simpler procedure with a constant pulse for anyon

extension. Hence if a pulse is bounded in magnitude by F the procedure may be followed

to create an anyon-pair with n = ⌈ π
2 tan−1 F

2

⌉ unitaries, followed by a single unitary for

anyon extension by one qubit (total number would therefore be L − 1 where L is the

lattice length), and the same n unitaries for anyon annihilation.

The total time taken for this would be

T = 2× ⌈ π

2 tan−1 F
2

⌉ × π

2
√

4 + F 2
+ (L− 1)

π

2F
. (2.20)

Hence the time increases only linearly with lattice size and decreases on the order of 1
F

with pulse size.

2.3 Extrinsic errors

The use of square wave pulses as a control for anyon creation is not without its possible

difficulties due to the necessity of finitely many points of discontinuity. With square-
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Figure 2.5: Graphs showing (a) how for different lattice lengths L the pulse magnitude
affects total time for performing an X̄ gate and (b) how for pulses of different magnitude |f |
the lattice length affects total time for the same operation.

wave pulses that abruptly change value, errors in exact timing could be present when

implemented experimentally and so it is necessary to investigate the effect of errors on

the overall fidelities. We consider such errors to be extrinsic as they are not due to

intrinsic errors in the Hamiltonian.

2.3.1 Gaussian errors

We investigate a Gaussian error model wherein all values of pulse amplitude and timing

are normally distributed around the mean of the ideal values.

Given that in the ideal, error-free regime a number of unitaries are required for desired

evolution, a generalised state fidelity function can be defined in terms of errors ϵ =

(ϵ1, . . . , ϵn) as

F(ϵ) = | ⟨1|

(∏
j

Uj(ϵj)

)
|0⟩ |2 (2.21)

where the unitaries are either

Uj = exp(−i(−2Z + (fj + ϵj)X)tj) (2.22)
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for control pulse amplitude errors, or

Uj = exp(−i(−2Z + fjX)(tj + ϵj)) (2.23)

for timing errors. In Equation (2.21) the product is understood to mean repeated left

multiplication of unitaries.

The expected fall in state fidelities can then be compared with increased standard

deviation of error by

F̃(σ) =

∫ ∞

−∞
F(ϵ)

(
n∏
j

N (0, (σαj)
2; ϵj

)
dϵ (2.24)

where F̃ is the state fidelity in the presence of errors and N (0, (σαj)
2; ϵj) is a normalised

Gaussian distribution with standard deviation σαj proportional to the magnitude of the

ideal value αj of either the amplitude fj or the timing tj

N (0, (σαj)
2; ϵj) =

exp
(
− ϵ2j

2α2σ2
j

)
√

2πασj
. (2.25)

In general, this integral is not always analytically solvable, however a series solution may

be given. On the assumption of errors being small in size, only lowest order terms will be

of interest. In the most general case the fidelity is

F(ϵ1, ϵ2, ..., ϵn) = | ⟨1|Υ(ϵ1, ϵ2, ..., ϵn) |0⟩ |2 (2.26)

where Υ is a product of unitaries defined as
∏n

j Uj(ϵj) with n being the number of constant

pulse steps. We consider this unitary product in Taylor series form

Υ(ϵ) = Υ0 +
∑
j

ϵj

(
∂Υ

∂ϵj

∣∣∣∣
ϵ=0

)
+
∑
j,k

ϵjϵk
2

(
∂2Υ

∂ϵjϵk

∣∣∣∣
ϵ=0

)
+
∑
j

ϵ2j
2

(
∂2Υ

∂ϵ2j

∣∣∣∣
ϵ=0

)
+O(ϵ3)

(2.27)

where Υ0 = Υ(0, . . .) is the unitary evolution operator with no errors.
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As a series in ϵ the fidelity may be expanded to arbitrary order. A simplification

occurs however when integrating over a series of Gaussians in that any term of odd order,

or even a term that includes any odd order of ϵj, vanishes when integrated over an even

function such as a Gaussian centred at 0. The general rule for the integral of the product

of Gaussians and even powers is given by

∫ ∞

−∞
ϵn N (0, (σα)2; ϵ) dϵ =

(√
2σα

)n
Γ
(
n+1
2

)
√
π

for n even (2.28)

where σα is the standard deviation and Γ is the standard Gamma function. For n = 2

this evaluates to α2σ2 and therefore to second order the function describing fidelity as a

function of the error sizes σ = (σ1, . . . , σn) can be written as

F̃(σ) = 1 +
n∑
j

α2σ2
j | ⟨1| ∂jΥ |0⟩ |2 +

(
1

2

n∑
j

α2σ2
j ⟨1|Υ0 |0⟩⟨0| ∂2j Υ† |1⟩+ h.c.

)

+ higher order terms (2.29)

where α = |fideal| or |tideal| and ∂nj Υ = ∂nΥ
∂ϵnj

evaluated where ϵ vanishes.

This formula shows that for anyon creation, the errors effectively add up in lowest

(second) order. For the simplest piecewise constant pulse which comprises of two constant

pulses of opposite sign α = |fj| = 2, if only amplitude errors are considered, and the same

standard deviation in error throughout the pulse is assumed, the following series expansion

is arrived at

F̃(σ) = 1−
(

1

2
+
π2

16

)
σ2 −

(
3

4
− 3π2

32
− π4

256

)
σ4 +O(σ6) (2.30)

to lowest orders. Numerically this is approximately F̃ = 1 − 1.11685σ2 + 0.55578σ4.

By symmetry it can be deduced that if both pulse amplitudes f1 and f2 had independent

errors σ1 and σ2 respectively, then half the second order coefficient in (2.30) would multiply

σ2
1 + σ2

2; numerically this is 1− 0.558425(σ2
1 + σ2

2).

For the case of timing errors the necessary integral can be computed exactly; the same
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2-valued pulse where α = tj = π
4
√
2

gives

F̃(τ) =
1

2
+

1

2
e−

π2τ2

2 = 1− π2τ 2

4
+
π4τ 4

16
+O(τ 6) (2.31)

or, if the two parts of the piecewise-constant function are independent and possibly differ,

this becomes 1
2

+ 1
4

(
e−

π2τ21
2 + e−

π2τ22
2

)
. The Gaussian form of the fidelity can be seen for

general errors, showing that fidelities will always be given in terms of even orders. In Fig.

2.6 we see such a Gaussian form in the fidelity drop, as well as the fact that stability is very

high for pulse amplitudes, as a standard deviation of 0.1fideal for amplitude error would

only lead to a fidelity drop of approximately 1%. Relatively good stability is also present

for timing errors as a high standard deviation of error 0.15tideal would mean approximately

3% drop in fidelity.
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Figure 2.6: Graph showing how, for the simplest control pulse (inset), fidelities are affected
by increasing proportional error, σ or τ ; the exact standard deviations being σfideal and σtideal.
The error is assumed to be uniform for each piecewise constant part of the pulse. Shown
explicitly is the exact drop in fidelity with timing error (green) and the drop in fidelity with
amplitude error (red) plotted to fourth order.

2.3.2 Extrinsic errors in multiple anyon creation

It is to be expect that if there are errors either with the amplitudes or the timings in the

control pulses, fidelities will then naturally decrease. Due to the method of carrying out
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logical operations with pulses on one spin at a time, the adverse effects of errors will be

compounded. A natural question to ask therefore is, given the compounding of error in

the step-by-step process of carrying out a logical operation, or indeed creating any anyon

string of non-trivial length, how large can a lattice be before the drop in fidelity becomes

too large. Or conversely, given a lattice of a certain size, what’s the highest allowable size

of error before the fidelities drop to intolerable levels.

Given the multi-step nature of the procedure, implying multiple unitaries, the full

analysis can only be given by calculation of large multi-volume integrals. However given

that each process, when done perfectly, is only a two-dimensional problem, every imperfect

process therefore only creates a superposition state between the target state and the initial

state. One can therefore focus solely on the reduced fidelity of the target state in each

process. This indicates that to lowest order, errors may simply be added up and, as the

lowest order in errors is second order, the same procedure as previously presented may be

used to see how fidelities drop to second order.

An illustrative concrete example may be given by looking at the simplest anyon cre-

ation, extension and annihilation scenario on a 3-by-3 lattice comprised of 18 qubits. This

scenario amounts to performing an X̄-gate using pulses acting on three adjacent qubits la-

belled 1,2 and 3. With the most efficient pulse, which is the two-valued piecewise-constant

pulse

f(t) =


2 0 ≤ t ≤ π

4
√

2

−2
π

4
√

2
< t ≤ π

2
√

2

, (2.32)

perfect fidelity is reached when using the following unitaries

U1(t) = exp

(
−i π

2
√

2
(HTC + f(t)X1)

)
(2.33)

U2(t) = exp
(
−iπ

4
(HTC + 2X2)

)
(2.34)

U3(t) = exp

(
−i π

2
√

2
(HTC + f(t)X3)

)
(2.35)
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For amplitude errors the fidelity is

F̃ = 1−
4∑

j=1

(
1

4
− π2

32
)σ2

j −
π2

4
σ̃2 + h.o.t

≈ 1−
4∑

j=1

0.5584σ2
j − 2.4674σ̃2 (2.36)

where σ̃ is the error for the constant pulse used in U2(t) which is used for extending the

anyon string and σj are the errors for creation and annihilation pulses used in U1(t) and

U3(t).

If all errors are of equal proportion then it can be shown what errors are tolerable (to

lowest order) for a fidelity above 90%. For example, in the aforementioned 3-by-3 lattice

example, with respect to timing errors, a maximum error of up to approximately 7% is

tolerable before fidelities drop too low. These would be errors as proportions of the ideal

values.

Due to the simplicity of adding coefficients in second order, one can easily extend the

equation for the fidelity to lattices of arbitrary length L

F̃ = 1−
(

1

4
− π2

32

)
σ2
j − (L− 2)

π2

4
σ̃2 (2.37)

This shows that while large lattices for the toric code can be good for quantum error

correction purposes, with our method, this will come at a cost to tolerable error in creating

many anyons and performing simple logical operations such as X̄. In Fig. 2.7 is illustrated

how there is an inverse proportional relationship between increased lattice length L and

the tolerable error for a fidelity of 1%.
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Figure 2.7: Graph showing the proportional errors σ that lead to an overall fidelity of 90%
for increasing lattice lengths L. There a decrease of the order of inverse root of length of the
lattice L. For example for a lattice 500 qubits in length, around 1% error in timing is tolerable.

2.4 Background noise and intrinsic errors in the Hamil-

tonian

While time-dependent anyon creation in the toric code seems to be robust to possible

extrinsic errors in timing and magnitude of pulses, were errors to be intrinsic to the

Hamiltonian, the situation would become more complex. This corresponds to investigating

the original time-independent toric code Hamiltonian (2.1) with added error terms

H = HTC +
∑
j

hjXj (2.38)

where the error factors hj could possibly be the same on all qubits or independent, but in

either case would have to be small so as not to disrupt the topological properties of the

code too significantly. Given that the Hamiltonian is no longer trivially diagonalisable,

perturbative methods will be used to see how these intrinsic errors affect topologically

protected states. Free evolution of toric code eigenstates under this perturbed Hamilto-

nian will be investigated in order to compare its effects with that of anyon creation in

the presence of perturbations. This will then be used to demonstrate why larger toric

code lattices, while not showing marked improvement in fidelity do nevertheless provide
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a topological level of protection against logical qubit error.

2.4.1 Free evolution with intrinsic noise

The evolution of a general eigenstate of the toric code |g⟩ can be examined in terms of its

fidelity with the original state, that is

Fg = | ⟨g| e−i(HTC+
∑

j hjXj)t |g⟩ |2 = | ⟨g|U(h1, h2, ...) |g⟩ |2. (2.39)

Once again it is convenient to expand the unitary propagator as an expansion in terms

of small errors hj so that

U(h1, h2, ...) = U0 +
∑
j

hj
∂U

∂hj
+
∑
i,j

hjhk
2!

∂2U

∂hj∂hk
+ ... (2.40)

When the propagator is given as an expansion the fidelity Fg can be described up to

arbitrary order. We will investigate the fidelity only up to the lowest orders as we assume

the magnitude of error fields are small.

There is only a single term in zeroth order which is clearly ⟨g|U |g⟩⟨g|U † |g⟩ = 1. The

first order terms are all of the form:

hj ⟨g| ∂hj
U |g⟩⟨g|U † |g⟩+ hermitian conjugate (2.41)

These in fact all disappear due to the vanishing of ⟨g| ∂hj
U |g⟩. This may be seen explicitly

from the identity [52]

⟨g| ∂hj
U |g⟩ = ⟨g|

(
−i
∫ t

0

e−i(t−u)HTCXje
−iuHTC du

)
|g⟩ (2.42)

where HTC is the unperturbed toric code Hamiltonian and iXj = ∂H
∂hj

. As |g⟩ is an

eigenstate of HTC and Xj |g⟩ is both another eigenstate and orthogonal to |g⟩, the term

(2.42) ultimately vanishes. Indeed this also means that any term in the series expansion

of Fg that is a product of first order terms also disappears. The second order terms in



49 2.4. Background noise and intrinsic errors in the Hamiltonian

the fidelity come in two forms, the first in the form

hjh
∗
k ⟨g| ∂hj

U |g⟩⟨g| ∂hj
U † |g⟩+ h.c. (2.43)

and the second in the form

hjhk
2!
⟨g| ∂2U

∂hj∂hk
|g⟩⟨g|U † |g⟩+ h.c. (2.44)

Though hj is always real and hence is equal to h∗j , it is useful to state terms in this form

in order to more easily keep track of multiplicands.

Those second order terms in the first form must vanish from the fidelity for the same

reason that the first order terms in the fidelity disappear. Moreover it turns out that

of those terms in the second form, those which are cross terms (i.e. where j ̸= k) also

vanish. This can be seen from the fact that

⟨g| ∂2U

∂hj∂hk
|g⟩ = −2 ⟨g|

∫ t

0

∫ u

0

du dv e−i(t−u)HTCXje
−i(u−v)HTCXke

−ivHTC |g⟩ . (2.45)

For similar reasons as with the first order case this vanishes if j ̸= k as XjXk |g⟩ is a

higher anyonic energy eigenstate of HTC and so is orthogonal to |g⟩. This immediately

shows that to second order, the total fidelity error in the system can simply be the sum

of the individual errors on each qubit in the lattice.

For completeness, we can see that for the case of j = k we get

⟨g| ∂
2U

∂hj
2 |g⟩ = −2

∫ t

0

du

∫ u

0

dv e−i(t−u)Ege−i(u−v)EXe−ivEg

=
−2ite−iEgt

(Eg − EX)
+

2(e−iEX t − e−iEgt)

(Eg − EX)2
(2.46)

where Eg and EX are the energy eigenvalues of the states |g⟩ and Xj |g⟩ respectively.

Together with the phase factor from the ⟨g|U |g⟩ parts of the expression, this gives
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the following evaluation for all of the non-vanishing second order terms:

h2j
2!
⟨g| ∂2hj

U |g⟩⟨g|U † |g⟩+ h.c. = h2j
2(cos((Eg − EX)t)− 1)

(Eg − EX)2
(2.47)

Indeed there are times t when even these second order terms vanish. Whether there is an

error present only on one qubit or on every qubit in the lattice, the first non-zero time

for which this is the case, assuming EX > Eg, is t = 2π
EX−Eg

= π
2
.

2.4.2 Time-dependent anyon creation with noise

It can also be shown that in the more novel scenario where time-dependent anyon creation

is attempted in the presence of these unwanted X-fields, fidelities to lowest order can still

be summed up from instances where errors act on each qubit separately.

To see how the presence of errors affects the creation of an anyon pair, i.e. the evolution

from |g⟩ to |Xkg⟩, the fidelity is defined as

F = | ⟨Xkg|U2(h1, h2, ...)U1(h1, h2, ...) |g⟩ |2 (2.48)

where U1(h) = e−i(HTC−2Xk+
∑

j hjXj)τ and U2(h) = e−i(HTC+2Xk+
∑

j hjXj)τ are the two uni-

tary matrices that without errors would give perfect fidelity with τ = π
4
√
2
.

Once again propagators will be expanded in terms of small hj errors, as in (2.39),

remembering that this time however we have two expansions to bear in mind. This would

lead to the zeroth order term in the fidelity again being unity. The first order terms would

then be

∑
j

hj ⟨Xkg|
∂U2

∂hj
U1 |g⟩⟨g|U †

1U
†
2 |Xkg⟩ + h.c.

+
∑
j

hj ⟨Xkg|U2
∂U1

∂hj
|g⟩⟨g|U †

1U
†
2 |Xkg⟩ + h.c. (2.49)

Given that one of the error-free unitaries acting on a state leads to an equal superposition
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of the original state and the anyonic state, up to a global phase, i.e.

U1 |g⟩ = e−i(HTC−2Xk)τ |g⟩ = eiλ
(
|g⟩+ |Xkg⟩√

2

)
(2.50)

then it should be immediately clear that all first order terms where j ̸= k vanish for similar

reasons as those given in the example of free evolution. It remains therefore only to look

at the examples where j = k. These comprise of two terms plus their respective complex

conjugates so for these terms to vanish it need only be shown that they are ultimately

the sum of purely imaginary terms.

Firstly it can be shown, using the reduced Hamiltonian described in Section 2,

H(t) =

−N f(t)

f(t) −N + 4

 , (2.51)

that the phase gained from creating the anyon-pair perfectly is

⟨Xkg|U2U1 |g⟩ = e
iπ(N−2)

2
√
2 (2.52)

where N (an even number) is the number of spin qubits in the toric code lattice. Secondly,

the first order terms that get multiplied by the phase are in fact equivalent and are

⟨Xkg|
∂U2

∂hk
U1 |g⟩ = ⟨Xkg| U2

∂U1

∂hk
|g⟩ = −iπe

iπ(N−2)

2
√
2

8
√

2
. (2.53)

The first order terms which are left are therefore now

−iπ
8
√

2
+ h.c. +

−iπ
8
√

2
+ h.c. = −iπτ + h.c. = 0. (2.54)

For the same reason as in the first order case, all second order cross terms that include an

error acting on a qubit other than k can be neglected. Therefore the conclusion is that

to lowest (second) order one can once again add up the drop in fidelities that are caused

by errors on individual qubits.
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A nontrivial toric code example

As an illustrative example we may use what has been described thus far on the simplest

non-trivial toric code lattice where all vertex and plaquette operators are well defined,

namely an 8-qubit square lattice with four vertices and plaquettes (see Fig. 2.8).

Figure 2.8: The simplest non-trivial toric code which consists of 4 plaquettes and 4 vertices
with number of qubits N = 8

If the system starts with the ground state |g1⟩ =
∏

v(1+Av) |0⟩⊗8 and the target is to

create an anyon pair on plaquettes p1,2,3,4 and p2,3,5,6, a Pauli X-pulse on qubit 3 can be

implemented. Given that to second order we may simply add up the contributions to the

drop in fidelity for an error on each qubit individually, the simpler reduced Hamiltonian

HTC + f(t)X3 + hjXj ←→



Eg f(t) hj 0

f(t) EX3g 0 hj

hj 0 EXjg f(t)

0 hj f(t) EXjX3g


(2.55)

may be used, where Eg is the ground state energy −8 and EXjg is the energy of the state

|Xjg1⟩ which is −4 for all j. A little more care has to be taken for EXjX3g as depending

on where j is the energy eigenvalues differ. Errors on qubits adjacent to the target qubit

will contribute to the extension of the anyon string and will have energy −4 and qubits

elsewhere will create new anyon pairs and so will give have an energy 0. If qubit j is
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itself 3, corresponding to an error on the target qubit and effectively an amplitude error

in the pulse, then the energy will be the ground state energy. This would also require

considering an even simpler reduced matrix as the Hilbert space would be reduced to just

two dimensions. A little extra care must be taken on examples such as this one where

an anyon string of length 2 will lead to a logical gate, that is, |X2X3g0⟩ is not simply

an anyon string but a non-contractible loop around the torus and therefore |X2X3g0⟩ is

another ground state |g2⟩.

At time τ = π
4
√
2

the fidelity of the evolved state |ψ⟩ with the ideal state |X3g1⟩ will

be of the form

F(h1, h2, ...) = | ⟨X3g1|ψ⟩ |2 = 1 +
8∑
j

αjh
2
j + h.o.t. (2.56)

The relevant numerical calculations show that where j = 1, 4, 5, 6, i.e. errors on qubits

adjacent to the target qubit,

αj = β1 =
1

4

(
−5 + 3

√
2 sin

(
π√
2

)
+ 2 cos

(
π√
2

))
≈ −0.70889. (2.57)

When j = 7, 8 and errors are away from the target qubit then

αj = β2 =
1

8

(
cos
(√

2π
)
− 1
)
≈ −0.158282. (2.58)

On qubit j = 2 the factor is −π2

32
≈ −0.308425. When the error is on the same qubit as

the target qubit, here the target qubit is 3, the second order terms in fact cancel out and

the lowest order fidelity drop is to fourth order.

This can be generalised exactly for a lattice of any size. For larger lattices where

the lattice width is 3 qubits or more, there are four adjacent qubits plus two on either

side that will contribute to the ‘anyon-extension’ fidelity drop, while all others which are

more distant from the target qubit, will contribute to anyon-creation fidelity drops. The
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general formula

F(h) = 1 +
6∑
j

β1h
2
i +

N−6∑
j

β2h
2
j + h.o.t (2.59)

can be used as a good approximation to see what magnitude of errors h are tolerable

for larger and larger lattices. For example, with a 500-spin lattice, if a fidelity of 90% is

tolerable then the maximum error on each qubit must have a magnitude no greater than

approximately 0.0348272 which as a proportion of the energy level splitting is roughly

0.87%. Conversely if an error of 1% of the energy gap 4 is accepted then a maximal

lattice size of approximately 390 spins is required.

2.4.3 Logical X-gate operation

The simplest logical gates that may be performed on logical qubits encoded in the toric

code lattice arise out of many successive steps that include anyon creation, string extension

and finally anyon annihilation. In order to see how intrinsic error in the Hamiltonian

affects this process one can first list the three steps to performing a logical gate: i) Create

an anyon pair using (at least) two unitaries of the form U = e−i(HTC±fXj)τ . In the simplest

and quickest example f = ±2 and τ = π
4
√
2
. ii) Extend an anyon string using only one

unitary at a time of the form U = e−i(HTC+fXj)t where if f = 2 then t = π
4
. ii) Annihilate

an anyon string in effectively the same process as anyon creation.

Considering the simplest non-trivial example where this three step process can take

place - on a lattice which is three qubits in width - this would then take at least five

unitaries. Here we illustrate how to perform a logical X̄-operation on ground state |g1⟩

so that we get X̄ |g1⟩ = |g2⟩. In an error free regime, the product of many unitaries would

be required to get | ⟨g2|
∏k

i Uj |g1⟩ |2 = 1 where k is 4 + L − 2 and L is the width of the

lattice in terms of plaquettes. In the erroneous regime, a generalised fidelity is defined as

F(h) = | ⟨g2|

(
k∏
j

Uj(h)

)
|g1⟩ |2. (2.60)
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This generalised behaviour behaves somewhat similarly to the single anyon-pair example

in that the zeroth order term is clearly unity. Other orders can be more complicated

however. To get an idea of what the fidelity would look like we use simplified two qubit

problems to work out the phase gained by the operations of creating, extending and

annihilating anyon strings. These results can be summarised as follows:

• Anyon creation1: |g⟩ → φc |Xjg⟩ where φc = eiτ(N−2)

• Anyon annihilation: |
∏

kXkg1⟩ → φa |g2⟩ where φa = −φc

• Anyon extension: |
∏

kXkg⟩ → φe |Xj

∏
Xkg⟩ where φe = −ieiτ2N

• ‘Half-anyon’ creation: |g⟩ → φhc√
2

(|g⟩+ |Xjg⟩) where φhc = ieiτ(N−2)

• ‘Half-anyon’ annihilation: |
∏

kXkg1⟩ → φha√
2

(|
∏

kXkg⟩ − |g2⟩) where φha = −φhc.

These results can be used to show that first order terms in the fidelity disappear,

however further terms will in general not disappear.

2.4.4 Topological improvement

In the examples thus far observed, both in free evolution or anyon creation, the com-

pounding nature of the effect of errors with number of qubits in the system seems to

imply no advantage in qubit protection for larger toric code lattices, or even in any lattice

at all. We now discuss why the topological protection, stemming from the degeneracies

in the toric code do in fact help give extra protection.

Infidelities and non-correctable states

Once an error field such as
∑

j hjXi is turned on in the toric code, an initialised ground

state will immediately evolve into a superposition of every possible eigenstate of the

unperturbed system. While this superposition is heavily biased towards the outcome

of measurement being the desired eigenstate, assuming that the error is small, there is

1Recall that τ = π
4
√
2
is half the duration of anyon creation/annihilation. τ2 = π

4 is the duration of

anyon string extension.
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nevertheless immediately a finite possibility of collapsing the superposition state into any

erroneous, undesired eigenstate. Most of these however can be corrected if infinitely quick

and perfect anyon creation is assumed. Those that can be corrected easily are states

which have a different anyon configuration to the desired eigenstate, as anyon number

and location can be locally measured. No local distinguishment can be made however

between states of the same anyon configuration as there is a fourfold degeneracy in any

anyon-configuration in the toric code.

For any generic toric code eigenstate |ψ⟩, there are three other orthogonal states with

the same anyon configuration, namely X̄1 |ψ⟩, X̄2 |ψ⟩ and X̄1X̄2 |ψ⟩ where X̄j refers to one

of two possible logical X-gates that may be performed corresponding to non-contractible

loops of single-spin X operations around the torus. As these are the only states that

correspond to logical error it is sensible to investigate infidelities corresponding to the

probabilities of ending up in any of these logical error states and aiming to suppress

them. In other words, if initialised in a ground state |gj⟩ then the appropriate measure

of logical infidelity, is

I =
∑
k ̸=j

| ⟨gk| e−i(HTC+
∑

hjXj)t |gj⟩ |2 (2.61)

where |g2⟩ is defined as X̄1 |g1⟩, |g3⟩ = X̄2 |g1⟩ and |g4⟩ = X̄1X̄2 |g1⟩.

Immediately it becomes apparent that the order of this infidelity is contingent on the

lattice size. If a lattice consists of m× n plaquettes (where m ≤ n) then the lowest order

in the infidelity will be at least 2m. This can be seen explicitly through the 8-qubit toric

code example. From Fig. 2.8 if the system is initialised in ground state |g1⟩ then |g2⟩ =

X2X3 |g1⟩ = X7X8 |g1⟩, |g3⟩ = X1X4 |g1⟩ = X5X6 |g1⟩, and |g4⟩ = X2X3X1X4 |g1⟩ =

X7X8X5X6 |g1⟩.

If the perturbed Hamiltonian of the system is HTC +
∑8

i hjXj then the lowest order

nonzero term in the expansion of the infidelity is of the form

1

2!
hµhν ⟨gj|

∂2U

∂hµ∂hν
|g1⟩⟨g1|

∂2U

∂hα∂hβ

†

|gj⟩
1

2!
hαhβ + h.c (2.62)
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where |gj⟩ = |XµXνg1⟩. This term is only nonzero if both overlaps are nonzero. Therefore

the only allowable combinations for hµhνhαhβ are h21h
2
4, h

2
2h

2
3, h

2
5h

2
6, h

2
7h

2
8, h1h4h5h6 and

h2h3h7h8. Clearly the lowest non-zero order is indeed of order 2m = 4. For completeness

we shall note that the full expression for the lowest nonzero order in the infidelity is

I =
1

32
(1 + 8t2 − cos 4t− 4t sin 4t)(h22h

2
3 + h21h

2
4 + h25h

2
6 + h27h

2
8 + 2h1h4h5h6 + 2h2h7h8h3)

(2.63)

= 2× (2!)2 × 1

(2!)2
|k|2 × (h22h

2
3 + h21h

2
4 + ...) (2.64)

= κ(h22h
2
3 + h21h

2
4 + ...) (2.65)

= κ((h2h3 + h7h8)
2 + (h1h4 + h5h6)

2) (2.66)

where κ = 2|k|2. The most general definition of the factor k, for any m × n size lattice,

again assuming that m ≤ n, is

k = im×m!×
∫ t

0

∫ u1

0

...

∫ um−2

0

∫ um−1

0

dmu e−i(t−u1)Ege−i(u1−u2)EXm−1 ...e−i(um−1−um)EX1e−iumEg

(2.67)

where Eg is the energy eigenvalue of the desired state |g1⟩ and EX1 the eigenvalue of

|Xjg1⟩ and so on. Once again the advantage of having a larger lattice size given in terms

of logical qubit protection becomes clear; as the factor k is of the order of t, the factor

of κ is therefore of the order t2 and so, roughly speaking, with larger and larger lattices

there will be less and less time for the errors to build up to become a logical X gate which

causes a logical error. Less crudely we have

I ∼ h2mt2 (2.68)

so that t ∼
√
I

hm meaning that with larger lattice sizes the time taken for infidelity to grow

gets extremely long.

A corollary of this is the lack of advantage in using non-square lattices, a rectangu-

lar lattice could even be a liability in that, for example, a 3-by-2 lattice would have a



Chapter 2. Creating abelian anyons in the toric code 58

marginally higher infidelity than a 2-by-2 lattice, due to the extra possible path for a log-

ical X-error to build up. In an m-by-m plaquette lattice 2m2 is the factor that multiplies

h2m whereas on a lattice of size m-by-n with m < n then this factor is n2 which may be

larger than m2 for n >
√

2m. As 3 > 2 one would expect the lowest order infidelity in

a 3-by-2 plaquette lattice to be 9
8

times that of a 2-by-2 lattice and hence offering worse

protection.

Infidelities during anyon creation

The results obtained so far indicate that the toric code’s robustness will be maintained for

anyon-creation in a time-dependent manner, as earlier it was shown that anyon creation

time is independent of lattice size, T = 2τ = π
2
√
2
.

For an m × m lattice 2 with spin j the target qubit for anyon creation, the appro-

priate measure of infidelity would be between state |Xjg1⟩ and X̄1 |Xjg1⟩ , X̄2 |Xjg1⟩ and

X̄1X̄2 |Xjg1⟩ where X̄j are the two possible logical X-gates.

Much of the results for infidelities under free evolution apply to the case of anyon

creation. One essential difference comes from the fact that a target qubit j may itself be

used as part of a logical X gate. For a given m-by-n lattice with m < n, the ‘simplest’

logical gate will consist of m Pauli X operations on a string of qubits, X̄1 = X1X2...Xm.

For the general lattice there are n topologically equivalent ways of performing X1 with m

qubits, one of which includes qubit j, the target qubit on which the anyon-pair is to be

created. Thus without loss of generality, one may define X̄1 = X1X2...Xj...Xm. As the

Pauli matrices square to the identity, then

X̄1 |Xjg1⟩ = X1X2...Xj−1Xj+1...Xm. (2.69)

This is therefore equivalent to only m − 1 X operations on the initial state |g1⟩. Hence

2At this point it is no longer necessary to look at lattices that are not square as the crucial length is
the shortest side.
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the lowest order infidelity, defined by

I =
3∑

k=1

〈
X̄kXjg1

∣∣ e−iτ(H++h
∑

Xk)e−iτ(H−+h
∑

Xk) |g1⟩ (2.70)

where X̄k are the three topological X̄-gate operations that can be performed, is of the

order 2(m − 1), rather than 2m as in the example of free evolution. In this equation

H± = HTC± 2Xj. An example of the implementation of this general statement is seen in

Fig. 2.9.

1 2 3 4 5 6 7 1

Figure 2.9: An example of a lattice of 7 columns by n rows where n > 7 and only 3 rows are
shown. Clearly the anyon configuration above can be achieved by X4 acting on |g1⟩ or
X1X2X3X5X6X7 |g1⟩ suggesting that the lowest order infidelity will be h12. For the free
evolution case it would instead be h14.

2.5 Numerical results

The analytical results thus far may be compared with numerical results carried out for

toric code lattices of small size in order to present an idea of the scale of the robustness of

the code in the face of errors of small magnitude. For the sake of comparison numerical

results have also been obtained for intrinsic errors of large magnitude.
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Figure 2.10: Infidelity between the the ground state of the toric code with all three
orthogonal ground states after free evolution under the perturbed Hamiltonian HTC + h

∑
j Xj

for a time 2× π
4
√
2
which is the time taken for anyon creation with the simplest control pulse.

Free evolution infidelity for small magnitude h for the three lattice examples. A 3-by-2 lattice
consisting of 12 spins gives demonstrably no advantage in terms of logical qubit protection
compared to a 2-by-2 lattice of 8 spins.

2.5.1 8-qubit toric code

For the case of the smallest non-trivial lattice, the 2-by-2 plaquette case consisting of 8

spins, numerical results for free evolution of the ground state of the unperturbed Hamilto-

nian, assuming the same magnitude in error on every qubit, are shown in Fig. 2.10. A best

fit curve for the numerical data assuming a small error gives an infidelity of 3.85469h4.

This is an accurate numerical approximation given that the analytical form for the lowest

order infidelity is 1
4
h4
(
1 + π2 −

√
2π sin

(√
2π
)
− cos

(√
2π
))
≈ 3.85469h4.

For the case of anyon-creation, infidelity after time 2τ in the presence of an unwanted

error on every qubit, a numerical fit of 0.308425h2 is achieved. This is once again close

to the exact figure for the lowest order infidelity π2

32
h2.

2.5.2 12-qubit toric code

The next largest non-trivial toric code, the 3-by-2 lattice gives a best fit curve for the

numerical data assuming a small error of 4.33636h4 infidelity. This is in concordance

with the analytical result of 9
32
h4
(
1 + π2 −

√
2π sin

(√
2π
)
− cos

(√
2π
))
≈ 4.33642h4.
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Figure 2.11: Graph showing the infidelity between the state X3 |g⟩ and orthogonal states of
identical anyon configuration after evolution under the perturbed anyon-creation Hamiltonian
HTC + f(t)Xi + h

∑
j Xj .

As expected this is 9
8

times the same value for the 8-qubit lattice.

The numerical analysis for anyon-creation in the 12-qubit lattice requires further anal-

ysis than for the previous examples. For this lattice it matters greatly where the target

qubit lies on the lattice. An anyon pair created by an operation on a spin qubit which

can form a chain of 3 qubits for a possible logical X-gate will lead to infidelities which

will be taken with states which require larger order errors to create them. As a result,

the lowest order infidelity when creating an anyon pair on half of the qubits will be of

the order h4 while for the other half it will be of order h2. In the particular example of

the 3-by-2 lattice, the shorter side of the lattice is exactly 1 less than the longer side and

so this additionally needs to be considered. Both examples are shown graphically in the

numerical results. The respective lowest orders for the analytic results would be π2

32
h2 and

(Ω1 + Ω2)h
4 where

Ω1 =
1

128

(
3π(8 + 3π) + 96− 8

√
2(8 + 3π) sin

(
π√
2

)
+ 8(3π − 4) cos

(
π√
2

))
(2.71)

is the infidelity between the evolved state and the state equivalent to a logical gate on the
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desired state where the logical gate is parallel to the desired anyon-pair. Moreover

Ω2 =
1

32
(25π2 + 40π + 413−

√
2(4 + 5π) sin

(√
2π
)

− 8
√

2(37 + 5π) sin

(
π√
2

)
− 21 cos

(√
2π
)

+ 8(15π − 8) cos

(
π√
2

)
) (2.72)

and this is the infidelity between the evolved state and the orthogonal states created using

logical gates perpendicular to the desired anyon pair.

2.5.3 18-qubit toric code

The first substantial improvement in the infidelities over the simplest nontrivial toric code

will be the 3-by-3 plaquette lattice consisting of 18 spin qubits. This is validated by the

numerical results shown in Fig. 2.10. The infidelities are of a higher order (order h6 for

free evolution and h4 for anyon creation). These are

81

128
h6
(
π2 + 2− 2

√
2π sin

(√
2π
)

+
(
π2 − 2

)
cos
(√

2π
))

(2.73)

and an identical Ω1 as for in the case of the 12-qubit lattice respectively.

2.6 Correctability of anyonic states

The toric code is forced to rely on an algorithm for error correction when it comes to

anyon-pair annihilation that requires annihilating an anyon pair in the shortest path

between them. As mentioned previously, this is not a optimal as it is impossible to locally

distinguish between states of the same anyon configuration and so there is a reliance on

the fact that it is marginally more difficult for an anyon-pair of a long string to materialise

than for one of a shorter string. This then indicates that there will always be a nonzero

probability of logical error during error correction/anyon-pair annihilation.

Considering the simplest possible desired eigenstate that is possible, namely a ground

state of the toric code, and then examining error-correcting one single anyon-pair, it is
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then possible to quantitatively classify which states will be corrected accurately using the

shortest-path algorithm. A concrete example of an 8-by-8 lattice (128 qubits) is described

below from which a generalisation is sought.

In the 128-qubit lattice example (see Fig. 2.12), any anyon-pair that is up to 3 qubit

lengths long, that is, an anyon-pair that would be created through operations on three

successive qubits, will always be corrected accurately, for there are no alternative paths

between two anyons that could be shorter.

Figure 2.12: An 8-by-8 lattice showing all the possible locations of an anyon corresponding
to a being in a pair with the central (darker blue) anyon. There are no alternate paths for any
anyon which are shorter than 3 qubits and so all 12 states are completely correctable. There
are 82 different possible positions for the central anyon, a number which must be halved to
take into account the double counting of anyon pairs.

In general for a lattice of size n-by-n an anyon pair of qubit length all paths of length

up to ⌈n
2
− 1⌉ are completely correctable. The total number of anyon pairs possible then

equals this number multiplied by half the total number of plaquettes, to account for

counting each pair twice. In the concrete example this amounts to 32 multiplied by 4 (for

pairs of length 1) plus 8 (pairs of length 2) plus 12 (pairs of length 3) which is 768. The

general formula for a lattice of n plaquettes by n plaquettes then is

Nmin =
n2

2

⌈n
2
−1⌉∑

k=1

4k (2.74)

where Nmin is the minimum number of completely correctable states.

Anyon-pairs of even longer length still include some configurations that are completely

correctable and some which are half-correctable. The latter describes states that have two

shortest possible paths of annihilation that are topologically distinct. For even lattices,
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that is lattices of size 2k-by-2k there are still 4 states which are completely correctable in

pairs of length 2k− 2. At pairs of length n− 1 we have 4 which are half-correctable. This

is graphically illustrated in Fig. 2.13. In these scenarios, the total addition of completely

correctable states amounts to a doubling of the formula, making Nmax = 2Nmin.

(a) Pairs of length 4 (b) Length 5

(c) Length 6 (d) Length 7

Figure 2.13: Illustration of correctable and uncorrectable states with varying lattice size.
Key: Green - accurate correction, Orange - 50% accurate, Red - inaccurate. We can see
that the anyon pairs of length n− 2 have 4 each of 50% accuracy and 0% accuracy. For the
pairs of length n− 1 there are 4 at 50%.

This is true in general for all even lattices. For odd lattices (see Fig. 2.14) the only

difference is that the remaining 50% accurate pairs of length n−2 and n−1 become com-

pletely correctable, as illustrated below. It turns out that all states are either completely

correctable or completely uncorrectable (that is, there will be a logical error induced via

the annihilation algorithm), meaning that the formula for Nmax is the same.

Figure 2.14: A 9-by-9 lattice where on the left are shown anyon-pairs that are 7-qubit
lengths away and on the right 8-qubits. They each have 8 and 4 wholly correctable states
respectively. Somewhat remarkably there are still some anyon configurations that are
completely correctable using the shortest-path algorithm.
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2.7 Imperfect state correction

All results described in previous sections of this chapter may thus be incorporated into

a protocol for correcting errors, that is turning unwanted states into desired ones, in a

way that is itself not necessarily done perfectly. A concrete example will be given for

illustrative purposes, which may be readily generalised, of beginning with a ground state

of the toric code and creating one anyon pair.

2.7.1 Protocol for anyon creation and error correction

1. Initialise the ground state of the toric code i.e. the anyonic vacuum state |g1⟩

2. Turn on time-dependent piecewise constant X-field pulse f(t) acting on spin qubit

j, with value of the pulse ϕ changing signs at times τ = π

4
√

1+(ϕ
2
)2

. The most

efficient possible pulse to achieve this is with ϕ = ±2 and τ = π
4
√
2

with total time

T = 2τ .

Figure 2.15: Desired evolution from |g1⟩ to |Xjg1⟩

3. The anyonic configuration should now be measured by measuring the required pla-

quette operators. If a measurement yields a −1 eigenvalue, this indicates the pres-

ence of an anyon on the corresponding plaquette. If anyon creation is carried out

with some error ϵ in the pulse, either in pulse amplitude or in timing, then measuring

the anyonic configuration after turning the pulse off will result in a collapse either

to the desired state |Xjg1⟩ with high probability or back to the initial state with a

probability of O(ϵ2). If the state hasn’t changed the process may be repeated.
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4. With the presence of unwanted intrinsic errors present in the Hamiltonian, in the

form of X-fields of magnitude h on every qubit, the state will have evolved to a

superposition of every possible eigenstate of the lattice toric code. The probability

of measuring the state to contain one extra anyon pair is O(h2), the probability of

either two extra unwanted pairs or an unwanted anyon-pair of extended length is of

the order O(h4) and so on.

Of the unwanted states with one extra anyon pair, as the number of possible simple

anyon-pairs on a lattice of plaquette size n-by-n and total qubit number N = 2n2

is N itself, the number of unwanted states of the order h2 is N − 1, ignoring the

state where the error is also on the target qubit, whose infidelity is of the order

h4, corresponding to two Pauli operations. The six possible states that extend the

desired anyon pair in an unwanted way will have a different coefficient of infidelity

than that of the other N − 7.

Figure 2.16: One out of a possible N − 7 possible unwanted anyon pairs shown in red, with
the six possible states that could lengthen the target anyon pair shown in yellow.

5. If an unwanted anyonic configuration is measured, the error correction procedure is

implemented which is identical to anyon creation. If there is an unwanted anyon

pair on qubit k and a desired one on qubit j we evolve from |XkXjg1⟩ to |Xjg1⟩. The

fidelity here will be F = 1−αh2 + .... The overall total probability of arriving, after

error correction to the final desired state is the probability of arriving at the correct

state initially multiplied with the probability of the error correcting procedure being

accurate.

To illustrate this protocol more clearly we may apply it to the concrete example of

the 18-qubit toric code. If the ground state |g1⟩ is initialised and a pulse of magnitude
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|ϕ| = 2 is chosen with target spin is qubit 3 for the anyon-pair creation, two unitaries are

required:

U±(h) = e−iτ(HTC±2X3+h
∑

k Xk) (2.75)

so that if U1 = U−(0) and U2 = U+(0) then the fidelity | ⟨X3g1|U2U1 |g1⟩ |2 would be unity.

There are N − 7 = 11 states that could me arrived at through measuring the anyonic

configuration after time 2τ in the presence of the error fields which correspond to an

anyonic energy of −N + 8 = −10 rather than the desired −N + 4 = −14. An example

of such a state is |X18X3g1⟩ and the probability of measuring this state will be h2(αβ∗ +

βα∗ + |α|2 + |β|2) to lowest order, where

α = ⟨X18X3g1|
∂U+

∂h
U− |g1⟩ (2.76)

β = ⟨X18X3g1|U+
∂U−

∂h
|g1⟩ . (2.77)

This evaluates overall to Ω1h
2 = 1

8
h2
(
cos
(√

2π
)
− 1
)
.

There are a further six possible states such as |X2X3g1⟩ that there is a O(h2) probabil-

ity of measuring that is equivalent to a state with unwanted lengthened anyon-string. Here

the coefficient of h2 evaluates to Ω2 = 1
4

(
2−
√

2 sin
(

π√
2

)
− cos

(
π√
2

))
. These states,

which are the most likely of all the possible erroneous states to be measured, are all com-

pletely correctable, for after measurement, the shortest-path-annihilation algorithm will

not lead to logical error.

The correction procedure is then implemented which, if we are evolving from |X18X3g1⟩

then the lowest order probability of doing so correctly is approximately 1 − 11.3715h2.

The second order coefficient is a sum of all the errors caused on individual qubits, some

of which change the anyonic charge and some of which lengthen strings in an unwanted

way. Similarly, if we evolve from |X2X3g1⟩ then the probability of correcting accurately is

≈ 1−6.78345h2+ .... The total probability of arriving at the desired state after correction
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is

P (|g1⟩ → |X3g1⟩)

+11P (|g1⟩ → |X18X3g1⟩)P (|X18X3g1⟩ → |X3g1⟩
∣∣ |g1⟩ → |X18X3g1⟩)

+6P (|g1⟩ → |X2X3g1⟩)P (|X2X3g1⟩ → |X3g1⟩
∣∣ |g1⟩ → |X2X3g1⟩) (2.78)

where P (a
∣∣b) is the probability of a given b.

2.8 Summary

We have studied how to create and annihilate anyons in the toric code using time-

dependent lattices of arbitrary magnitude as well as with a lower bound τ = π
4

for

time evolution. We have seen how timing and amplitude errors in the pulse alter the

degree to which the desired anyonic state is achieved by an amount O(ϵ2) in the error

and if this is unsuccessful the original state is maintained. Using a step-by-step method

of anyon-creation and string-extension, as well as possible annihilation, we can create

strings of arbitrary length with repeated application of these pulses and culminate in a

logical X-gate, while we see that errors will be compounded due to no interference terms

appearing when pulse timing and/or amplitude errors are present. This compounding, to

lowest order, can be considered as the sum of the individual errors.

We also studied the effects of intrinsic error terms in the Hamiltonian acting on all

spins in the toric code lattice and we showed the effect this has on fidelities. We know

that while larger lattices do not improve fidelity if a larger lattice means more qubits for

errors to crop up on, we see that the probability of achieving ‘uncorrectable’ states that

are equivalent to a logical error falls linearly with lattice width, and this was confirmed

with numerical comparisons. Finally, we were able to quantify how often one would

expect to find an anyon configuration that can be corrected properly while following the

shortest-path annihilation algorithm for state correction.



Chapter 3

Non-abelian anyons in a honeycomb

lattice

In this chapter we present our work regarding the use of quantum control to create non-

abelian anyons in a spin lattice system, in such a way that is scalable for larger lattice sizes.

The Kitaev honeycomb model is a notable example of a relatively simply defined system

with non-trivial topological order [12, 45, 53]. The simplicity of the model’s definition has

led to multiple proposals in recent years for its experimental realisation [54, 55]. In this

system, anyons manifest themselves as vortices introduced into the model which may be

fused to create fermionic excitations corresponding to anyonic fusion rules known as Ising

anyons [32, 56]. The exact fusion rules are given as

σ × σ = 1 + ϵ (3.1)

σ × ϵ = σ (3.2)

ϵ× ϵ = 1 (3.3)

where σ represents an anyon and ϵ represents a fermion so that Equation (3.1) is inter-

preted to mean that when two anyons are fused they may give rise to either a fermion or

the anyonic vacuum.

Anyonic braiding itself and indeed any form of particles being interchanged is generally

69
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assumed to be an adiabatic process [33, 57, 58] so that unwanted excitations may be safely

suppressed. In practice, however, the restriction to adiabatic dynamics typically conflicts

with the requirement to realise all operations on a time-scale that is short compared to

the system’s coherence time [59]. Quantum control has proven successful in speeding up

adiabatic evolution in a wide range of scenarios [39, 40, 31, 41, 42] suggesting its suitability

for anyon creation in topological systems. Common optimal control techniques, however,

are limited in their applicability to the Kitaev honeycomb model. Due to the exponen-

tial scaling of composite quantum systems, numerical simulations of the time-dependent

Kitaev honeycomb model are only possible for very small system sizes. Fermionisation

of the Kitaev honeycomb model allows for improved scaling and solving larger systems

but thus far this has generally been restricted to systems with time-independent Hamil-

tonians. The scope of this chapter is to use quantum control in applying fermionisation

within the context of a time-dependent version of the model. This will demonstrate that

optimal control does indeed provide access to faster-than-adiabatic anyon creation.

Section 1 of this chapter provides a brief overview of anyons in the Kitaev honeycomb

model to setup the operators and terminology required for the control problem. Section

2 describes quantum control and pulse optimisation for anyon creation and sets up the

key result on fermionisation, which is proven separately in Sections 3 and 4. Section 5

presents explicit numerical results of the optimal control problem defined. An overall

summary of results and conclusions are presented in the final section.

3.1 Diagonalising the static Kitaev honeycomb model

We begin by reviewing one of the numerous methods of solving the static Kitaev hon-

eycomb model [43, 60, 61, 62, 63]. This is followed by a demonstration of how vortex

creation is implemented within the model [12, 14] and how this corresponds to creation

of non-abelian anyons.

Although diagonalisation of the honeycomb model is not required for solving the time-

dependent control problem we define later, we still outline its strategy, as the operators
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and terminology introduced will also play a role in the time-dependent version. The

honeycomb system takes its name from its hexagonal lattice geometry consisting of spin-

1/2 particles located at the vertices of hexagonal plaquettes, as shown in Fig. 3.1. It is

defined by the Hamiltonian

H = −
∑

{j,k}∈N2

Jsσ
s
jσ

s
k −K

∑
{j,k,l}∈N3

σx
j σ

y
kσ

z
l , (3.4)

where N2 correspond to honeycomb edges and N3 are certain triplets of spins defined in

a particular way. There are three types of two-body nearest neighbour Pauli interactions

s = x, y, z determined by the position of the edge in the lattice, highlighted in three colours

in Fig. 3.1. The three-body terms act within each hexagonal plaquette in the following

way: three adjacent spins contribute to a three-body interaction term with the middle spin

interacting through the Pauli operator corresponding to the link pointing outwards from

the plaquette, while each of the two remaining spins interact through the Pauli operator

corresponding to their link to the middle spin. For example in the plaquette highlighted

in Fig. 3.1, one of the three-body interaction terms would be σy
1σ

x
2σ

z
3, with 5 similar

terms following clockwise along the hexagonal plaquette. While the two-body part of the

Hamiltonian allows for the model to be solved by a process of Majorana fermionisation,

the three-body part preserves the solvability of the model while also breaking time-reversal

symmetry and it consequently gives the system non-trivial topological order [12].

For every hexagonal plaquette, a corresponding plaquette operator Wp may be defined

which acts on every spin with the Pauli operator of the outward pointing interaction, so

that for example on the numbered grey plaquette in Fig. 3.1 we have Wp = σz
1σ

x
2σ

y
3σ

z
4σ

x
5σ

y
6 .

Each plaquette operator squares to the identity so that its eigenvalues adopt the values

±1 only. Since the plaquette operators all commute with the Hamiltonian and with one

another, the system Hilbert space is naturally partitioned into simultaneous eigenspaces

of all plaquette operators. Negative plaquette eigenstates are known as vortices and by

a well known theorem [64] it is known that the ground state eigenspace is in the no-

vortex sector [12]. Different vortex sectors relate to the presence of anyons localised at
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x y

z

1
2

3
4

5

6

Figure 3.1: A honeycomb lattice showing the three kinds of interactions between
neighbouring spins which are on the vertices of hexagonal plaquettes. Red, blue and green
links indicate σxσx, σyσy and σzσz interactions respectively. The hexagonal plaquette
operators correspond to many conserved quantities in the system. A generic plaquette whose
spin sites have been numbered 1 to 6 is highlighted in grey.

the respective vortex plaquettes.

While solving the system remains an intractable exponential problem even after restric-

tion to one vortex sector, a mapping of the problem into a Majorana fermionic Hamil-

tonian provides a pathway towards diagonalisation. The mapped Majorana fermionic

Hamiltonian is defined by replacing spin qubit sites j with two fermionic sites and their

corresponding creation operators a†j,1 and a†j,2. For each site j, the real and imaginary

parts of the two fermionic modes constitute a total of four Majorana modes per site. The

Majorana creation/annihilation operators are defined

bxj = aj,1 + a†j,1, byj =
1

i
(aj,1 − a†j,1),

bzj = aj,2 + a†j,2, cj =
1

i
(aj,2 − a†j,2). (3.5)

Since with this mapping the Hilbert space is enlarged, a projection is required to

obtain vectors that correspond to states in the original Hilbert space of the honeycomb

model. This requires the stabiliser projector [12, 43]

PD =
N∏
j

(
1 +Dj

2

)
(3.6)
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with Dj = bxj b
y
j b

z
jcj.

The newly mapped Hamiltonian

Hf =
iJ

2

∑
{j,k}∈N2

ûjkcjck +
iK

2

∑
{j,l},{k,l}∈N2

ûjlûklcjck, (3.7)

is defined in terms of Majorana operators where we may also define link operators ûjk =

ibsjb
s
k in a system of L total links and N spins.

The eigenvalues ±1 of link operators allow for further partitioning of each vortex sector

into link sectors. To this end, we can define a corresponding link sector projector

Pu =
L∏

{j,k}∈N2

1 + ujkûjk
2

, (3.8)

which amounts to choosing a tuple of link eigenvalues ujk ∈ {±1}.

Picking a certain link sector corresponds to fixing a gauge for a specific vortex sector

and leads to a quadratic fermionic Hamiltonian PuHfPu that is easily diagonalised [65].

The trivial gauge would consist of setting all link eigenvalues to ujk = 1, alongside the

constraints imposed by their antisymmetry ûjk = −ûkj. This amounts to defining an

orientation which for concrete purposes we define as follows: a positive orientation on an

x-link is directed from the bottom-left qubit to the top-right one (j to k), for a y-link it

is directed from the bottom-right to the top-left, and for a z-link it is directed from top

to bottom.

The Hamiltonian becomes diagonal in a certain quasiparticle basis H =
∑

ω>0 ωjb
†
jbj−

Eg and the ground state is the quasiparticle vacuum state. As previously stated, for physi-

cal states of the original Hamiltonian, the states will need to be projected; thus eigenstates

of the spin Hamiltonian |Ψ⟩ are related to eigenstates of the quadratic fermionic Hamil-

tonian |ψ⟩ by

|Ψ⟩ = PDPu |ψ⟩ . (3.9)
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The energy gap in the system corresponding to the vortex energy δ is simply the difference

in ground state energy Eg between differing vortex sectors. In general this is the energy

gap between pairs of vortices but in exceptional examples, such as with the single plaquette

lattice, this gap corresponds to a single vortex.

3.2 Anyon creation as an optimal control problem

Let us first describe the usual adiabatic approach. Vortex creation is implemented in

terms of the time-dependent Hamiltonian

H(t) = H +
t

T
Hj,k

control, (3.10)

comprised of the original honeycomb Hamiltonian as a drift combined with a control

Hamiltonian

Hj,k
control = 2Jjkσ

s
jσ

s
k + 2K

∑
j,k∈{a,b,c}

σx
aσ

y
bσ

z
c . (3.11)

where {a, b, c} is in N3. This amounts to gradually reversing the sign of a specific s-link,

as well as the sign of the nearby three-way interactions, using a linear time-dependence,

with steepness and therefore adiabaticity determined by the duration T of the adiabatic

protocol. As we will see in the numerical examples, T needs to be very large to obtain a

good fidelity.

We now want to set up anyon creation as an optimal control problem in the hope that

we can obtain similar fidelities in much shorter times compared to the adiabatic evolution.

To this end, we generalise the time-dependence of Eq. (3.10) as

H(t) = H + f(t)Hj,k
control, (3.12)

where f(t) is the ramp function defined such that f(0) = 0 at the initial point in time

t = 0 and such that f(T ) = 1 at the final point in time t = T . Typically, f(t) is assumed
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to be piecewise smooth or piecewise constant.

A typical figure of merit to be maximised is the state fidelity F defined in terms of an

initial state |Φ0⟩, the propagator U [f(t), T ] induced by the time-dependent Hamiltonian

H(t) and a target state that is meant to be created. In the present case, the initial state

|Φ0⟩ would usually be the ground state of the honeycomb model whereas the target state

|Φtarget⟩ is a state with an additional vortex-pair created.

While optimising for such a state fidelity is a generally successful approach, it has

two flaws when it comes to the honeycomb model. Since topological stability only arises

for large lattice size, any practical application of the honeycomb model requires a vast

number of qubits. Evaluating the time-evolution operator therefore requires numerics in

exponentially large spaces. Secondly, even if the ground state is solvable analytically in

the free fermion picture, we would have to translate it back into the larger spin picture

to evaluate F , which is again exponentially hard. In the following, we will resolve both

problems to obtain a scalable optimisation method.

3.2.1 Time-dependent fermionic picture

Let us first describe the time-independent case. In the fermionic picture, the quadratic

Majorana Hamiltonian can be written in the most general form with a matrix Jjk that

incorporates all interaction factors J as H = i
2

∑
jk Jjkcjck. When written in terms of full

fermionic creation and annihilation operators this is:

H =
1

2
α†Mα (3.13)

where α = (a1, . . . , aN , a
†
1, . . . , a

†
N)T is a vector of annihilation and creation operators

(corresponding to the Majoranas defined in Eq. (3.5)) and the Hermitian matrix M

M =

 µ ν

−ν∗ −µ∗

 (3.14)
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may be defined in terms of a Hermitian matrix µ and an antisymmetric matrix ν. A

canonical transformation T can then be found so that TMT−1 = diag{ω,−ω} where ω

is a diagonal 2N -by-2N matrix. This allows for the Hamiltonian to be diagonalised in

terms of quasiparticle modes [65].

We now consider how, in the fermionic picture, we may calculate the fidelity between a

state evolved from an initialised state by a time-dependent Hamiltonian towards a target

state. To this end, we write a ground state of H as |Φ0⟩ ≡ A |vac⟩, with the vacuum state

|vac⟩ satisfying the relation aj |vac⟩ = 0 ∀j. The operator A is some appropriately chosen

function of creation and annihilation operators. In the following section, we show that

the state fidelity in the fermionic picture is given by

F(t) = | ⟨Φtarget| kPDPu V [f(t), t]A |vac⟩ |2 (3.15)

= | ⟨Φtarget| kPDPuA(t)V [f(t), t] |vac⟩ |2. (3.16)

Here the projector Pu is given by Eq. (3.8), V [f(t), t] is the evolution operator corre-

sponding to the quadratic Hamiltonian PuH(t)Pu and PD is given by Eq. (3.6), while k is

a real number which depends on the specific lattice (see the following section for specific

examples). A(t) is a Heisenberg picture operator A(t) ≡ V [f(t), t]AV [f(t), t]†.

In analogy to Eqs (3.13) and (3.14) it is useful to decompose PuH(t)Pu as

PuH(t)Pu = Pu
1

2
α†M(t)α (3.17)

Since A depends on annihilation and creation operators, we may write it as A(α). It

can then be shown [65] that

V [f(t), t]A(α)V †(t) = A(W [f(t), t]α) (3.18)

where W (t) is the 2N -by-2N the time-ordered product solving the differential equation

Ẇ [f(t), t] = iM [f(t)]W [f(t), t]. (3.19)
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This solves the problem of an exponentially sized evolution operator, as W (t) scales

linearly in the system size. We will refer to calculations in this picture as the Heisenberg

picture, since it is directly obtained from the Heisenberg equations of motions of α. How-

ever, the problem of expressing the target and initial state in the spin picture remains.

This will be tackled next.

3.2.2 Heisenberg fidelity as optimisation target

We have seen that the evolution is fully determined by the Heisenberg picture of the

quadratic Hamiltonian. If we knew a good target evolution, rather than target state, we

could therefore free ourselves from the state picture and obtain all quantities directly in

the Heisenberg picture. The key idea here is to get back to the adiabatic evolution to find

such good evolution. We phrase such evolution directly in the Heisenberg picture. To this

end, let Wad be the solution of Eq. (3.19) for the adiabatic ramp Eq. (3.10) with some

suitably large duration Tad. This can be computed efficiently without having to refer to

states. We define a corresponding Heisenberg fidelity

FH =
1

2N

∣∣∣Tr
(
W †

adW [f(t), T ]
)∣∣∣ (3.20)

This quantity obtains its maximum 1 if and only if the evolutions match up to a phase

and it can be used for efficient numerical optimisation. In Section 4 of this chapter, we

explicitly demonstrate that

1−FH ≥
1

32N3

(
1−
√
F
)
. (3.21)

This shows that FH is a good surrogate for F and may be optimised instead.
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3.3 Dynamics of the time-dependent Hamiltonian in

the fermionic picture

Previous work on the Kitaev honeycomb model has primarily been focused on time-

independent Hamiltonians, yet for quantum control we require time-dependent Hamil-

tonians. Examples of such investigations of a time-dependent Kitaev honeycomb model

have included those focused on periodic driving [66, 67] which have used Floquet theory,

allowing for periodic driving to be mapped to an effectively time-independent system [68].

Other studies have used Jordan-Wigner transformations without projections to look at

specific time-dependent behaviour such as the Kitaev honeycomb model with a quenched

magnetic field [69]. While useful, these studies are not sufficient for our purposes of using

general time-dependence in the regular honeycomb model.

In this section we show that in regular lattices with open, periodic or half-periodic

boundary conditions, the fermionisation procedure with projections is still possible in the

time-dependent case.

First let us recall the projections onto a link sector u

Pu =
L∏

{jk}

1 + ujkûjk
2

, (3.22)

defined by an L-tuple of link eigenvalues ujk ∈ {±1}; the projector onto a vortex sector

w

Pw =
P∏
j

1 + wjŵj

2
(3.23)

defined by a P -tuple of plaquette eigenvalues wj ∈ {±1}; and the projector onto the

physical subspace of the fermionic space given by

PD =
N∏
j

1 +Dj

2
, with Dj = bxj b

y
j b

z
jcj. (3.24)
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Since

ŵj =
∏

{k,l}∈wβ

ûkl, (3.25)

Pu and Pw commute, and moreover w is fully determined by u. We denote this relationship

as w = ω(u) and thus have PwPu = δw,ω(u)Pu and

Pw = Pw

∑
u

Pu =
∑

u:ω(u)=w

Pu. (3.26)

Pw commutes with PD, Pu and the time-dependent fermionic Hamiltonian Hf (t), so it will

suffice to restrict ourselves to a single plaquette sector w. While PD is the projection that

determines physicality, Pu will turn the fermionised Hamiltonian into a quadratic (and

thereby easy to solve) one. A difficulty arises from the fact that PD does not commute

with Pu. We can however find another useful relationship between these projectors. Let

N be the number of qubits of the original spin lattice and {Γk|k = 1, · · · , 2N} be the

set of all possible products of stabiliser operators Di on the qubits, without repetition,

where we take an arbitrary but fixed order. For our fixed w consider the corresponding

pre-image ω−1(w) of link sectors. We define an equivalence relationship ∼ on this set by

u ∼ v :⇔ ∃k : Pu = ΓkPvΓk. Let κ be the number of equivalence classes. Let us choose

an arbitrary but fixed set of representatives u1, . . . , uκ, one from each equivalence class,

and define Pū =
∑κ

i=1 Pui
.

Upon expanding PD in terms of stabilisers, we obtain

PDPūPD =
1

2N
PD

κ∑
i=1

2N∑
k=1

ΓkPui
Γk. (3.27)

To understand the right hand side better, we make a counting argument. Firstly, it follows

from the anticommutation relations between link operators ûjk and the Dj stabiliser



Chapter 3. Non-abelian anyons in a honeycomb lattice 80

operators,

{Dj, ûkl} = 0 j = k or j = l (3.28)

[Dj, ûkl] = 0 j ̸= k and j ̸= l, (3.29)

that the ΓkPui
Γk are again link projectors. Since we sum over all Γk and by definition of

the equivalence classes, we know that every u ∈ ω−1(w) appears at least once on the right

hand side, and that there are no overlaps between the classes of fixed i. Furthermore the

equality ΓPuΓ = Pu holds if and only if Γ = 1 or Γ =
∏

iDi. Therefore, there are 2N−1

distinct projectors for each i. It follows that

PDPūPD =
1

2N
2PD

∑
u:ω(u)=w

Pu =
1

2N−1
PDPw. (3.30)

From the commutativity relations [Hf (t), PD] = 0 and [Hf (t), Pū] = 0 it also follows that

V (t)PDPw = 2N−1V PDPūPD = 2N−1PDPūV (t)PūPD, (3.31)

where V (t) is the propagator corresponding to Hf (t) and we have used that P 2 = P for

all projectors. Hence, the evolution can be computed in the subspace Pū. To conclude

the argument, we need to know the value of κ, as this determines how many link sectors

we need to consider. As long as κ is not exponential, we can efficiently simulate the

dynamics.

To this end, we need another counting argument. To simplify the analysis, we only

consider three different regular lattice types dubbed open (o), periodic (p) and half-

periodic (h), and find their corresponding values of κ. To do this, we first find relationships

for the number of link operators L, the number of plaquettes P , and the number of qubits

N for the various lattices. Simple but rather tedious counting of such regular lattices

shows that L−P = N − 1 in the open case and L−P = N in the other two cases. Next,

compute the size of ω−1(w). We show in the lemma below that |ω−1(w)|o,h = 2L−P and

|ω−1(w)|p = 2L−P+1. Since each equivalence class has exactly 2N−1 elements, we have to
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have

|ω−1(w)| = 2N−1κ

such that κo = 1, κh = 2,κp = 4.

Lemma 3.3.1. For all w, |ω−1(w)|o,h = 2L−P and |ω−1(w)|p = 2L−P+1.

Proof. Consider first the case of a lattice with open boundary conditions. Since there

are no boundary constraints, all possible configuration of plaquette eigenvalues {Λj} are

possible, and

|{Λj}|o = 2P . (3.32)

From the above, for each u, we can find 2N−1 other v with ω(v) = ω(u) by conjugation with

Γk. Since in the open lattice the number of qubits N follows the relation N − 1 = L−P ,

one can conclude that for each w, the inequality |ω−1(w)|o ≥ 2L−P holds. Since there are

by definition 2L different link sectors, we have

2L =
∑
w

|ω−1(w)|o ≥ 2L−P2P = 2L (3.33)

so equality holds and the statement follows.

Next, consider a lattice with full periodic boundary conditions. Any link eigenvalue

change leads necessarily to exactly two plaquette eigenvalues being flipped. Therefore only

even numbers of vortices may ever be present, and the number of plaquette eigenvalue

configurations is

|{Λj}|p = 2P−1. (3.34)

Now, for each u, we can find 2N−1 other v with ω(v) = ω(u) by conjugation with Γk, but

for each of these we can find 4 inequivalent link sectors. Since L − P = N for periodic
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boundaries, we obtain

2L =
∑
w

|ω−1(w)|p ≥ 4× 2L−P−12P−1 = 2L (3.35)

and the statement follows again.

Finally, in the half-periodic case we only have 2 inequivalent link sectors, but |{Λj}|p =

2P is twice as big as in the periodic case, and the same counting argument holds.

3.3.1 Inequivalent sectors: Periodic boundary conditions

We now consider the case of a lattice with periodic boundary conditions in both the a

and b directions (that is, both vertically and horizontally as on a torus). We consider the

no-vortex sector and and any arbitrary link sector associated with it which we call Pu0 .

We have already shown that Pu0 is gauge equivalent, that is, equivalent up to conjugation

by Γk operators, with 2N−1 link sector projectors.

Acting on a non-zero eigenstate of Pu0 with any stabiliser operator Dj will change

three link sector eigenvalues at a time, due to Dj overlapping with the three types of link

that contain spin site j, the same is therefore also true of Γk operators. On the other

hand acting on spin sites with a Pauli operator such as Zj, which in the fermionic picture

is

Z̃j = ibzjcj (3.36)

will flip the sign of only the z-link corresponding to that site and no others. In general a

Pauli operator σ̃α will only flip the sign of the α-link containing spin site j. This is due

to the fact that

{σ̃j, ûjk} = {ibσj cj, ibσj bσk} = 0 (3.37)

[σ̃j, ûkl] =
[
ibσj cj, ib

σ
kb

σ
l

]
= 0, j /∈ {k, l}. (3.38)
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Thus we have that

Z̃αPuj
= Puk

Z̃α (3.39)

and thus

Puj
= Z̃αPuk

Z̃α (3.40)

where in general ω(uj) ̸= ω(uk).

Flipping a single link eigenvalue will change the vortex sector as a pair of vortices

are introduced on adjacent plaquettes. Taking ζ to be an arbitrary product of Z̃ Pauli

operators, then in order to have

Puj
= ζPuk

ζ (3.41)

such that ω(uj) does equal ω(uk), we require ζ to consist of a pair of link-flipping Z̃

operators for each plaquette.

In order to return to the no-vortex sector, vortices need to be annihilated and so the

vortex string must form a closed loop. Algebraically speaking, while each σ̃j will commute

with all overlapping and non-overlapping Dj operators, as

[σ̃j, Dj] =
[
ibαj cj, b

x
j b

y
j b

z
jcj
]

(3.42)

= 0 (3.43)

and

[σ̃j, Dk] =
[
ibαj cj, b

x
kb

y
kb

z
kck
]

(3.44)

= 0, (3.45)

such Paulis will not commute with overlapping plaquette operators Wp as for a spin site
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j, plaquette operators will act with Paulis X̃ or Ỹ and thus there is anticommutation.

1

4

26

35

Figure 3.2: An example of lattice plaquette with six spins labelled. The plaquette operator
for this is Wp = Z1X2Y3Z4X5Y6.

In order for there to be commutation with all plaquette operators, there needs to be

Z̃j operators acting on two spin sites per plaquette. Following the labelling of spins in a

plaquette in Fig. 3.2, clearly

[Z6,Wp] = [Z6, Z1X2Y3Z4X5Y6] ̸= 0 (3.46)

but

[Z6Z2,Wp] = [Z6Z2, Z1X2Y3Z4X5Y6] = 0. (3.47)

The simplest example of a product of Z̃j operators that commutes with all link oper-

ators is shown explicitly and schematically in Fig. 3.3b and Fig. 3.4b respectively.

(a) (b)

Figure 3.3: Simple sets of y (a) and z (b) link flips that preserve the vortex sector while
being gauge inequivalent to the trivial link sector.

Starting with link sector Pu0 and using only Γk operators, it is not possible to flip the

sign of only a single row of z-links as in general the action of a Dj operator flips the sign
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(a) (b)

Figure 3.4: Topological interpretation of the set of y and z flips that preserve vortex sector
but are gauge inequivalent to the trivial link sector which topologically amounts to no loop at
all.

of all three types of link x, y and z. In order to keep all x and y links unflipped, products

of Dj operators must act on the sites of all spins that correspond to those links, leaving

at least a pair of rows with flipped eigenvalues on z-links, as demonstrated in Fig. 3.5.

Figure 3.5: A lattice where the grey spin sites have been acted on with Dj operators and link
eigenvalues on yellow links have been flipped. It is not possible to flip only a single line of
z-links using Γk operators alone.

We therefore have found another link sector Puz whose corresponding vortex sector is

the no-vortex sector which cannot be reached from Pu0 by conjugation with Γk operators.

Algebraically this can be represented by

∄ Γk such that ΓkPu0Γk = Puz (3.48)

where

Puz := ζPu0ζ (3.49)

and ζ is a horizontal, topologically closed loop of Pauli Z̃ operators. This is because when

commuting ζ through Pu0 , only the signs of a row of z-link eigenvalues are changed. If
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we call this row of links ρ then

ζPu0 = ζ
∏
jk

1 + uαjkû
α
jk

2
(3.50)

=
∏

α=z,jk∈ρ

1− uαjkûαjk
2

∏
etc.

1 + uαjkû
α
jk

2
ζ (3.51)

= Puk
ζ. (3.52)

However with Γk operators, in order to commute them through Pu0 and have only

z-link eigenvalues flipped, this requires a Γk consisting of Dj operators acting on a row of

spin sites in the manner of Fig. 3.5 and thus a minimum of two rows of z-link eigenvalues

are flipped. Thus for all Γk

ΓkPu0Γk ̸= ζPu0ζ. (3.53)

We can now repeat the above process, with the same reasoning, starting with the link

sector Puz rather than Pu0 , but this time with Pauli Ỹ operators to flip links as shown in

Fig. 3.3a and Fig. 3.4a. This would have given another link sector unreachable via actions

of Γk operators, just as Puz was unreachable from Pu0 . This would have corresponded to

flipping link signs vertically rather than horizontally. Pauli X̃ operators can be written,

up to a phase, as simply products of Z̃ and Ỹ Paulis, thus no new link sectors can be

found by use of the above operations with X̃ Paulis. Therefore for a lattice defined by a

plaquettes per row and made up of b rows, if we define

ζ = Z̃j1 ...Z̃ja (3.54)

χ = Ỹj1 ...Ỹjb (3.55)
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then the four link sector operators

Pu0 , (3.56)

Puz = ζPu0ζ, (3.57)

Puy = χPu0χ, (3.58)

Pux = ζχPu0χζ (3.59)

each define gauge-inequivalent link sectors in a particular vortex sector.

Inequivalent sectors: Half-periodic boundary conditions

For a system with half-periodic boundary conditions, depending on whether periodicity

is in the horizontal or vertical direction, only a single row or ‘column’ of flipped signs

would be required to find a link sector projector not reachable from Pu0 by actions of Γk

operators. There would therefore be two sets of 2N−1 link sector projectors corresponding

to two equivalence classes in each vortex sector. Accounting for all 2P vortex sectors there

would be a total of

2P (2× 2N−1) = 2N+P = 2L (3.60)

and so we have accounted for all link sectors.

3.4 Proof of matrix-infidelity state-infidelity bound

This section contains the proof of Eq (3.21) which relates state infidelity and Heisenberg in-

fidelity. State infidelity is defined between two states with differing dynamics Uj (j = 1, 2)

applied to an initial spin state |ΨI⟩. These dynamics are induced by spin Hamiltonians

Hs,j whose counterparts in the quadratic Majorana fermionic picture H̃ferm,j = α†Mjα

(see Section. 3.1) define orthogonal matrices Oj generated by the Hermitian matrices Mj

in a relation which satisfies the differential equation Ȯj = iMjOj.
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The relation to be proven reads

IH(O1,O2) ≥
1

4d3

(
1−

√
Fs(Ψ1,Ψ2)

)
(3.61)

with the state fidelity

Fs(Ψ1,Ψ2) = |⟨Ψ1|Ψ2⟩|2 =
∣∣∣⟨ΨI |U †

2U1 |ΨI⟩
∣∣∣2 , (3.62)

and the Heisenberg infidelity IH = 1−FH with

FH(O1,O2) =
1

d

∣∣∣Tr
(
O†

1O2

)∣∣∣ , (3.63)

and the matrix dimension d.

The full proof consists of Eq. (3.64) and the series of inequalities Eq. (3.65) to (3.67)

√
2d
√
IH = ∥O1 −O2∥F (3.64)

≥ 1

2d
∥ΦU1 − ΦU2∥♢ (3.65)

≥ 1

2d
min
φ
∥U1 − eiφU2∥op (3.66)

≥ 1√
2d

√
1−

√
Fs (3.67)

that will be discussed separately in the following subsections. Eq. (3.64) is expressed in

terms of the Frobenius norm

∥A∥F :=
√

Tr(A†A) (3.68)

for any operator A. Eq. (3.65) is expressed in terms of the operator norm

∥A∥op := sup

{
∥Ax∥
∥x∥

: x ∈ V d with x ̸= 0

}
. (3.69)
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The diamond norm for a quantum channel Φ in Eq. (3.66) is given by

∥Φ∥♢ := max
ρ
∥(Φ⊗ 1)ρ∥1 (3.70)

where ∥ ◦ ∥1 = Tr
√
A†A is the trace norm [70], and the maximisation is taken over all

density matrices in a space of dimension which is larger compared to the size of the

quantum channel Φ.

3.4.1 Norms and infidelity relations

Frobenius norm and infidelity relation (3.64)

The Frobenius norm of the difference between two orthogonal operatorsO1 andO2 reduces

to

∥O1 −O2∥F =
√

2d− Tr(OT
1O2)− Tr(OT

2O1) (3.71)

=
√

2d− 2 Re{Tr(OT
1O2)}, (3.72)

where d is the dimension of O1 and O2. It thus depends on the real part of Tr
(
OT

1O2

)
and not on its absolute value, as is the case for FH . As we will show in the following,

however, in the present case, the object Tr
(
OT

1O2

)
is real and positive, so that Eq. (3.64)

is indeed satisfied.

Proof that Tr
(
OT

1O2

)
is real

The orthogonal matrices O1 and O2 satisfy the differential equation Ȯj = iMjOj with

generally time-dependent generators iMj. Since the Mj are purely imaginary, the gener-

ators iMj are purely real. Together with the initial condition Oj(0) = 1, such that Oj(0)

is real, this implies that Oj(t) for j = 1, 2 is real for all times. Consequently the overlap

Tr
(
OT

1O2

)
is also real.
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Proof that Tr
(
OT

1O2

)
is non-negative

Since Majorana fermions move between only one of two pairs of fermionic sites per spin

site, the full space that O1 and O2 act on, can be divided into two subspaces Hx and Hy

of equal dimension d/2. Both O1 and O2 are given as a direct sum of the identity 1 in Hx

and orthogonal operators Õ in Hy. The complete trace is thus given as the sum of the

two traces Trx 1 and Try ÕT
1 Õ2. The latter trace can also be expressed as the sum over

the eigenvalues λj of ÕT
1 Õ2. This results in the relation

Tr
(
OT

1O2

)
= Trx 1 + Try ÕT

1 Õ2 =
d

2
+

d
2∑

j=1

λj . (3.73)

Since the trace Tr
(
OT

1O2

)
is purely real, the imaginary parts Imλj add up to zero. Because

all the eigenvalues λj are phase factors, i.e. λj = exp(iφj) with φj real, the real parts of

the λj satisfy the inequality Reλj ≥ −1, so that the relation

Tr
(
OT

1O2

)
=
d

2
+

d
2∑

j=1

λj ≥ 0 (3.74)

is indeed given.

First norm inequality, from (3.64) to (3.65)

It is well known that the Frobenius and operator matrix norms satisfy the inequality

∥A∥F ≥ ∥A∥op [71]. For the present case, this implies the inequality

∥O1 −O2∥F ≥ ∥O1 −O2∥op . (3.75)

The following relation is also required

∥O1 −O2∥op ≥
1

2d
∥ΦU1 − ΦU2∥♢ (3.76)
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which is proven using methods of representation theory in Eq. (F1) in Ref. [72], wherein

the fermionic matricesO, which are of a size that grows linearly in the number of fermionic

modes, are related to the quantum channels ΦU of the full system dynamics using the

diamond norm described previously. Combining the results in (3.75) and (3.76) yields the

desired inequality.

Second norm inequality, from (3.65) to (3.66)

The required inequality

∥ΦU1 − ΦU2∥♢ ≥ min
φ
∥U1 − eiφU2∥op (3.77)

is proven in Eq. (2.1) in [73], using geometric arguments as well as Theorem 26 in [74].

Third norm inequality, from (3.66) to (3.67)

Following the definition of the operator norm in Eq. (3.69), the operator norm in Eq. (3.66)

satisfies the inequality

∥U1 − eiφU2∥op ≥ ∥(U1 − eiφU2) |Ψ⟩ ∥2 (3.78)

for any state vector |Ψ⟩ in the spin picture, and, as such, in particular for the initial state

|ΨI⟩ of the dynamics. That is, the inequality

∥U1 − eiφU2∥op ≥ ∥ |Ψ1⟩ − eiφ |Ψ2⟩ ∥2 (3.79)

=
√

(⟨Ψ1| − e−iφ ⟨Ψ2|)(|Ψ1⟩ − eiφ |Ψ2⟩) (3.80)

=
√

2− eiφ ⟨Ψ1|Ψ2⟩ − e−iφ ⟨Ψ2|Ψ1⟩ (3.81)

=
√

2− 2|⟨Ψ1|Ψ2⟩| cos(φ+ θ) (3.82)
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holds, where the overlap of |Ψ1⟩ and |Ψ2⟩ can be defined in terms of state infidelity and

a phase

⟨Ψ1|Ψ2⟩ = |⟨Ψ1|Ψ2⟩|eiθ =
√
Fse

iθ. (3.83)

When Eq. (3.82) is minimised over all phases φ this gives the required result

min
φ
∥U1 − eiφU2∥op ≥

√
2

√
1−

√
Fs(Ψ1,Ψ2). (3.84)

3.5 Numerical results

Here, we use the QuTiP implementation of GRAPE using L-BFGS as an optimiser with

exact gradients. Explicit details about the mechanism of this optimisation algorithm are

described in Appendix A. The optimisation takes place over piecewise-constant functions,

which means that the number of time-steps becomes an additional parameter of our

numerics. For all numerical results the interaction factor in the Hamiltonian is set to

J = 1.

3.5.1 Optimised non-adiabatic pulses in a simple lattice

While the timescale of anyon creation through adiabatic evolution can be very long, if

instead of using linear ramps we use non-linear time-dependence in the Hamiltonian which

have been specially designed, then we can achieve high fidelities at shorter timescales. A

well-tested gradient-ascent pulse engineering algorithm [35, 75] (see Appendix A) is used

to develop such time-dependent control functions also known as pulses.

The results of using this procedure for a single plaquette of six spins are depicted in

Fig. 3.6 showing infidelities as a function of the ramp time T . The infidelities obtained

with a linear ramp are depicted in blue. There is a slight improvement with increasing

ramp time, but the fidelity of approximately 90% achieved with a ramp time of T = 1

is only a very small improvement compared to the initial fidelity at time T = 0. This is
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consistent with an estimate based on the spectral gap condition [76] that implies ramp

times T ≫ δ−2 = 3.480 . . . are required for high-fidelity operations. This spectral gap is

calculated from the vortex gap of δ = | − 4J − (−2
√

3J)| ≈ 0.536. This is a narrower

gap than the first fermionic excitation energy penalty which is 2J . While in general the

fermionic excitation gap is a function of J , and K and so can be narrower than the vortex

gap, in this special case of the single plaquette lattice this is not the case.

The behaviour with optimised ramps, depicted in orange, is fundamentally different.

In the range T < 0.2 there is a much faster decrease of infidelity with increasing ramp

time than in the case of linear ramps. This decrease is a bit less pronounced in the

range 0.2 ≲ T ≲ 0.4, but for ramp time T > 0.4 this decrease becomes increasingly

pronounced with increasing ramp time. For ramp times T ≳ 0.8, there is a rapid drop

in the infidelity, and for ramp times exceeding the threshold value of T = Td ≃ 0.85,

the deviations between the numerically obtained infidelities and the ideal value of 0 are

consistent with noise due to finite numerical accuracy.

It is by no means surprising that even with an optimised ramp a finite ramp time

is required to reach perfect fidelities. This is due to the constant part in the system

Hamiltonian Eq. (3.12) that defines a natural time-scale of the system. This effect is also

referred to as the quantum speed limit [77, 78] and we will refer to the threshold value

Td of ramp durations at which fidelities drop to values close to their ideal value as the

drop time. Apart from limitations imposed by finite-dimensional parametrisation of the

ramp function, the numerical optimisation routine and numerical accuracy, this drop time

coincides with the minimal duration required to reach perfect fidelity.

The example of a single plaquette with six qubits is also a good test-case to compare

optimisation of state-fidelity and Heisenberg fidelity. Fig. 3.7 depicts the Heisenberg

fidelity obtained with various ramp functions as a function of the ramp time T .

The black triangles represent state fidelity data obtained with linear ramps. Consis-

tently with Fig. 3.6, there is only a moderate decrease of the infidelity with increasing ramp

time. The circles correspond to ramp functions optimised for Heisenberg fidelity, and the

different colours correspond to different chosen adiabatic target times with T = 100, 200
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Linear ramp

Optimised pulse
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Figure 3.6: Logarithmic comparison of infidelity between initial and adiabatic target state for
linear control pulses and optimised control pulses, at various timescales, for the simplest
6-qubit lattice. 100 time steps were used in both cases. We can see more clearly the dramatic
improvement in fidelity at approximately T = 0.8. The minimum infidelity reached by
optimised pulses, on the order of 10−9 is reached at time T ≈ 0.9, many orders of magnitude
less than the time to reach this infidelity with the linear ramp, which is at T ≈ 1350.

and 300 for red, orange and green respectively. Similarly to the observations in Fig. 3.6

there is a clear drop of the infidelities at a drop time Td ≃ 3. The fact that the numerically

observed drop time is essentially the same in all three cases indicates that the drop time

is not dependent on the length of the adiabatic target time that is chosen.

The squares depict the state infidelity obtained from the ramp functions that had

been optimised for Heisenberg infidelity, in order to see numerical evidence that when

implementing our procedure, good fidelity is achieved in the one case which ensures a

good infidelity in the other.

Here also is a clear drop of the infidelities and it occurs at the same drop time as for

Heisenberg infidelities. The fidelities obtained for ramps with a longer ramp time than the

drop time Td, however, are not merely limited by numerical accuracy, but they are indeed

finite. Their exact value depends on the parametrisation of the ramp function, with finer

parametrisations resulting in lower infidelities. Since state fidelity and Heisenberg fidelity

are not strictly equivalent, it is not surprising, that a ramp that is optimised for one of

these fidelities does not yield the optimally achievable value of the other fidelity. The

results in Fig. 3.7, however, clearly show that ramps optimised for Heisenberg fidelity
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Figure 3.7: Six-qubit lattice: Heisenberg infidelities based on differing targets (circles) are
compared with their corresponding state fidelities (squares). These are compared overall with
state fidelities achieved from linear ramp pulses (triangles). Different colours represent
different values of Tad, which are the timescales of 100 (red), 200 (orange) and 300 (green) that
define the target unitary Wad. All optimised pulses are comprised of 200 time steps. There is a
significant improvement at times between T = 2 and T = 4. Thereafter there is effectively
perfect fidelity with the presence of numerical noise. It confirms that both Heisenberg and
state infidelities improve markedly at the same time T and this is an improvement on the
fidelities achieved with a linear ramp pulse.
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Figure 3.8: Ten qubit lattice: Heisenberg infidelities between optimised unitaries and an
optimised target are shown (orange), as compared with infidelities between the target and a
unitary defined by a linear ramp control (blue). Each optimised pulse consists of 200 time
steps. The drop time is T ≈ 10, later than for the 6-qubit lattice.

result in high state fidelities and, in particular, in infidelities that are between 3 and 4

orders of magnitude lower than infidelities obtained with linear ramps.

Since numerical optimisations of state fidelity become rapidly infeasible with increasing

system size, the subsequent examples for larger systems feature only Heisenberg fidelities

with ramps that are optimised for this Heisenberg fidelity. Fig. 3.8 shows the Heisenberg

infidelity as function of ramp time for linear ramps (blue) and for optimised ramps (or-

ange). Similarly to the cases discussed above, there is a clearly identifiable drop time Td,

but its value Td ≃ 10 is larger than in the examples of smaller systems. The abscissa

depicts that ramp time on the log-scale, highlighting that linear ramps with durations ex-

ceeding the drop time by many orders of magnitude are required to achieve any sizeable

decrease in infidelity.

The inset depicts a zoomed-in look into the domain around the drop time. It highlights

that, on top of the rapid drop of infidelity there is also a finite noise level. When we

compare the optimisation results of a system made up of ten spins and one with thirty

spins, whose optimised infidelities are shown in Fig. 3.9, we see again the marked increase

in drop time that is achieved. Here the spectral gap condition, calculated analogously as

with the six and ten-qubit systems, requires the adiabatic timescale for this system to

be T ≫ δ−2 ≈ 30. In the thirty-qubit lattice the vortex gap remains smaller than the
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Figure 3.9: Thirty qubit lattice with open boundary conditions and pulses with 400 time
steps. Heisenberg infidelities between optimised unitaries and an optimised target are shown.
The spectral gap condition requires that Tad ≫ 30. The results show that Td is within the
order of magnitude of 30 rather than many orders of magnitude larger as required by
adiabaticity, highlighting the improvement in timescale achieved.

lowest fermionic energy gap but for larger systems this may not necessarily be the case.

Additionally the smallest gap may not be the vortex gap as compared with the fermionic

gap in scenarios where vortices are created from a non-zero vortex sector.
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Figure 3.10: Drop time (Above) and minimum required time steps (Below) compared with
lattice size by number of qubits. These quantities are defined as the earliest time T and
minimum number of time steps in an optimised piecewise-constant pulse respectively where
Heisenberg infidelity drops below 10−6. They are compared with quadratic growth curves
(blue) to show sub-exponential growth.

The observation that the drop time increases with the system size is depicted more

systematically in Fig. 3.10. Generally, the practically achievable drop time depends on

the parametrisation of the ramp function and the number of free parameters that can be

optimised. Only for a ramp function with sufficiently many piecewise constant elements
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is the drop time independent of the number of free parameters. Fig. 3.10 depicts that

shortest achievable drop time together with the minimal number of piecewise constant

elements in the ramp function that is required to achieve this drop time. In both sub-plots

the scaling is consistent with a quadratic increase (blue line) with system size.

Within the validity of extrapolation from numerically accessible system sizes, there is

thus a very moderate scaling with system size, highlighting that numerical optimisations

based on the framework of fermionisation can be performed efficiently.

3.6 Summary

It is well known that the Kitaev honeycomb model is a useful system for the encoding of

quantum information using non-abelian anyons. Our use of quantum control techniques

has allowed us to create anyons not only in adiabatic timescales, but to overcome the

necessity for such a restriction through the use of gradient ascent pulse-engineering to

construct non-linear ramps whose timescales are many orders of magnitude faster than

adiabatic. These ramps achieve very high fidelities at these much faster timescales, and

thus are more useful for the encoding of quantum information and quantum algorithm

implementation given that decoherence times entail a preference for shorter timescales.

Along with the drawback of requiring long timescales with adiabatic control, the other

chief drawback we would encounter with non-adiabatic quantum control is the difficulty

in completely determining the dynamics of honeycomb lattices with large numbers of spin

qubits. The method we have developed allows us to overcome this obstacle by solving a

matrix control problem where the matrices grow linearly in the number of lattice spins,

allowing for the implementation of non-linear pulse-engineering and optimisation of a

related matrix or Heisenberg fidelity. This, alongside the analytic expression directly

comparing state fidelity and Heisenberg fidelity allows us to be assured of the success of

these optimised ramps and allows us to have confidence in the successful implementation

of our procedure for use in experimental realisation of the model. Given the various

avenues suggested for experimental implementation of the Kitaev honeycomb model such
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as in solid state materials [55] and with polar molecules in optical lattices [79], as well

as the success in observing topological order in quantum spin liquids using the Rydberg

blockade mechanism [80, 81] we believe our control methods would be useful for realisation

within a setup that allows for varying spin interactions in a time-dependent manner.

Furthermore we have seen that there is indeed sub-exponential growth in the compu-

tational difficulty of our control problem with growing system size and so carrying out

our methods on lattices on the order of hundreds of qubits is possible, as necessary for

scalable topological robustness.
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Chapter 4

Surface code defects and dynamical

Lie algebras

In this chapter we present how quantum optimal control may be utilised in order to speed

up the process of defect creation in a lattice system known as the surface code.

The surface code is a generalisation of the toric double quantum code [45] that does

not require periodic boundary conditions. It can be defined by a Hamiltonian comprised

primarily of four-body interactions known as stabilisers. When certain stabilisers are

removed by a process known as ‘puncturing’ [82, 83], defects are created in the code

wherein quantum information may be encoded. Defect deformation and braiding also

allows for the possibility of logical gates to be performed on the encoded logical qubits in

the code.

As with other examples of topological systems which have shown potential in terms of

suitability for quantum computation, the realisation of anyons and anyon-like defects has

relied on using adiabatic dynamics [56, 82] and therefore requires long timescales. Such

requirements amount to a limitation on the experimental realisation of the system, given

the necessity of implementing quantum algorithms quickly with respect to decoherence

times. Here we seek to overcome this limitation via the use of time-optimal quantum

control.

The techniques of quantum optimal control have been shown to successfully effect

101
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desired dynamics while bypassing adiabatic, therefore slow, timescales [39, 40, 31, 41, 42,

44]. Quantum control in general relies on determining specific chosen time-dependent

Hamiltonians in order to implement desired dynamics [15, 19]. We seek to use numerical

quantum optimal control to successfully carry out operations required for encoding and

processing logical qubits in the surface code within timescales that are much shorter than

those which would be required by adiabatic protocols.

One potentially significant obstacle to numerical solving of dynamics in lattice systems

is the large Hilbert space size when operating with many spins. Our work presents a

method whereby the dynamical Lie algebra of a Hamiltonian system, which determines

the entirety of the system’s dynamics, is mapped onto a smaller equivalent system such

as to allow for numerical quantum control techniques to be more efficiently implemented.

This method is not yet generalisable to all possible control problems but is certainly

valuable in that it allows for easier numerical optimisation for many types of quantum

control problems which have useful and varied applications. The mapping of a system’s

dynamics into that of a smaller size so as to allow for solving in the larger system is

motivated by previous work on mapping a lattice system’s Hamiltonian to a free fermion

model (see Chapter 3).

Section 1 of this work presents a brief overview of the surface code, followed by a de-

scription in Section 2 of how adiabatically changing Hamiltonians allows for defects in the

surface code to be created and manipulated, as described in more detail in the literature

[82]. In Section 3 we begin presenting our work by describing in detail the quantum con-

trol methods used as well as present our optimisation results for the four major operations

required for encoding and manipulating quantum information in the surface code. For

three of the four operations this consists of numerical optimisation while for the fourth

operation, known as surface code detachment, a more sophisticated technique of dynam-

ical Lie algebra mapping is developed and is described in detail in Section 4. With this

method the difficulties of analysing in view of manipulating the dynamics of a system in

a very large Hilbert space are bypassed by considering an equivalent dynamics described

by an isomorphic dynamical Lie algebra.
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Sections 1 and 2 are for review purposes only and are intended to describe the well-

known attributes of the surface code and adiabatic procedures on it.

4.1 Description of the surface code

As with the toric code [45] (see Chapter 2), the surface code lattice is comprised of a

large number of spin-1/2 degrees of freedom on the edges of a square lattice as shown in

Fig. 4.1. Stabiliser operators are defined by four-body Pauli X interactions on vertices

and Pauli Z interactions on plaquettes. The vertex and plaquette operators, Av and Bp

are respectively defined on a vertex v and plaquette p as

Av : = Xv1,v2,v3,v4 (4.1)

Bp : = Zp1,p2,p3,p4 (4.2)

where Xv1,v2,v3,v4 := Xv1Xv2Xv3Xv4 and Zp1,p2,p3,p4 := Zp1Zp2Zp3Zp4 .

Lattices may include ‘rough sides’ where plaquette operators on the edge are defined

only with three-body terms, as well as ‘smooth sides’ where vertex operators on such edges

are defined with three-body terms. Fig. 4.1 shows smooth sides on the top and right side

of the lattice and rough sides on the bottom and left side. If both smooth and rough

sides are present then for two of the four corners of the lattice (in the example shown in

Fig. 4.1 these would be the top right corner and the bottom left corner) there is defined

for each a corresponding two-body stabiliser, either a vertex or plaquette operator.

With the stabilisers defined, one can see that as a plaquette stabiliser Bp and a vertex

stabiliser Av can overlap only on an even number of qubits, all stabilisers must therefore

commute with one another. Additionally each stabiliser squares to the identity. Defining

the system Hamiltonian as

H0 = −∆

2

(∑
v

Av +
∑
p

Bp

)
(4.3)
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then the ground state up to normalisation is the same as with the toric code

|g0⟩ =
∏
v

(1 + Av) |0⟩⊗N . (4.4)

Unlike the toric code however, the ground state space is non-degenerate due to the open

boundary conditions of the lattice. This would initially seem to make it unfeasible for use

as a system for topological quantum computation. However the required degeneracies are

introduced through ‘puncturing’ of the lattice, an operation amounting to the removal of

certain stabilisers from the Hamiltonian. Each puncture doubles the size of the ground

state degeneracy.

4.2 Hamiltonians, stabiliser formalism and adiabatic-

ity

Quantum information is encoded in the lattice via the stabiliser formalism [84] whereby

a logical qubit is defined by a set of stabiliser operators such that the qubit corresponds

to a physical state which is simultaneously in a +1 eigenstate of the entire stabiliser set.

If we were to start with a full surface code lattice and implement a defect, that is we

remove either a plaquette (Z defect) or a vertex (X defect) stabiliser, we would create

a code whereby the logical gate Z̄ corresponds to a string of Pauli Z operations on the

lattice around the defect. The logical gate X̄ would then correspond to a string of Pauli X

operations from the smooth defect to a smooth edge. The aim therefore is, when beginning

in the ground state of an initial Hamiltonian Hi, to end up in the corresponding state of a

final Hamiltonian Hf which amounts logically to an encoding of a specific logical quantum

state. Each Hamiltonian is comprised of the stabiliser set of a different configuration of

logical quantum information. The deformation of these codes is studied in the literature

as physically being implemented through ‘adiabatic dragging’ [82, 85, 86] between the

initial and final Hamiltonians of each particular procedure (see [82]).

There are four major operations that can be implemented in order to create defects
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in the surface code, encode logical qubits within them, and manipulate their location or

grow them in size to give the encoded qubits further protection.

4.2.1 Defect creation

Described here is the creation of a smooth (Z-type) defect and a logical |0̄⟩ state localised

on two neighbouring plaquettes in the surface code. The creation of a rough defect is an

analogous procedure, with the roles of X and Z interactions reversed. Labelling of spins

throughout the work will follow a convention of numbering sites from rows going top to

bottom and from left to right within each row, such as that which is shown in Fig. 4.1.

1

2 3

4 5 6

7 8

9

Figure 4.1: Depiction of the spin acted on during defect creation. Only nine spins are
affected. The two plaquettes Bp1 = Z2,4,5,7 and Bp2 = Z3,5,6,8 are removed from the
Hamiltonian and turn from stabilisers into logical gates (Z̄) on the encoded qubits. The upper
vertex v1 consists of qubits 1,2,3 and 5 while the lower vertex v2 corresponds to qubits 5,7,8
and 9.

The procedure consists of starting with the Hamiltonian described in (4.3) as an initial

Hamiltonian and transforming it into a final Hamiltonian where specific stabilisers are

removed. Given that all of the vertex and plaquette stabilisers which are not involved in

the defect creation commute with all the terms in the initial and final Hamiltonian, the

Hilbert space of the dynamics of interest reduces to 29 and thus it suffices to consider the
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initial and final Hamiltonians

Hi = −∆

2
(X1,2,3,5 +X5,7,8,9 + Z2,4,5,7 + Z3,5,6,8) (4.5)

Hf = −∆

2
(X1,2,3 +X7,8,9)−

∆

2
X5 (4.6)

where the spectral gap ∆ remains unaltered despite the system size reduction.

Qualitatively, this amounts to turning off the plaquette stabilisers Z2,4,5,7 and Z3,5,6,8

from the Hamiltonian, and proceeding to define the product of these operators as the

logical gate Z̄ of the logical qubit encoded in the ground state of the final Hamiltonian.

When the two plaquette stabilisers are removed, in addition the overlapping vertex sta-

bilisers X1,2,3,5 and X5,7,8,9 are modified from four-body operators to three-body ones. For

a smooth defect, a logical gate X̄ is then simply a string of Pauli X operators defined on

a string traversing the geometrically dual lattice starting from the defect and ending at a

smooth edge. These two possible X̄ gate strings can be made to overlap on just a single

spin, namely spin 5 as labelled in Fig. 4.1, and this accounts for the why the single X5

term is required in the final Hamiltonian, as it can be considered as a stabiliser itself. The

ground state of the final Hamiltonian can then be labelled the logical state |0̄⟩ defined,

up to normalisation, by

|0̄⟩ = (1 + Av1)(1 + Av2) . . . (1 +X1,2,3)(1 +X7,8,9)(1 +X5) |0⟩⊗N (4.7)

where the Avn operators are the four-body vertex stabilisers that remain unmodified

throughout. The logical |1̄⟩ is then defined as

|1̄⟩ = Xstring |0̄⟩ = X5Xstring |0̄⟩ (4.8)

where Xstring is any string of Pauli X operators acting on spins from the defect to a smooth

edge. This uses the fact that X5(1 +X5) = (1 +X5).

To summarise, in defect creation the system begins in the unique ground state of H0

and ends up in the logical state |0̄⟩ encoded in the defect that has been created on a pair
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of plaquettes. The logical qubit has a corresponding Z̄ gate defined as the product of the

two plaquette stabilisers which have been removed, as well as a X̄ gate defined as a string

of Pauli X operators from the defect to a smooth edge.

4.2.2 Deformation of defects

While logical qubits can be encoded onto defects, these defects need to be moved around

on the lattice in order to implement logical gates. A typical example is the CNOT gate

which is implemented by the braiding of one defect around another. It is also desirable

for the defect to be grown so that the defect spans multiple plaquettes (or vertices) which

gives greater protection against unwanted logical gate errors. The deformation of defects

can involve four possible scenarios depending on the number of interior spins, from 1 to

4, within a defect that need to be acted on.

Each scenario differs slightly from the others and we describe the first scenario here

as a concrete example. This scenario is illustrated in Fig. 4.2.

This operation only involves interaction with 7 qubits with the aim of growing a smooth

defect such that it transforms from being localised on a two-by-two square of plaquettes

to a defect covering five plaquettes. The initial Hamiltonian would be

Hi = −∆

2
(Z3,5,6,7 +X2,3,5 +X1,3,4,6) (4.9)

with the final Hamiltonian

Hf = −∆

2
(X3 +X2,5 +X1,4,6). (4.10)

The other three scenarios are conceptually similar except that they act on eight, eight

and four spins respectively.
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1

2 3 4

5 6

7

Figure 4.2: Surface code lattice with a defect covering four plaquettes, where the defect is to
be deformed so as to cover a fifth plaquette defined on spins 3,5,6 and 7. The spins affected by
the operation are numbered and shown in yellow. The current plaquettes containing the
localised defect are in dark grey while the proposed fifth plaquette is in light grey.

4.2.3 Detachment of surface code regions

Multi-step operations such as state injection (described below) require detachment and

attachment of surface code areas containing defects. Looking at the example of detach-

ment, the removal of an area is shown in Fig. 4.3; this amounts to the removal of a

plaquette stabiliser operator on the plaquette connecting the two regions.

Explicitly this corresponds to starting with an initial Hamiltonian

Hi = −∆

2
(X1,3,4,6 +X2,4,5,7 +X6,8,9,11 +X7,9,10,12 +X4,9 + Z4,6,7,9) (4.11)

and ending with a final Hamiltonian

Hf = −∆

2
(X1,3,6 +X2,5,7 +X6,8,11 +X7,10,12 +X4 +X9) (4.12)

Here the initial Hamiltonian Hi is the negative sum of the four-body terms, one of which
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1 2

3 4 5

6 7

8 9 10

11 12

Figure 4.3: The two areas shown are to be separated through the removal of the stabiliser
connecting them. The four surrounding four-body vertex operators then become three-body
terms.

is the plaquette stabiliser that is to be turned off, as well as a two-body check term

X4X9. The final Hamiltonian Hf is then comprised of each four body stabiliser turned

into a three-body stabiliser, the plaquette stabiliser removed, and the two-body check

term replaced by two single body terms.

This operation requires all overlapping vertex stabiliser operators, of which there are

four, to be modified from four-body terms into three-body terms, such that if we wish

to remove the plaquette operator and modify the vertex operators in one go, this would

affect twelve spins and so the Hilbert space size where the dynamics are implemented is

large compared with the other operations.

4.2.4 State injection

This scenario involves turning the logical states that have been encoded upon the defects,

whether |0̄⟩ or |+̄⟩, into various fiducial states such as the canonical example of T̄ |+̄⟩

where T is the phase gate such that T 4 = Z.

This comprises several steps, including: i) Creating a pair of rough defects in an
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eigenstate of X; this procedure is analagous to that of creating smooth defects described

previously. ii) Ensuring that the defect is in a region which is smoothly detached from

the rest of the surface code. This involves the detachment procedure described in the

detachment/attachment section. iii) Adiabatically or otherwise ‘injecting’ the desired

logical state onto the spin qubit located between the pair of defects. This simply means

evolving the state of the spin qubit from |ψ⟩ to TX |ψ⟩. iv) Deforming the pair of defects

from rough to smooth by turning off the two adjoining (three-body) plaquette stabilisers

and turning on the vertex stabilisers.

Out of these, the first procedure which is distinct from the other three operations is

the actual state injection which is carried out on a single qubit in the interior of a pair

of rough defects. The second such procedure consists of turning on the adjoining vertex

operators and turning off the overlapping three-body plaquette operators. Hence we can

define initial and final Hamiltonians

Hi = −∆

2
(Z1,2,3 + Z7,8,9) (4.13)

Hf = −∆

2
(X2,4,5,7 +X3,5,6,8) (4.14)

respectively. This procedure is illustrated in Fig. 4.4.

Figure 4.4: Illustration of how defects are transformed and stabilisers are removed and
re-introduced for the state injection procedure. Three-body plaquette operators Z1,2,3 and
Z7,8,9 are turned off while four-body vertex operators X2,4,5,7 and X3,5,6,8 are turned on. A
total of nine qubits are acted on during this operation.

Solving the dynamics of this second procedure is more numerically challenging than

for the first procedure as the latter takes place within a 29-dimensional Hilbert space.
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4.3 Quantum optimal control

4.3.1 Defining the control problem

Considering the implementation of these operations as quantum control problems in-

volves reformulating the initial and final Hamiltonians into a more general time-dependent

Hamiltonian with a control f(t). Typically in a control problem there is a time-independent

part known as the drift Hamiltonian and a time-dependent part known as the control

Hamiltonian which is coupled to the control function. Analogously, two Hamiltonians are

chosen

H1 = Hi (4.15)

H2 = Hf − H̃i (4.16)

so that we have the control problem defined as

H(t) = H1 + f(t)H2. (4.17)

In the adiabatic regime f(t) may simply be a linear ramp with a very small slope such

that f(0) = 0 and f(T ) = 1 for T being a long timescale, thereby ensuring adiabatic

dynamics. We call such a pulse a linear ramp fad(t).

We define an initial state |g1⟩ being a ground state of H1 and this in turn defines a

target state |gtarg⟩ by

|gtarg⟩ = U(fad(T )) |g1⟩ (4.18)

where adiabaticity ensures that |gtarg⟩ is a ground state of the final Hamiltonian H1 +H2.

This allows for the definition of a target fidelity, as a function of the control pulse

F(U(f, t)) = |⟨gtarg|U(f(t)) |g1⟩|2 . (4.19)
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The closely associated target infidelity I = 1 − F is the figure of merit which is often

sought to be minimised.

For some other operations, where the goal is to implement desired full dynamics rather

than specific state transfer, we may look at a similar unitary gate fidelity defined as

F(U) =
1

d

∣∣∣Tr
(
U †
targU

)∣∣∣ . (4.20)

In order to optimise for infidelities, we use a gradient ascent pulse engineering algo-

rithm (GRAPE) [35, 36]. This procedure uses piecewise constant control pulses where,

after an initial random control is picked, the parameters such as pulse magnitude are

varied in order for infidelity to go down in the control space until acceptable minima

are found. The direction of descent in control space is determined by second deriva-

tives of the infidelity which are calculated using the limited memory version of the Broy-

den–Fletcher–Goldfarb–Shanno method (BFGS) [87, 88, 89, 90, 91]. This method uses an

estimate of the Hessian matrix of second derivatives of the figure of merit and allows for

a parabola to be used for approximating the control space and descending towards local

minima (for more information, see Appendix A).

GRAPE is used to find appropriate piecewise constant control pulses and choose the

best fidelity for a given time period. Numerous parameters may be varied such as initial

pulse guess and number of pulse time steps.

4.3.2 Non-adiabatic optimisation

The result of our optimisations on three of the four major surface code operations, pre-

sented in Fig. 4.6 and Table 4.1, indicate that quantum optimal control can indeed allow

for an improvement of multiple orders of magnitude in timescale required for achieving

the appropriate target states of the operations.

In Fig. 4.5 are presented the state infidelities between the ideal target state, which

corresponds to defect pair creation on the surface code, and the state achieved by using

a linear control that goes from 0 to 1 in time T . Here as with elsewhere in this work



113 4.3. Quantum optimal control

timescales are understood to be in units of ∆−1 where ∆ is the spectral gap in the initial

Hamiltonian H1. The logarithmic plot displays the improving fidelity that is achieved

with linear ramps of longer timescales. In particular, when T < 1 there is a comparatively

high infidelity that stays effectively constant whereas for timescales longer than this, the

infidelity improves steadily. Considering an infidelity of 10−7 as a standard for sufficiently

good infidelity we see that this is achieved for timescales of T ≳ 1000. This is indeed

consistent with the spectral gap of 1 in the units of ∆−1 as an effectively perfect fidelity

is expected when adiabaticity is achieved which can only occur according to the adiabatic

theorem when the timescale is much longer than the inverse of the spectral gap [92].

In Fig. 4.6 are presented the results of using optimisation of state infidelity to find

non-linear controls that can achieve high fidelities for defect creation. Good fidelities

(shown in orange) were achieved with only two time steps in the optimised pulses. Each

data point corresponds to the minimum of 1000 optimisation attempts with random initial

pulse guess. The results show that successfully creating the defect pair state, that is, to

achieve a good infidelity of 10−7 as mentioned previously, can be achieved at a timescale of

T ≈ 1.15. The earliest timescale at which effectively perfect fidelity is achieved hereafter is

referred to as drop time. Furthermore we see the comparison between use of non-optimised

linear control ramps and the optimised pulses when comparing fidelities (plotted in blue

and orange respectively) as there is a marked improvement, particularly after the drop

time where infidelities are shown to improve by over 10 orders of magnitude.

The results of carrying out the same optimisation procedure for defect creation and

for two other operations, namely defect deformation and state injection, are qualitatively

similar and are presented in Table. 4.1. The results show that there is a variance of

the drop time but all operations achieve effectively perfect fidelity at times much smaller

than the adiabatic timescale. An appropriate measure of this is comparison between

optimised infidelity at drop time with the infidelity using a linear control pulse with

same duration. Quantum control optimisation methods can be seen therefore to give an

infidelity improvement generally on the order of 10 orders of magnitude.
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Figure 4.5: Fidelity of defect creation with linear ramps as control functions. Fidelity when
using linear ramps only becomes good at long timescales T , where adiabaticity is achieved.
Time units are ∆−1.

Operation spins Td Nτ I linear I optimised
Creation 9 1.15 2 0.3251 5.13e-13

Deformation 1 7 2.0 4 0.323 5.50e-12
Deformation 2 8 3.2 4 0.379 8.11e-13
Deformation 3 8 10.0 12 0.166 2.41e-11
Deformation 4 4 5.0 10 0.927 3.32e-12

State injection pt.1 1 2.4 4 0.177 4.37e-14
State injection pt.2 9 1.3 15 0.358 2.23e-12

Table 4.1: Results of quantum control optimisation on three surface code operations, namely
defect creation, defect deformation and state injection. Shown in the table are: number of
spins acted on in the operation, drop time Td, minimum required number of time steps in
optimised pulses Nτ , infidelity I with linear pulse at time Td and optimised infidelity.

4.4 Surface code detachment and dynamical Lie al-

gebra mapping

The operation of detachment and attachment of surface code regions is sufficiently distinct

from the other three operations that it requires an alternative approach if we wish to use

quantum control to implement it without resorting to adiabaticity. Two spins within

the lattice require removal to implement code detachment. It is therefore necessary for

all overlapping vertex stabiliser operators (of which there are four; see Fig. 4.3) to be
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Figure 4.6: Defect creation with optimised non-linear control pulses. The timescale for defect
creation with high fidelity is around T = 1.15. Time units are ∆−1. The optimised fidelities
are shown in orange as compared with the infidelity for a linear ramp at the corresponding
time, shown in blue. This is an orders of magnitude improvement compared with using linear
adiabatic pulses.

modified from four-body terms into three-body terms, and so in order to remove the

plaquette operator and modify the vertex operators, 12 spins must be affected. The

effective Hilbert space size of this operation therefore is much larger than for any of the

other operations. Moreover, as the primary goal here is to find controls that mimic the

behaviour of adiabatic dynamics no matter the initial state, unitary gate fidelity must be

optimised rather than the simpler case of state fidelity.

Attempting to solve the dynamics in such a Hilbert space is more challenging than in

previous examples and, as optimisation must be carried out many times, this therefore

requires large computational resources. It is therefore of interest to find a new approach

which could allow for consideration of a simpler but equivalent system. Our method

consists of mapping the dynamical Lie algebra of the operation to a smaller dimensional

problem and carrying out optimisation in the smaller space. It is also motivated by

previous work that uses mapping of a time-dependent many-body Hamiltonian into a free

fermion model as a method of solving the dynamics of a system which is of interest for

encoding topologically protected qubits [44] (see Chapter 3).

This method allows us to achieve a similar result as with the other operations, where
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high fidelities are achieved without resorting to long timescales or scaling of the Hamil-

tonian with large amplitude control pulses. We achieved a timescale improvement of

two orders of magnitude using pulses whose amplitudes are of the order of ∆. Further

improvement in timescale is possible to achieve at the cost of higher amplitude pulses.

4.4.1 Mapping between dynamics of two spaces

Presented here in detail is the method of mapping between dynamical Lie algebras, con-

sidering the most general case for which the method is applicable and, later, we apply this

to the specific control problem corresponding to the surface code detachment operation.

All possible dynamics of a given quantum system with a time-dependent Hamiltonian

can be represented by a Lie group of unitary operators eL, whose corresponding, anti-

Hermitian, Lie algebra L is known as the dynamical Lie algebra [15, 93, 94]. The Lie

algebra can be considered as an infinitesimal algebra whose basis generates elements of

the Lie group. As the Lie group representing the dynamics must be unitary so the

dynamical Lie algebra must have anti-Hermitian matrices as a basis. The commutators

of all basis elements of the dynamical Lie algebra define structure constants λljk from the

relation

[Oj, Ok] = λljkOl (4.21)

where the Einstein summation convention is used for repeated indices. These structure

constants effectively define a particular representation of the Lie algebra as all Lie bracket

relations can be found using them [95].

What we require is a mapping Φ between unitaries Uj in a large dimensional Hilbert

space and unitaries uj in an ideally much smaller dimensional space. This amounts to the

mapping

Uj = exp

(∑
j

αjOj

)
7→ exp

(∑
j

αjKj

)
= uj (4.22)
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such that there is an isomorphism ϕ, that is, an invertible mapping where structure

constants are preserved, between Lie algebras L = span{Oj} and M = span{Kj} where

ϕ

(∑
j

αjOj

)
=
∑
j

αjKj. (4.23)

For simplicity we refer to two different Lie groups as the ‘large space’ and the ‘small space’

but we take care to note that this refers only to the dimensions of the particular matrix

representations of their Lie algebras. Such a mapping Φ would allow for optimisation of

the small unitary uj by fidelity defined as in (4.20) compared with a target unitary uT

where both small unitaries have well defined counterparts in the larger space.

4.4.2 Construction of a dynamical Lie algebra and the adjoint

representation

We determine the dynamical Lie algebra of a general system whose time-dependence

means that at any time the Hamiltonian is some linear combination of H1 and H2. Initially

we define their anti-Hermitian counterparts A1 = iH1 and A2 = iH2 respectively. The

dynamical Lie algebra is then the list of all linearly independent operators found from

nested commutators [Aj, ... [Aj, Ak]] where j ∈ {1, 2}. The largest linearly independent

set is a basis for the dynamical Lie algebra defined by these matrices as the generators

L = span{A1, A2, ...}.

In fact, the structure constants themselves give the matrix elements of the adjoint

representation of this dynamical Lie algebra through the defining relation

[Tj]kl = −λljk. (4.24)

The proof of this is found below. If there is a small number of basis elements as com-

pared with the dimensions of the matrices themselves then the matrices of the adjoint

representation are much more manageable for the purposes of numerical optimisation.
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4.4.3 Proof that structure constants define a Lie isomorphism

We claim that for a Lie algebra L which is spanned by a finite number of basis elements

Aj, such that these basis elements are related by the commutation relations

[Aj, Ak] = λljkAl (4.25)

where λljk are the defining structure constants of the chosen basis, then defining another

set of matrices Tj by

[Tj]kl = −λljk (4.26)

gives the relation

[Tj, Tk] = λljkTl. (4.27)

As a consequence we have a Lie algebra isomorphism between L andM = span{Tj} if the

Tj matrices are all linearly independent. The proof is well known and is given as follows:

define the set of matrices Tj as given in Eq. (4.26). By definition the basis of any Lie

algebra such as L satisfies the Jacobi identity under commutation, thus

[Aj, [Ak, Al]] + [Ak, [Al, Aj]] + [Al, [Aj, Ak]] = 0. (4.28)

Through Eq. (4.25) this becomes

λmkl[Aj, Am] + λmlj [Ak, Am] + λmjk[Al, Am] = 0 (4.29)

= (λmklλ
n
jm + λmljλ

n
km + λmjkλ

n
lm)An. (4.30)

Thus the Jacobi identity is here equivalent to the relation

λmklλ
n
jm + λmljλ

n
km + λmjkλ

n
lm = 0. (4.31)
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Therefore checking the commutation relations of the matrices Tj one finds that

[Tj, Tk]ln = [Tj]lm[Tk]mn − [Tk]lm[Tj]mn (4.32)

= λmjlλ
n
km − λmklλnjm (4.33)

= −λmljλnkm − λmklλnjm (4.34)

= λmjkλ
n
lm (4.35)

= −λmjkλnml (4.36)

= λmjk[Tm]ln (4.37)

and hence we have Eq. (4.27) which is now proven.

4.4.4 Proof of a sufficient condition for totally antisymmetric

structure constants

In order for dynamics to be unitary there is a preference for the adjoint representation

basis matrices to be anti-Hermitian. This is the case only when the structure constants

are totally antisymmetric in all three indices, which is not the case in general.

We consider the well-known Hilbert-Schmidt inner product acting on anti-Hermitian

matrices

I(Aj, Ak) := Tr
(
A†

jAk

)
= −Tr(AjAk). (4.38)

Orthogonalising the original basis of L with respect to this inner product leaves a basis

whose structure constants, which we call γljk are totally antisymmetric. The proof of this

is well-known [96] and is presented here. For a finite set of linearly independent matrices

Oj such that

[Oj, Ok] = γljkOl (4.39)

then the rank 3 tensor γljk refers to the structure constants. We assume the set of matrices
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has been orthogonalised with respect to the inner product

I(Oj, Ok) = −Tr(OjOk) (4.40)

so that

I(Oj, Ok) = δjk. (4.41)

It is clear by definition that due to the antisymmetry of the commutator we have

γljk = −γlkj. (4.42)

Using the summation convention on repeated indices, take

Tr(Ol[Oj, Ok]) = γijk Tr(OlOi) (4.43)

= γijk(−δli) (4.44)

= −γljk. (4.45)

At the same time we have

Tr(Ol[Oj, Ok]) = Tr(OlOjOk)− Tr(OlOkOj) (4.46)

= Tr(OlOjOk)− Tr(OjOlOk) (4.47)

= Tr([Ol, Oj]Ok) (4.48)

= Tr
(
γmljOmOk

)
(4.49)

= γmlj (−δmk) (4.50)

= −γklj. (4.51)

Thus as γljk = −γlkj and γljk = γklj, immediately it follows that the structure constants are

indeed totally antisymmetric in all three indices.
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From this the matrices Kj may be defined such that

[Kj]kl = −γljk (4.52)

where the matrix elements γljk are also the totally antisymmetric structure constants of

the orthonormal set of matrices Oj.

4.4.5 Ensuring a Lie algebra isomorphism

In order for the mapping to be invertible, the adjoint representation of L is required to be

a faithful representation. This will fail if there exists a non-trivial centre [97]. The centre

is defined as a subalgebra C in L such that

∀Oj ∈ L and ∀C ∈ C (4.53)

we have

[Oj, C] = 0. (4.54)

We need only consider the case where there exists a one-dimensional centre. This is

due to the fact that a two dimensional centre

C = λO1 + µO2, λ, µ /∈ R (4.55)

would imply

[O1, C] = 0

= [O1, λO1 + µO2]

= µ[O1, O2] (4.56)

Thus a two-dimensional centre would imply that O1 and O2 commute which is assumed



Chapter 4. Surface code defects and dynamical Lie algebras 122

not to be the case as this would imply that the control problem was trivial.

In order to find a faithful |L|-dimensional Lie algebra which is isomorphic to L we

require a set of |L| linearly independent matrices that have the same structure constants

as L. Choosing a set

{O1, . . . , O|L|−1, O|L| = C} (4.57)

where C is in the centre and all elements are orthogonalised with respect to the inner

product defined in Eq. (4.38), then defining

Kj = Tj ⊕ 0, j < |L| (4.58)

and

K|L| = 0⊕ ia1, a ∈ R (4.59)

gives the required set. The factor of i in the identity guarantees anti-Hermiticity for all

Kj. An alternative solution that guarantees reality of matrices Kj involves, rather than

KL being defined via a direct sum with ia1, instead

K|L| = 0⊕

 0 a

−a 0

 (4.60)

where a is a real multiple of an identity matrix of any dimension. This will be useful in

certain circumstances where it is desired that unitary dynamics are given by real matrices.

As discussed later, this will be helpful in the concrete example of surface code detachment.

We therefore obtain two dynamical Lie algebras

L = span{O1, ..., OL} (4.61)

M = span{K1, ..., KL} (4.62)
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whose representations preserve structure constants and thus are isomorphic.

4.4.6 Local isomorphism and mapping of dynamics

Isomorphism on the level of Lie algebras does not necessarily imply such an invertible

mapping on the space of Lie groups, as evidenced by the famous two-to-one correspondence

between SU(2) and SO(3) [98]. This is to say that, while there is an invertible mapping

between the traceless anti-Hermitian matrices of su(2) and the antisymmetric matrices of

so(3), at the Lie group level both the identity and the negative of the identity in SU(2)

would be mapped to the identity in SO(3).

Nevertheless there is a local isomorphism around the identity element between Lie

groups that have isomorphic Lie algebras and it is precisely this fact which is exploited

within our method. Taking a target unitary in the large space UT one can decompose it

into a product of n unitaries

UT =
n∏

j=1

Uj (4.63)

such that each Uj is close to the identity matrix. Here and afterwards we always con-

sider products of unitaries to consist of repeated left multiplication. This factorisation

is straightforward to calculate when the dynamics are determined by a time-dependent

Hamiltonian with a piecewise-constant control function

H(t) = H1 + fj(t)H2. (4.64)

Such a Hamiltonian is constant during a time-step δtk

H(tk) = H1 + fkH2 (4.65)

H(tk + δtk) = H1 + fk+1H2 (4.66)
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where tk is a point of discontinuity. Thus each unitary Uj can be chosen to be

Uj = exp(−iH(tj)δtj). (4.67)

When the timeslots are chosen to be small enough then the corresponding unitary Uj

is certain to be close to the identity. There can therefore indeed be defined a local

isomorphism Φ between unitaries in the large space Uj ∈ eL and unitaries in the small

space uj ∈ eM such that Φ(Uj) = uj. Hence an overall target unitary can be defined in

the smaller space

uT =
n∏
j

Φ(Uj) =
n∏
j

uj. (4.68)

While not true in general for arbitrary products of successive unitaries Uj, it is possible

for certain products

Vj =
l∏

j=k

Uj = T exp

(
−i
∫ tl

tk

H(t′)dt′
)

(4.69)

to themselves be close to the identity, even for a comparatively long timescale tl − tk.

Such unitaries Vj will also have counterparts in the small space vj =
∏

j Φ(Vj) and the

target dynamics can be reformulated in terms of these

UT =
m∏
j

Vj (4.70)

where some Vj are equal to products of consecutive Uj while others may be identical to

a single unitary Uj. In short, as there is no isomorphic mapping between UT and uT

in general, what is required instead of a single optimisation for infidelity is m different

optimisations for each of the vj. Each Vj can be written as the exponential of some
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element of the dynamical Lie algebra L so that

Vj = exp

(∑
k

αkOk

)
(4.71)

while

vj = exp

(∑
k

βkKk

)
(4.72)

where the coefficients αk and βk are approximately equal, with the approximation becom-

ing better the closer the unitaries are to the identity.

4.4.7 Optimal control in a smaller dimensional space

When a target uT in the smaller-dimensional Lie group is found using Eq. (4.68), opti-

misation may be carried out in the smaller picture of eM for each of the unitaries vj in

its decomposition. This optimisation entails finding piecewise constant control pulses f̃

such that the infidelity

I(vj, ṽj) = 1− 1

d
Tr
{
v†j ṽj

}
(4.73)

is minimised, where ṽj = ṽj(f̃j). For a sufficiently low infidelity, this optimised unitary in

eM can define a corresponding unitary in eL via the optimised pulse

Ṽj = Φ−1(ṽj(f̃j)). (4.74)

Of course what is ultimately sought after is minimisation of the infidelity between unitaries

in the large space. It is hoped that if I(vj, ṽj) is small then this implies that I(Vj, Ṽj) is

also small. In Fig. 4.7 we see that this is indeed the case when this optimisation procedure

is carried out with the concrete example of the surface code detachment operation. Plotted

on the abscissa is the square of the Frobenius norm of the difference between two random

unitaries u1 and u2, scaled by the dimension of the matrix k. This is compared on the
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ordinate with the squared normed difference between U1 and U2, scaled by its dimension

K. These specific unitaries are related by a local Lie group isomorphism such that Φ(Uj) =

uj. For unitaries close to the identity this scaled norm of their difference is closely related

to their infidelity [44].

10-10 10-9 10-8 10-7

10-11

10-10

10-9

10-8

k||u1-u2||

K
||
U
1
-
U
2
||

Figure 4.7: Comparison of normed differences between unitaries close to the identity in
different Lie group spaces. On the abcissa are plotted k∥u1 − u2∥2F for unitaries in the smaller
spaceM while on the ordinate are plotted K∥U1−U2∥2F for unitaries in eL so that Φ(Uj) = uj .

It remains to discuss the full infidelity overlap I(UT , Ũ) where Ũ =
∏m

j Ṽj. This is

generally computationally intensive to compute for large unitaries; however we show that

this result can be related to the infidelities I(Vj, Ṽj).

The gate infidelity overlap between unitary matrices is related to the Frobenius norm

via

1

2d
∥U1 − U2∥2F =

1

2d
Tr
(
(U1 − U2)

†(U1 − U2)
)

=
1

2d
Tr
(

21− 2 Re
{

Tr
(
U †
1U2

)})
= 1− 1

d
Re
{

Tr
(
U †
1U2

)}
(4.75)

where d is the dimension of the unitaries Uj. This scaled and squared normed difference

is identically equal to the trace overlap infidelity I(U1, U2) for real unitary matrices and

is a very good approximation for the infidelity when unitaries are close to the identity.
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It can also be shown that, through repeated use of the triangle inequality,

∥
n∏
j

Uj −
n∏
j

Ũj∥ ≤
n∑
j

∥Uj − Ũj∥. (4.76)

This can be proven by taking the following

∥U1U2 − Ũ1Ũ2∥ =∥U1U2 − Ũ1U2 + Ũ1U2 − Ũ1Ũ2∥ (4.77)

≤∥U1U2 − Ũ1U2∥+ ∥Ũ1U2 − Ũ1Ũ2∥ (4.78)

=∥U1 − Ũ1∥+ ∥U2 − Ũ2∥ (4.79)

where we have used that ∥UM∥ = ∥M∥ for any unitary matrix U and arbitrary matrix

M . Inductively this can be generalised to the inequality bound (4.76).

The combination of these two relations (4.75) and (4.76) enables finding a bound for

the infidelity between the full target unitary UT =
∏n

j Uj =
∏m

j Vj and the product of

the chopped optimised unitaries
∏m

j Ṽj.

4.5 Results of optimisation for the detachment oper-

ation

We formulate the surface detachment operation as a control problem and so we have

Hamiltonians H1 defined as Hi and H2 = Hf−Hi, where the final and initial Hamiltonian

are defined in equations (4.11) and (4.12) and are of dimension 212-by-212. Anti-Hermitian

counterparts A1 = iH1 and A2 = iH2 are respectively defined.

A target unitary is defined in the large space by the dynamics of H(t) = H1+fad(t)H2

from t = 0 to t = T where fad is a piecewise constant function that goes from 0 to 1 in

time T = 1000 and in n time steps. The timescale is chosen so that T ≫ ∆−1 where ∆

is the spectral gap. Thus the target unitary UT effects adiabatic dynamics.

The dynamical Lie algebra L is defined via nested commutators of A1 and A2. In

this example there is a basis of dimension 10, the last element of which is gained from a
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commutator of depth 6. We now describe explicitly how this basis was found.

4.5.1 Generation of the dynamical Lie algebra

There are numerous different ways to generate a dynamical Lie algebra from an initial

set of generators [15, 99]. A standard method involves repeatedly taking Lie brackets

(here commutators) of a linearly independent set of generators until no further linearly

independent matrices are found. The algorithm must take at most N2 steps for matrix

generators of dimension N -by-N .

This allows us to define the dynamical Lie algebra for the surface code detachment

operation, as generated by A1 = iHi and A2 = i(Hf −Hi) as defined by equations (4.11)

and (4.12) respectively

A3 = [A1, A2] (4.80)

A4 = [A2, [A1, A2]] (4.81)

A5 = [A2, [A2, [A1, A2]]] (4.82)

A6 = [A1, [A2, [A2, [A1, A2]]]] (4.83)

A7 = [A2, [A2, [A2, [A1, A2]]]] (4.84)

A8 = [A2, [A2, [A2, [A2, [A1, A2]]]]] (4.85)

A9 = [A1, [A2, [A2, [A2, [A2, [A1, A2]]]]]] (4.86)

A10 = [A2, [A2, [A2, [A2, [A2, [A1, A2]]]]]]. (4.87)

When this dynamical Lie algebra is orthogonalised with respect to the negative real

Hilbert-Schmidt inner product, this gives another Lie algebra whose structure constants

are totally antisymmetric in all three indices. The basis elements Oj of this Lie algebra

are given explicitly by the relation

Oj = MAj (4.88)
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where M is the matrix
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As |L| = 10 this means the adjoint representation will comprise of ten matrices of size

10-by-10 meaning that there is a homomorphism, a not necessarily invertible mapping

preserving algebra, between the dynamical Lie algebra L and the adjoint representation

which is of much smaller size.

As there exists a one dimensional centre

C = span{(3145, 841, 0,−841, 0,−58,−58, 0,−1,−1).A}, (4.90)

where A is the vector of basis elements of L

A = (A1, . . . , A10)
T, (4.91)

this means that for a faithful representation with a basis comprised of anti-Hermitian

matrices we follow the procedure outlined in Section 4.4.5. This gives two isomorphic Lie

algebra representations L and M with identical structure constants γljk, where the basis

of M consists of ten 12-by-12 real anti-Hermitian matrices.

The only non-zero structure constants of these newly defined Lie algebras are shown
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in Table 4.2 where there is antisymmetry in all permutations of the indices.

j k l γljk j k l γljk
1 2 3 1

8
√
11

3 7 9 1
8
√
6

1 5 6 1
8
√
11

4 5 6
7
√

3
110

16

1 8 9 1
8
√
11

4 5 9 -
√
11
64

2 3 4

√
5
66

8
4 6 8

√
11
64

2 4 5
√
11
64

4 8 9

√
5
66

8

2 5 7
√
5

64
5 6 7 -

√
3
2

16

2 7 8 1
8
√
6

5 7 9 -
√
5

64

3 4 6
√
11
64

6 7 8
√
5

64

3 6 7
√
5

64

Table 4.2: The non-vanishing structure constants γljk of the orthogonalised basis of the
dynamical Lie algebra L. This takes into account total antisymmetry in all three indices.

4.5.2 Numerical optimisation

For our specific example, the target unitary is decomposed into n = 2 × 105 unitaries

Uj. As stated previously, optimisation must be carried out on m different optimisations

for each of the vj. Each individual vj = vj(tj − tj−1) corresponds to a time evolution

interval of τ = tj − tj−1 and we find an optimised ṽj = ṽj(f̃(t)) such that I(vj, ṽj) is

as small as possible and yet ṽj consists of a time evolution less than τ . In the operation

described, only k = 72 < m such unitaries vj = vj(tj−tj−1) were equal to a concatenation

of multiple unitaries uj such that the time-interval (tj − tj−1) is comparatively long. As

a result, optimisation was only successfully carried out on each of v1 to vk. However as

these unitaries represent a cumulative time evolution that comprises 98.716% of the total

time evolution of the target unitary uT , and as optimisation was successful in reducing the

required timescale for achieving these target dynamics v1 to vk by two orders of magnitude,

optimisation was successful overall.

In Fig. 4.8 is shown the infidelity between unitary v(t, 0) and the identity (blue), as

well as between the unitary V (t, 0) and the identity, where v(t, 0) = Φ(V (t, 0)). We see

that when a unitary vj is close to the identity in the small picture its counterpart Vj is
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Figure 4.8: Closeness to the identity quantified and compared for unitaries in eL and eM.
The infidelity I(1, v) is plotted for concatenated unitary v(t, 0) (blue) as well as the infidelity
for the corresponding unitary in the large picture V (t, 0) (I(1, V ) shown in orange) for t = 0
to t = 22.

indeed close to the identity in the larger picture. The graph of ∥1−V ∥ against ∥1− v∥ is

qualitatively similar but with scale depending on the chosen norm. We see in Fig. 4.9 the

results of the optimisation carried out for v1 which is defined ultimately from concatenated

unitaries corresponding to time t = 0 to t = 19.1. For this unitary, in the small space and

large space respectively we have

I(1, v1) = 0.00195988 (4.92)

I(1, V1) = 0.000649426 (4.93)

meaning that unitaries in both spaces are indeed close to the identity and so they are

well defined as counterparts due to the local isomorphism. Fig. 4.9 shows the infidelity

between v1 and the optimised ṽ1 and shows that we can get effectively perfect fidelities

after a drop time of t ≈ 0.1. Also shown is the repeat of this procedure with a differing

number of time steps. Optimisation is marginally more successful in terms of achieving

low infidelity at a shorter timescale when 200 time steps are used as compared with 100

time steps.
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Figure 4.9: Optimised pulse durations for target unitary v1 = v(19.1− 0). Increased number
of time steps demonstrates an improvement in infidelity and a drop time at t ≈ 0.1 showing an
improvement of two orders of magnitude.

From the successfully optimised pulses we developed, we achieved high fidelities at

timescales two orders of magnitude faster compared with the target dynamics, as indicated

by Fig. 4.9 for a particular target v1. It is also possible to optimise for quicker times at

the cost of very large pulse amplitudes which are on the order of more than 3 orders of

magnitude larger than the spectral gap.

It is computationally intensive to calculate infidelities between target unitaries Vj and

optimised unitaries Ṽj = Φ−1(vj) in the larger picture. However, as seen in Fig. 4.7,

there is a linear relationship between them that can be used to determine infidelities in

the larger space. The relationship can be given approximately as

∥vj − ṽj∥F ∼ 10∥Vj − Ṽj∥F . (4.94)

Due to the fact that the Lie algebra representation that generates the unitaries vj can

be chosen to be real, the unitaries themselves must also be real and so a low infidelity

I(vj, ṽj) can be related to a small normed difference by using Equation (4.75) so that

∥vj − ṽj∥F =
√

2dI(vj, ṽj). (4.95)
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With this as well as relation (4.94) the normed difference between the larger unitaries

∥Vj − Ṽj∥F can be approximated. The sum of the normed differences for all optimised

unitaries Vj can then be summed to provide a bound, via the inequality (4.76), for the

infidelity between the full target unitary in the larger space UT and the product of all

optimised unitaries . When calculated explicitly, the bound for the infidelity is given as

I(UT , Ũ) = 1− 1

d

∣∣∣∣∣Tr

(
U †
T

m∏
j

Ṽj

)∣∣∣∣∣ ≤ 5.184× 10−6. (4.96)

4.6 Conclusion

It has been shown that using quantum optimal control methods, one can replicate the

results of using adiabatic dragging protocols within the surface code that allow for the

encoding and processing of quantum information. Our methods have allowed for this to be

achieved without resorting to the long timescales required by adiabaticity. Additionally

we have seen how the use of dynamical Lie algebras and their representations allows us

to use these quantum control techniques even for control problems which require control

of many spins within a lattice system. This method can be useful for other control

problems where we wish to control the entire dynamics and where the dimension of another

representation of the dynamical Lie algebra is much smaller than the size of the matrices

within the original representation. Additionally, we have shown that good infidelities for

unitary gates in a smaller dimensional representation are suitably bounded by analogously

good infidelities for unitaries in a larger dimensional representation, as long as there is

an isomorphism on the level of Lie algebras. This indicates that overall optimisation is

successful when favourable results are achieved in the smaller dimensional space, as they

indeed were for our control problem.
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Chapter 5

Conclusion

5.1 Summary and outlook

In this thesis we have demonstrated that quantum control can be successfully utilised to

implement creation of anyons and defects in topological lattice models. This will allow

for successful encoding of quantum information in a manner that preserves the protection

afforded by quantum systems with topological order. Previous work has focused on using

adiabatic dynamics when looking at time-dependence in Hamiltonians of systems with

topological order in order to preserve any encoded logical quantum information, and not

allow unwanted errors to be created which over time could become logical errors. We

have seen that using quantum control is an effective method of implementing the desired

anyonic states in a spin lattice without requiring long timescales and without causing

more vulnerability to the system in terms of potential errors.

In Chapter 2, we have shown that in the toric code, a relatively simply defined system

that nevertheless demonstrates topological order, abelian anyons may be created using

time-dependent pulses which are bounded in both time and pulse amplitude. The protocol

developed is shown to grow linearly in the length of the spin lattice ensuring scalability.

The robustness in the face of small errors both in pulse implementation as well as due to

intrinsic errors in the Hamiltonian has been demonstrated. We have shown the benefits

that large spin lattices present in terms of offering better protection against logical errors
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while acknowledging the effect to which the anyon creation and logical gate implementa-

tion protocols we developed are affected in their effectiveness in terms of the magnitude

of errors that are tolerable. Use of quantum control can be considered for potential

experimental implementations of the toric code that have been proposed [51, 80, 100].

In Chapter 3, we have presented a method for using quantum control for implementing

non-abelian anyon creation in the form of vortices in the Kitaev honeycomb model. The

method developed is scalable as it grows in difficulty of numerical implementation only

linearly with the lattice size. Previous restrictions of the model where adiabatic dynam-

ics are used were overcome by extending the known fermionisation of the static Kitaev

honeycomb model and extending this to the time-dependent case.

In Chapter 4, we have shown that in the surface code, a system allowing for encoding

of topologically protected qubits as well as for implementation of Clifford gates useful for

quantum algorithms, quantum control can be used to implement the dynamics that hith-

erto had been demonstrated using adiabatic protocols that required long timescales. In the

process, we developed a method of mapping a quantum system’s unitary dynamics that

could be useful for other control problems of a similar type where numerical optimisation

of target fidelities are computationally intensive due to system size. Experimental work

suggesting the use of surface codes as successful topological qubits are currently known

[80, 81, 101, 102] and so the quantum control methods described are a potential aid to the

implementation of encoding of quantum information in such systems in timescales that

are comparatively short which is useful in the face of possible decoherence.

Given the results shown in the successful use of quantum control within three well-

known topological quantum systems, there is scope for future progress to be made in

this realm. As an example, the hitherto discussed systems which display non-abelian

anyonic behaviour exhibit Ising anyon fusion rules which, while useful, are not complete

for universal quantum computation. It has been suggested that fractional quantum Hall

states display Fibonacci anyonic behaviour [21, 103, 104] and an investigation of using

quantum control in these systems would be of interest.

Additionally, there is potential for future work on the interplay between quantum con-
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trol and topological systems [105, 106], including measurement-based quantum control.

It may be beneficial to look at incorporating measurement of spins in lattices more seam-

lessly with quantum control, as part of the overall process of implementing an algorithm

in, for example, the surface code. There are thus many prospective avenues that are

suitable for further investigation.



Chapter 5. Conclusion 138



Bibliography

[1] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–

1509, 10 1997.

[2] Lov K. Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing

- STOC ’96, pages 212–219, New York, New York, USA, 1996. ACM Press.

[3] Lijun Ma, Xiao Tang, and Oliver Slattery. Optical quantum memory applications

in quantum communication. In Keith S. Deacon, editor, Quantum Communications

and Quantum Imaging XVII, page 1. SPIE, 9 2019.

[4] Tudor D. Stanescu. Introduction to topological quantum matter and quantum com-

putation. CRC Press, 2016.

[5] G. J. Milburn. Photons as qubits. Physica Scripta, T137:014003, 12 2009.

[6] Roee Ozeri. The trapped-ion qubit tool box. Contemporary Physics, 52(6):531–550,

11 2011.

[7] Philipp-Immanuel Schneider and Alejandro Saenz. Quantum computation with

ultracold atoms in a driven optical lattice. Physical Review A, 85(5):050304, 5

2012.

[8] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier,

L. P. Kouwenhoven, and L. M. K. Vandersypen. Driven coherent oscillations of a

single electron spin in a quantum dot. Nature, 442(7104):766–771, 8 2006.

139



Bibliography 140

[9] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.J.

Wang, Simon Gustavsson, and William D. Oliver. Superconducting Qubits: Current

State of Play. Annual Review of Condensed Matter Physics, 11:369–395, 3 2020.

[10] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. Building logical qubits

in a superconducting quantum computing system. npj Quantum Information 2017

3:1, 3(1):1–7, 1 2017.

[11] Tao Xin, Bi-Xue Wang, Ke-Ren Li, Xiang-Yu Kong, Shi-Jie Wei, Tao Wang, Dong

Ruan, and Gui-Lu Long. Nuclear magnetic resonance for quantum computing:

Techniques and recent achievements. Chinese Physics B, 27(2):020308, 2 2018.

[12] Jiannis K. Pachos. Introduction to topological quantum computation. Cambridge

University Press, 2012.

[13] S. Das Sarma, Michael Freedman, and Chetan Nayak. Topological quantum com-

putation. Physics Today, 59(7):32–38, 2006.

[14] Ville T. Lahtinen and Jiannis K. Pachos. A short introduction to topological quan-

tum computation. SciPost Physics, 3(3):021, 9 2017.

[15] Domenico D’Alessandro. Introduction to Quantum Control and Dynamics. Rout-

ledge, second edition, 2008.

[16] Hideo Mabuchi and Navin Khaneja. Principles and applications of control in quan-

tum systems. International Journal of Robust and Nonlinear Control, 15(15):647–

667, 10 2005.

[17] Herschel Rabitz. Focus on Quantum Control. New Journal of Physics,

11(10):105030, 10 2009.

[18] D. Dong and I. R. Petersen. Quantum control theory and applications: A survey.

IET Control Theory and Applications, 4(12):2651–2671, 12 2010.



141 Bibliography

[19] Binbin Chen, Jing Wang, and Yunsen Zhou. Quantum Control and Its Application:

A Brief Introduction. Journal of Physics: Conference Series, 1802(2):022068, 3

2021.

[20] Frank Wilczek. Quantum mechanics of fractional-spin particles. Physical Review

Letters, 49(14):957–959, 10 1982.

[21] Ady Stern. Anyons and the quantum Hall effect—A pedagogical review. Annals of

Physics, 323(1):204–249, 1 2008.

[22] H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite, J. M. Berroir, E. Bocquillon,
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correcting quantum memory with a boundary. Physical Review A - Atomic, Molec-

ular, and Optical Physics, 86(5):052340, 11 2012.
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Appendix A

Gradient ascent pulse engineering

In this appendix we describe in detail the mechanism behind the gradient ascent pulse

engineering (GRAPE) algorithm [35, 36] which has been used to find non-linear control

pulses that implement desired dynamics in Chapters 3 and 4. We have implemented this

algorithm in our work using the QuTiP package [75] which allows for exact calculation

of gradients. In our description as with elsewhere in our work we use natural units such

that ℏ = 1.

A.1 Quantification of target dynamics

We are typically interested in the dynamics of a finite-dimensional quantum system which

has some fixed dynamical generator known as the drift Hamiltonian Hd as well as one

or more controllable interactions which can be considered to be control Hamiltonians

Hc,j where j = 1, . . . , n. Each control Hamiltonian is associated with a real-valued time-

dependent function fj(t). For our implementation of this algorithm we will only consider

piecewise constant functions, therefore for a system with a total time-dependent Hamil-

tonian

H(t) = Hd +
n∑

j=1

fj,k(t)Hc,j. (A.1)
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time is discretised into m time slots ∆tk. The solution of the dynamics is therefore

|ψ(t+ ∆tk)⟩ = exp(−iH(tk)∆tk) |ψ(t)⟩ (A.2)

where tk is the time at a point of discontinuity. In terms of the unitary time-evolution

operator the dynamics are given by

Uk = exp(−iH(tk)∆tk). (A.3)

Thus the full dynamics from t = 0 to t = T , given chosen drift and control Hamiltonians,

is given by the time ordered product of all the unitary operators corresponding to each

piecewise constant time-interval

U(T, 0)[f1,1, . . . , fn,m] = Um...U1U0 (A.4)

with the initial condition U(0) = 1.

Optimisation is concerned with implementing dynamics that resemble a chosen target

dynamics Utarget as closely as possible. To quantify this requires defining a figure of merit.

In the case of state transfer, this is typically the state fidelity between an initial state |ψ0⟩

and a target state

F = |⟨ψtarget|ψ0⟩|2 (A.5)

or, when seeking to minimise rather than maximise, the infidelity I = 1 − F which

commonly serves as a cost function. A similarly useful figure of merit when wishing to

optimise total dynamics, irrespective of particular initial and target states, is the absolute

value of the Hilbert-Schmidt inner product [107, 108]

F =
1

d

∣∣∣Tr
(
U †
targetU

)∣∣∣ (A.6)
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as well as its correspondingly defined infidelity. The inner product must be scaled by

the dimension d of the unitary operators. Both figures of merit are insensitive to global

phases and are maximal at a value of 1 when the desired dynamics have been perfectly

achieved. Quantum optimal control effectively amounts to optimising this fidelity given

certain constraints such as pulse amplitudes, timescale of evolution and number of time

steps.

A.2 Implementation of the GRAPE algorithm

In general, numerical optimisation in quantum control is concerned with minimising the

infidelity by calculating gradients of the figure of merit and travelling down (descent) in

the parameter space. As in many forms of numerical optimisation, it is very common for

algorithms to lead to convergence around local minima. In order to avoid this, step sizes,

that is, the distance one travels in parameter space, must be chosen to be small. This

however comes at the cost of requiring further iterations of the algorithm and therefore

more computational resources.

A.2.1 Limited-memory BFGS algorithm

Within each iteration step of the GRAPE algorithm, the exact direction that is chosen for

descent in the parameter space is determined by the specified method of descent. Com-

mon methods that are chosen are steepest descent [109, 110], which involves numerically

calculating the gradient of the figure of merit and descending in the opposite direction

when minimising, and Newton-based methods [111, 112] that require calculation of second

derivatives in the form of the Hessian matrix.

In essence, Newton-based methods use a parabolic approximation of the curvature of

the cost function to choose the direction of descent. For a vector of parameters v which

may include, for example, control amplitudes fj,k and time steps ∆tk, together with an

infidelity I(v) that serves as a cost function to minimise, each successive step is calculated

by
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vn+1 = vn − h−1
I (vn) · ∇I(vn) (A.7)

where ∇I is the gradient of infidelity and hI is the Hessian matrix of second derivatives

of the infidelity.

Quasi-Newton methods [113, 114, 115] are however generally preferred for computa-

tionally demanding problems as, in such algorithms, rather than the full Hessian being

calculated at each iteration, an approximation of it is made based on previous steps in

the algorithm. Starting with an initial guess for this approximation bn (typically this is

the identity), a step ∆vn is calculated

∆(vn) = −b−1
n · ∇I(vn). (A.8)

The next iteration of parameters is then calculated from this

vn+1 = vn + ∆vn (A.9)

which allows for an updated Hessian approximation to be calculated. This is chosen so

as to satisfy the so-called secant equation

∇I(vn+1)−∇I(vn) = bn+1(vn+1 − vn) (A.10)

= bn+1∆vn (A.11)

and is generally close to the previous Hessian approximation with respect to some matrix

norm.

The limited memory version of the BFGS algorithm (L-BFGS) [87, 88, 89, 90, 91] is

a quasi-Newton method favoured for our work as it does not compute or store an entire

matrix that approximates the Hessian but rather uses vectors such as the gradients and

parameters of previous steps to reconstruct a Hessian approximation. In Fig. A.1 is

shown an example of an implementation of the GRAPE algorithm after an initial guess

is made for a control pulse.
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(b) Updated pulse after one iteration

Figure A.1: Example of GRAPE algorithm implementation for a short single control pulse
fj(t). On the left is a random pulse used as an initial guess for the algorithm. After using one
iteration of the algorithm the pulse is updated to the example on the right. The infidelity I
tends towards a minimum of ideally 0 when this process is repeated. In this example the time
slots are all equal and set to ∆t = 1.
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