
BJR|Open

© 2023 The Authors. Published by the British Institute of Radiology. This is an open access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source 
are credited.

Cite this article as:
Logullo P, MacCarthy A, Dhiman P, Kirtley S, Ma J, Bullock G,  et al. Artificial intelligence in lung cancer diagnostic imaging: a review of the 
reporting and conduct of research published 2018–2019. BJR Open (2023) 10.1259/bjro.20220033.

Received: 
27 July 2022

Accepted: 
04 April 2023

Revised: 
04 April 2023

REVIEW ARTICLE

Artificial intelligence in lung cancer diagnostic imaging: 
a review of the reporting and conduct of research 
published 2018–2019
1,2,3PATRICIA LOGULLO, PhD, 1,3ANGELA MACCARTHY, 1,2,3PAULA DHIMAN, PhD, 1,3SHONA KIRTLEY, 1,3JIE MA, 
4GARRETT BULLOCK, PhD and 1,2,3GARY S. COLLINS, PhD

1Centre for Statistics in Medicine, Nuffield Department of Orthopaedics and Musculoskeletal Sciences, University of Oxford, Oxford, 
United Kingdom
2NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
3UK EQUATOR Centre, Nuffield Department of Orthopaedics and Musculoskeletal Sciences, University of Oxford, Oxford, United 
Kingdom
4Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States

Address correspondence to: Dr Patricia Logullo
E-mail: patricia.logullo@ndorms.ox.ac.uk

The authors Patricia Logullo and Angela MacCarthy contributed equally to the work.

INTRODUCTION
Survival from lung cancer is still poor worldwide: less than 
20% of patients survive for 5 years1,2 and lung cancer is the 
leading cause of cancer death globally.2 Diagnosing cancer 
early offers more treatment options and the possibility of 
longer survival.1,3

The human eye can easily detect lesions measuring >30 mm 
in diameter on a chest X-ray or a CT scan. These larger 
lesions are considered indicative of cancer, warranting 
a biopsy for diagnosis. However, lung nodules, or lesions 
measuring <30 mm, are harder to detect and investigate 
further.3
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Objective: This study aimed to describe the methodolo-
gies used to develop and evaluate models that use arti-
ficial intelligence (AI) to analyse lung images in order to 
detect, segment (outline borders of), or classify pulmo-
nary nodules as benign or malignant.
Methods: In October 2019, we systematically searched 
the literature for original studies published between 2018 
and 2019 that described prediction models using AI to 
evaluate human pulmonary nodules on diagnostic chest 
images. Two evaluators independently extracted informa-
tion from studies, such as study aims, sample size, AI type, 
patient characteristics, and performance. We summarised 
data descriptively.
Results: The review included 153 studies: 136 (89%) 
development-only studies, 12 (8%) development and 
validation, and 5 (3%) validation-only. CT scans were 
the most common type of image type used (83%), often 
acquired from public databases (58%). Eight studies (5%) 
compared model outputs with biopsy results. 41 studies 
(26.8%) reported patient characteristics. The models 
were based on different units of analysis, such as patients, 
images, nodules, or image slices or patches.
Conclusion: The methods used to develop and evaluate 
prediction models using AI to detect, segment, or classify 

pulmonary nodules in medical imaging vary, are poorly 
reported, and therefore difficult to evaluate. Transparent 
and complete reporting of methods, results and code 
would fill the gaps in information we observed in the study 
publications.
Advances in knowledge: We reviewed the methodology 
of AI models detecting nodules on lung images and 
found that the models were poorly reported and had 
no description of patient characteristics, with just a few 
comparing models’ outputs with biopsies results. When 
lung biopsy is not available, lung-RADS could help stand-
ardise the comparisons between the human radiologist 
and the machine. The field of radiology should not give 
up principles from the diagnostic accuracy studies, such 
as the choice for the correct ground truth, just because 
AI is used. Clear and complete reporting of the reference 
standard used would help radiologists trust in the perfor-
mance that AI models claim to have. This review presents 
clear recommendations about the essential methodolog-
ical aspects of diagnostic models that should be incorpo-
rated in studies using AI to help detect or segmentate lung 
nodules. The manuscript also reinforces the need for more 
complete and transparent reporting, which can be helped 
using the recommended reporting guidelines.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:patricia.logullo@ndorms.ox.ac.uk
https://doi.org/10.1259/bjro.20220033


2 of 12 birpublications.org/bjro BJR Open;4:20220033

BJR|Open Logullo et al

The lesion size, although highly indicative,3,4 is not the only factor 
predicting malignancy—and certainly not the only challenging 
feature seen on lung scans.5 When looking at a lung lesion on 
a CT scan or X-ray, several other physical characteristics of the 
nodule need to be considered by the radiologist, such as loca-
tion, shape, texture (solid or partially solid), and the presence 
of calcification, all having clinical implications. Non-solid or 
subsolid nodules, particularly “ground-glass nodules” (GGNs), 
are difficult to interpret as benign or malignant based on imaging 
only. Most GGNs are small, exhibit lower contrast and have less 
well-defined borders than solid nodules, making it possible for 
them to be missed by radiologists.6 This type of opacity on the 
scans, described as a “nodular shadow”, has been detected more 
frequently because of the increased use of CT for lung cancer 
screening.3,7 GGNs are usually associated with the early stages 
of adenocarcinoma of the lung—but can also represent inflam-
mation, fibrosis or benign hyperplasias.7,8 The differentiation 
between malignant and benign nodules can be complex, and the 
ability to assess a large number of visual features simultaneously 
and their relation to specific outputs (e.g. malignancy) could be 
helpful.9,10

Harnessing emerging technologies could help radiologists to 
detect suspicious lesions and possibly reduce their workload by 
doing it faster. Radiomics, as highlighted by the World Health 
Organization (WHO), is an emerging technology that seeks 
to extract meaningful features from imaging data, possibly 
helping to identify lung nodules with malignant potential.1 
Radiomics involves the extraction of a large number of image 
features from radiology scans—features that may not be detect-
able by the human eye.1,11 Artificial intelligence (AI) goes 
beyond detecting certain features from images by aiding deci-
sion making.

AI has been increasingly tested in several fields of human 
health,9,11–15 including pulmonary cancer,10,16–19 speeding up 
diagnosis, which could, in principle, save lives by the delivery of 
healthcare sooner.20 It has been applied to imaging of the chest, 
breast, brain, abdomen, pelvis, and musculoskeletal system,21 
and there has been a substantial increase in published manu-
scripts on the use of this technology.13

The availability of local or shared public repositories of images 
from clinical trials, screening initiatives or materials from public 
contests for AI development (called challenges) has facilitated 
research into the application of AI in lung cancer imaging.10,16 
However, data-driven modelling such as AI and machine learning 
(ML) may not necessarily translate into a clinical application 
because of poor study methodology and poor reporting.22,23 The 
methodology of prediction model studies using AI or ML specif-
ically for the detection or diagnosis of lung cancer has not been 
evaluated so far.

Study objective
The objective of this study is to describe the methodologies used 
to develop and evaluate cancer prediction models that use AI 
to detect, segment (delineate borders), or classify pulmonary 
nodules as benign or malignant.

METHODS
Study design and literature search
This review, conducted at the Centre for Statistics in Medicine 
(CSM), Nuffield Department of Orthopaedics and Musculoskel-
etal Sciences, University of Oxford, was based on published study 
reports and did not involve patient data. No ethical approval was 
required.

On 28 October 2019, we searched for relevant articles published 
in journals indexed in the MEDLINE and EMBASE databases 
via OVID. With the help of an information specialist (SK), we 
developed sensitive search strategies for each database because 
of the considerable variation in terminology for AI, ML, and 
the rapidly emerging naming conventions for algorithms being 
developed and implemented by researchers, which have implica-
tions for indexing and retrieval.

The search strategies included both controlled vocabulary 
headings (e.g. MeSH and EMTREE) and free-text search terms 
(searched in the title, abstract or keyword fields) for three main 
search facets covering AI or ML terms (e.g. ‘deep learning’, 
‘machine learning’ and ‘artificial intelligence’), imaging terms 
(e.g. ‘ultrasonography’, ‘diagnostic imaging’, ‘magnetic resonance 
imaging’ and ‘computed tomography imaging’) and terms related 
to lung cancer (e.g. ‘pulmonary nodule’, ‘lung tumour’, ‘respira-
tory tract cancer’, ‘lung carcinoma’ and ‘endobronchial lesion’). 
All three search facets were combined with ‘AND’. To ensure a 
contemporary sample of research studies, we applied a publica-
tion date limit of 2018–2019. For the EMBASE search, we addi-
tionally applied a limit to exclude conference abstracts from the 
search results. The full search strategies for each database are 
provided in Supplementary Material 1.

Study eligibility criteria
We included studies reporting development only, development 
with external validation, and external validation only of a predic-
tion model using any type of AI for the detection, segmentation, 
or classification of pulmonary nodules as benign or malignant 
using diagnostic imaging of the human lung. We defined imaging 
examination studies as those involving CT scans, X-rays, MRI, 
positron-emission tomography (PET-CT), diagnostic ultra-
sound, or bronchoscopy.

As it is difficult to find universally accepted definitions of AI,12 
it was here defined as any type of computerised system that 
performed ‘tasks’ typically requiring human intelligence or the 
ability to make decisions; or a computer algorithm that learns 
from data, identifies patterns and makes diagnostic predictions 
(See Box  1 for the working definitions in this study).10,14,24,25 
We considered studies using ML and any computerised algo-
rithm that solves problems using rules, improving automatically 
through experience or multiple iterations.

We excluded studies on mesothelioma, mediastinal tumours, 
and metastatic lesions in organs other than the lung. We also 
excluded studies developing or evaluating prediction models for 
outcomes based on survival, clinical trials about therapeutic or 
educational interventions, and studies about analyses of language 

www.birpublications.org/doi/suppl/10.1259/bjro.20220033/suppl_file/Suppl File 1 - Search Strategie.docx
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used in medical records. We excluded studies of the imaging of 
lung pathology specimens, and studies that developed or used 
synthetic models resembling the human body (phantoms).
We excluded articles not published or available in the English 
language,secondary studies (e.g. reviews and commentaries), 
and study protocols.

Study selection
We imported all references retrieved by the search into Rayyan 
QCRI,27 where we excluded duplicate references manually and 
also using the Rayyan automatic deduplication function. A single 
reviewer (PL) assessed the eligibility of each article based on the 
title and abstract with reference to the review eligibility criteria. 
Next, two independent reviewers (PL and AM) conducted the 
full-text screening. Where necessary, a third reviewer (SK) adju-
dicated on disagreements. Two independent statistical reviewers 
(PD and JM) reviewed the final sets to ensure the correct inclu-
sion of eligible studies.

A random list of identification numbers was generated and 
assigned to the included studies using Microsoft Excel. Studies 
were randomly allocated to three reviewer pairs for independent 
and double data extraction (JM/PL, GB/PL, PD/AM). Conflicts 
in the extracted data were resolved within each pair of data 
extractors.

Data extraction form and items collected
The data extraction form was created using the OnlineSurveys 
platform.28 We first established a glossary of technical terms to 
be consulted by the extractors before extracting any data. We 
then defined a list of questions and their responses as multiple 
choice or free-text boxes. The group reviewed the questions and 
their answer options calling upon their experience in prediction 
modelling, oncology, and imaging, and considering: (i) issues in 
the reporting of diagnostic models,12,23,29 such as the definition 
of the study as being about developing or validating a tool, and 
the type of imaging technique and algorithm used; and (ii) topics 
seen during screening.

Model validation (testing): After a model has been 
developed and tuned, it is tested and its performance 
evaluated. Testing a model at this stage is synonymous with 
internal or external validation of statistically developed 
prediction models.

Segmentation: The delineation or definition of the borders 
or limits of general anatomical structures in an image, of 
which a lesion is an example. It can be done in two or three 
dimensions, such as when measuring a nodule’s volume. 
Segmentation can be the final objective of the study or be 
performed as a pre-processing step in studies aiming to 
do something else, such as classifying a lesion as benign or 
malignant. It can be carried out manually by radiologists 
or by using AI tools. Some studies compare the results of 
human and machine segmentation.

Box 1. Working definitions of terms used to 
describe methods in the reviewed studies

Artificial intelligence (AI): An overarching term referring 
to the capability of a computer program or system to 
reproduce the human capacity of learning, performing 
tasks, and applying decision rules.20,24 In healthcare, these 
tasks may be detecting or diagnosing a health condition 
or making predictions about the evolution of disease 
(prognosis). AI can include machine learning, deep learning, 
neural networks, convolutional neural networks, and other 
types of architectures.20,24 A machine-learning algorithm 
continuously updates itself, “learning” more to improve 
task performance. Deep learning uses layered structured 
algorithms that require larger data sets for training.10,14,25,26 
“Shallow” learning includes decision trees, support vector 
machines and random forests.26

Classification: AI is often used to classify a finding in an 
image as benign or malignant. Classification tools consider 
the shape, texture, frequency of occurrence, and overall 
features of the lesion.

Cross-validation: Cross-validation uses different 
proportions of the available data to train, validate, or test 
a model on different iterations (k). A k-fold validation will 
randomly split a data set into k-folds and use k-1 folds to 
develop a model and the remaining fold to validate it. This 
process is repeated k-times, producing k-sets of model 
testing results. For example, in 10-fold cross-validation, 90% 
(9-folds) of the data is used to develop the model and 10% 
(1-fold) is used to test it. This procedure is repeated until 
all 10 folds have been used for development and testing, 
producing 10 sets of model performance results which are 
then averaged.

Detection: Some AI tools aim to detect lesions or nodules 
without classifying or applying diagnostic criteria to them. 
Studies develop these tools for use in lung cancer screening 
programs, to detect small lesions that need further clinical 
investigation, or to enhance identification of lesions seen by 
radiologists.

Ground-glass lesion: A nodule with poorly defined borders, 
with a hazy format or blurred edges.

Hyperparameter tuning: The parameters of the AI 
modelling method that control the learning process 
(hyperparameters) used to develop the model, are optimised 
or tuned. This process is also sometime referred to as ‘model 
validation’ in AI modelling.

Model development (training): The process of developing a 
model using AI modelling methods. An AI algorithm (e.g., 
neural network) is applied to a development (training) data 
set, where it learns from the data and creates a prediction 
model.

(Continued)
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We piloted the data extraction form on five studies with different 
study designs. The extractors discussed the pilot results to ensure 
consistent data extraction and amended the data extraction form 
accordingly.

The final data extraction form included questions on study infor-
mation, funding, study aims, image types, details of imaging 
pre-processing, study type, data sources, the sample size used for 
development and validation, AI model type, model validation 
methods, patient characteristics, model performance measures 
and reporting guideline use. The data extraction form is provided 
in Supplementary Material 2.

Data analysis
Data are summarised using descriptive statistics. The sample size 
and analyses used in studies were described using median, inter-
quartile range (IQR), and range. Here, we describe the number 
of patients, images, and nodules used for model training and 
validation, where applicable, and report the total sample size and 
number of events. Data were exported to STATA v. 15 where they 
were ‘cleaned’ and analysed.30

RESULTS
The search retrieved 5238 references, 3271 of which remained 
after de-duplication. Title and abstract screening excluded 3032 
studies. Another 15 studies were excluded as their full text was 
not available, and 7 studies were excluded as their final publi-
cation date was outside the 2018–2019 date range used in the 
search.

The full texts of 217 studies were screened. From these, 64 were 
excluded (25 did not aim to detect, segment, or classify lung 
cancer; 12 used phantoms; and 27 did not use AI). We included 
153 studies in our review (listed in Supplementary Material 3). A 
flowchart of studies included in the review is provided in Supple-
mentary Material 4.

Study characteristics
Of the 153 included studies, most were model development-
only studies (n = 136/153, 88.9%), and 12 (7.8%) were both 
developing and validating models. Just five studies (3.2%) were 
validating-only models.

Over half of the studies (n = 79/153, 51.6%) aimed to classify 
images of nodules as benign or malignant, 45.1% (n = 69) aimed 
to detect lung nodules, and 22.9% (n = 35) aimed to segment lung 
images (Table 1). A public database of images was used in 57.5% 
of studies (n = 88/152 studies reporting the image source). CT 
scans of the lung were the most common type of image used (n = 
127/153, 83%). Supplementary Material 5 shows the descriptions 
of the lung image databases used in the studies reviewed. Of the 
studies working on a data set with a name, the source used the 
most was the public database LIDC-IDRI (Lung Image Database 
Consortium-Image Database Resource Initiative). Patient char-
acteristics were reported in 41 studies (26.8%), of which age and 
sex were the most common (n = 38/41, 92.7% and n = 40/41, 
97.6%, respectively).

Table 1. Overall characteristics of the included studies (n = 
153)

Study characteristics n (%)
Aima

 � Classification 79 (51.6)

 � Detection 69 (45.1)

 � Segmentation 35 (22.9)

 � Prediction 4 (2.6)

 � Improvement of image quality 4 (2.6)

 � Feature extraction, diagnostic performance of 
machine learning

2 (1.3)

Image type useda

 � CT 127 (83)

 � Low-dose CT 13 (8.5)

 � X-rays (radiographs of the chest) 11 (7.2)

 � PET-CT 10 (6.5)

 � Ultrasound/echography/sonogram 2 (1.3)

 � MRI 1 (0.7)

 � Bronchoscopy (video allowing direct 
visualisation)

1 (0.7)

Data source type reported 152 (99.3)

 � Public database 88 (57.5)

 � Hospital or research institution 39 (25.5)

 � Mixed public database and hospital 12 (7.8)

 � Other mixed sources 5 (3.3)

 � Trial 8 (5.2)

Data source used 153 (100)

 � Did not use data sets 50 (32.7)

LIDC 55 (35.9)

LUNA 18 (11.8)

 � LIDC plus LUNA 2 (1.3)

 � Other individual sources 18 (11.8)

 � Other mixed sources 9 (5.9)

 � Unclear source 1 (0.7)

Reported patient demographics 41 (26.8)

 � Sex 38 (92.7)

 � Age 40 (97.6)

 � Smoking status 14 (34.1)

 � Race or ethnicity 5 (12.2)

 � Personal medical history 3 (7.3)

 � Body weight 2 (4.9)

BMI 2 (4.9)

 � Family history 1 (2.4)

Number of models developed and reported 148 (100)

(Continued)
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One study cited the guideline for reporting multivariable predic-
tion models for individual prognosis or diagnosis (TRIPOD).31 
Another study cited STARD for reporting diagnostic accuracy 
studies.32 One study used a flow diagram of patients based on the 
CONSORT template.33 There was no mention of any reporting 
guideline in the remaining 150 studies.

Model development and AI architecture
The 148 studies developing or developing and validating models 
collectively described 276 models (Table  1). Most studies 
(127/148, 85.8%) worked with 1–3 models. The five external 
validation-only studies validated five models (one model each).

Nearly 80% of studies (n = 120) reported their data pre-
processing methods (Table 2). Segmentation was the most used 
data pre-processing method (n = 50/120, 41.7%), followed by 
data augmentation (n = 41/120, 34.2%) and imaging resizing/
rescaling (n = 26/120, 21.7%).

Neural networks were most commonly used to develop the 
models (n = 76/276, 27.5%), followed by deep learning (n = 
47/276, 17%) and support vector machines (n = 41/276, 14.9%). 
The type of model developed was not named or described for five 
(3.3%) studies (Table 2).

Sample size
Few articles reported the numbers used in their analyses. Only 
58 (38%, Table 2) stated the overall number of patients, images, 
nodules, or slices that informed their model training or valida-
tion. The unit of analysis used was reported in 58 studies (37.9%), 
of which the nodule was the most common (54; 93.1%). Of the 
studies working on model development, a minority (n = 33/148, 
22.3%) reported on the events informing the model training or 
validation. Table 3 shows the sample sizes used in the studies. A 
median total of 179 patients (range: 7–62,019) were available per 
study. The median sample size used for model training was 178 
patients (range: 7–59,880). Table 4 shows the sample sizes used 
in the validation studies.

Study characteristics n (%)
 � One model 103

 � Two models 10

 � Three models 14

 � Four models 7

 � Five models 7

 � Six models 3

 � Seven models 2

 � Eight models 2

BMI, body mass index; LIDC, Lung Image Database Consortium; 
LUNA, lung nodule analysis; PET, positron emission tomography.
aMore than one alternative possible.

Table 1. (Continued) Table 2. Characteristics of the models

Model characteristics n (%)
Data pre-processing methods as 
reporteda

120 (78.4)

 � Segmentation (separate 
background from foreground)b

50 (41.7)

 � Data augmentation (image 
transformation)

39 (32.5)

 � Resize/scale image 26 (21.7)

 � Normalise image inputs 24 (20)

 � Remove noise from image 24 (20)

 � Marking (separating different 
objects in the image with 
markers)

13 (10.8)

 � Image under- or oversampling 13 (10.8)

 � Image enhancement 9 (7.5)

 � Reduce dimensionality 6 (5)

 � Image reconstruction 5 (4.2)

 � Image cropping 4 (3.3)

 � Summarise image inputs 3 (2.5)

 � Convex hull 3 (2.5)

 � Bi-cubic
 � Greyscale

2 (1.7)
2 (1.7)

 � Others 18 (15)

Model developed

 � Neural network 88 (57.5)

 � Deep learning 51 (33.3)

 � Support vector machine 41 (26.8)

 � Random forest 15 (9.8)

 � Ensemble methods (multiple 
algorithms used and 
combined/‘ensembled’)

13 (8.5)

 � Decision tree 9 (5.9)

 � Naïve Bayes 7 (4.6)

 � Cluster analysis 5 (3.3)

 � K nearest neighbours 6 (3.9)

 � Gradient boosting machine 5 (3.3)

 � Unclear or not well described/
named in the paper

5 (3.3)

 � Other 35 (22.9)

Unit of analysis reported 58 (37.9)

 � Nodules 54 (93.1)

 � Slice
 � Slice and nodules

2 (3.4)
1 (1.7)

 � Image annotations 1 (1.7)

Methods to handle missing data 
reported

13 (8.5)

(Continued)
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Model validation and testing characteristics
Over half of the studies (80/153; 52.2%) compared model results 
to radiologist evaluations (Table  5). Only eight studies used 
biopsy results to confirm the diagnosis of lung cancer.

Fifty studies reported their model validation methods, of which 
cross-validation was most common (n = 26/50, 52%). Cross-
validation (n = 60/116,51.7%) and split-sample (n = 61/116, 
52.6%) methods were equally commonly used to evaluate the 
performance of developed models.

Most studies reported diagnostic performance using sensitivity 
and specificity (86/153; 56.2%), accuracy (percentage of correctly 
classified; 85/153; 55.6%), or by discrimination values such as the 
area under the curve (AUC) or with a combination of measures. 
The AUC was reported in 44.4% of studies (68/153).

Most studies did not mention how the authors dealt with missing 
data or unreadable images (140/153, 91.5%). 12 studies (7.8%) 
explicitly reported using only the cases for whom information 
was complete (i.e. discarding the cases with any missing data). 
In the one remaining study, the authors stated that the support 
vector machine model they used was able to deal with missing 
data. However, they did not specify the type of data used (imaging 
or clinical data) or how they managed missing data.

Model external validation
A minority of studies (17; 11.1%) carried out external validation. 
Of these, 12 were model development with external validation 
studies, two of which have used more than one data set to exter-
nally validate the model (one reported four validations and one 
reported three validations); and five were validation only studies.

Seven of these studies carrying out external validation used 
publicly available data; with five using LIDC-IDRI and one using 
LUNA (Supplementary Material 5). One external validation 
study used a hospital data set, and two used data from the clinical 
trial NLST (National Lung Screening Trial). Nine of the devel-
opment with external validation studies reported pre-processing 
steps, of which seven used segmentation. Three validation-only 
studies reported pre-processing steps, of which one used image 
resizing, one used image normalisation, and one used noise 
removal.

Most of the external validations (13/17; 76.5%) reported predic-
tive performance using sensitivity and specificity, while 10 
(58.8%) reported the AUC. Calibration, a key performance 

measure recommended in the TRIPOD statement, was not 
assessed in any of the studies.

Table 4 shows that most of the external validation studies (10/17 
studies, 58.8%) reported the number of patients, whereas the 
minority of studies reported the number of events.

Funding
Most studies were externally funded by organisations other 
than the academic or research institution where the project was 
carried out. Of the 153 studies, 103 (67.3%) declared having 
received some kind of financial support and listed funding 
sources. They reported one to eight funding organisations each, 
in one or more grants. No information was available about finan-
cial support in 43 of the 153 papers (27.9%). Three (2.9%) studies 
declared that the study had received no external funding for the 
research project, while five (4.8%) studies reported support from 
the academic institution or “self-funded” research. National or 
regional governments were the most common source of funding 
(supporting 114 studies). A complete description of the funding 
sources is available in Supplementary Material 6.

DISCUSSION
Most of the models included in the 153 studies in our review are 
still in the development phase, with only five having advanced 
to the external validation stage; and even those five studies were 
limited in their study design. The 153 studies reviewed here were 
poorly reported and lacked standardisation of overall methods, 
imaging types, pre-processing techniques, and performance 
metrics. Box 2 indicates some recommendations for developers 
of diagnostic models for lung cancer (or detection of nodules) 
using AI methods.

Any claim of effectiveness and safety in healthcare, including 
methods for the detection of disease, must be supported by 
robust and transparent evidence.20 A model with good diagnostic 
performance will not necessarily improve outcomes for patients 
or be clinically relevant or applicable.20,34 The, often multiple, 
models developed in these studies did not test their effectiveness 
in trials evaluating earlier diagnosis and survival—the patient 
outcomes that matter for the people who could benefit from 
earlier detection.

In general prediction research, most studies develop models, few 
externally validate them, and even fewer evaluate models’ clin-
ical impact.35 These issues can be exacerbated by AI technolo-
gies where the process of software development does not always 
follow the established frameworks used in evidence-based medi-
cine, such as validation, clear reporting, and testing, including 
deployment, usability, and post-market surveillance.20

Current regulations for medical devices and general guidelines 
for the medical use of AI may not be enough to enforce the pre-
registration, transparent reporting and code sharing that could 
allow reproduction and safe application in clinical practice.36 
Pre-registration requires a study team to publicly prespecify 
study methodology elements, such as the intended implemen-
tation pathway, validation procedures, and power calculations, 

Model characteristics n (%)
 � Complete case analysis 12 (92.3)

 � Otherb 1 (7.7)

SVM, support vector machine.
aMore than one alternative possible.
bAuthors reported that “support vector machine is able to deal with 
missing values in training data”, but they did not report how the SVM 
did this.

Table 2. (Continued)

www.birpublications.org/doi/suppl/10.1259/bjro.20220033/suppl_file/Suppl file 5 - Image databae.docx
www.birpublications.org/doi/suppl/10.1259/bjro.20220033/suppl_file/Suppl file 6 - funding clean.docx
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in study registries or published protocols.36 Although manda-
tory for clinical trials, pre-registration was only widely imple-
mented when medical journals decided only to publish clinical 
trials that had been pre-registered. However, pre-registration is 
useful for all study designs, including those developing AI-based 
models.12,25,32

Transparent and complete reporting of methods, results and 
code would fill the gaps in information36 we observed in the 
studies. The good news is that there is guidance already available 
for studies using AI. CONSORT-AI for reporting comparisons 
between interventions using AI, and SPIRIT-AI for their proto-
cols, are tools to guide the reporting of evaluations of the clinical 
efficacy of interventions based on or including an AI compo-
nent.37,38 STARD-AI is an extension of STARD for diagnostic 
accuracy studies using AI. The focus of STARD-AI is on the eval-
uation of AI techniques to assess diagnostic test accuracy and 
performance in studies using imaging data, pathological data or 
electronic medical records.39 TRIPOD-AI focuses on prediction 
models that use AI and ML approaches. Both STARD-AI and 
TRIPOD-AI were under development when this manuscript 
was submitted for publication.29,39 Irrespective of study type, 
researchers should report thedemographics and clinical charac-
teristics of the participants from whom the images were taken, 
during both model development and model validation. All study 
results should be reported, regardless of model performance, to 
prevent publication bias.

Diagnostic performance and choice of ground truth
The performance of the reviewed models was generally evaluated 
using sensitivity, specificity, accuracy, and AUC, with no studies 
examining calibration. These metrics are commonly used in clin-
ical diagnostic research. However, the metrics of model perfor-
mance in statistics and AI are often different.40 The reviewed 
studies reported the final performance results but not the data 
used to calculate them, such as the number of detected nodules 
andthe total number of patients, or contingency tables, making it 
difficult for researchers to reproduce study methods.36

Two recent reviews of AI models used in lung cancer detec-
tion focused on differentiating between benign and malignant 

nodules, such as indolent and invasive adenocarcinomas. They 
found highly variable performance results in terms of AUC 
and low specificity.19,41 Another review that focused on studies 
that used the LIDC-IDRI database found a lack of uniformity 
in the choice of performance metrics, preventing these models 
based on the same data set from being compared.16 Our results 
agree with and go beyond the findings of those reviews, as they 
did not include all types of lung cancers, they did not assess 
study samples and did not focus on the overall methodology 
used as we did, they evaluated only the final performance of 
the model.

Model performance should be assessed against a ground-truth or 
‘gold-standard’ definition of lung cancer and should be defined 
before model development. Although the often-accepted gold-
standard for cancer diagnosis is a positive biopsy result,10 biop-
sies can be highly invasive and are not always possible. We found 
that less than 6% of reviewed studies compared the performance 
of AI models to biopsy results.The majority (52.3%) compared 
their AI algorithm to radiologists’ reports or annotations that 
were available in public data sets of chest CT images available 
online—although, according to the WHO, “annotations alone are 
insufficient as ground truth where a biopsy or pathologic investi-
gation is needed to confirm the prediction/diagnosis.”20 A possible 
reason for this choice is that most studies used patient databases 
that are publicly available, without the biopsy results that would 
be available from hospital cohorts.

Free, easy access to public data sets of chest CT images has 
facilitated the development of many of the reviewed models. 
Almost half of the included studies (49%) used LIDC-IDRI, 
or LUNA, or a combination of these two CT scan data sets. 
Public image data sets often provide scans of lung nodules 
marked by radiologists (three, four or more) to localise lesions 
of interest or classify them as benign or malignant. Although 
these databases hold a large amount of data, there is limited 
information about the data quality. Differences in the training 
radiologists receive in low- or high-income countries20 may 
affect the number of cases considered suspicious, the unifor-
mity of the criteria for “positive” cases40 and therefore model 
comparability.

Table 4. Sample sizes informing the analyses in external validation studies

External validation total
Patients Images Nodules Slices

Median [IQR], range Median [IQR], range Median [IQR], range Median [IQR], range

N
Total

10 (13 validation data sets) 7 (9 validations) 5 0

181 [100–350], (30–1965) 70 [50–346], (5–1015) 56 [39–106], (38–170) 0

External validation events

Patients Images Nodules Slices

Median [IQR], range Median [IQR], range Median [IQR], range Median [IQR], range

N
Total

4 (7 validations) 3 5 (7 validations) 0

111 [75–121], (50–529) 314 [169.5–421.5], (25–529) 83 [37–126], (26–403) 0

*One study reported four external validations and one study reported three validations; total of 22 validation sample sizes.
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The studies included in our review used different, often impre-
cise, definitions of “positive cases” of lung cancer, such as 
“nodules classified as malignant tumours” or “any detected 
nodule, whether benign or malignant.” The reference standard 
for a nodule also varied, even between studies using the same 
databases. Some studies accepted any nodule identified by one 
radiologist, others only included nodules identified by two or 
three radiologists, and still others required both identifica-
tion from multiple radiologists and a biopsy result as ground 
truth—in other words, the “correct answers” needed to train the 
models.40 Currently, lung-RADS recommends the radiological 
reporting of “the most concerning feature”, that can be a solid or 
non-solid lesion or even an association between both.5 However, 
Lung-RADS was not available when the included studies were 
being conducted. The vast differences between the studies mean 
that diagnostic performance and claims about model useful-
ness15 cannot be compared.13,15,16,24

Even the studies using more than one radiologist evaluation did 
not use a standardised imaging diagnostic system and did not 
report on measures such as interobserver agreement. Hopefully, 

Table 5. Model validation methods and performance 
evaluations

Gold-standard comparator declared n (%)
Radiologist evaluationa 80 (52.3)

Radiologists’ reports available (evaluated 
retrospectively) 26

Images previously marked/labelled by radiologists 35

Radiologists’ evaluations made for this study 
(prospectively) 22

No comparison made with a reference standard 28 (18.3)

Another imaging exam 17 (11.1)

Biopsy/histopathology final report 8 (5.2)

Clinical confirmation 1 (0.7)

Hyperparameter tuning and model internal 
validation

Hyperparameter tuning approach 50 (32.7)

Cross-validation 26 (52)

Split sample 22 (44)

Multisets strategy 1 (2)

Random search 1 (2)

Model internal validation approacha 116 (75.8)

Split sample 61 (52.6)

Cross-validation 60 (51.7)

Bootstrapping 3 (2.6)

Training data set 1 (0.9)

Model performance measuresa

Sensitivity/specificity 86 (56.2)

Accuracy 85 (55.6)

AUC or related measures 68 (44.4)

Precision 14 (9.2)

PPV or NPV 11 (7.2)

F1 score 9 (5.9)

Performance was not evaluated quantitatively 1 (0.7)

Calibration plot or associated measures (e.g. slope, 
intercept) 0 (0)

Other 51 (33.3)

FROC 15

Dice coefficient 11

False positives/scan 7

False-positive rate 6

Youden index 2

CPM 2

Computational time 2

AUC, area under the curve; CPM, competition performance metric; 
FROC, free-response receiver operating characteristic; NPV, negative 
predictive value; PPV, positive predictive value.
aMore than one alternative possible.

Box 2. Recommendations for developers of 
diagnostic models for lung cancer (or detection 
of nodules) using artificial intelligence methods

•	 First, consider validating, updating, and improving 
models that are already available rather than developing 
a new model.

•	 When developing or validating models, report on 
the study population demographics and clinical 
characteristics of patients from whom the images were 
taken.

•	 Clearly pre-specify study objectives and register protocols 
with a view to clinical implementation, describing how 
(and when) the model is expected to be used in clinical 
practice; report all study results regardless of the model 
performance.

•	 Evaluate performance using recommended diagnostic 
accuracy standards or prediction model metrics.

•	 When planning model development or validation, select 
robust gold-standards for comparison. For lung cancer, 
the best approach is biopsy. When biopsy results are 
not available, choose a radiology reporting standard 
or classification system that can be used in subsequent 
research, allowing comparison between studies. Evaluate 
interrater agreement.

•	 When writing up an article on such research, use the 
most appropriate reporting guidelines available. For 
diagnostic accuracy studies using artificial intelligence 
(AI), STARD-AI will be available soon. For reporting 
comparisons between interventions using AI, use 
SPIRIT-AI to report your protocol and CONSORT-AI for 
the final results paper. For prediction models using AI, 
TRIPOD-AI is under development and will be available 
soon. Visit the EQUATOR Network website (www.
equator-network.org) for further information about 
reporting guidelines and best reporting practices.

www.equator-network.org
www.equator-network.org
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the CT databases will incorporate an imaging standard for case 
description in the future. The recently published lung-RADS 
(Lung CT Screening Reporting and Data System), by the Amer-
ican College of Radiology,4 might be a solution.

Studies focus on technology, not patients
The reviewed studies often failed to report demographic infor-
mation about the patients whose images were used, such as age 
and sex. Data that would be relevant for lung cancer, such as 
tobacco use and clinical history of respiratory and other non-
malignant lung diseases, were also rarely reported, although this 
information may not have been available in public data sets. It 
was therefore impossible to verify whether the patient samples 
used were representative of the models’ target populations. The 
characteristics of the patient sample used are crucial for study 
reproducibility,20,36 yet the background information on the 
humans behind the images was not reported in many of these 
studies.

The issue of missing clinical and demographic datawas seen 
both in studies using publicly available data sets and studies 
using local hospital data sources. The use of public databases 
certainly facilitated model development and training, but studies 
using hospital-based data also failed to share data or provide 
patients’ characteristics (e.g. age, smoking status) that would be 
necessary to predict malignancy risk. We believe that the adop-
tion of the lung-RADS 2022 system5 for the radiologic report 
of CT screening may help standardise the categorisation of 
the lesions and the final radiologic diagnostic report, allowing 
comparisons between studies with different samples. However, 
the importance of including details about the patient remains, as 
emphasised by lung-RADS, which requires information on prior 
exams and suggests follow-up for certain categories. Ultimately, 
biopsy remains the gold-standard to determine if the nodule is 
cancerous.

Most studies were conducted on public databases of CT scans, 
whose diagnostic performance cannot be compared with those 
using X-rays. The studies also did not report information about 
the equipment used to acquire images, which is necessary to 
evaluate whether the quality of images varies in other regions or 
settings.17,19,34 The quality of equipment can affect the ability of 
the radiologists or the AI systems to identify lung nodules.

As model development and analysis were usually based on images 
alone, the papers usually started by giving the sample sizes as 
“cases” or “scans” of individuals who underwent lung examina-
tion. However, they then reported model performance using a 
different unit of analysis, such as imaging slices, or patches of 
images, and not always “nodules”. And even detecting nodules 
is not the same as detecting cancer—as around 1 in 20 nodules 
detected can be diagnosed as malignant.1 The number of images, 
scans, or slices used for each patient was often unclear.

As studies used different denominators (i.e. patients, scans, or 
images), it was difficult to evaluate whether sample sizes were 

adequate for detecting events, which could be nodules, malignant 
tumours, or correctly segmented nodules. Studies did not justify 
the sample sizes used, with most using convenience samples 
of “all available images” in their data set or at their hospital. A 
review of the use of AI in prediction models across all oncology 
found the same result.12 The authors also found that studies often 
failed to discuss missing data, which for studies in imaging can 
be missing slices, lost or corrupted image files, or clinical data.12

This review has some limitations. We only evaluated papers 
published in 2018 and 2019, and although this provided a 
contemporary sample of studies at the time of the search, some 
eligible studies may have been missed. We also did not have the 
resources to translate and evaluate studies published in non-
English languages. However, our aim was to report the charac-
teristics of recent studies to reflect current research practice, and 
it is unlikely that additional studies (including studies only avail-
able in non-English languages) would change the conclusions of 
this review.

Subsequent studies may now also be available that externally 
validate AI models that were developed in the studies included 
in our review, and it would be useful to update ourreview of the 
research landscape to include these studies and ongoing research 
in the area. Future studies should observe recommendations 
such as those listed in Box 2.

CONCLUSIONS
The methods used to develop, validate, and test cancer predic-
tion models that use AI to detect, segment, or classify pulmo-
nary nodules as benign or malignant in medical imaging vary, 
are poorly reported and are difficult to evaluate. Comparing 
the performance between models is challenging and cannot be 
done as diagnostic performance is often assessed using several 
different metrics and units of measurement. Studies developing 
or validating AI models cannot be easily replicated as important 
information about patient characteristics is not reported.
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