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Superconducting circuits form one of the most promising hardware platforms for

building a quantum computer. As the quantum computing system gets more complex

as we increase the size, employing simple circuit designs and control strategies can

make the task of building a large scale quantum computer easier.

This thesis describes a novel control strategy that utilises spin-echo techniques and

native interaction in superconducting circuits, which reduces the cost of calibrating

pulsed two-qubit gates. Spin-echo pulses are used to rescale the always-on Hamilto-

nian, and the timings of spin-echo pulses encode the effective coupling strengths. In

collaboration with the NMR group in Oxford, two methods for scaling this technique

to large numbers of qubits were explored. In the first approach, pulse sequences for an

all-to-all coupled system are obtained numerically using linear programming, and it

finds the time-optimal solution for up to twenty qubits and the near time-optimal so-

lution for up to hundreds of qubits. Another approach based on graph colouring finds

the near time-optimal pulse sequence analytically, allowing pulse sequences for any

number of qubits. An idea based on the Hamiltonian rescaling technique was applied

to implementing the variational quantum eigensolver algorithm and error mitigation

on two superconducting qubits. In contrast to previous studies, the residual disper-

sive coupling between qubits was used for computation instead of regarding it as a

source of error.

Lastly, the detailed dynamics of the residual dispersive coupling in superconduct-

ing circuits were investigated to predict the practicality of spin-echo-based quantum
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computing on superconducting circuits. The Hamiltonian rescaling protocol assumes

the always-on coupling to be diagonal, such as Ising Hamiltonian, but deviation

from the pure Ising interaction was observed in the strongly coupled superconducting

qubits. The origin of the deviation was identified analytically, and the circuit design

criteria to suppress the deviation are presented.
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Chapter 1

Introduction

1.1 Quantum computing

Quantum mechanics is one of the most successful subfields in science. Not only

does it serve as the foundation of modern physics, but it also benefits every corner

of cutting-edge technologies such as materials development, energy production and

drug discoveries. Nevertheless, we have only scratched the surface of its full potential

because the full-scale analysis of a quantum system is limited to few tens of particles

restricted by the current computational capability [1].

In order to overcome the computational limit of classical computers, Richard

Feynman proposed a quantum computer, which uses real quantum effects to simulate

quantum phenomena [2]. David Deutsch extended Feynman’s idea to the concept of

universal quantum computation and claimed that a universal quantum computer

can simulate any phenomena in the physical world that cannot be reproduced by

classical Turing machines [3] . The underlying idea of these quantum computers was

to engineer a controllable quantum system that simulates other quantum systems by

programming the controllable degrees of freedom.
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Since then, there have been numerous studies on theoretical and experimental

quantum computing. Seth Lloyd supported Feynman’s idea by showing that a pro-

grammable quantum computer can simulate anly local quantum systems exponen-

tially faster than classical computers by compiling the quantum simulation with a

sequence of quantum logic gates [4]. Furthermore, an exponential speed-up of the

factoring algorithm [5] and a quadratic speed-up of the search algorithm [6] proved

the capability of universal quantum computers beyond the quantum simulation ap-

plications.

On the experimental side, various hardware platforms have been proposed for

practical quantum computing such as trapped-ions [7, 8, 9], superconducting circuits

[10, 11], nuclear magnetic resonance [12, 13], photonics [14], quantum dots [15], and

cold atoms [16]. Each approach has different pros and cons in terms of coherence

time, processing speed and scalability, and we are still in the exploration phase of

deciding the suitable physical implementation. Still, some platforms are reaching the

computational limit of classical computers in specific tasks [17, 18]. For example,

a 53-qubit superconducting quantum processor performed a quantum computational

task in 200 seconds, with the claim it would take the most powerful supercomputer

10000 years to execute this task [17].

The ultimate goal of quantum computer engineering is to build a fault-tolerant

universal quantum computer, which has an error correcting mechanism that protects

the quantum information from decoherence and other quantum noise. In theory,

quantum error correction enables a quantum computer to operate indefinitely, which

opens the door to implementing the above-mentioned quantum algorithms that will

probably require much longer operation time than the lifetime of each qubit. Proof-of-

principle experiments of quantum error correction have been implemented in various

error correcting codes [19, 20], but it may still take decades before fault-tolerant quan-
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tum computers can solve hard problems [21]. Typical quantum error correcting codes

require many physical qubits to make a logical qubit; for example, the current su-

perconducting circuit architecture will need millions of qubits to implement a Shor’s

algorithm fault-tolerantly [22]. In that sense, we are only at the beginning of devel-

oping useful and reliable quantum computers, and we still need more breakthroughs

in hardware and algorithms in the years to come.

1.2 Circuit model quantum computation

At the present time, the majority of quantum computing theorists and experimental-

ists work together to realise the circuit model of quantum computation. In the circuit

model, quantum algorithms are implemented by applying a sequence of quantum logic

gates to a network of qubits1. Although quantum gates are quantum mechanical, the

programmability of the circuit model resembles the algorithm implementation on dig-

ital computers, which allows quantum computing theorists to evaluate the quantum

computational complexity. In theory, any quantum algorithm can be decomposed to

the universal gate set that typically consists of local control and two-body interac-

tions in some physical form. Therefore, experimentalists aim to engineer the universal

gate set using available physical resources they have. For the past few decades, the

circuit model provided the quantum computing community with a common language

so that theorists and experimentalists can pursue the same objectives.

However, the idealism of the circuit model gives strong constraints on engineering

the quantum hardware. To meet the specification of a specific quantum gate, one

has to engineer a quantum dynamics that realises the exact matrix elements of the

desired unitary operation. Although the artificial quantum gate is far from the natural

1Mathematically, quantum gates are unitary matrices acting on local qubits and a quantum
algorithm can be interpreted as a matrix product of many matrices acting on a large qubits’ state
that are intractable to classical computers.
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quantum dynamics, any deviation from the target operation is counted as errors in the

circuit model regardless of whether the deviated evolution is coherent or incoherent.

For instance, quantum algorithms assume two-qubit gates to be turned on and off at

will, so the ability to tune the coupling strength between qubits is crucial in reducing

errors in the circuit model implementation. In the case of superconducting circuits,

the always-on native couplings between qubits are regarded as error sources because

they cannot be turned off on demand. Instead, there have been a number of proposals

to generate interactions with high on/off ratio to make the system of superconducting

qubits resemble the circuit model as closely as possible For example, the high on/off

ratio can be achieved by incorporating tunability into circuit elements [23, 24] or

applying external control fields with specific resonance conditions [25, 26]. However,

these approaches require additional engineering complexities, such as crowding of

circuit elements in a quantum processor or relentless calibration routine to realise the

specific target unitary operation. These complexities increase as we add more qubits,

and it is a daunting task to scale the same approach to millions of qubits.

1.3 Alternative approaches

Although the circuit model has served as an interface between theoretical and exper-

imental quantum computing, we are not restricted to this model. The experimental

constraints can be loosened if we could shift the common ground to the hardware side,

at the cost of additional efforts on the algorithm development. This is reasonable in

the current situation, because the bottleneck of the quantum computer development

is in the experimental side. In the end, it is a matter of balancing the trade-off

between difficulties in the hardware and the software development, and we should

choose a quantum computing architecture that achieves a good balance between the
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hardware and the software constraints.

1.3.1 Hardware-efficient gates

One approach is to use hardware-efficient gates [27]. The hardware-efficient gate uses

the same physical resource as a typical two-qubit gate, but does not specify exact uni-

tary operation, which saves the cost of precise calibration2. The hardware-efficient

gate acts as an analogue operation compared to the digital approach taken in the

circuit model, which makes it easier to implement on the hardware, but increases the

difficulty of compiling quantum algorithms. Still, since a universal quantum com-

putation can be implemented by any two-qubit interaction and local control [29], in

principle, hardware-efficient gates are sufficient to implement any quantum algorithms

if there is a systematic way to compile quantum algorithms. Although it is impossible

to compile quantum algorithms using unpredictable two-qubit interactions by hand,

we can use them with help from a classical computer.

The first application of the hardware-efficient gate was applied to a quantum sim-

ulation using a quantum-classical hybrid algorithm called the Variational Quantum

Eigensolver (VQE) [27]. The VQE is an optimisation algorithm designed to run a

useful quantum algorithm on qubits with limited lifetime. It uses a quantum com-

puter to store a trial wave function (=cost function) of an optimisation problem and

uses a classical optimisation subroutine to find the solution3. Hardware-efficient gates

are suitable for the VQE algorithms because the detail of the quantum evolution is

not crucial as long as the quantum processor finds the optimum [30]. The hardware-

efficient gate approach has been used successfully to find the ground state energies of

2Here, we assume the hardware-efficient gate as a physical entanglement generator that does not
care the details of the evolution, and leaves unexpected terms in the operation [28]

3With the help of a classical subroutine, the hybrid algorithm benefits from avoiding the phase
estimation algorithm which requires long and coherent gates for its accurate implementation. How-
ever, we note that the phase estimation algorithm gives a better scaling in terms of precision than
the quantum-classical hybrid algorithm [30].
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small-scale chemical compounds and a spin chain using the hardware-efficient gates

originating from the cross-resonance interaction in superconducting circuits [27].

However, the scalability of using unstructured hardware-efficient gates has been

questioned over the past years. There has been a concern about the barren plateau [31,

32], where gradients of the cost function used for the gradient-based quantum-classical

algorithms become nearly zero over vast areas of the parameters space. Such barren

plateaus are known to make random states produced by the hardware-efficient trial

wave function hard to find solutions as they scale up. To avoid the barren plateau,

they have proposed to include the structure provided by the original optimisation

problem in the trial wave function, which is difficult for hardware-efficient entanglers

that do not specify the interaction type. Moreover, ultimately, non-programmable

two-qubit interactions are not suitable for compiling large-scale quantum algorithms

such as Shor’s algorithm and Grover’s algorithm. Following these developments, a

natural question arises: Is there a quantum computing architecture that achieves

hardware-efficiency and programmability at the same time? This thesis aims to pro-

vide a solution to this question.

1.3.2 Programmable hardware-efficient gates

The compilation problem of hardware-efficient gates gets much simpler if we restrict

the interaction type. While the hardware-efficient approach in [27] considered a gen-

eral two-qubit interaction, which includes multiple non-commuting two-qubit terms,

we can consider a more simple interaction such as Ising interaction. Since the Ising

interaction can be obtained natively in various hardware platforms, we consider it as

a hardware-efficient operation. With always-on Ising interactions across the qubits

lattice, free evolution provides a universal quantum computation when combined with

single-qubit gates, but the simple application of the simultaneous native interaction
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is not a convenient one as it corresponds to a complex pattern of evolutions.

To this end, the nuclear magnetic resonance (NMR) technique can be applied,

where spin echoes [33] are used to replace the native Hamiltonian with a more con-

venient average Hamiltonian, in which the size of interactions are rescaled to achieve

desired operation [34, 35, 36, 37]. In this paradigm, two-qubit operations are gener-

ated by the native Ising interaction and the desired operations are programmed by

timings of spin-echo pulses, which manages both hardware-efficiency and programma-

bility. In small scale simulations of the novel operating strategy, it has been shown

that practical quantum algorithms such as quantum simulation and quantum Fourier

transform perform better than the traditional circuit model compilation [34, 37].

However, their compiling method of rescaling the always-on Ising Hamiltonian was

applicable to only six qubits or less, and the scalability of the protocol was not proven

completely.

Our works in Refs. [35, 36] focused on the scalability of the spin-echo based compi-

lation scheme, demonstrating algorithms that design Hamiltonian rescaling spin-echo

sequences with nearly the shortest possible total time, and showing that the protocol

is applicable to 150 qubits for all-to-all coupled system and billions of qubits for the

nearest-neighbour coupled system. These works open up the possibility of program-

ming large-scale quantum algorithms using the static Ising interaction in practical

hardware platforms.

1.4 Quantum computing using native interaction

In general, the spin-echo-based approach does not assume how the interactions are

generated, so the protocol can be implemented either by native Ising interaction or

the pulsed interaction as long as their physical Hamiltonians are well-defined4. In the

4Specifically, the total system Hamiltonian has to commute with itself.
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work described in this thesis, we chose to work with the native Ising interaction in

superconducting circuits for several practical reasons. Firstly, the native interaction

does not use active microwave pulses for the entanglement generation, which helps

to reduce the heat load on the quantum computing system. Secondly, the native

interaction is already present in the superconducting circuit, which does not require

additional circuit elements or careful signal calibration of two-qubit operations. We

will look into these features closely in the following subsection.

1.4.1 Power consumption in quantum computers

Current quantum processors are operated by a sequence of quantum gates in the form

of electromagnetic pulses going through coaxial cables inside the dilution refrigerator.

Due to a limited qubit lifetime, the current processing strategy aims to process the

information as fast as possible to minimise incoherent errors. In this paradigm, quan-

tum processors are driven restlessly by fast gates with hardware compilation efficient

in time, which leads to a high duty cycle. However, the scalability of this approach

might soon be limited by the power consumption of the cryogenic system and signal

generators that scale with the number of qubits. Each pulse adds an active heat

load on the system and the control line brings the room-temperature thermal noise

to the system that results in a passive heat load. Although the heat generated by

each pulse is very small, power consumption of the quantum computing system will

be dominated by the cooling power that takes away the total heat that increases with

the number of qubits [38],

Pload = Ppass + Pact ×D, (1.1)
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Figure 1.1: Number of qubits available for different kinds of signal input wiring.
Adopted from [38].

where N is the number of qubits, Ppass,act is the heat load of the passive and the

active load per qubit, and D is the duty cycle of quantum operations. Suppose

the cooling power Pcool is limited, the number of available qubits is bounded by

Nlimit = Pcool/Pload, so we can only increase the number of qubits by increasing the

cooling power of the refrigeration system or decreasing the duty cycle, which coun-

teracts with the restless operation using active gates. A recent study considering a

controlling strategy using flux and microwave pulses estimated that the current cryo-

genic systems can hold up to only Nlimit = 360 qubits due to the limitation set by

the heat load [39]. The number of available qubits can be increased incrementally

by improving the cooling power of the cryogenic system, but we will soon need a

large technological leap to reach millions of qubits needed for fault-tolerant quan-

tum computation [22]. Although the current trend in the superconducting quantum

computing field treats the heating problem as a technical challenge in the cryogenic

system and signal wirings, we consider it an issue that could be improved in the

processor domain by changing the operating strategy.
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1.4.2 Native interaction in superconducting circuits

Instead of applying active entangling gates to quantum processors, we can utilise

native interaction naturally present in superconducting circuits for quantum entan-

glement generation. In a typical superconducting circuit, qubits are linked by electric

circuits, producing unavoidable quantum interaction between qubits. These naturally

occurring couplings are often called residual couplings because they can not be turned

off, producing systematic errors. However, the entanglement generation by the resid-

ual coupling does not require any external drives, which is desirable to reduce the

duty cycle during quantum computing operation significantly. In a sense, the native

interaction acts as an on-chip entanglement generator which saves additional circuits,

external signal generators, excessive signal flow and power consumption.

Figure 1.2: Pulse sequence of many-qubit operation in two control strategies. (a)
Gate-based approach using active single-qubit and two-qubit gates to compile quan-
tum algorithms on the hardware. (b) Hardware compilation by the native-interaction.
The shaded blue area describes the always-on background interaction in the system
that does not require active pulses to generate entanglement. Timings of spin-echo
pulses determine phases acquired by Ising couplings, which can be used as a sub-
routine for various quantum algorithms. The reduction of the duty cycle can be
calculated by comparing the area inside the envelopes of the active pulses in each
case.
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As we discussed in the previous section, in principle, the universal quantum com-

putation can be performed using any interaction and local unitary operations [29], so

we can implement any quantum algorithms using the residual coupling and single-

qubit control on each qubit. In addition, the Ising interaction [40] can be directly

implemented to subroutines in many useful quantum algorithms such as the quan-

tum Fourier transform [37], the quantum phase estimation, the surface code error

syndrome [22, 41], the quantum approximate optimisation algorithm [42] and the

variational quantum eigensolver [43].

Since the native interaction in superconducting circuits is the Ising-type inter-

action, our goal is to compile quantum algorithms using the native interaction and

spin-echo sequences. Specifically, our scheme compiles quantum algorithms by a se-

quence of active single-qubit gates such as spin-echo and basis transformation, and

the free-evolution of the system by the residual Ising coupling. This way, the power

consumption only originates from active single-qubit operations and passive heat

load, and the duty cycle is reduced by replacing active two-qubit gates by the native

interaction.

1.5 Outline

The main scope of this thesis is to introduce the novel quantum computing strategy

using native interaction in supercondudcting circuits and discuss the practicality of

the scheme by experiments and theoretical analysis.

Chapter 2 reviews the theory and the practice of superconducting circuits, using

our experimental setup as an example. Chapter 3 gives the overview of the experi-

mental calibration routine developed to efficiently tune up single qubit gates to high

fidelity, for use in exploring algorithms exploiting the native interaction. This chap-
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ter serves as a foundation of the experimental methods used throughout this thesis.

Chapter 4 presents the first demonstration of utilising the native interaction in a

superconducting circuit for quantum algorithm application. We have implemented a

variational quantum eigensolver to find the ground state energy of the H2 molecule

and applied a hardware-efficient error mitigation technique to extend the limit of the

current noisy quantum processor. Chapter 5 introduces the general hardware com-

pilation scheme using the native interaction and spin-echo sequences for large-scale

quantum computation. This chapter aims to answer the question I raised in the intro-

duction, whether the native interaction can replace the conventional pulsed approach

and reduce the duty cycle of the quantum operation or not. Chapter 6 explores

the limitation of our architecture by implementing experiments on strongly coupled

qubits. The performance of the scheme is ultimately limited by how fast the entan-

gling operation of the native interaction can become, and we have investigated the

potential problems of having strong couplings by experiments. This chapter provides

valuable information to determine the native interaction strengths in superconducting

circuits and we have outlined the design criteria for future device. Lastly, Chapter 7

summarises our results and show an outlook of the future development of the scheme

presented in this thesis.
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Chapter 2

Quantum computing with

superconducting circuits

This chapter introduces the concept of quantum computing and how it can be imple-

mented in superconducting circuits. First, we briefly introduce the essential mathe-

matical tools to describe quantum information processing. We then review state of

the art in quantum computing using superconducting circuits and explain the circuit

quantum electrodynamics (circuit QED) theory. In the second half, we show how the

circuit QED theory can be transferred to real-world superconducting electric circuits

and practical quantum computing system. As an example, we explain a quantum

computing system built in our lab, which was developed and operated for the main

experiments in later chapters.

2.1 Theory

In this section, we explain how a superconducting quantum computer works in theory.

First, we begin with the quantum computing basics to introduce the mathematical

model of a quantum computer, which is crucial in understanding quantum algorithms
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and quantum information theory. We then review the development of quantum com-

puters on the hardware side, summarising various approaches to realise a quantum

computer. Specifically, we introduce circuit QED [44] to explain the characteristics

and the behaviour of superconducting circuits. As a whole, this section aims to

link the theory of quantum computing with the physics of superconducting electrical

circuits.

2.1.1 Quantum computing basics

To perform a logic operation on a computer, we need a medium to store informa-

tion. Just like classical computers describe information by bits, quantum computers

represent quantum information by qubits [45].

Physically, a qubit is a quantum system that can take two states. The two-state

system is the simplest form of a quantum system that can exist, making it the most

primitive quantum information element. Following the notation in quantum mechan-

ics, we represent a qubit state by a state vector in a Hilbert space H 2. Particularly,

we define two states as |0〉 = ( 1
0 ), |1〉 = ( 0

1 ) and their superposition state as,

|ψ〉 = c0 |0〉+ c1 |1〉 (2.1)

where c0 and c1 are complex amplitudes whose square of the absolute values dictate

the system’s probability to be in either of the eigenstates. The ability to control

the complex amplitude and access superposition states are some of the features that

distinguish qubits from classical bits.

The physics of the two-state system is well-formulated in the study of a spin-1/2

particle, so we exploit their mathematical tools to discuss a qubit’s properties. Bloch

sphere picture gives us insights into qubit’s dynamics, which is useful when analysing
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Figure 2.1: Bloch sphere picture of a quantum state. The red point on the surface of
the Bloch sphere represents a state vector |ψ〉 = cos θ

2
|0〉+ e−iφ sin θ

2
|1〉.

single-qubit.

Since |c0|2 and |c1|2 are probabilities, they satisfy the relation |c0|2 + |c1|2 = 1,

so we can map the complex amplitudes to c0 = cos θ
2

and c1 = e−iφ sin θ
2
, where θ

and φ are the polar coordinate in real space. The state vector |ψ〉 ∈ H 2 can be

mapped to a vector ~v ∈ R3, called the Bloch vector, directing a point on the unit

sphere, called the Bloch sphere. The Bloch vector ~v = (x, y, z) of a state vector

|ψ〉 = cos θ
2
|0〉+ e−iφ sin θ

2
|1〉 is represented as a projection to each axis of the Bloch

sphere,

x = 〈ψ|X̂|ψ〉 = cosφ sin θ,

y = 〈ψ|Ŷ |ψ〉 = sinφ sin θ, (2.2)

z = 〈ψ|Ẑ|ψ〉 = cos θ,
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using Pauli operators,

X̂ =

0 1

1 0

, Ŷ =

0 −i

i 0

, Ẑ =

1 0

0 −1

, Î =

1 0

0 1

. (2.3)

In principle, we can describe any single-qubit evolution by the Bloch vector’s motion

on the Bloch sphere.

Qubit dynamics and operation

In general, a quantum system’s dynamics is determined by the Schrodinger equation

and the system Hamiltonian Ĥ,

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 . (2.4)

Suppose the system Hamiltonian is defined by Ĥ/~ = −ω
2
Ẑ, and the initial state was

|ψ(0)〉 =
(

cos θ
2

e−iφ sin θ
2

)
, the state evolves as

|ψ(t)〉 = e
iωt
2
Ẑ |ψ(0)〉 = e

iωt
2

 cos θ
2

e−i(φ+ωt) sin θ
2

 . (2.5)

This operation is equivalent to rotating the Bloch vector, Eq. (2.2) around the z-axis

of the Bloch sphere by a rotation matrix in real space,


cos(φ+ ωt) sin θ

sin(φ+ ωt) sin θ

cos θ

 =


cosωt − sinωt 0

sinωt cosωt 0

0 0 1




cosφ sin θ

sinφ sin θ

cos θ

 . (2.6)

Here we ignored the global phase since it doesn’t affect the nature of the operation

and the superposition state. Similarly, the Bloch vector’s rotation around each axis
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can be described as the exponential of Pauli matrices, so-called rotation operators

acting on |ψ〉 ∈H 2.

R̂x(θ) = e−
iθX̂

2 = cos
θ

2
Î − i sin

θ

2
X̂, (2.7)

R̂y(θ) = e−
iθŶ

2 = cos
θ

2
Î − i sin

θ

2
Ŷ , (2.8)

R̂z(θ) = e−
iθẐ
2 = cos

θ

2
Î − i sin

θ

2
Ẑ. (2.9)

Just like we need rotations around two axes to move a point to any other points on

the unit sphere’s surface, two rotation operators suffice for the arbitrary control of

a single qubit. In general, any operation on a qubit can be fully characterised by a

single-qubit Hamiltonian defined on the Pauli-basis and we will use this property to

characterise single-qubit operation experimentally.

Similarly, we can describe two-qubit dynamics in the Pauli-basis and the in-

teraction is characterised by the tensor product of Pauli operators. For example,

Ĥ/~ = ζ
4
Ẑ ⊗ Ẑ generates interaction between two qubits, which enables an entangle-

ment of a two-qubit state |ψ〉1⊗|ψ〉2. We can obtain the Bloch vector using the same

method as the single-qubit case. However, for a two-qubit system, there are 4×4 = 16

Pauli operators, so the two-qubit state |ψ〉1 ⊗ |ψ〉2 is mapped to a Bloch vector in

15-dimensional space. We have omitted one degree of freedom because the square

sum of the complex amplitudes of the two-qubit state has to be 1. Experimentally,

the act of projecting the state vector to each Pauli-basis is called a quantum state

tomography [46], equivalent to plotting a point on the Bloch sphere for a one-qubit

case. It helps us understand the complex dynamics of a two-qubit system, so we

will revisit the two-qubit Bloch vector and the quantum state tomography in later

chapters.
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Relation to later chapters

In principle, universal quantum computation can be implemented using any entan-

gling interaction and arbitrary one-qubit operations mentioned in this section [29].

Therefore, by combining one-qubit operation and native two-qubit interaction, we

can run any quantum algorithms if we can efficiently compile algorithms to physical

hardware with native interaction.

The central theme of this thesis is to introduce a novel hardware compilation

scheme on quantum processors with native two-qubit interaction. In the following

sections, we will explain how the native two-qubit interaction arises in superconduct-

ing circuits and how to achieve universal one-qubit control on the Bloch sphere. We

then give a proof-of-principle experiment of a quantum algorithm implementation

by the native gate in Chapter 4 and introduce the theoretical development of the

hardware compilation scheme in Chapter 5.

2.1.2 Hardware development of quantum computers

In the previous subsection, we have introduced a theoretical background on quantum

information processing, assuming that a qubit is a quantum two-level system. Prac-

tically, there are various hardware platforms to realise the two-level system such as

trapped-ions [7, 8, 9], superconducting circuits [10, 11] and nuclear magnetic reso-

nance [12, 13].

For many years, the cavity quantum electrodynamics (cavity QED) has provided

a theoretical framework to describe the quantum information processing of each hard-

ware platform, explaining the interplay between the qubits’ coherent dynamics and

decoherence, essential to understanding the practicalities of quantum information

processing in each platform [47]. With tools that enable the quantitative analysis of

decoherence, experiments on the light-matter interaction have hugely developed, and
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it helped understand how the environment plays a role in coherent quantum dynamics

[48].

Following the development of the cavity QED in natural systems, the same ap-

proach has been explored in solid state systems. In 1999 an artificial two-level system

was realised in a single-cooper-pair box [10], and the field of superconducting qubit

has developed dramatically ever since. In 2004 the strong coupling between a super-

conducting qubit and an on-chip cavity was realised [11] and the field of the circuit

quantum electrodynamics (circuit QED) emerged [44]. The circuit QED made the

theoretical and experimental toolsets in the cavity QED transferrable to supercon-

ducting circuit experiments, which accelerated the development of this field. Most

significantly, cavity QED experiments in various parameter regimes could be designed

by specifying the circuit dimensions of superconducting circuits, deepening the un-

derstanding of the cavity QED, including properties in unconventional parameter

regimes [49, 50].

Along with demonstrating the proof-of-principle experiments, the circuit QED

guided designing the optimal superconducting quantum circuit for quantum comput-

ing applications. The circuit QED played a crucial role in inventing the transmon

qubit [51], which is the standard qubit design in the current quantum computing ap-

plication. Through circuit QED analysis of the dephasing and coupling mechanisms

in superconducting circuits, they have provided the design criteria for long coherence

qubits while maintaining high fidelity control and readout desirable for quantum com-

puting. As of 2021, the coherence time of superconducting qubits has been extended

105 times after many generations of qubit designs since 1999 [52].

Building on top of the device developments, the superconducting circuit commu-

nity has also been exploring ways to improve multi-qubit operation. In particular,

various coupling schemes have been proposed to implement fast two-qubit gates to ap-
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ply as many gates in a limited qubit lifetime as possible, which led to a high-fidelity

many-qubits operation in 20-50 qubits scale [17, 53]. However, further efforts are

needed to scale the system to more qubits required for large-scale quantum computa-

tion. Conventional multi-qubit operation schemes need tailored calibration routines

for external control fields with specific resonance condition [25] or additional circuits

for tunability [23, 24], which add more engineering complexity than operating a simple

superconducting circuit. As the number of qubits increase in a quantum processor,

these engineering difficulties in fabricating and controlling the device add up.

To avoid the complexity of superconducting circuit layout and operation strategy

in a large scale, we have explored ways to simplify superconducting circuit design

and operation for future scalability. In our coaxmon architecture [54], control and

readout wirings were taken out of the qubit and the resonator plane, which reduced

the circuit complexity of the superconducting circuit. The simplicity in the circuit

design reduces the fabrication complexity and makes it easier to investigate noise

channels.

This thesis aims to simplify multi-qubit operation in many-qubits superconducting

circuits including the coaxmon architecture. In our novel controlling strategy, the

multi-qubit operation is generated by native interaction in superconducting circuits,

which does not depend too much on active operations. The following subsections

review the circuit QED theory, which leads to explaining our coaxmon architecture

in the next section and derives the native interaction in superconducting circuits

crucial for the quantum computing strategy presented in this thesis.
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2.1.3 Circuit quantum electrodynamics (circuit QED)

Basic elements of superconducting circuits

In an electric circuit, a harmonic mode can be engineered using a single inductor and

capacitor, connected in parallel (see Fig. 2.2). The LC circuit acts as a resonator that

stores photons whose energy levels are determined by the circuit’s resonant frequency

ω = 1√
LC

,

HR =
q2

2C
+
φ2

2L
, (2.10)

where q is the charge on the capacitor and φ is the flux passing through the inductor.

Since the Hamiltonian satisfies the following relation,

∂HR

∂q
=

q

C
= −L∂I

∂t
= −φ̇, (2.11)

∂HR

∂φ
=

φ

L
= I = q̇, (2.12)

we can regard q and φ as the system’s canonical variables, and we can apply the

canonical quantisation. By treating φ̂ and q̂ as quantum variables, we can rewrite the

Hamiltonian as ĤR = q̂2

2C
+ φ̂2

2L
, with the commutation relation [φ̂, q̂] = i~.

Although the Hamiltonian helps us describing the quantum behaviour of charge

and flux degrees of freedom, these variables are not suitable in the cavity QED formal-

ism where physical systems are described in the photon-number basis. To describe the

system in the photon-number basis, we apply the second quantisation to the system

Hamiltonian by replacing the charge and the flux variables by,

φ̂ =

√
~ZC

2
(â† + â), (2.13)

q̂ = i

√
~

2ZC
(â† − â), (2.14)
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where â and â† are annihilation and creation operators, with ZC =
√

L
C

being the

characteristic impedance of the resonator. Now, the Hamiltonian is,

ĤR = ~ωr
(
â†â+

1

2

)
. (2.15)

Unless the system is completely decoupled from the environment, the LC resonator

loses its photons at a rate of κ. We can characterise how much the system is coupled

to the environment by the quality factor Q = ωr
κ

, which determines essential device

properties, such as the readout efficiency and the resonator-induced dephasing of a

qubit [55].

Although we can observe an LC circuit in the quantum mechanical ground state,

the equally-spaced energy levels don’t allow one to access well-defined two energy

levels to address a qubit. To create a qubit, we need to introduce anharmonicity to

the circuit, and the Josephson Junction plays the role. The Josephson Junction is a

non-dissipative circuit component having an insulating barrier between two supercon-

ducting electrodes that pass through superconducting current. The superconducting

current across the Josephson Junction has the property of I = I0 sin θ, where θ is

the phase difference between the two superconducting electrodes, which is related to

the flux stored across the junction φ by θ = 2πφ
Φ0

, with Φ0 = h
2e

the flux quantum.

Because of this relation, the Josephson Junction behaves as a non-linear inductance

that depends on the flux,

L(φ) =
(∂I
∂φ

)−1

=
Φ0

2πI0 cos 2πφ
Φ0

, (2.16)

which adds the anharmonicity to the circuit when we replace the LC resonator’s

inductance with the Josephson Junction (see Fig. 2.2). We can also derive the

energy around the non-linear inductance by E =
∫
V (t)I(t)dt =

∫
(dφ
dt

)I(t)dt =
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Figure 2.2: Circuit diagrams of basic superconducting circuit elements. (a) An LC
resonator. (b) A superconducting qubit consisting of a capacitance and a Josephson
junction. Circuits’ dynamics can be investigated by solving the equations of motion
of the charge q and the flux φ defined on the black nodes indicated in the circuits.

−EJ sin
(

2πφ
Φ0

)
, where EJ = Φ0I0

2π
is the Josephson energy. Assuming a capacitance

coupling to an external gate voltage Vg = qg
Cg

as shown in the Fig. 2.2, the total

Hamiltonian of a superconducting qubit can be derived similarly to the LC circuit as

follows,

Ĥ =
(q̂ − qg)2

2CΣ

− EJ cos

(
2πφ̂

Φ0

)
(2.17)

= 4EC(n̂− ng)2 − EJ cos
(
θ̂
)
, (2.18)

where CΣ = Cg + CJ is the total capacitance to the ground [51]. In the second line,

we have defined the charge and the phase bases ensuring the commutation relation

[θ̂, n̂] = i, where θ̂ = 2πφ̂
Φ0

, n̂ = q̂
2e

, ng = qg
2e

and the charging energy EC = e2

2CΣ
. The

second term in the Hamiltonian introduces the anharmonicity to the energy levels,

and we can assign the two lowest levels as a qubit.

The non-linearity of the energy levels depend heavily on the ratio EJ
EC

[51], which

is a crucial parameter when we design superconducting qubits. When EJ
EC

is small, the

qubit transition frequency is not robust to the charge fluctuation, making it prone to

decoherence. On the other hand, the anharmonicity of the energy levels decreases as

we increase EJ
EC

, which adds difficulty when we control the state of a qubit. Therefore,
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there is a trade-off between large and small EJ
EC

, and we will explore how the essential

properties of superconducting qubits such as charge dispersion and anharmonicity

scale with EJ
EC

in the following.

The charge dispersion of the energy levels can be obtained by diagonalising the

qubit Hamiltonian (2.18) in the charge basis (see Fig. 2.3). As we can see from

the figure, the charge dispersion decreases with increasing EJ
EC

, and [51] showed the

exponential decrease of the charge dispersion with
√

EJ
EC

.

Because of this, we typically aim EJ/EC > 50, and in this regime, we can approx-

imate the Hamiltonian as follows [56],

ĤQ ≈ 4EC n̂
2 +

EJ
2
θ̂2 − EJ

4
θ̂4. (2.19)

0
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Figure 2.3: Charge dispersion of the transmon energy levels. The energy levels are
obtained by numerically diagonalising the transmon Hamiltonian in the charge basis,
and the mth energy level Em is normalised by the energy difference between the
ground and the first excited states E01. We can see that the energy levels become
more robust to the offset charge ng fluctuation as we increase EJ/EC .
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Changing the basis to the number basis using the second quantisation,

θ̂ =
( EC

2EJ

) 1
4
(b̂† + b̂), (2.20)

n̂ =
i

2

( EJ
2EC

) 1
4
(b̂† − b̂), (2.21)

we arrive at an approximated Hamiltonian,

ĤQ ≈
√

8EJEC b̂
†b̂− EC

12
(b̂† + b̂)4 (2.22)

≈ ~ωq b̂†b̂+
α

2
b̂†b̂†b̂b̂, (2.23)

where E01 = ~ωq ≈
√

8EJEC−EC is the resonant frequency of the qubit and α ≈ −Ec

is the anharmonicity of the qubit energy levels. In the second line, we have applied the

rotating wave approximation to ignore the fast oscillating terms. In contrast to the

exponentially decreasing charge dispersion with EJ
EC

, the anharmonicity EC
E01
≈ (8EJ

EC
)−

1
2

decreases with a weak power law to EJ
EC

[51]. Therefore, the EJ
EC

ratio is set around

50 ∼ 100 so that the charge dispersion does not limit coherence time of the qubit

and the anharmonicity is kept large to suppress the leakage to higher levels. Qubits

designed around this regime are called transmons and we set our qubit’s EJ
EC

in this

range. Note that, we will use transmon and qubit interchangeably in the following

sections.

To obtain a more accurate value of EJ and EC from measured qubit frequency

ωq = E01/~ and anharmonicity ~α = 2E01 − E02, we can approximate EJ and EC
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using the fifth-order perturbation theory presented in [57] as follows,

~ωq ≈
√

8EJEC − EC
(

1 +
1

22
ξ +

21

27
ξ2 +

19

27
ξ3 +

5319

215
ξ4
)
, (2.24)

~α ≈ −EC
(

1 +
9

24
ξ +

81

27
ξ2 +

3645

212
ξ3 +

46899

215
ξ4
)
, (2.25)

ξ =

√
2EC
EJ

.

Coupling superconducting circuits

We have discussed how the main ingredients of the cavity QED experiments, an atom

and a cavity, can be engineered using superconducting electrical circuits. In this

section, we explain the coupling mechanism in the artificial quantum system, and we

consider a capacitance connecting two superconducting circuit elements described in

Fig. 2.2. At the beginning of the derivation, we do not have to specify whether the

coupled circuit elements are (a) an LC resonator and a qubit or (b) two qubits. The

Hamiltonian of the composite quantum circuit can be derived by applying the circuit

quantisation technique, called “the method of nodes” [58]. In the method of nodes,

we label each island in the circuit by number (i=1,2) to distinguish each node’s charge

qi and flux φi (i=1,2) variables. Charges on the nodes can be described by a set of

Figure 2.4: Circuit diagrams of coupled superconducting circuit elements. (a)
Resonator-qubit coupling. (b) Qubit-qubit coupling.
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equations of motion,

q1 = C1φ̇1 + Cg(φ̇1 − φ̇2), (2.26)

q2 = Cg(φ̇2 − φ̇1) + C2φ̇2, (2.27)

which can be expressed in a simple form q = Cφ̇, where a capacitance matrix C is

defined by,

C =

Cg + C1 −Cg

−Cg C2 + Cg

 . (2.28)

Since there is no inductive coupling between node 1 and 2, we can regard flux on each

node independently and it doesn’t contribute to the coupling term in the Hamiltonian.

Here we leave the potential energy as V and discuss the details after we specified the

coupled elements. The total Hamiltonian can be described by the capacitance matrix

and the potential energy,

H =
1

2
qTCq + V (2.29)

=
(C2 + Cg)q

2
q + 2Cgq1q2 + (Cg + C1)q2

1

2(C1C2 + C2Cg + CgC1)
+ V. (2.30)

To investigate the coupling, we focus on a term that involves q1q2, which has ef-

fects from both nodes. The specifics of the coupling term depends on how we apply

the second quantisation to each node, and we need to consider whether the node is

connected to a transmon or an LC resonator.
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Resonator-qubit coupling

In a case where a resonator is on the node 1 and a qubit is on the node 2, we substitute

(2.14) and (2.21) for q̂1 = 2e · n̂1, φ̂1 = Φ0

2π
· θ̂1, q̂2 = 2e · n̂2 and φ̂2 = Φ0

2π
· θ̂2 to obtain

the coupling term in terms of the annihilation and the creation operators,

ĤCoupling =
2Cg q̂1q̂2

2(C1C2 + C2Cg + CgC1)
(2.31)

= −
eCg

√
~
Zr

(
EJ
EC

) 1
4

2(C1C2 + C2Cg + CgC1)
(â†1 − â1)(b̂†2 − b̂

†
2) (2.32)

= −~g(â†1 − â1)(b̂†2 − b̂
†
2), (2.33)

where Zr =
√

L1

C1
is the characteristic impedance of the resonator and g is the coupling

strength between a qubit and a resonator. In the limit of C1, C2 � Cg, we can

approximate the coupling strength as,

g ≈ ωr
Cg
C2

( EJ
2EC

) 1
4

√
πZr
R0

, (2.34)

where ωr is the resonant frequency of the resonator, and R0 = h
e2

is the resistance

quantum. Previously, we have seen that a large EJ
EC

ratio makes a qubit insensitive to

the charge degrees of freedom, which increases the qubit’s decoherence time. However,

the less sensitivity to charge means the inability to discriminate the qubit’s state by

directly measuring the charge degrees of freedom. This is fine because we see from

(2.34) that the coupling to a resonator strengthens with increasing EJ
EC

, and we can

use the resonator to probe the qubit’s state. The transmon qubits use this coupling

mechanism to read out the qubit state by a coupled-resonator indirectly [11].

Lastly, the energy contribution from the inductive elements can be summarised

as a potential energy V =
φ2

1

2L1
− EJ cos

(
2πφ2

Φ0

)
. Using a similar method to deriving a
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resonator and a qubit Hamiltonian, we obtain the total Hamiltonian as,

ĤR−Q = ~ωr(â†1â1 +
1

2
) + ~ωq b̂†2b̂2 +

~α
2
b̂†2b̂
†
2b̂2b̂2 − ~g(â†1 − â1)(b̂†2 − b̂

†
2) (2.35)

≈ ~ωr(â†1â1 +
1

2
) + ~ωq b̂†2b̂2 +

~α
2
b̂†2b̂
†
2b̂2b̂2 + ~g(â†1b̂2 + â1b̂

†
2), (2.36)

where â†1, â1, and b̂†2, b̂2 are operators that excite or lower modes at node 1 and 2, and

we have applied the rotating wave approximation in the second line.

Qubit-qubit coupling

In the case of a qubit-qubit coupling, we apply the second quantisation by substituting

(2.21) to the charge and the flux variables on both nodes. The coupling Hamiltonian

can be obtained as,

ĤCoupling = −
e2Cg

(
EJ1

EC1

) 1
4
(
EJ2

EC2

) 1
4

√
2
(
C1C2 + C2Cg + CgC1

)(b̂†1 − b̂1)(b̂†2 − b̂
†
2) (2.37)

= −~J(b̂†1 − b̂1)(b̂†2 − b̂
†
2), (2.38)

where we denote J as the coupling strength between two qubits. In the limit of

C1, C2 � Cg, we can approximate the coupling strength as,

J ≈ 2Cg
C1C2

( EJ1

2EC1

) 1
4
( EJ2

2EC2

) 1
4 π

R0

. (2.39)

Lastly, the energy contribution from the inductive elements can be summarised as

a potential energy V =
∑

i=1,2−EJ1 cos
(

2πφi
Φ0

)
, so the second quantised Hamiltonian
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can be derived as,

ĤQ−Q =
∑
i=1,2

(
~ωqi b̂

†
i b̂i +

~αi
2
b̂†i b̂
†
i b̂ib̂i

)
− ~J(b̂†1 − b̂1)(b̂†2 − b̂

†
2) (2.40)

≈
∑
i=1,2

(
~ωqi b̂

†
i b̂i +

~αi
2
b̂†i b̂
†
i b̂ib̂i

)
+ ~J(b̂†1b̂2 + b̂1b̂

†
2), (2.41)

where we have ignored the fast-oscillating terms in the coupling term.

Coupling in the dispersive regime

We have seen that a quantum processor’s crucial parameters, such as resonant fre-

quencies of resonators and qubits and their coupling strength, can be engineered by

specifying suitable electric circuit parameters. The circuit QED formalism enabled

us to design cavity QED experiments on circuits, which opened an ample parameter

space to explore circuit parameters depending on our needs.

Particularly, in the aim of building a quantum processor, we set the qubit-resonator

detuning to be much larger than their coupling strength. The parameter range of

g � ∆q−r is so-called the dispersive regime, and it is advantageous for the lifetime

enhancement [40, 59] and reading out the qubit’s state [51]. We also set qubit-qubit

detuning to be large enough so that the drive on one qubit does not excite other

qubits. Typical coupling strength J is much smaller than the detuning J � ∆q−q

[60], so we can assume the qubit-qubit coupling is in the dispersive regime as well.

The dispersive coupling is the core of this thesis as we exploit it in the readout

and the two-qubit operation of a quantum processor. Here, we will show how the

dispersive coupling shifts the energy levels for both resonator and qubit and discuss

the application of the dispersive shift in quantum information processing. Since the

coupling terms of the qubit-resonator system and the qubit-qubit system have similar

forms, we can approximate the Hamiltonian similarly, using the second-order pertur-
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bation theory. Regarding the general Hamiltonian Ĥ = Ĥ0 + V̂ , where we consider

V̂ = ~g(ĉ†1ĉ2 + ĉ1ĉ
†
2) as a perturbation to an uncoupled Hamiltonian Ĥ0, we can find

the first and second-order approximation as,

Ĥ(1) =
∑
i

〈i|V |i〉 |i〉 〈i| = 0, (2.42)

Ĥ(2) =
∑
i

∑
j

〈i|V |j〉 〈j|V |i〉
Ei − Ej

|i〉 〈i| , (2.43)

where Ei and |i〉 are the eigenenergies and the eigenvectors of the original Hamiltonian

Ĥ0 |i〉 = Ei |i〉, and we assume the eigenenergies are non-degenerate. Here, the Hilbert

space is spanned by |i〉 = |m,n〉 = |m〉 ⊗ |n〉, where |m〉 and |n〉 are Fock states of

each modes labelled by 1 and 2. The first-order approximation vanishes in this case

because the coupling term V̂ = ~g(ĉ†1ĉ2 + ĉ1ĉ
†
2) has no diagonal elements. Terms in

the second order approximation become non-zero for nearby transitions,

〈
V ′+
〉

= 〈m,n|V |m− 1, n+ 1〉 = ~g
√
m
√
n+ 1, (2.44)〈

V ′−
〉

= 〈m,n|V |m+ 1, b− 1〉 = ~g
√
m+ 1

√
n, (2.45)

and we obtain the second-order perturbation as follows,

Ĥ(2) = (~g)2
∑
m,n

( 〈
V ′+
〉 〈
V ′+
〉†

Em,n − Em−1,n+1

+

〈
V ′−
〉 〈
V ′−
〉†

Em,n − Em+1,n−1

)
|m,n〉 〈m,n|

= (~g)2
∑
m,n

( m(n+ 1)

Em,n − Em−1,n+1

+
(m+ 1)n

Em,n − Em+1,n−1

)
|m,n〉 〈m,n| .(2.46)

Coefficients of the above Hamiltonian depend on the system’s energy levels, so we will

consider the following cases separately, (1) resonator-qubit coupling and (2) qubit-

qubit coupling.
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(1) Resonator-qubit dispersive coupling

For a composite system that consists of one resonator mode and one transmon mode,

the energy levels are Em,n = ~(mωr + nωq + 1
2
n(n− 1)α), so we substitute it for the

denominators of terms in (2.46) and we obtain,

ĤR−Q ≈ Ĥ(0) + Ĥ(1) + Ĥ(2)

= ~ωrâ†1â1 + ~ωq b̂†2b̂2 +
~α
2
b̂†2b̂
†
2b̂2b̂2 + ~

∑
n=0

(Λn + χnâ
†
1â1) |n〉 〈n| ,(2.47)

where, Λn = ng2

∆q−r+(n−1)α
, χn = ng2

∆q−r+(n−1)α
− (n+1)g2

∆q−r+nα
, and ∆q−r = ωq−ωr. Practically,

we operate a qubit in the computational basis n = 0, 1, so we consider the following

truncated Hamiltonian.

ĤR−Q/~ ≈ ω′râ
†
1â1 −

ω′q
2
Ẑ − χâ†1â1Ẑ, (2.48)

χ =
g2α

∆q−r(∆q−r + α)
, (2.49)

where Ẑ = |0〉 〈0| − |1〉 〈1|, ω′r = ωr − g2

∆q−r+α
, ω′q = ωq + g2

∆q−r
. Note that the dressed

frequencies, ω′r and ω′q, are the ones we observe in experiments and ωr and ωq are the

bare frequencies. χ is the dispersive shift used for reading out the state of the qubit.

Depending on the qubit’s state, the operator Ẑ puts positive or negative sign on the

interaction operator ±~χâ†1â1, which shifts the resonant frequency of the resonator to

~ω′r ± χ depending on the qubit’s state. We can therefore measure the qubit’s state

by sending a microwave signal to the coupled resonator and observing the magnitude

and the phase response [51].
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(2) Qubit-qubit dispersive coupling

Similarly, the second-order perturbation of the qubit-qubit coupling is written as,

Ĥ(2)
Q−Q ≈ ~J2

∑
m,n

χm,n |m,n〉 〈m,n| , (2.50)

χm,n =
m(n+ 1)

∆12 + (m− 1)α1/~− nα2/~
− (m+ 1)n

∆12 +mα1/~− (n− 1)α2/~
,

where ∆12 = ωq1 − ωq2 , and the total perturbed Hamiltonian can be simplified in the

computational basis as,

ĤQ−Q/~ ≈ −
ω′q1
2
Ẑ1 −

ω′q2
2
Ẑ2 +

ζ

4
Ẑ1Ẑ2, (2.51)

ζ = − 2J2(α1 + α2)

(∆12 + α1)(α2 −∆12)
. (2.52)

where Ẑ1 = Ẑ⊗ Î, Ẑ2 = Î⊗ Ẑ, ω′q1 = ωq1 + J2

∆12
+ζ/2, ω′q2 = ωq2− J2

∆12
+ζ/2. Note that

bare qubit frequencies ωq1 and ωq2 include shifts made by qubit-resonator coupling

derived in the previous subsection (the bare frequencies of ĤQ−Q correspond to ω′q in

Eq. (2.48)). We have plotted the coupling strength ζ depending on the detuning ∆12,

coupling J and anharmonicities α1, α2 in Figure 2.5.

The qubit-qubit dispersive coupling is often referred to as the “residual coupling”

since the coupling persists as long as qubits are connected by fixed capacitance [56].

If we consider a larger grid of qubits, there are multiple always-on coupling with

different coupling strengths that may seem too complex to use as a computational

resource. However, since the coupling is already present after fabricating the device,

if we could find a way to control them to shape the desired operation simultaneously,

we would not have to add extra circuitry nor external drive to generate entanglement

in a many-qubit system.

To make use of the static Hamiltonian (2.51), we adopt techniques from the Nu-
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Figure 2.5: The ZZ coupling strength ζ depending on the detuning ∆12 and the
capacitive coupling strength J . We observe poles at ∆12 = −α1 and α2.

clear Magnetic Resonance (NMR) community since their system has the same form

of Ising Hamiltonian [61], and they have developed a dynamical decoupling pulse se-

quence [62] to operate quantum algorithms in such an always-on Hamiltonian. The

idea is to use spin-echo sequences to decouple or refocus part of the coupling network

during the time evolution such that the whole system evolves under desired effective

Hamiltonian [63, 64]. In Chapter 5, we will introduce novel dynamical decoupling

techniques to use the always-on ZZ coupling to operate arbitrary simultaneous two-

qubit operation with much more efficient scaling in time and pulse count than in the

conventional approach [35, 36].

2.2 Practice

In the previous section, we have introduced the circuit QED to give a theoretical

background for manipulating and reading out quantum information in superconduct-

ing circuits, and the relation to the circuit theory was explained. This section covers

details of the superconducting circuit and experimental apparatus operated in our lab

to implement quantum computing experiments using superconducting qubits. The
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aim of this section is to bridge quantum physics and engineering by showing the

methodology of quantum information processing in real-world devices.

2.2.1 Coaxial Circuit QED

In a typical circuit QED architecture, a qubit circuit and an LC resonator are coupled

to compose one unit cell of a quantum processor and are accessed by control and

readout lines. These components can be laid out in the same plane, similar to a

CPU chip, using nano-fabrication technology in the silicon industry. However, the

crowding of the circuit elements introduces cross-talks, unwanted decoherence channel

and hinders the extensibility. Especially, the surface code, one of the most promising

quantum error-correcting schemes, requires qubits to be laid out in a two-dimensional

grid, which demands the control and readout lines to be accessed from an additional

dimension.

In the coaxial circuit QED architecture, qubits and resonators are accessed by

coaxial wiring running perpendicular to the circuit plane to overcome the processor

chip crowding and the extensibility problems. The coaxial circuit QED architec-

ture has a qubit and a resonator circuit fabricated on opposing sides of a substrate,

and they are capacitively coupled through the substrate. We send and receive sig-

nals through out-of-plane wirings perpendicular to the superconducting circuit plane,

which takes out wirings from the processor chip, minimising unnecessary cross-talks

and decoherence channels. Fig. 2.6 shows the schematics of the coaxial circuit QED

architecture. Both qubit and resonator circuits have inner and outer islands con-

nected by a Josephson junction or a spiral inductor. The dimension of the circuits

determines the crucial parameters of the qubit and the resonator that define the sys-

tem Hamiltonian (2.36) of the circuit QED system. The anharmonicity of the qubit

EC is set by the radius of the inner island, and the Josephson inductance sets the
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Figure 2.6: The Coaxmon architecture. (a) Schematic of the double-sided circuit
QED architecture with perpendicular wirings. A resonator is printed on the opposite
side of a qubit circuit, and they are capacitively coupled through the substrate. (b)
Geometry of the transmon and the LC resonator circuits. (c) The equivalent circuit
of the coupled transmon-resonator system in the Coaxmon architecture. Colours in
the circuit diagram correspond to the colours of the transmon and the LC resonator
diagrams of (b).

qubit’s resonant frequency ωq. We can set the resonator’s resonant frequency ωr by

the inductance between the islands, determined by the length of the spiral induc-

tance. The coupling between the qubit and the resonator can be represented by a

lumped element model, and the coupling strength g can be predicted by computing

the capacitance matrix of the coupled system by an electrostatic simulation. Further-

more, we can introduce coupling between qubits by adding capacitance arms between

qubits shown in Fig. 2.7. The coupling strengths are determined by the overlap of

the arms and the gap between them, and they can be simulated by the electrostatic

simulation as well. The relation between the coupling strength and the dimension of

the capacitance arms was investigated by a colleague in the lab [65].



37

Figure 2.7: Photos of the four-qubit device used in this thesis. (a) Four coaxmon
qubits coupled by capacitance arms. (b) The four-qubit sample mounted on a sample
holder. The chip is fixed by GE varnish at the corner and the outer gap is filled with
indium to electrically connect both sides of the sample holder.

For experiments presented in this thesis, we have used two samples, called device

2Q1 and 4Q3, the first generation two-qubit device and the third generation four-

qubit device in our lab. They are designed and fabricated by colleagues in the lab,

and the author of this thesis chose them for the main experiments in this thesis since

their relatively strong coupling strengths were suitable for demonstrating the always-

on quantum computing experiments. The author of this thesis characterised both

devices, and the device parameters are listed in the Appendix A.1.

Sample holder

To hold the coaxmon chip firmly, we place it in an aluminium sample holder. Each

unit of coaxmon is weakly coupled to coaxial cable pins from both sides to be accessed

from external microwave electronics. Coaxial cable pins penetrate holes that are

drilled through the sample holder perpendicular to the sample. The sample holder is

covered by an aluminium magnetic shield to keep the sample unaffected by external

magnetic field.
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The distance between a qubit and a control pin is well-calibrated such that we can

drive qubits sufficiently strongly and not let quantum information decay through the

drive port. The decay to the external environment is quantified by κ, contributing to

the T1 obtained in experiments. The distance between a resonator and a pin is also

crucial because the rate of reading out the quantum information from the resonator

depends on how well they are coupled. The fast readout is essential when we want to

do feedback measurements such as quantum error-correcting syndrome, so it would be

better to have the pin distance as close as possible. At the same time, a qubit decays

through the coupled resonator by the Purcell effect [59], so we want the resonator

to be isolated from the environment as much as possible. As for the sample holders

we used for our experiments presented in this thesis, we chose the pin distance to be

dpin = 1.1 mm not to limit the qubit lifetime.

Figure 2.8: Sample holder for the four-qubit device. (a) Image of the assembled
sampled holder. Eight SMA cable connectors are routed to four qubit ports and four
resonator ports. (b) Image of the dismantled sample holder.

2.2.2 Signal input for qubits and resonators

To control qubits and perform the readout, we send coherent drives from the exter-

nal microwave sources to qubits and resonators. The total Hamiltonian under the

coherent drive can be described as Ĥ = Ĥ0 + Ĥd, where Ĥ0 is the static system
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Hamiltonian and Ĥd is the drive Hamiltonian,

Ĥd = ~
[
ε(t)â†e−i(ωdt+φd) + ε(t)∗âei(ωdt+φd)

]
, (2.53)

which can be turned on and off on demand by choosing the time-dependent amplitude

ε(t). For example, a coherent drive close to the qubit’s resonant frequency can be

written as,

Ĥq+drive = ~ωq b̂†b̂+
~α
2
b̂†b̂†b̂b̂+ ~εq(t)

[
b̂†e−i(ωdt+φd) + b̂ei(ωdt+φd)

]
. (2.54)

If we set the drive frequency as ωd = ωq − δq, the drive frame qubit Hamiltonian can

be written as,

Ĥ′q+drive = ~δq b̂†b̂+
~α
2
b̂†b̂†b̂b̂+ ~εq(t)

[
b̂†e−iφd + b̂eiφd

]
(2.55)

≈ −~δq
2
Ẑ +

2~εq(t)
2

[
cosφdX̂ + sinφdŶ

]
, (2.56)

where the second line describes the coherent drive in the computational basis, and we

can parameterise arbitrary single-qubit control by δq, φd and εq(t), which are tunable

by external microwave electronics.

Similarly, when we drive the resonator at its resonant frequency ωd = ωr, we find

the Hamiltonian as,

Ĥr+drive = ~(ωr + χẐ)â†â+ ~εr(t)
[
â†e−i(ωrt+φd) + âei(ωrt+φd)

]
. (2.57)

In this instance, we have assumed that the qubit state is arbitrary, so we kept the

dispersive coupling term χẐâ†â. Moving to a frame rotating at ωd = ωr ± χ, we see
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the resonator state evolves in different trajectories by,

Ĥ′r+drive = ~εr(t)
[
â†e−i(∓χt+φd) + âei(∓χt+φd)

]
, (2.58)

depending on the qubit state. Reading out the output from the resonator at some

time t specifies the state of the resonator in the phase space, which tells us whether

the qubit was in the ground state or the excited state.

There are two measurement schemes to inspect the qubit-resonator systems: the

continuous wave (CW) measurement and the pulsed measurement. CW measurement

is useful in the initial phase of the system identification. The amplitude of the qubit

drive, the resonator drive or both drives are fixed εq(t), εr(t) = const., which only

requires single-tone microwave drives from local oscillators without pulse shaping.

Though, when both drives are simultaneously applied and are strong, we need to keep

in mind that population in the resonator and the effect from multi-photon transitions

might give a complicated result, which cannot be analysed straightforwardly by (2.56)

and (2.58). Also, in the standard implementation of quantum algorithms, we do not

want to populate the resonator during the qubit manipulation, so we do not use the

CW approach for quantum algorithm implementation.

On the other hand, the pulsed measurements avoid simultaneous drive of the qubit

control and the readout by pulsing each drive and applying them sequentially. The

experimental setup for the pulsed measurements requires up-conversion described in

the Fig. 2.9. The shape of the pulse is digitally defined by a computer, which then

gets translated to an analogue signal by the Digital-to-Analog (DAC) converter. The

DAC output goes to an IQ mixer where it gets up-converted by a high-frequency

local oscillator. Finally, the up-converted signal goes inside the fridge through the

driveline with suitable attenuation and filtering before driving the qubit-resonator

system, which we will cover in the next section.
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Figure 2.9: Schematic of the signal up conversion. In this diagram, the signal flows
from the DAC to the qubit and readout control drive line. The IQ mixer combines
the DAC signal with the local oscillator to be upconverted. The attenuator after the
IQ mixer can be anything from A = 0dB for strong driving to A = 30dB for weak
measurement.

2.2.3 Cryogenic setup for quantum measurements

To implement quantum measurements, we need to make sure the sample, the en-

vironment and the signals operate at the quantum level. Specifically, the thermal

noise from the environment and the external signal must be suppressed at a level

where it does not destroy the quantum characteristics of the system. In the case

of circuit QED experiments, we use the lowest two energy levels of the qubit and

populate the resonator with a few photons. To keep the qubit and the resonator

in the ground state, we need to prepare an ultra-cold environment to minimise the

thermal population. Moreover, signals generated in the microwave electronics carry

room-temperature noise to the system in the cold environment unless we properly

filter the room-temperature noise, so we need to design the experimental setup such

that the thermal noise becomes minimal. This subsection introduces how we manage

a low-noise experimental setup for the circuit QED experiments.

Dilution refrigerator and cryogenic wiring

Typically, we set the qubit’s resonant frequency around ωq = 4 ∼ 6 GHz and the

resonator’s resonant frequency around ωr = 8 ∼ 10 GHz. To prepare a qubit in the
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ground state at the thermal equilibrium, we keep the device under T = 50 mK so

that the thermal population of the excited state becomes less than exp
(
− ~ωq

kB·50 mK

)
≈

1 %, where kB is the Boltzmann’s constant. Since a commercial dilution refrigerator

operates at around 15 mK at the base, we thermally connect the sample holder to the

base plate to keep the qubit and the resonator cold. Furthermore, since Aluminium

reaches superconductivity at TC = 1.2 K, we can observe the Josephson effect at the

base of the dilution refrigerator. For the experiments presented in this thesis, we use

an Oxford Instruments Triton XL dilution refrigerator.

However, qubits experience higher effective temperature than 15 mK in the typical

superconducting qubit experiments [66] due to the noise coming from drive lines con-

nected to room-temperature electronics. To suppress the thermal noise from the

room-temperature electronics, we design chains of attenuators and filters for the

drive and the readout lines to minimise unwanted excitation and thermal popula-

tion. Fig. 2.10 summarises the essential components and the wiring inside the fridge,

and we will explain each function below.

To suppress the black body radiation from the cascading temperature stages,

approximately −60 dB attenuation is needed between 300 K and the base plate, so

we distribute −20 dB attenuators at the 4 K, 200 mK and 15 mK stage. When the

cooling power at each stage surpasses the heat dissipation of the attached attenuator,

we can assume that the attenuator is in equilibrium and the noise level becomes at

the level of the thermal noise of the attached plate.

After the chain of attenuators, qubit input lines connect to the sample holder

directly. On the other hand, each resonator has access to two lines; an input line to

populate photons in the resonator and an output line to collect the output signals from

the resonator. Two lines are connected to a circulator that routes the input signal to

the sample holder and the signal from the sample to exit the fridge through the output
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line. Conversely, the sequence of circulators shuts the room-temerature noise through

the output line not to enter the sample holder. Filters between the circulator and

Figure 2.10: Schematic of the experimental setup and the signal flow in the dilution
refrigerator. Input signals from external microwave sources go through chains of
attenuators to minimise the inflow of the room temperature thermal noise. The signal
output lines have circulators to allow signals to transmit in one direction where signals
from the sample go out of the dilution refrigerator, but the thermal noise from the
outside can not enter the quantum circuit.
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Figure 2.11: Photos of the wiring at the base plate. (a) Chains of circulators and
filters in the output lines for four-qubit experiments. (b) Sample holders and signal
input cables.

the sample holder minimise unnecessary frequency components of the input signal to

reach the sample. The band-pass filter cuts the signal outside 8 ∼ 12 GHz, so the

qubit drive does not enter the output line.

The wiring configuration of Fig. 2.10 allows us to implement transmission and re-

flective measurements. Both measurement methods collect data from the output line,

but the transmission measurement is implemented by driving the resonator through

the qubit port, and the reflective measurement is done by driving through the res-

onator port. In the output line, we use superconducting cables made of NbTi to

minimise the signal loss after getting out of the sample holder. At the 4 K stage, we

amplify the signal by the High Electron Mobility Transistor (HEMT), which is a com-

mercially available amplifier that operates at 4 K. Although the HEMT effectively

amplifies the signal with very little additional noise, the noise of the readout signal

is limited to the noise temperature of the HEMT, which is 4 K, and this sets the
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ultimate limit of the signal detection efficiency of our measurement setup. Various

superconducting non-linear devices such as Josephson Parametric Amplifiers (JPA)

[67] and Josephson Travelling Wave Parametric Amplifiers (JTWPA) [68] achieve the

near-quantum limited amplification at the base temperature, which could increase the

signal-to-noise ratio and enable the single-shot readout in our system in the future.

2.2.4 Demodulation of the output signal

Outside the fridge, the output signals go through series of amplification and demodu-

lation before they are recorded by a digital computer. The most important step in the

process is the down conversion using an IQ mixer. The signal output from the fridge

V̂o(t) = Ao(e
−ωRF tâ+ eωRF tâ†) and the local oscillator VLO(t) = ALO cos (ωLOt− φLO)

get mixed at the IQ mixers as follows [56],

V̂mix(t) = V̂o(t) · VLO(t) (2.59)

≈ cos(φLO)V̂I(t) + sin(φLO)V̂Q(t) (2.60)

where V̂I(t) = AIF [cos (ωIF t)Î−sin (ωIF t)Q̂], V̂Q(t) = AIF [cos (ωIF t)Q̂+sin (ωIF t)Î]],

AIF = Ao · ALO, ωIF = ωLO − ωRF , Î = â†+â
2

and Q̂ = i(â†−â)
2

. We have ignored the

high-frequency terms in the second line since low-pass filters will filter them out after

the IQ mixer. V̂I(t) and V̂Q(t) can be obtained by mixing the local oscillator having

the phase of φLO = 0, π
2
, and the IQ mixers output these from the I-channel and the

Q-channel. Lastly, signals from these channels get recorded by the Analog-Digital-

Converter (ADC), and we then get on the frame rotating at ωIF by applying a suitable
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Figure 2.12: Schematic of the signal down conversion. In this diagram, the signal
flows from left to right. The output signal from the sample goes through a chain of
amplifiers with suitable filtering at each stage. The IQ mixer takes out the In-phase
and the Quadrature-phase component of the signal, and the analogue-to-digital con-
verter (ADC) transforms them into digital signals that can be stored in a computer.

rotation matrix digitally.

 Î(t)

Q̂(t)

 =

 cos(ωIF t) sin(ωIF t)

− sin(ωIF t) cos(ωIF t)


 V̂I(t)
V̂Q(t)

 . (2.61)

Finally, Î(t) and Q̂(t) are integrated over some time window, and the integrated

values are plotted on a two-dimensional plane so-called the I-Q plane, where we plot

our measurement results in the later chapters.
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Chapter 3

Calibration and tune-up of Circuit

QED devices

In this chapter, we explain the experimental techniques to characterise and operate

circuit QED devices. Previously, we have introduced the circuit QED theory and the

hardware to realise quantum information processing in superconducting circuits. To

make the hardware useful for practical applications, one has to develop a protocol

that realises the high-fidelity operation of the quantum system, so an accurate system

identification and calibration routine are required. Here, we introduce the procedure

to systematically characterise a quantum circuit and calibrate control parameters for

practical quantum algorithm implementation.

The calibration routine is categorised into two steps, system identification and

quantum gate tune-up. The system identification is usually implemented in the early

stage of experiments to identify the superconducting device’s physical parameters.

Device parameters found at this stage are essential in succeeding experiments and

valuable for analysing experimental results and guiding the circuit design of the next-

generation devices. After obtaining the basic device parameters, we implement a se-
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quence of quantum control calibration experiments to maximise the quantum state’s

controllability. Since the device and the control systems drift over time, we need

to repeat the calibration routine regularly. Therefore, it is vital to develop an effi-

cient and accurate tune-up routine to calibrate the system to save time for the main

experiments.

This chapter contains two sections, introducing the system identification and the

quantum gate tune-up routine implemented in our lab. In the first part, we review

the circuit QED representation of a two-qubit superconducting circuit and explain

the characterisation routine to find the analytical model’s parameters. In the second

part, we will introduce the quantum gate calibration routine. For an overview of this

chapter, Fig. 3.1 shows our tune-up routine and directs each step of the routine to

the subsection in this chapter.

Figure 3.1: Overview of this chapter. Here we categorised experimental procedures
to bring up a circuit QED system for quantum computing experiments. Grey dotted
arrows indicate preparation experiments required before the main experiment. Black
arrows show the calibration routine during the main experiment to minimise the
systematic error caused by drifts of the instruments and the device parameters.
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3.1 System identification

This section introduces procedures to characterise superconducting devices using the

experimental setup presented in the previous chapter. Although classical electro-

magnetism and circuit theory play roles in characterising the basic circuit properties,

the search for crucial experimental parameters in quantum information processing

(QIP) requires experimental tools different from conventional electrical engineering.

Specifically, to reveal the quantum properties of the superconducting circuits, we use

spectroscopic and pulsed measurement techniques similar to those used in the nuclear

magnetic resonance (NMR). Here, we introduce a sequence of experimental techniques

(see the orange box in Fig. 3.1) to find superconducting circuit parameters linking

several formulae derived in the theory chapter. This section aims to bridge the theory

and practical aspects of the circuit QED formalism by giving concrete examples of

the experimental results on device 4Q31.

3.1.1 The circuit QED model for a 2-qubit device

The goal of the system identification for the circuit QED system is to determine the

circuit parameters from experimentally obtainable parameters. The more accurate

the theoretical prediction is, the more precisely we learn about the system, which is

crucial in analysing advanced experiments and designing new devices. As we have

seen in previous sections, the circuit QED formalism plays a crucial role in interfacing

between the theoretical model and experiments [11, 51, 69, 70]. In this section, we

first review the circuit QED formulae that relate experimental observables to the

device parameters. Particularly, we revisit equation (2.15), (2.23), (2.36), (2.41) from

the previous chapter to model a system with two qubits and resonators. It serves as

1Device 4Q3 is a four qubit device fabricated by a colleague in our lab and we used two of the
four qubits for our experiments. The device parameters are presented in the Appendix A.1
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a suitable example to explain our system identification routine since the two-qubit

system is the simplest coupled qubits system in multi-qubit architectures, and we use

a two-qubit superconducting quantum processor in the main experimental results of

this thesis. The total Hamiltonian of a 2-qubit device is as follows,

ĤProcessor =
∑
i=1,2

(
ĤRi + ĤQi + ĤRi−Qi

)
+ ĤQ1−Q2 (3.1)

ĤRi = ~ωri(â
†
i âi +

1

2
) (3.2)

ĤQi = ~ωqi b̂
†
i b̂i +

~αi
2
b̂†i b̂
†
i b̂ib̂i (3.3)

ĤRi−Qi = ~gi(âib̂†i + b̂iâ
†
i ) (3.4)

ĤQ1−Q2 = ~J(b̂1b̂
†
2 + b̂2b̂

†
1) (3.5)

where, âi and b̂i are annihilation operators of a resonator and a qubit in the ith

qubit-resonator unit cell. Parameters ωri and ωqi are the resonant frequencies of a

resonator and a qubit, αi is the anharmonicity of the ith qubit, gi is the coupling

strength between a resonator and a qubit in a unit cell and J is the coupling strength

between qubits. The cross-talk between a resonator and a qubit in different unit

cells is negligible in this architecture, so we have ignored the inter-cell resonator-

qubit coupling terms ĤR1−Q2 and ĤR2−Q1 [54]. We have designed our qubits in

the transmon regimes, so the duffing oscillator approximation (3.3) and the rotating

wave approximation (3.4), (3.5) are valid, and we consider that these parameters are

sufficient to characterise and numerically simulate the target system.

The aim of this section’s system identification protocol is to determine ωri , ωqi , αi, gi

and J by a sequence of experiments with a sensible order. The number of parameters

that characterise a two-qubit quantum processor is eleven since it consists of two

qubits, two resonators and three coupling capacitors. To determine these parame-

ters, we implement different kinds of characterisation experiments such as resonator
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spectroscopy, qubit spectroscopy, Rabi oscillation, and Ramsey interferometry. In

the following, we give a step-by-step introduction to the system identification proto-

col using data taken from actual experiments. Although we focus on the two-qubit

case, the experimental sequence introduced in this section can be generalised to any

number of qubits.

3.1.2 Device characterisation by spectroscopy

Resonator spectroscopy

In the circuit QED architecture, each qubit is coupled to a dedicated resonator to read

out the qubit’s state. Since it is difficult to observe transmons directly in the charge

basis [51], the first step of the circuit QED experiment is to inspect the resonators’

physical properties. Typically, a resonator is modelled as an LC circuit, so we have

a rough estimate of the resonant frequency by the circuit design and its electrostatic

simulation.

Having a rough estimate of the resonator frequency, we search for the more pre-

cise frequency by spectroscopy, an experimental technique originated in the atomic

physics community. The spectroscopy is implemented by sending a continuous-wave

microwave drive to the system and sweeping the drive frequency to find the res-

onance. Fig. 3.2 shows the S11 response of a reflective measurement on one of the

resonators used in our experiments. By fitting the resonator response using the fitting

routine developed by Peter Spring and Matthias Mergenthaler [54], we have found

4Q3/Q1’s resonator’s resonant frequency ωr0/2π = 10.837 GHz, the internal quality

factor Qint = 3.2×104 and the external quality factor Qext = 6.3×103. Note that the

resonator that is dispersively coupled to a qubit has a different resonant frequency

depending on the qubit’s state, and the resonant frequency obtained here is the one

with the qubit in the ground state.
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Figure 3.2: Resonator spectroscopy plotted in magnitude, phase and the IQ plane.
By fitting the resonator response, we obtain the resonant frequency ωr/2π = fr =
10.837 GHz, the internal quality factor Qint = 3.2 × 104 and the external quality
factor Qext = 6.3× 103. The fitting function takes the effects of the signal lines into
account and the details of the function can be found in [54].

Qubit spectroscopy

In the qubit spectroscopy, the resonator response is used as a reference to find the

qubit’s resonant frequency. In addition to the microwave drive fixed to the resonator’s

resonant frequency ωr0, we send another drive to the qubit and sweep the drive

frequency. Assuming that the qubit and the resonator are dispersively coupled, we

can expect that the resonator’s resonant frequency gets shifted depending on the

qubit’s state [11]. When the qubit drive is on resonance with the qubit’s resonant

frequency, the qubit gets populated which results in the change in the resonator’s

response due to the dispersive shift. Fig. 3.3 shows the two-dimensional plot of the

qubit spectroscopy swept by the qubit drive frequency and the qubit drive power.

We can find multiple features flagged by change in the S11 response indicated by

transition in colours and this is typical for a transmon qubit. From the plot, we can

obtain the qubit’s resonant frequency ω01/2π = 6.780 GHz and the anharmonicity

α/2π = ω02 − ω01 = −322 MHz, and we use this α to derive the charging energy EC

later in Subsec. 3.1.5.
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Figure 3.3: Qubit spectroscopy swept by drive frequency and power. The imaginary
part of the reflected signal (S11) is plotted on the graph, and the change in colour
shows the resonance of the drive and qubit’s transition frequencies. Five peaks in the
plot are expected to be f01, f02/2, f12 ≈ f03/3, f13/2, f23 ≈ f14/3 from right to left.

3.1.3 Quantum state discrimination on the IQ plane

Pulsed measurements

After obtaining the initial estimate of the qubit’s and the resonator’s resonant fre-

quencies, we further characterise the system based on pulsed measurements. In the

pulsed approach, we instruct qubit control and readout by a series of microwave

pulses. This way, the resonator is in its ground state when the qubit is driven, which

avoids the photon-number dephasing of the qubit. Also a qubit and a resonator are

not driven simultaneously, so each dynamics is isolated from the other. Since the

resonant frequency of a component in a dispersively coupled system depends on the
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population of the other component, it is important to fix the population of the qubit

(resonator) when finding the control (readout) parameters of the resonator (qubit).

Readout result on the IQ plane

In the pulsed measurements, a resonator is populated only for a finite time, so we

window the output signal to collect as much information and less noise as possible.

As we introduced in Section 2.2.4, we demodulate the windowed output signal, and

we obtain the In-phase voltage and the Quadrature phase voltage. Therefore, we can

map the resonator’s response of each measurement to a point on the IQ plane, and

the result of the dispersive readout results in two different coordinates in the IQ plane

depending on the qubit’s state. When we prepare a qubit in the ground state or the

excited state, and measure them many times, we see two clouds in the IQ plane as

Fig. 3.4, and the spread of the distribution comes from the noise of the output signal.

The signal-to-noise ratio (SNR) is defined by the ratio of the distance between the

centre points of the distributions and the standard deviation. In the ideal case of

high SNR, there is minimal overlap between each distribution so that we can set a

threshold at the middle of each distribution and count the population of the qubit’s

state. With high SNR, we can even infer the qubit’s state with single shot, which is

vital for feedback measurements, but the so-called single-shot readout requires low-

noise amplifiers such as JPA [67] or TWPA [68]. Since they are not available in our

lab currently, we took an alternative approach called averaged measurements.

Without significant amplification, we typically find two distributions overlapping

like Fig. 3.4(b), leading to infidelity in the single-shot readout. However, if we are

only interested in the ensemble average of observables, which is the case for various

applications such as quantum state tomography, the single-shot readout is unneces-

sary. Suppose we prepare a qubit in the steady-state and repeat the measurement



55

Figure 3.4: Quantum state discrimination in the IQ plane. (a) Single-shot measure-
ment results on the IQ plane. Here, a qubit is prepared in the ground state (blue)
or the excited state (orange). Dark blue and red dots are the average coordinates
of the ground and the excited state results. Circles indicate that points inside the
regions are within the standard deviation from the averaged points. We define our
z-basis on the black line between the blue and the red points. When we measure a
particular quantum state by the averaged measurement, we get an averaged point in
the IQ plane, and we project it to the black line to obtain the expectation value 〈Ẑ〉.
For example, the averaged point of the ground state (blue dot) returns 〈Ẑ〉 = 1 and
the excited state (red dot) returns 〈Ẑ〉 = −1. (b) The distribution of measurement
results prepared in the ground state (blue) or the excited state (orange). All shots in
(a) are projected to the grey line to generate the histogram. The horizontal axis is
rescaled to the same scale as the z-basis, where +1 (dark blue line) and −1 (red line)
corresponding to the dark blue and red dots in (a) indicating the mean value of each
distribution.

many times. The average of the measurement results converges to a point on the IQ

plane, and we can define the steady state’s coordinate as the ground state on the IQ

plane. Similarly, we define the excited state on the IQ plane by measuring the qubit’s

excited state many times. Now, consider preparing a superposition state and taking

the average of the measurement results. The averaged signal converges to a point

and can be projected to a line that goes through the ground and the excited states

coordinates. The population of the qubit state can be inferred by the internal ratio

of the projected point dividing the line between the ground and the excited states

(black line in Fig. 3.4). Throughout this thesis, we estimate the z-basis population
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〈Ẑ〉 using the averaged measurement, and denote the measured pseudo-population

by 〈Z̃〉.

In practical measurements, the reliability of the z-basis depends on how accu-

rately we prepare the excited state, hence the fidelity of the π-rotation of the qubit.

Although we do not assume a perfect π-pulse at the beginning of the calibration, later

characterisation experiments such as the Ramsey interferometry and single-qubit gate

pulse shaping are not sensitive to the absolute value of the z-basis, so we can proceed

with the calibration routine with the tentative z-basis.

3.1.4 Rabi oscillation

We have seen in Section 2.2.2 that a qubit’s state can be controlled by sending a

microwave at the qubit’s resonant frequency. To target a particular superposition

state on the Bloch sphere (2.6), we shape our control pulse to a specific amplitude

and phase. The most frequently occurring rotation angles are π and π
2
, which are

utilised in various characterisation experiments such as Ramsey interferometry, the

Spin-echo experiment and the Randomised Benchmarking [71]. To find the suitable

pulse parameters for the π and π
2

rotation, we first check the Rabi frequency of a

given microwave drive. We implement the Rabi oscillation experiment by sending a

square pulse of fixed-amplitude A to a qubit and sweeping the pulse duration, and

we obtain the Rabi frequency Ω of the applied field (see Fig. 3.5).

Typically, we first decide the duration of the π and π
2

pulses and calibrate the

pulse amplitudes experimentally. When the drive is not too strong, Ω scales linearly

to A, so we can estimate the amplitude A′ for a π-pulse of duration T ′ by the following

extrapolation,

A′ =
Ω′

Ω
A =

A

2ΩT ′
. (3.6)
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where Ω′ = 1
2T ′

is the target Rabi frequency of the drive that achieves π-rotation in

time T ′. The pulse area A·T is a useful metric for determining the pulse amplitude for

other pulse shapes such as the Gaussian and the Blackman envelope. For example, the

amplitude of a Gaussian pulse of duration T ′ can be set by calculating the amplitude

AG that makes the area inside the Gaussian envelope match A′ · T ′,

∫ T

0

AG exp

(
−(t− T ′/2)2

2σ2

)
dt = A · T, (3.7)

where σ is the standard deviation that determines the curvature of the Gaussian

envelope and we have assumed that the pulse is truncated at the edge.

Figure 3.5: Rabi oscillation experiment. (a) Pulse sequence of the Rabi oscillation
experiment. In the pulsed measurements, we send a qubit drive pulse and a measure-
ment pulse without an overlap in time. (b) The data taken from the actual exper-
iment. We estimate the Rabi frequency Ω by fixing the amplitude A and sweeping
the duration T of the square pulse.



58

The Rabi oscillation experiment is relatively robust to the miscalibration of qubit’s

drive frequency, so we chose this experiment as the initial step of the pulse calibration.

The fidelities of π and π
2

pulses generated by the simple Rabi oscillation experiment

are sufficient for other characterisation experiments introduced in this section and

further improvement of the single-qubit gate fidelity requires the drive frequency

calibration by Ramsey interferometry, so we leave further pulse shaping calibration

to the next section.

3.1.5 Ramsey interferometry

To minimise the qubit drive detuning, we find the more accurate qubit resonant

frequencies by Ramsey interferometry experiments [72].

The pulse sequence of the Ramsey interferometry on one qubit is indicated in the

Fig. 3.6. First, we prepare a qubit in the superposition state |+〉 = 1√
2
(|0〉 + |1〉) by

applying Ŷπ
2

pulse to the ground state |0〉. We then let the qubit evolve under the

drive frame Hamiltonian for time t,

Ĥ′/~ =
1

~
(Û †ĤÛ − iÛ †∂

˙̂
U

∂t
) = −ωq − ωd

2
Ẑ = −δ

2
Ẑ, (3.8)

where Ĥ = −~ωq
2

is the lab frame Hamiltonian and Û = exp
(
−ωd

2
Ẑ
)

is the unitary

transformation to the drive frame of frequency ωd. In the Ramsey interferometry

Figure 3.6: Pulse sequence of the Ramsey interferometry experiment. The black and
white bars represent Ŷπ

2
and Ŷ−π

2
gates separated by a free-evolution of the background

Hamiltonian Ĥ = −~ωq
2

for ∆t.
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experiment, we find the detuning δ by measuring the qubit state in the x-basis. This

is equivalent to applying Ŷ−π
2

pulse to the final state |ψ(t)〉 = exp
(
−iĤt
~ |+〉

)
and

reading out the qubit state in the z-basis.

〈ψ(t)| X̂ |ψ(t)〉 = 〈ψ(t)| Ŷπ
2
ẐŶ−π

2
|ψ(t)〉 = − sin(δt) (3.9)

3.1.6 Ramsey interferometry on ZZ-coupled qubits

The situation is different for always-on coupled qubits. When the dispersive coupling

(2.51) to the other qubit cannot be neglected, the background Hamiltonian of a two-

qubit system in the doubly-rotated drive frame Û = exp
(
−ωd1

2
ẐÎ − ωd2

2
ÎẐ
)

becomes,

Ĥ′Q−Q/~ = −
ω′q1 − ωd1

2
ẐÎ −

ω′q2 − ωd2

2
ÎẐ +

ζ

4
ẐẐ (3.10)

= −δ1

2
ẐÎ − δ2

2
ÎẐ +

ζ

4
ẐẐ, (3.11)

where the dressed frequencies ω′q1 = ωq1 + J2

∆12
+ ζ

2
, ω′q2 = ωq2− J2

∆12
+ ζ

2
and the dispersive

coupling strenth ζ = − 2J2(α1+α2)
(∆12+α1)(α2−∆12)

are obtained from Eq. (2.51). Since there are

three parameters to find, such as the detunings of one-qubit terms and the dispersive

coupling strength ζ, a single run of the Ramsey interferometry is not enough. Instead,

we implement the following overcomplete set of four different Ramsey interferometry

experiments to determine the two-qubit Hamiltonian,

1. Initialise |ψ(0)〉 = |+, 0〉, wait for time t and measure qubit 1 in the x-basis.

Expected result : 〈ψ(t)| X̂Î |ψ(t)〉 = sin
(
(−δ1 − ζ

2
)t
)

2. Initialise |ψ(0)〉 = |+, 1〉, wait for time t and measure qubit 1 in the x-basis.

Expected result: 〈ψ(t)| X̂Î |ψ(t)〉 = sin
(
(−δ1 + ζ

2
)t
)

3. Initialise |ψ(0)〉 = |0,+〉, wait for time t and measure qubit 2 in the x-basis.
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Expected result: 〈ψ(t)| ÎX̂ |ψ(t)〉 = sin
(
(−δ2 − ζ

2
)t
)

4. Initialise |ψ(0)〉 = |1,+〉, wait for time t and measure qubit 2 in the x-basis.

Expected result: 〈ψ(t)| ÎX̂ |ψ(t)〉 = sin
(
(−δ2 + ζ

2
)t
)

Fig. 3.7 shows an example of the two-qubit Ramsey interferometry experiment,

which we find the qubit frequencies ω′q1 = 6780.24 MHz, ω′q2 = 7082.78 MHz and the

dispersive coupling strength ζ = −3.91 MHz. With these parameters and Eq. (2.51),

(2.52), we obtain the qubit-qubit coupling strength J = 8.475 MHz.

The two-qubit Ramsey interferometry experiment is crucial for our experiments

since the qubit-qubit dispersive coupling ζ plays an important role in the quantum

algorithm implementation. Due to the qubit frequencies’ drifts, the drive frequency

detunings and the dispersive coupling strength changes over time. Therefore, we

frequently monitor the coupling strength and recalibrate drive frequencies by the

Figure 3.7: Pulse sequence and the experimental result of a two-qubit Ramsey ex-
periment. Pulse sequences are indexed following the numbering of the experimental
configurations mentioned in the main text. For simplicity of the diagram, we have
put the measurement pulse and the qubit drive pulse on the same line.
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two-qubit Ramsey experiment to minimise drift errors.

3.1.7 The dispersive coupling strength

The last parameter to fully characterise the two-qubit system is the dispersive cou-

pling between a qubit and a resonator. To find the dispersive shift, we populate

the qubit and observe the resonator’s resonant frequency shift. Here, we excite the

qubit by a π-pulse and implement the pulsed resonator spectroscopy by sweeping

the drive frequency of the measurement pulse. Fig. 3.8 shows the result of the res-

onator spectroscopy on the first resonator of the device 4Q3 having two dips. The

left dip corresponds to the resonator’s resonant frequency when the qubit is excited,

and the right dip is when the qubit is in the ground state. We observe two dips in

the same spectroscopy because part of the excited state population relaxes during

the measurement, and the resonator spectroscopy reflects both effects from the ex-

cited and the ground state population. The difference frequency between the two

dips corresponds to twice the dispersive shift χ = 1.95 , and the centre frequency

was ω′r = 10835.2 MHz. With these parameters and Eq. (2.48), (2.49), we obtain the

coupling strength g = 327.5 MHz, the bare qubit frequency ωq = 6806.7 MHz and

the bare resonator frequency ωr = 10810.7 MHz.

In this section, we provided a step-by-step introduction to fully characterising a

two-qubit circuit. The sequence of characterisation experiments provided sufficient

parameters such as ωri , ωqi , αi, gi (i=1,2) and J to model the system using Eq. (3.1),

(3.2), (3.3), (3.4) and (3.5).
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Figure 3.8: Resonator spectroscopy and the dispersive shift. Each data point in
the graph is the average of 10,000 shots. Due to the averaged measurement, the
resonator’s response reflects both effects from the excited (left dip) and the ground
(right dip) state population of the qubit.

Sec. Parameter
2Q1 4Q3

Method
Q1 Q2 Q1 Q2

3.1.2 α/2π [MHz] -299 -310 -322 -294 Qubit spectroscopy

3.1.6

ω′q/2π [MHz] 6581.2 6047.3 6780.2 7082.8 State-dependent
ζ/2π [MHz] -0.942 -3.908 Ramsey

J/2π [MHz] 13.56 8.475
ω′q, α, ζ →

Eq. (2.51), (2.52)

3.1.7

ω′r/2π [MHz] 10542.0 9499.0 10835.2 11308.2 State-dependent
χ/2π [MHz] 2.93 2.62 1.95 2.30 spectroscopy
g/2π [MHz] 406.8 331.1 327.5 386.5

ω′r, ω
′
q, α, χ→ωr/2π [MHz] 10503.2 9469.9 10810.7 11275.1

Eq. (2.48), (2.49)
ωq/2π [MHz] 6623.0 6079.1 6806.7 7118.2

Table 3.1: Summary of the system characterisation experiments introduced in this
section and obtained values for devices we used for this thesis.
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3.2 Quantum gate calibration routine

In the previous section, we have introduced the experimental procedure to characterise

superconducting devices. To make the most of the characterised device for quantum

information processing, we calibrate the control signal to maximise the quantum

control fidelity. Building on top of the infrastructure and experimental techniques

introduced in the previous sections, we will demonstrate our methodology to bring

up the control system for quantum algorithm experiments. First, we overview the

whole tune-up routine and discuss the motivation. We then introduce a detailed

procedure of the tune-up routine and gate characterisation experiments to realise

high-fidelity gates. To demonstrate the idea of the calibration routine, we chose

relevant experimental results on device 2Q1 and 4Q3.

3.2.1 Overview and motivation

The goal of the gate calibration routine is to find the optimal pulse shape ε(t) in the

following drive Hamiltonian to achieve the highest control fidelity.

Ĥqdrive = ~εq(t)
[
b̂†e−i(ωd+φd) + b̂ei(ωd+φd)

]
(3.12)

In principle, we can simulate the quantum device’s behaviour by the physical model

(3.1), (3.2), (3.3), (3.4) and (3.5), with the device parameters ωri , ωqi , αi, gi (i=1,2)

and J obtained in the previous section. These physical models and measured pa-

rameters should allow us to find the optimal microwave pulse shape by analytically

finding the solution [73] or by numerical simulation [74]. However, pulses obtained

by the off-line optimisation can not be used straight away since Eq. (3.12) assumes

an ideal situation where the exact pulse shape εq(t) arrives at the qubit, which is not

the case in reality. Typically, we define the pulse shape εq(t) on a digital computer,
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transform it to an analogue microwave pulse by the digital-to-analogue converter,

upconvert the pulse to the radio frequency signal and send it through the input line

before it reaches the qubit. Each component contributes to the distortion of the

pulse shape, and the drift of the microwave electronics hinders reproducibility. The

gate calibration routine compensates for these nonidealities in the control system and

improves the qubit’s control fidelity by optimising the control parameters using ac-

tual qubit measurements. The calibration protocol connects the missing link between

the signal definition and the actual waveform applied to the qubit without carefully

characterising the transfer function of the control system.

Since we implement the calibration routine repeatedly to minimise errors from

the drift, it is crucial to develop an efficient calibration routine to save as much time

for the main experiment as possible. In addition, we need to make sure that the

calibration routine is robust against variation in device parameters to avoid failure

in finding the optimal control parameters. The failure often comes from searching a

wrong parameter range in the control parameter space, so we start searching from

a broader range and narrow it down until it reaches the optimum. Furthermore,

the order of calibration experiments matters because some calibration experiments

use single-qubit gates to characterise specific parameters, and we might misinterpret

the result by imperfect single-qubit gates. It is a chicken-and-egg situation where

we need to calibrate single-qubit gates using the calibration routine that relies on

the performance of single-qubit gates. Therefore, we gradually bring up both the

qubit gate fidelity and the accuracy of the calibration by tailoring specific order of

experiments. Considering the trade-off between efficiency, robustness and the order

of experiments, we have made our tune-up routine as a flowchart of Fig. 3.1, and we

will introduce each step in the following subsections.
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3.2.2 Pulse shaping

In the previous section, we have assumed square pulses for the pulsed measurements.

However, the square pulse has a wide frequency spread in the Fourier space, leading

unwanted transitions to non-computational states. Therefore, we shape pulses by

Gaussian or Blackman windows, narrowing down the pulses’ bandwidth to avoid

unwanted transitions. Even with the windowing function, there are some leakages

to the higher excited states when we drive the qubit very hard, so the pulse shaping

that avoids such leakage is desirable. A specific analytic pulse shape to minimise the

leakage to the 3rd level known as Derivative Removal by Adiabatic Gate (DRAG)

has been developed, which eliminates the leakage and the detuning error that cause

the control errors on transmon qubits [73]. The DRAG uses the second quadrature

of the pulse to minimise the leakage and dynamically control the drive frequency to

reduce the detuning error caused by the ac-Stark shift,

εy(t) =
εx

2πα
, (3.13)

δ(t) =
ε2x(t)

4πα
(3.14)

Figure 3.9: The DRAG correction applied to a pulse shaped by the Blackman window.
For later use, we define the maximum amplitude of the first quadrature as A =
max |εx(t)| and the maximum amplitude of the second quadrature as D = max |εy(t)|.



66

where εx, εy are the first and the second quadrature of the pulse and δ is the de-

tuning of the drive frequency from the qubit’s 0 − 1 transition frequency [73]. We

also implement a further refinement known as half-DRAG in our tune-up routine,

which allows the DRAG correction without dynamically controlling the detuning [75].

Fig. 3.9 shows the example pulse shaped by the Blackman window with the DRAG

correction. Overall, the optimisation of the single-qubit gates with the half-DRAG

correction requires only two parameters, the amplitude of the pulse A and the DRAG

coefficient dDRAG = D
A

, which significantly reduces the calibration complexity.

3.2.3 Amplitude tune-up

As we mentioned in the previous section, the rotation angle of the single-qubit op-

eration is proportional to the pulse amplitude and duration. Typically, we fix the

duration and optimise the pulse amplitude experimentally. As an initial guess, we

set the pulse amplitude using the result from the Rabi oscillation experiment and

normalising the pulse amplitude depending on the shape of the envelope. To further

calibrate the pulses, we fine-tune the pulse amplitude by applying pulse trains to

amplify over or under rotation errors. For example, the rotation error of X̂π
2

pulse

can be amplified by the following pulse train experiment,

1. Initialise a qubit in the superposition state |ψ〉0 = |+〉.

2. Apply X̂π
2

(X̂π) pulse 4n (2n) times and take a measurement in the z-basis:

〈Z̃〉n.

3. Repeat 1. and 2. with increasing n = 1, 2...N .

4. Find the rotation error per gate, δ, by fitting the results 〈Z̃〉n = 4nδ.

For small δ, the rotation error scales linearly to the number of pulses because when

the initial state is prepared in the equator of the Bloch sphere, the total rotation
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Figure 3.10: Experimental results of the amplitude calibration. Blue points indicate
the final state populations after the application of pulse trains with increasing number
of pulses N = 2, 4, 8, 16, 32, 128, 256 and 512. We can observe that the slopes of the
fit is large at the beginning of the calibration (N = 2, 4, 8, 16), which indicate large
rotation errors before the calibration.

error measured in the z-basis scales as sin(nδ) ≈ nδ. On the other hand, when

the qubit was prepared in |0〉 or |1〉, the measured result scales quadratically as

cos(nδ) ≈ 1 − (nδ)2

2
for small δ. The quadratic scaling of the error amplification

in the z-basis is much smaller than the linear scaling, so we chose to initialise the

qubit in the superposition state |+〉. As we can see from the example run of the X̂π
2

pulse tune-up shown in Fig. 3.10, it takes multiple runs until it reaches the optimum.

Each time we find the rotation error δ, we correct the pulse amplitude and repeat

the procedure 1, 2, 3 and 4 with increasing N until the amplitude converges. This

approach allows an experimentalist to tune up high-fidelity gates by extending pulse

trains until decoherence dominates the error.
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3.2.4 DRAG tune-up

DRAG correction to the original pulse envelope mitigates the leakage and the detun-

ing errors. Here, we define the DRAG coefficient dDRAG as the ratio of the second

quadrature amplitude D to the first quadrature amplitude A in Fig. 3.9,

dDRAG =
D

A
=

max |εy(t)|
max |εx(t)|

(3.15)

and the initial guess of dDRAG is calculated by the theoretical predication Eq. (3.13).

To further fine-tune the pulse, we implement the following tune-up routine,

1. Set dDRAG, and apply a gate sequence of X̂π − Ŷ−π − X̂π − Ŷπ.

2. Apply Ŷπ
2

or Ŷ−π
2

and measure in the z-basis to obtain 〈Z̃(dDRAG)〉+ or 〈Z̃(dDRAG)〉−.

3. Repeat 1. and 2. by sweeping dDRAG.

4. Fit 〈Z̃(dDRAG)〉± = ±δ · dDRAG and choose dDRAG at the intersection.

±δ can be obtained by the slopes of the fits. The pulse sequence at step 1 and the

final gate Ŷ±π
2

at step 2 are chosen such that the measurement result scales linear to

δ with opposite signs and can find the intersection where the error is minimal. The

measurement results and the fits are displayed in Fig. 3.11.

3.2.5 Benchmarking gates

Randomized benchmarking

Having gates tuned up, we then evaluate the gate fidelity by the randomised bench-

marking protocol [71, 76]. The gate fidelity obtained by randomised benchmarking

is regarded as a cross-platform metric used to evaluate the performance of various
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Figure 3.11: DRAG coefficient calibration. Orange (Blue) points indicate the result

of 〈Z̃(dDRAG)〉+ (〈Z̃(dDRAG)〉−).

hardware [8, 77, 78]. Here, we explain the randomised benchmarking protocol, the

experimental results and how we apply it to our tune-up routine.

Similar to the amplitude tune-up, randomised benchmarking uses pulse trains to

characterise small errors in gates. In a sequence of many gates, the success probability

of the entire operation should decrease as we add gates. From this observation, we can

roughly estimate the error per gate by the decay rate of the success probability to the

number of gates in the gate sequence. However, since we don’t have the knowledge

of the error model of the gates, the gate sequence must not catch specific error, so we

can not use a gate sequence that repeats the same gate like we did for the amplitude

tune-up.

In the randomised benchmarking, applied gates are random so that a quantum

state arrives at the random direction on the Bloch sphere in each step. We randomise

the quantum state because we can balance the effects from various noise channels
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Figure 3.12: Depolarising channel and cardinal points of the Bloch sphere. The
depolarising channel maps a pure state on the surface of the Bloch sphere to a state
vector on a smaller sphere (orange) of radius p in the same direction. Cardinal points
of the Bloch sphere corresponds to the eigenstates of one-qubit Pauli operators, |0〉,
|1〉, |±〉 and |±i〉.

such as rotation error, energy relaxation and decoherence, whose effects on the system

depend on the qubit’s state2. This noise randomisation technique is called ”twirling”

[76], where we can approximate the average error rate of the system’s various noise

channels by a depolarising channel,

Λd(ρ̂) = pρ̂+
1− p
d

Î (3.16)

where d is the system dimension and Λd is the superoperator that maps the input

density matrix ρ̂ to the depolarised density matrix ρ̂′ [46]. Eq. (3.16) means the

depolarising channel Λd preserves the same state ρ̂ with probability p and completely

mixes the state otherwise, which suits well with our objective to quantify the success

probability of a given gate sequence. A random gate sequence of length l applied to a

qubit (d = 2) results in a successive application of the depolarising channel Eq. (3.16)

2For example, a qubit in the ground state does not experience the energy relaxation and deco-
herence.
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to the input state ρ̂0 for l times,

ρ̂l = Λl
2(ρ̂) = plρ̂+

1− pl

2
Î (3.17)

and the success probabililty of a single shot of an experiment is defined by the state

fidelity of the input state ρ̂0 and the final state ρ̂l,

p
(i)
l = Tr(ρ̂0ρ̂l) = Tr(ρ̂0Λ(ρ̂0)) =

1

2
+

1

2
pl, (3.18)

which decreases exponentially with increasing l. The last gate is the inverse of the

previous gate sequence Ûl = (Ûl−1· · · Û2Û1)−1 so that the final state becomes the

same state as the initial state if the application of the gate sequence was successful.

Although Eq. (3.19) assumes no state preparation and measurement (SPAM) errors,

in general, they will be absorbed in the y-intercept and the offset of the exponential

curve,

p
(i)
l = Apl +B, (3.19)

where p
(i)
0 = A + B absorbs both SPAM errors and liml→∞ p

(i)
l = B reflects the

measurement error. This way, the randomised benchmarking fidelity only depends on

the decay rate p and is isolated from the state preparation and measurement (SPAM)

errors, which could not be achieved in estimating the gate fidelity by quantum process

tomography.

Typically, for a chosen gate sequence length l, we take K=40 random seeds and

obtain the average success probability p̄l =
∑K

i=1 p
(i)
l . The average gate fidelity is

defined by Fave = p + 1−p
d

and p can be obtained by fitting the experimental results

p̄1, p̄2, ..., p̄L for various gate sequence length l = l1, l2, ..., lL. To save the number of
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Figure 3.13: Randomised benchmarking pulse sequence. Each step of the random
gate sequence is chosen from Clifford gates Ĉi (i = 24), which can be decomposed
to basic physical gates. The inverse operation Ĉl brings back the final state to the
initial state to check if the gate sequence was successful or not.

averaging, we sample from a sensible selection of discrete quantum states; cardinal

points of the Bloch sphere (see Fig. 3.12), instead of random points on the Bloch

sphere. This is equivalent to choosing random gates from the Clifford group3 rather

than picking from arbitrary SU(2) operation [76]. There are only twenty-four kinds

of Clifford gates for single-qubit operation, so there is a significant reduction in the

sampling space. Single-qubit Clifford gates can be decomposed by basic physical

gates such as X̂π, X̂π
2
, Ŷπ, Ŷπ

2
(see Appendix A.2), so we only need to calibrate pulse

amplitude and the DRAG coefficient for π and π
2

rotations. Moreover, we can simulate

the successive application of Clifford gates by classical computers [79], so the inverse

operation Ĉl = (Ĉl−1· · · Ĉ2Ĉ1)−1 can be found efficiently. Due to the simulability of

the Clifford circuit, randomised benchmarking is known to be scalable to the number

of qubits, whereas the number of measurements in the quantum process tomography

scales exponentially to the number of qubits.

Fig. 3.14 shows the result of the randomised benchmarking experiment of a Black-

man pulse with time duration of t = 36 ns on device 2Q1. The obtained fidelity per

Clifford gate to each qubit was, Fc,1 = 99.47± 0.06% and Fc,2 = 99.46± 0.09%, and

the fidelity per physical gate was, Fp,1 = 99.72 ± 0.04% and Fp,2 = 99.71 ± 0.05%.

The fidelity per physical gate can be calculated by considering the average number

3Single-qubit Clifford gates are single-qubit operations that map any cardinal points of the Bloch
sphere to other cardinal points.
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Figure 3.14: The result of the randomised benchmarking experiment on (1) qubit 1
(2Q1/Q1) and (2) qubit 2 (2Q1/Q2). The vertical axis is the final state population
obtained by the population estimation protocol using the IQ plane introduced in
Subsec. 3.1.3. We fit the average final state population p̄l by an exponential function
p̄l = Apl +B to calculate the fidelity.

of physical gates per Clifford gate, Fp = F
1

1.875
c .

Simultaneous Randomized benchmarking

When we control coupled qubits, we are concerned about the cross-talk between

them, and we can characterise the cross-talk by a variant of randomised benchmark-

ing, called simultaneous randomised benchmarking. The simultaneous randomised

benchmarking on two qubits compares the gate fidelity of the following experiments

and extracts the addressability and the quantum cross-talk between the qubits.

1. Single-qubit randomised benchmarking on qubit 1
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2. Single-qubit randomised benchmarking on qubit 2

3. Single-qubit randomised benchmarking on qubit 1 and 2 simultaneously

For each experiment i = 1, 2, 3, we measure the final state population p
(i)
00 , p

(i)
01 , p

(i)
10

and p
(i)
11 and calculate the success probability of the gate sequence. For example, in

the first experiment, the success probability of the gate sequence can be described

by the ground state population of the first qubit traced out by the second qubit;

p1 = p
(1)
00 + p

(1)
01 . The error per Clifford gate r1 = 1−p1

2
can be obtained by the decay

rate p1 of the ground state population of the first qubit. On the other hand, we

can measure the error per Clifford gate r2 = 1−p2

2
of the second qubit by measuring

the decay rate p2 of the second qubit’s ground state population p2 = p
(2)
00 + p

(2)
10 . In

the third experiment, p
(3)
00 + p

(3)
01 (p

(3)
00 + p

(3)
10 ) gives the success probability of the gate

sequence for the first (second) qubit when the second (first) qubit is simultaneously

driven, and we obtain the error per Clifford gate r′1 =
1−p′1

2
(r′2 =

1−p′2
2

). The difference

δri = |r′i − ri| (i=1,2) tells us how much the simultaneous drive on the other qubit

affects the average gate fidelity, hence gives us the information of the addressability

to each qubit. Moreover, the correlated measurement gives us the magnitude of the

quantum cross-talk in the system,

δα = α12 − α1|2α2|1 (3.20)

where α12 is the decay rate of the correlated population p
(3)
00 + p

(3)
11 , α1|2 and α1|2 gives

the decay rate of the individual qubit’s population p
(3)
00 + p

(3)
01 and p

(3)
00 + p

(3)
10 .

Fig. 3.15 shows the result of the simultaneous randomised benchmarking experi-

ment of a Blackman pulse with time duration of t = 36 ns on device 2Q1. The address-

ability defined by the error contribution from the other qubit was δr1 = 0.10±0.07%,

δr2 = 0.24± 0.12% and the quantum cross talk was δα = 0.0077± 0.0036.
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Figure 3.15: The result of the simultaneous randomised benchmarking experiment.
(a) The success probability of the gate sequence ignoring the result of the second
qubit of device 2Q1. (b) The success probability of the gate sequence ignoring the
result of the first qubit of device 2Q1/Q1. For both cases, the success probability
decays faster when random gates are applied simultaneously.

3.2.6 Summary

In this chapter, we have described a comprehensive series of characterisation and

calibration experiments used to efficiently and accurately tune up a two-qubit device.

The system identification and the gate tune-up routine complement each other in the

sense that the system identification experiments use control electronics to identify the

quantum device, and the gate tune-up routine uses the quantum device as a testbed

to calibrate the control system accurately.

In summary, we overview the whole characterisation and calibration routine in

Fig. 3.1. The system identification block is usually implemented right after mounting

the sample, and we do not repeat it often. We then optimise the single-qubit gates and
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find the optimal pulse duration that achieves the maximum randomised benchmarking

fidelity, indicated by a grey dashed loop in the gate tune-up routine block of Fig. 3.1.

After we find the optimal pulse duration, we fix the pulse duration and execute the

main experiment. During the main experiment, we repeat the gate tune-up loop

inside the green area as much as run time allows to make the main result robust from

the instrument drift, and monitor the system if there is a fatal failure during the

measurement.
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Chapter 4

Variational quantum algorithm

using spin-echo techniques

Previously, we have introduced the physics of always-on coupled superconducting

qubits and experimental methods to operate them for quantum information process-

ing. In this chapter, we show a proof-of-principle quantum algorithm experiment

using an always-on coupled two-qubit circuit. Here we introduce a novel hardware

compilation of variational quantum eigensolver (VQE) algorithm and quantum error

mitigation, using spin-echo sequence and the always-on interaction. The aim of this

chapter is to show how the native interaction can be used to run a quantum algorithm

by showing concrete example of actual pulse sequences used in experiments. We be-

gin by explaining the basics of the VQE algorithm and listing important formulae

used in later sections. We then show the experimental results of implementing the

VQE algorithm and the quantum error mitigation using spin-echo sequence on an

always-on coupled two-qubit device.
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4.1 Variational Quantum Eigensolver (VQE)

The variational quantum eigensolver is a quantum-classical hybrid algorithm inspired

by the variational method to simulate and find the ground state energy of a quan-

tum many-body system. In contrast to the conventional approach of the variational

method using classical computers, the VQE uses a quantum processor as a quantum

data storage for the trial wave function and complements non-quantum tasks such

as arithmetic and optimisation by a classical computer. The VQE has been imple-

mented in various hardware platforms such as photonics [43], trapped-ions [80] and

superconducting qubits [81] to simulate various molecules such as H2, H2O and H12.

Along with the increase in the simulated molecule size, there have been exten-

sive studies to make full use of noisy quantum hardware by taking realistic physical

constraints and errors into account. For example, conventional two-qubit gates were

replaced by hardware-efficient entanglers in the variational algorithm implementa-

tion to alleviate experimental complication [27]. In their work, they simply applied

cross-resonant drive [25] to the system without cancelling unwanted terms, which al-

lowed them to generate entanglement without needing to carefully calibrate two-qubit

gates. To tackle unavoidable errors in qubits, the error mitigation technique has been

invented [82, 83], and a proof-of-principle experiment has been demonstrated on su-

perconducting qubits [84]. However, there are limitations to these methods as well.

The trial wave function prepared by unstructured hardware efficient gates has diffi-

culty in reaching the optimum due to the barren plateau in the energy landscape [31].

Also, the pulse rescaling technique applied to the error mitigation experiment in [84]

requires careful calibration of two-qubit gates assuring linear scaling of errors to linear

extension of pulse duration, which gives additional experimental constraint and cost.

To overcome these problems and implement hardware-efficient error-mitigated

variational algorithms, we have proposed a novel hardware compilation scheme using
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always-on coupled device and spin-echo sequence. The spin-echo approach uses the

native interaction in the hardware, but it is programmable by using dynamical de-

coupling techniques [35, 36], which will be further explained in Chapter 5. The aim

of this chapter is to show a real-device application of the spin-echo compilation to the

VQE and quantum error mitigation. In this section, we explain the theory of the VQE

and the error mitigation using the actual algorithm used for simulating H2 molecule.

We then show the experimental result of the VQE implementation finding the ground

state energy of the H2 molecule in our two-qubit superconducting quantum processor

in the next section.

4.1.1 VQE for H2 molecule simulation

First, we need to prepare a trial wave function that maps the H2 molecule Hamiltonian

by a quantum processor. The trial wave function is parameterised by a reasonable

guess depending on available parameters on the hardware. Here we parameterised

the trial wave function according to the unitary coupled cluster theory [85, 86, 30]

and formulated the trial wave function as follows,

|ψ(θ)〉 = exp(−iθXY ) |01〉 , (4.1)

where θ is a tunable parameter in a two-qubit system.

For a given trial wave function with chosen parameter θ, we calculate the total

energy of the H2 molecule. In the real space, the total energy depends on the bond

distance between two hydrogen atoms d, but to compute the energy by a quantum

processor, we need to map the original Hamiltonian to the qubit basis by multiple

transformations [30], which in the end, acts only on two qubits. For the H2 molecule

simulation, the transformed Hamiltonian consists of one and two-body Pauli terms
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as follows,

H(d) = g0(d) + g1(d)ZI + g2(d)IZ + g3(d)ZZ + g4(d)XX + g5(d)Y Y, (4.2)

where g0(d), g1(d), ..., g5(d) contain the information of the H2 molecule, and depend

on the bond length between hydrogen atoms (see Appendix A.3). For each d, the

cost function can be evaluated by obtaining the expectation value of the H2 molecule

Hamiltonian for a given trial wave function |ψ(θ)〉,

E(θ, d) = 〈H(θ, d)〉 = 〈ψ(θ)|H(d)|ψ(θ)〉 . (4.3)

Expectation values of Pauli terms 〈ZI(θ)〉, 〈IZ(θ)〉, 〈ZZ(θ)〉, 〈XX(θ)〉 and 〈Y Y (θ)〉

in (4.3) are obtained by partial quantum state tomography of the trial wave function,

and the total energy is calculated by a classical processor.

Lastly, the minimum energy for a given distance d can be found by searching the

optimal θ in the parameter space,

Ẽ(d) = min
θ
E(θ, d). (4.4)

In our experiments, we swept the whole parameter space −π ≤ θ ≤ π to find the

minimum instead of implementing optimisation for each distance. The optimal bond

distance is then obtained by choosing the bond distance d that gives the minimum

energy,

Emin = min
d
Ẽ(d). (4.5)
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4.1.2 Quantum error mitigation by linear extrapolation

In realistic devices, quantum operations are not perfect due to various error sources.

For example, qubits lose information by energy relaxation and decoherence as quan-

tum circuit becomes deeper. Without quantum error correction, a quantum processor

can not correct these errors, so the output of the quantum algorithm varies from the

ideal result as accumulated error increases. However, some of the deviation from

the ideal output can be corrected by post-processing using quantum error mitigation

protocol [83, 82, 87, 84].

Here, we review the zero-noise extrapolation technique [83], which is one the most

straightforward ways to implement quantum error mitigation. The main idea is to

infer the ideal expectation value of a physical observable by additional measurements

with different amount of errors. As shown in Fig. 4.1, let us suppose we measured the

expectation value of one of the Pauli operators as 〈P(r)〉, where r is the magnitude of

error during the algorithm implementation. We then implement the same algorithm

with added errors r + ε to obtain 〈P(r + ε)〉.

By extrapolating these data points, we can infer the ideal result 〈P∗(0)〉 by the

following formula [83],

P(0) =
(r + ε)P(r)− rP(r + ε)

r + ε− r
. (4.6)

The linear extrapolation works when the error is small enough so that the effect of

the higher order terms can be neglected in the extrapolation. In the next chapter, we

use this formula for mitigating errors in the VQE experiment.

The standard error of the estimated expectation value is,

∆P(0) =
r2 + (r + ε)2

ε2
(σ2(r) + σ2(r + ε)) (4.7)
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Figure 4.1: Schematic of the quantum error mitigation using zero-noise extrapolation.
Black curve describes the decay of the expectation value P with respect to the amount
of error. To estimate the expectation value in the ideal case P(0), we take multiple
measurements with different noise amplification factors (red points) and extrapolate
them to get P∗(0). If the error was small enough, the extrapolation can be done by
linear fitting (blue line) [83].

where σ2(r) is the variance of the data point when the noise amplification factor is

r.

4.2 Two-qubit VQE Experiment

In this section, we introduce the methodology of the VQE and quantum error miti-

gation experiment on always-on coupled superconducting quantum processors.

First, we briefly summarise the device characteristics of the superconducting qubit

device used in the VQE experiment. We then introduce the spin-echo pulse sequence

for generating the two-qubit trial wave function and how to modify the pulse sequence

to implement the quantum error mitigation. Finally, we show the state tomography

result of the trial wave function and the simulated ground state energy of the H2

molecule.
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4.2.1 Experimental configuration

The superconducting quantum processor for the VQE experiment consists of two

transmon qubits are directly coupled by a capacitance arm. We have used the device

2Q1 (see Appendix A.1 for device details) for this experiment, and since the detuning

between qubits are much larger than their coupling strength, ∆12 = ωq1 − ωq2 � J ,

we assumed that the qubits are dispersively coupled and the system Hamiltonian can

be described as follows,

Ĥdisp/~ = −ωq1 + J2/∆12 + ζ/2

2
ẐÎ − ωq2 − J2/∆12 + ζ/2

2
ÎẐ +

ζ

4
ẐẐ, (4.8)

where ζ = − 2J2(α1+α2)
(∆12+α1)(α2−∆12)

is the strength of the residual ZZ coupling and α1, α2 are

anharmonicities of the two qubits. The prefactor of each term in Eq. (4.8) is obtained

by the two-qubit Ramsey experiment introduced in Sec. 3.1.5. This Hamiltonian is

crucial for our experiments because we use the residual ZZ interaction to generate

two-qubit entanglement in the trial wave function.

To implement spin-echo, qubit basis rotation and quantum state tomography, we

generated single-qubit gates by sending microwave pulses to each qubit from indi-

vidual control line. Pulse shaping is important for tuning the single-qubit gate at a

specific rotation angle such as π or π
2
, and we chose Blackman envelope for shaping

single-qubit gate pulses. The qubit drive frequencies were set to minimise the single

qubit terms in Eq. (4.8). Amplitude and DRAG coefficients of the pulses are cali-

brated by pulse train tune-up and cross-AllXY tune-up. For single-qubit gates in this

ωr/2π ωq/2π α T1 T2 ζ/2π

Qubit 1 10.54 GHz 6.58 GHz -299 MHz 26.2 µs 21.9 µs
-0.94 MHz

Qubit 2 9.50 GHz 6.05 GHz -310 MHz 19.1 µs 25.6 µs

Table 4.1: Physical parameters of device 2Q1 used for the main VQE experiment.
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|0〉 Ŷπ/2 Ŷ−π/2 tomo

|0〉 X̂ X̂−π/2 R̂z(θ) X̂π/2 tomo

1 2 3 4 5

Figure 4.2: A step-by-step break down of generating the trial wave function for the
VQE estimating the ground state energy of the H2 molecule. (1) Initialising the
trial wave function to |01〉, (2) transforming the basis of the quantum state to x-
basis and y-basis, (3) gate-based compilation of ZZ(θ), (4) restoring the state to the
computational basis and (5) pulse for quantum state tomography.

experiment, we chose a relatively long time duration of 110 ns to minimise the effect

of the leakage.

4.2.2 Spin-echo sequence for preparing the trial wave func-

tion

In the H2 molecule simulation, the trial wave function (4.1) is prepared by applying

a unitary operation Û(θ) = exp
(
−iθX̂Ŷ

)
to the initial state |01〉. For example, in

the gate-based approach, the unitary transformation can be compiled to one and two

qubit gates. The conventional 2-qubit VQE algorithm is shown in Fig. 4.2 [30, 84].

The basis state |01〉 is first prepared at slice 1. Then the unitary evolution Û(θ) =

exp
(
−iθX̂Ŷ

)
is completed at slice 4 and tomography pulses are applied in the end.

The unitary operation between slice 2 and 3 can be any physical implementation as

long as arbitrary ZZ(θ) rotation can be realised. One way, as described above, is to

compile the ZZ(θ) rotation to two CNOT gates and single-qubit Z(θ) rotation. For

example, a CNOT gate can be realised by the cross-resonant interaction [25], which

has been implemented to run VQE algorithms on superconducting circuits [84].

In our approach, we replace the ZZ(θ) operation between slice 2 and 3 by free-
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Figure 4.3: Schematic of the spin-echo sequence of generating arbitrary ZZ(θ) rota-
tion by Ĥ/~ = ζ

4
ẐẐ. Spin-echo pulses are described as rectangles (black: X̂π and

white: X̂†π) and the sign of the phase accumulated by ZZ interaction is depicted as
arrows (blue: positive, orange: negative). The timing of the black spin-echo pulse

determines τ1 and τ2, which controls the total phase accumulation ZZ( ζ(τ1−τ2)
4

).

evolution of the native Hamiltonian and spin-echo pulses. For example, suppose we

have the native Hamiltonian of Ĥ/~ = ζ
4
ẐẐ, we construct the pulse sequence as

Fig. 4.3 to parameterise the ZZ(θ) rotation. In this pulse sequence, the whole time-

evolution is separated by two time periods τ1 and τ2. The first time period is just

a free-evolution accumulating the positive phase ZZ( ζτ1
4

). In the second period, the

negative phase is accumulated by applying spin-echo pulses [33],

(X̂†πX̂
†
π)Û(

τ2

2
)(X̂πX̂π) = exp

(
−iτ2

2~
(
ζ

4
ẐẐ)

)
. (4.9)

The arbitrary ZZ rotation is realised by choosing the timing of the first pulse, which

determines the angle θ = ζ(τ1−τ2)
4

. Here, we set the total dutation T = τ1 + τ2 to be

constant such that the incoherent error during the time-evolution becomes the same

for different ZZ(θ). Although the most obvious way to generate ZZ(θ) is to let the

system evolve for time t and define the angle as θ = ζt, it is better to fix the total time

duration when we need to fix the amount of incoherent error for different rotation

angle, which is crucial in error mitigation experiments.

In the real device, we need to assume single-qubit detuning terms in the native

Hamiltonian since we observe finite detunings due to non-idealities of the microwave
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drive. In the drive frame of both qubits, we model our native Hamiltonian as,

Ĥ/~ = −
ωq′1 − ωd1

2
ẐÎ −

ωq′2 − ωd2

2
ÎẐ +

ζ

4
ẐẐ (4.10)

= −δ1

2
ẐÎ − δ2

2
ÎẐ +

ζ

4
ẐẐ, (4.11)

where ωq′1 , ωq′2 are resonant frequencies of both qubits in the computational bases (4.8),

ωd1 , ωd2 are drive frequencies of the qubit controls and ζ is the coupling strength of

the residual ZZ coupling. Typically, the residual ZZ coupling is regarded as a source

of coherent error, but we make use of this interaction as a computational resource for

the VQE algorithm.

To generate arbitrary ZZ(θ) from the native Hamiltonian with three terms, we

add more spin-echo pulses to control the phases of all terms as shown in Fig. 4.4.

Here, we introduce four time periods separated by spin-echo pulses. Sign of each

term in a particular time period is determined by the commutation relation between

Figure 4.4: Schematic of the spin-echo sequence of generating arbitrary ZZ(θ) rota-
tion on a realistic system Hamiltonian Ĥ/~ = − δ1

2
ẐÎ − δ2

2
ÎẐ + ζ

4
ẐẐ. Single-qubit

terms have negative signs during the time period sandwiched by X̂π (black) and X̂†π
(white). Two adjacent X̂π and X̂†π pulses on the second qubit in the middle are
effectively an Identity operator, so we omit them in the actual experiments.
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the static term and the spin-echo pulses in the period. For example, in the second

period, signs of ẐÎ and ÎẐ are negated by sandwiching the free evolution of time τ1
2

between two simultaneous X̂π gates,

(X̂†πX̂
†
π)Û(

τ1

2
)(X̂πX̂π) = exp

(
−iτ1

2~
(
δ1

2
ẐÎ +

δ2

2
ÎẐ +

ζ

4
ẐẐ)

)
. (4.12)

Here, X̂πX̂π means a simultaneous application of single-qubit X̂π gates and doesn’t

indicate two-qubit operation. In general, sign flips of the free-evolution between spin-

echo pulses are determined by the commutation relations [ẐÎ, X̂πX̂π] 6= 0, [ÎẐ, X̂πX̂π] 6=

0 and [ẐẐ, X̂πX̂π] = 0. As long as these commutation relations are guaranteed, the

spin-echo pulses can be either X̂π gate or Ŷπ gate.

The timings of the three sets of spin-echo pulses have different purposes. The first

simultaneous X̂π gates echo out one-body terms by making the first and the second

time periods to be the same. The second simultaneous gates also cancel one-body

terms in the third and the fourth time periods. With these simultaneous spin-echo

pulses, one-body terms accumulate no phase during entire time duration even if there

are unexpected detunings. Lastly, the phase of the ZZ interaction accumulates ζτ1

in the first and the second periods and −ζτ2 in the third and the fourth periods. The

timing of the middle pulse acts as a tuning knob for determining the rotation angle

θ = ζ
4
(τ1 − τ2) of the ZZ interaction.

4.2.3 Algorithm implementation and tomography results

In the real experiments, the actual pulse sequence sent to the two-qubit device is as

follows and the always-on ZZ interaction is described as a purple shade instead of

discrete single-qubit gates.

Some of the single-qubit gates in the original circuit (4.2.2) are joined together



88

Always-on ZZ

|0〉 X̂π or Î Ŷπ/2 Ŷπ Ŷπ Ŷπ Ŷπ/2 tomo

|0〉 X̂π or Î X̂π/2 X̂π X̂π X̂π/2 tomo

1 2 3 4 5 6

Figure 4.5: Pulse sequence of preparing the trial wave function for H2 molecule simu-
lation. Although there is no explicit connection between qubits in the circuit diagram,
we assume that there is an always-on interaction throughout the algorithm implemen-
tation (purple shade). Timings of the pulses in this diagram are not representing the
experiment, especially the timing of pulses between slice 3 and slice 4 vary signifi-
cantly depending on the rotation angle of ZZ(θ).

1

0

1

ZI

1

0

1

IZ

1

0

1

XX

1

0

1

YY

0.6 0.4 0.2 0.0 0.2 0.4 0.6

Rotation angle / 2
1

0

1

ZZ

Figure 4.6: Partial quantum state tomography result of the trial wave function

|ψ(θ)〉 = exp
(
−iθX̂Ŷ

)
|01〉 swept by the variational parameter θ = ζ

4
(τ1 − τ2). The

data points are fitted by cosine and sine curves for 〈Z̃I〉, 〈ĨZ〉, 〈X̃X〉, 〈Ỹ Y 〉, and a

horizontal line for 〈Z̃Z〉.
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to reduce the total pulse count. The timing of each gate is not indicated in the

quantum circuit, but the timings of pulses between slice 3 and 4 are varied according

to Fig. 4.4. The arbitrary ZZ(θ) rotation is parameterised by θ = ζ
4
(τ1− τ2) and the

total duration T = τ1 + τ2 is fixed so that the accumulated incoherent errors will be

the same for all θ. To symmetrise the effect of the measurement bias depending on

the initial state, we average four different algorithm runs initialised in |00〉, |01〉, |10〉

or |11〉 by applying X̂π or Î gate between slice 1 and 2.

Fig. 4.6 shows the partial state tomography result of the trial wave function swept

by θ. Each point in the graph is averaged by 2.8 million shots and the error bar on

each point corresponds to the standard deviation. We used this data set to estimate

how well this protocol finds the ground state energy of H2 molecule.

4.2.4 Spin-echo sequence for the quantum error mitigation

To mitigate the error on the experimental result caused by decoherence, we applied the

error mitigation technique [83] for always-on two-qubit interaction. In the previous

study [84], the error mitigation was applied to two-qubit gates that were generated

by cross-resonance interaction, which was shaped by microwave pulses. The error

mitigation for cross resonance gates was implemented by stretching the pulse dura-

tion to simulate different noise accumulation due to decoherence. However, the time

rescaling approach for the pulsed two-qubit gates required the gate to be re-calibrated

for different pulse duration, which is resource intensive [88].

In our study, we introduced a novel time rescaling technique that doesn’t require

additional calibration for two-qubit interaction. The time rescaling method is imple-

mented by simply extending the total duration using the same spin-echo sequence.

Sign patterns of four time periods remain the same, but the time duration of each

period is modified such that (1) ZZ(θ) accumulate the same phase as the original
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Figure 4.7: Schematic of the spin-echo sequence for implementing the error mitigation.
The total time duration T = τ1 + τ2 is stretched to T ′ = τ ′1 + τ ′2, but the difference is
fixed by setting τ1 − τ2 = τ ′1 − τ ′2. By doing so, the trial wave function undergoes the
same unitary evolution, but accumulates different incoherent errors. In the following,
we define the error amplification factor as the ratio between T and T ′.

pulse sequence and (2) single qubit terms are echoed out. This way, since the always-

on interaction is constant, we can prepare the same trial wave function with different

noise amplification factor without extra calibration for the two-qubit operation.

We ran the VQE algorithm with two different total durations, T ′(1,2) = 2850(4930) ns.

Here, we focused on rescaling the duration of the always-on entangling operation

and did not rescale duration of single-qubit gates, so coherent errors during single-

qubit gates were not corrected by the error mitigation technique. The noise am-

plification factors, r = 1 and 1.76, are calculated by dividing each total duration

T ′(1,2) = 2850(4930) ns by T = 2850 ns which is the duration of the original pulse se-

quence without extension. Fig. 4.8 shows the expectation value of ZI with respect to

the noise amplification factor, when the trial wave function was set to θ = −1.056 π.

Fig. 4.9 shows the tomography result over the parameter space of −1.22 π ≤ θ ≤

1.22 π with different noise amplification factors r = 1 and 1.76. As we see from the

plot, the amplitude of the oscillation gets smaller as the noise amplification factor

increases.
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Figure 4.8: Demonstration of the error mitigation protocol by spin-echo sequences.
This figure is the experimental realisation of Fig. 4.7 in the theory section. The noise
amplification factor is defined as the ratio between the time duration of the original
algorithm time-evolution T and the stretched time duration T ′. Data points in the
graph describe the expectation value 〈Z̃I〉 of the trial wave function prepared at
θ = −1.056 π (points in the shaded area of Fig. 4.9) with different noise amplification
factors. The error mitigation is applied by fitting the smallest two points with a linear
line and extrapolating the expectation value to the point where the noise amplification
factor is 0.

4.2.5 Finding the minimum energy of H2 molecule

To estimate the minimum bond energy of the H2 molecule, we first calculate the

total energy E(θ, d) according to equation (4.3) using the tomography results. Here,

instead of implementing the quantum-classical optimisation loop, we searched the

minimum from the available data sets. This allowed us to estimate the performance

our protocol with less experimental runs when we had limited signal to noise ratio.

Since the coefficients gi(i = 1, 2, 3, 4, 5) depend on the bond distance d, for each

distance d, we optimised θ to get the minimum energy Ẽ(d) = min
θ
E(θ, d). We then

plot the minimum Ẽ(d) for each d on a bond distance vs. total energy curve.
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Figure 4.9: Measured Pauli operators for the VQE experiment with error mitigation.
Different colours correspond to different error amplification factors r = 1 (orange),
1.76 (green) and the extrapolated points (red). Points in the shaded area (θ =
−1.056 π) are plotted in Fig. 4.8.

The optimised total energy of the trial wave function prepared by the original

pulse sequence (orange points) and extended pulse sequence (green points) are far

above the theory prediction and we don’t see a clear dip to find the minimum energy

as shown in Fig. 4.10. However, the error mitigated result could find the energy curve

much closer to the theory curve which has a clear dip.

The difference between the extrapolated points and the theory curve can be ex-

plained by the following reasons. First, our error mitigation technique doesn’t remove

coherent errors on the single-qubit gate. Although we calibrate single-qubit gates

carefully, there are finite control errors such as over or under rotation and leakage

errors. To decrease the effect of the leakage error, we have chosen a relatively long

pulse which is 110 ns long. However, such a long pulse was prone to coherent errors
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Figure 4.10: Experimental results and error mitigated results of the ground state
energy of the H2 molecule. Yellow and green points are optimised total energies when
error amplification factor was r = 1, 1.76. Error mitigated results (red) are calculated
by Pauli operator expectation values that are linearly extrapolated by Pauli operator
expectation values that produced yellow and green points.

due to the always-on ZZ interaction, and we weren’t able to get rid of it in this

study. This could be improved in the future by investigating single-qubit gates which

are not susceptible to the always-on interaction, such as using numerically optimised

gates [74, 89]. Second, the incoherent error was not removed completely by the error

mitigation. The amount of errors that can be removed by the time rescaling method

depends on how fast the algorithm is operated compared to the time scale of T1 and

T2 time. In a different experimental run, we have measured the decay rate of the

amplitude of the fitting curves for the expectation values of 〈Z̃I〉 , 〈ĨZ〉 , 〈X̃X〉 , 〈Ỹ Y 〉

and 〈Z̃Z〉. The decay rate was 10 µs where the total duration of the algorithm were

T = 2850 and 4930 ns, and this relatively small ratio limits the amount of errors that
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the linear extrapolation can mitigate. To overcome this limit, we need to have faster

always-on interaction and longer T1 and T2 in future devices, and we will discuss how

much we can extend in this direction in Chapter 6.
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Chapter 5

Hamiltonian rescaling using

spin-echo sequence

In the previous chapter, we have utilised the native interaction to implement arbitrary

ZZ rotation and parameterised the accumulated phase by timing of spin-echo pulses.

This chapter generalises the spin-echo-based algorithm compilation to many qubits,

formalising the Hamiltonian rescaling protocol using the always-on interaction and

multi-qubit spin-echo sequences.

First, we begin with a small-scale example and overview the problem we encounter

when we extend the spin-echo-based compilation to an arbitrary number of qubits.

To tackle the complexity in many qubits, we formalise the multi-qubit spin-echo

problem in general, giving a theoretical background for the Hamiltonian rescaling

method in later sections. We then introduce the application of the multi-qubit spin-

echo theory to generate pulse sequences for rescaling Hamiltonians of two different

coupling patterns; the all-to-all coupling and the nearest-neighbour coupling. We

have introduced two pulse sequence generation algorithms to produce concrete spin-

echo sequences for each case, also estimating the total time duration and the pulse
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count needed for the general implementation. We show a favourable scaling of the

resources to the number of qubits, which is crucial for showing the viability of our

approach using the native interaction for quantum computing. These results are also

important for one of our motivations in this thesis, which is to reduce the quantum

operation’s duty cycle. Lastly, we discuss the practicality of each method and give

an outlook for future application.

The content of this chapter is an extended version of the published articles [35, 36].

The author of this thesis has contributed to these works in identifying the efficient

spin-echo strategy for Hamiltonian rescaling, clarifying the problem of the protocol

and formulating the research question, leading the collaborators to solve the problem.

5.1 Motivation and research question

In the previous chapter, we have introduced a novel hardware implementation strategy

for quantum-classical hybrid algorithms using spin-echo sequences. In the two-qubit

example, we have introduced a scheme to generate an arbitrary ZZ(θ) by tuning the

timing of a spin-echo pulse to set the rotation angle θ. From a different perspective,

this is equivalent to rescaling the native Hamiltonian to a desired effective Hamil-

tonian by choosing the timing of a spin-echo pulse. Having the ability to cover the

full parameter space of a two-qubit operation by timing a spin-echo pulse, a natural

question arises: can we extend the scheme to rescale any native many-qubit Hamil-

tonian to a desired effective Hamiltonian by timing multiple spin-echo pulses? This

is the main topic of this chapter and the question led to opening a new paradigm of

compiling quantum algorithms on a hardware.

In the following, we begin with introducing the conventional approach taken in

the NMR community to tackle this problem, and discuss the limitation and rooms
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for the improvement. We then introduce our strategy to tackling this problem and

clarify my contribution to the works presented in [35, 36]. We then introduce concrete

algorithms of finding pulse sequences for Hamiltonian rescaling in Sec. 5.4 and 5.5,

which are condensed versions of [35, 36]. Lastly, we review the advantages of our

approach compared to previous works and discuss the implication to a wider context

of quantum computing.

5.2 Hamiltonian rescaling by conventional NMR

techniques

The hardware compilation of quantum algorithms on an always-on Ising coupling

has been investigated intensively in the NMR community [63, 64]. To cancel un-

wanted always-on couplings and retain desired interaction, spin-echo techniques were

developed to decouple and recouple specific interactions in the Ising coupled system.

Spin-echo sequences were used to implement various quantum algorithms in NMR

systems [90, 91, 92] and our schemes are built on top of their development. Here we

review the basic concept of spin-echoes and how it was applied to compile quantum

algorithms.

5.2.1 Spin-echoes

The background Hamiltonian of an NMR spin system consists of one-qubit interac-

tions (resonance offsets) and two-qubit interactions (J-couplings). Consider a system

of q qubits where the ith qubit has a resonance offset Ωi and the pair of qubits i

and j have a J-coupling frequency ωij. The Hamiltonian for this system in the weak
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coupling limit is,

Ĥ/~ =
∑
i

Ωi

2
Ẑi +

∑
i<j

ωij
4
ẐiẐj. (5.1)

In practice some of these interactions could either be zero or set to zero, allowing

them to be dropped. For example, working in a suitable rotating frame allows some

of the one-qubit interactions to be set to zero, while many two-qubit interactions

can be negligible in partially coupled qubit systems. However, for generality and

completeness, we shall initially consider fully coupled systems with q non-zero one-

qubit interactions and p = q(q − 1)/2 non-zero two-qubit interactions between the p

pairs of qubits.

During a period τ of free evolution each qubit evolves under all the q + p interac-

tions, given by the propagator Û(t) = exp
(
− iĤτ

~

)
. Since this Hamiltonian is diagonal

in the chosen z-basis, all terms in the Hamiltonian commute, and the one-qubit and

two-qubit evolutions can be summarised by the acquired phases

Φi = Ωiτ, φij = ωijτ. (5.2)

To sculpt the effective Hamiltonian into the desired form it is necessary to isolate the

qubit interactions which we want while suppressing the unwanted interactions. This

essentially requires controlling the evolution of the qubits such that the unwanted

interactions finally acquire a phase of zero while letting the required interactions

evolve to reach the desired values.

A spin-echo is a period of free evolution interrupted by π rotations in the middle

of the evolution period. The notation πi is used to denote a pulse which causes a

180 degree rotation on qubit i, about the x-axis unless otherwise stated. The effect

of a pair of πi rotations is to negate the effective frequency Ωi of the qubit for the

time period between the two pulses. Thus, the sequence τ πi τ πi, where time periods
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indicate free evolution under the internal Hamiltonian, will refocus the offset Ωi as

the phase Φi acquired during the first period of evolution gets nullified by the phase

−Φi acquired in the second half.

Clearly, the one-qubit interaction of any given qubit i is only affected by π ro-

tations applied to qubit i, and so individual interactions can be controlled indepen-

dently. However, for two-qubit interactions, a π rotation applied to either qubit i or

j reverses the frequency ωij while a simultaneous π rotation applied on both qubit i

and j leaves ωij unchanged. A sequence τ πi τ πi will thus refocus Ωi and ωij, whereas

a sequence τ πi,j τ πi,j will refocus both Ωi and Ωj but not ωij. In this manner, the

two-qubit interactions can be controlled, but this control cannot be achieved inde-

pendently from one-qubit interactions.

A general spin-echo sequence comprises a series of free evolution time periods τm,

sometimes called delays, separated by π pulses applied to one or more qubit. As long

as the total number of π pulses applied to a given qubit is even the overall evolution

can still be summarised by a set of phases, but now

Φi = Ωi

∑
m

Simτm, φij = ωij
∑
m

SimS
j
mτm, (5.3)

where S is a sign matrix, containing only the elements ±1, with a sign change when-

ever a π pulse is applied to qubit i. For convenience we will also refer to the two-qubit

sign matrix Sijm = SimS
j
m, although this is obviously not independent from the one-

qubit matrix. The complete sign matrix can be obtained by combining the one- and

two-qubit matrices.
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5.2.2 Refocusing

Methods for removing all the interactions (sometimes called decoupling), or for isolat-

ing one single interaction while refocusing everything else, have been widely studied.

The most effective methods to achieve this rely on choosing sign matrices whose rows

are taken from Walsh–Hadamard matrices [63, 64], so that each row is a Walsh func-

tion [93]. These matrices differ from other Hadamard matrices in that they are only

defined for dimensions equal to a power of 2, the rows are not normalised, and the

ordering of the rows is different.

A Walsh function Wn is defined by a vector with length equal to a power of 2

and with all the entries equal to ±1. For W0 all the entries are +1, while for every

other Wn half the entries are +1 and half are −1, with the entries arranged such that

there are n regularly spaced sign changes along the vector. For example the 4 by 4

Walsh–Hadamard matrix contains the four rows



W0

W1

W2

W3


=



+1 +1 +1 +1

+1 +1 −1 −1

+1 −1 −1 +1

+1 −1 +1 −1


. (5.4)

Strictly the name of the Walsh function must specify the number of columns as well

as the number of sign changes, but this is left implicit here: the number of columns

is equal to the smallest power of 2 larger than the highest Walsh number considered.

In a system of three qubit it is possible to remove all three one-qubit and all

three two-qubit interactions by using four equal time periods τ and a sign matrix

obtained by choosing Si = Wi, avoiding W0. This relies on two key properties of

Walsh functions. Firstly all Walsh functions except W0 contain an equal number

of ±1 values, and so all one-qubit interactions will be refocused when equal length
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time periods are used. Secondly the product of two Walsh functions is itself a Walsh

function [93], defined by

Wp ◦Wq = Wp⊕q (5.5)

where ◦ indicates element wise multiplication, sometimes called the Schur product

[94], and ⊕ indicates bitwise addition modulo two. Thus all two-qubit interactions

will also be refocused.

A decoupling network is easily modified [63, 64] to retain a single interaction:

to retain a one-qubit interaction Ωi use Si = W0 for this qubit, while to retain a

coupling ωij set Si = Sj so that Sij = W0 (see Fig. 5.1). To take a concrete example

the coupling ω12 can be isolated in a three qubit system by choosing S1 = S2 = W1

and S3 = W2. The π pulses required can be deduced by applying a pulse to a qubit

whenever the corresponding row of S changes sign, including a final π pulse if the S

row ends in −1, giving the sequence

τ π3 τ π1,2 τ π3 τ π1,2. (5.6)

Figure 5.1: A pulse sequence that retains a single interaction in all-to-all coupled
three qubits.
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Note that ω12 evolves with sign +1 at every stage, and so is retained at full strength.

The total evolution time required is given by 4τ = φ12/ω12. If this expression gives a

negative time then this can be resolved by applying additional π pulses to one qubit

at the beginning and end of the sequence to negate the evolution frequency.

Now consider how this approach scales to a system of q qubits. Retaining a single

interaction can be done efficiently: the number of time periods required is given

by the smallest power of 2 larger than q, which is upper bounded by 2q, while the

number of individual π pulses required is clearly less than 2q2, which corresponds to

applying a pulse to every qubit after every time period. A more careful analysis (see

Appendix A.4) shows that only around q2/2 pulses are required, which is still O(q2)

but with a smaller pre-factor. As the single interaction is retained at full strength

this is also a minimum time solution.

5.2.3 Resources for Hamiltonian rescaling

So far, we have only considered retaining a single one-qubit or two-qubit interaction

while refocusing the remainder. However, a more general problem is to rescale the

size of interactions in the Hamiltonian. In other words, we desire to achieve a certain

set of non-zero target phases for all the qubit interactions. The obvious approach

is just to place spin-echo sequences which isolate the individual interactions back to

back [63, 64]. As there are a total of r = q+p = q(q+1)/2 single-qubit and two-qubit

interactions to be considered it is clear that the number of time periods is O(q3), and

the number of pulses is O(q4). The total time required is given by the sum of the

times required to evolve under each individual interaction,

T =
∑
i

∣∣∣∣Φi

Ωi

∣∣∣∣+
∑
i<j

∣∣∣∣φijωij
∣∣∣∣ . (5.7)
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Figure 5.2: A pulse sequence that rescales all interactions in all-to-all coupled three
qubits.

For example, if we want to rescale a three-qubit Hamiltonian, we prepare a pulse

sequence shown in Fig. 5.2 which has 12 time periods and 18 pulses to obtain some

target phases φ12 = τ1ω12, φ23 = τ2ω23 and φ31 = τ3ω31.

This naive approach is expensive, both in time and the number of π pulses. We

thus want to find a more efficient sequence, by carrying out as many evolutions in

parallel as far as possible. Although this might sound challenging, we propose here

a straightforward way to achieve this using partial refocusing pulse sequences. This

approach also greatly reduces the number of pulses and time periods required.

5.3 Hardware-efficient Hamiltonian rescaling us-

ing spin-echo sequence

In the conventional NMR, most couplings were decoupled to retain one of the two-

qubit interactions. This approach is inefficient since it consumes many spin-echo

pulses while wasting most of the two-qubit evolution in each step. Also, the number

of pulses per time period and total duration increases as the system size gets larger,
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making it much harder to implement in many qubits. To minimise the resource

needed for the Hamiltonian rescaling, we have proposed a protocol to design pulse

sequences that utilise as many couplings as possible without completely decoupling

them in each step.

5.3.1 Considering the degrees of freedom in the Hamiltonian

rescaling

To design a hardware-efficient pulse sequence, we have focused on the number of

degrees of freedom needed to specify target angles independently. For example, when

we want to specify q(q−1)/2 target phases, we should only need q(q−1)/2 time periods

separated by spin-echo pulses to rescale two-qubit interactions. Let us consider this

problem by a three-qubit example. Suppose all qubits are coupled to each other with

coupling strengths ω12, ω23 and ω31,

Ĥ/~ =
ω12

4
Ẑ1Ẑ2 +

ω23

4
Ẑ2Ẑ3 +

ω31

4
Ẑ3Ẑ1, (5.8)

Figure 5.3: Pulse sequence of three qubit hamiltonian rescaling with minimum number
of time periods.
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where we assumed that the Hamiltonian is on the drive frame of each qubits’ resonant

frequencies, ignoring single-qubit terms. The aim is to generate arbitrary phases φ12,

φ23 and φ31 by a 3-qubit spin-echo sequence. Since there are three target phases,

in principle, we only need three tuneable degrees of freedom to specify each phase

individually, so we prepare three time periods, τ1, τ2 and τ3, shown in Fig. 5.3. Due

to sign flips of two-qubit interactions by spin-echo pulses, the phase accumulation of

each coupling can be described as a set of linear equations as follows,


φ12

φ23

φ31

 =


ω12(τ1 − τ2 + τ3)

ω23(τ1 − τ2 − τ3)

ω31(τ1 + τ2 − τ3)

 =


ω12 0 0

0 ω23 0

0 0 ω31

 ·


+1 −1 +1

+1 −1 −1

+1 +1 −1

 ·

τ1

τ2

τ3


= diag(ωωω) · S · ttt, (5.9)

where ωωω = (ω12, ω23, ω31)t. The set of time periods ttt = (τ1, τ2, τ3)t can be obtained by

inverting diag(ωωω) and the sign matrix S,

ttt = S−1 · diag−1(ωωω) · φφφ, (5.10)

where φφφ = (φ12, φ23, φ31)t.

This method can be interpreted as Hamiltonian rescaling because the effective

Hamiltonian of each time period is,

Ĥ1 =
1

4
(ω12Ẑ1Ẑ2 + ω23Ẑ2Ẑ3 + ω31Ẑ3Ẑ1), (5.11)

Ĥ2 =
1

4
(−ω12Ẑ1Ẑ2 − ω23Ẑ2Ẑ3 + ω31Ẑ3Ẑ1), (5.12)

Ĥ3 =
1

4
(ω12Ẑ1Ẑ2 − ω23Ẑ2Ẑ3 − ω31Ẑ3Ẑ1), (5.13)
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and the entire time evolution of the quantum system can be described as,

Û(φφφ) = exp
(
−iĤ3τ3

)
exp
(
−iĤ2τ2

)
exp
(
−iĤ1τ1

)
(5.14)

= exp
(
−iĤeffT

)
, (5.15)

where T = τ1 + τ2 + τ3 is the total duration of the pulse sequence and the multi-

plication of the matrix exponentiation holds because the Hamiltonian is diagonal.

By interspersing spin-echo pulses during the free evolution under Hamiltonian Ĥ, we

are effectively simulating another Hamiltonian Ĥeff , whose coupling strengths are

determined by choosing the time periods ttt specified by the linear equation (5.9).

If we could design pulse sequences that make S matrices invertible, the above-

mentioned scheme only requires O(q2) time periods which is q times less than the

conventional approach. The massive reduction in the number of time periods leads

to fewer pulse counts, and simultaneous evolution of multiple couplings should allow

shorter time duration. However, the simple argument of reducing the number of time

periods does not guarantee the advantage unless we assess it quantitatively and show

the resource scaling to the number of qubits. Moreover, the inversion of the S matrix

in Eq. (5.10) does not give positive solutions ttt every time, and it was not trivial to

find a systematic protocol that generates pulse sequences obtaining arbitrary target

phases with positive solutions.

5.3.2 Contribution

In the following sections, we will introduce systematic pulse sequence generation

algorithms to solve the issues mentioned in the previous section. Most of the contents

in the next two sections are taken from published articles [35, 36], which are results

of collaboration with the NMR group led by Prof. Jonathan Jones at the University
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of Oxford. My contributions to this work can be summarised as follows.

First, I identified the possibility of reducing the number of time periods in the

Hamiltonian rescaling pulse sequences to the number of degrees of freedom in the

target Hamiltonian (as explained in Subsec. 5.3.1), which is a reduction by a factor of

q significantly better than the conventional NMR approach. However, the protocol I

proposed was not able to produce the positive solution all the time, and the resource

scaling was unknown. This was the same for the similar work independently done by

[34].

I then formulated research questions, clarifying the following objectives, (1) find

systematic protocols to obtain positive solutions in practical hardware settings, (2)

give a resource estimate of the protocols so that they can be compared with other

hardware compilation schemes and discuss the application in a wider context. The

research questions attracted the NMR group led by Prof. Jonathan Jones at University

of Oxford, which resulted in collaborating on the topic and finding the solution that

we will explain in the following sections. The actual implementation of the simulation

results in Sec. 5.4 are done by Dr. Gaurav Bhole and the essential idea of the Sec. 5.5

has been worked out by Prof. Jonathan Jones and Mr. Stephen Jones, and I have

directed the development of these schemes to fit with the wider concept of hardware-

efficient quantum computing and superconducting qubit implementation.

5.4 Hamiltonian rescaling by linear programming

In the previous studies, conventional NMR approaches have largely concentrated on

methods for refocusing all the interactions, or for isolating one single interaction

while refocusing everything else [63, 64, 95, 96]. However, a more general problem is

to rescale the size of interactions in the Hamiltonian, to produce a desired effective
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Hamiltonian. Here we describe a method for finding a rescaling sequence with the

shortest possible total time, and with a fairly small number of echo pulses. In its sim-

plest form this is practical for systems of up to about 20 qubits, but for larger systems

we have developed a pragmatic method for finding short, although not perfectly op-

timal, rescaling sequences, which works with more than 100 qubits, meaning that the

method could be of use for practically useful quantum computation in scalable plat-

forms. Related ideas have been explored in systems with other similar Hamiltonians

[34, 97, 98].

Here we outline an algorithm based on linear programming for achieving time-

optimal rescaling solutions (see Fig. 5.4 for the overview).

Step 1: Setting up the problem

We consider a system of q coupled qubits described by r = q(q + 1)/2 one- and two-

qubit interactions. Our aim is to rescale all r interactions simultaneously such that

they reach the desired target phases, which for generality we assume to be all different.

We begin by constructing an overcomplete Walsh basis by building a one-qubit sign

matrix with the rows given by Walsh functions numbered 2j, where j = 0, 1, . . . (q−1).

Next, we use this matrix to construct the two-qubit sign matrix by taking products

of corresponding rows in the one-qubit matrix.

Combining these by stacking the two matrices together gives the complete sign

matrix S of r rows and s = 2q columns. The single-qubit functions correspond to

binary numbers with precisely one bit set, while the two-qubit functions correspond

to binary numbers with precisely two bits set. As these numbers are all distinct it is

guaranteed that the complete sign matrix has enough flexibility to permit every inter-

action to be controlled separately. This is quite different from refocusing sequences,

where many functions are repeated.
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Figure 5.4: The overview of the pulse sequence generation algorithm using linear
programming. As an example, we illustrate a concrete application of our algorithm
using the three 19F nuclei in iodotrifluoroethene, forming a three-qubit full coupled
homonuclear NMR system. All interactions are written in Hz and times in ms. The
stages of the implementation are described in the main text.
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Step 2: Linear Programming

This overcomplete Walsh basis guarantees that solutions to Eq. (5.3) can be found

for any target values of {Φi} and {φij} by choosing 2q appropriate values of {τm},

but it is not obvious how these can be found. As the basis is overcomplete, multiple

solutions will exist but these can be distinguished by requiring that all the times {τm}

must be non-negative and by preferring the solutions with the shortest value of total

time T =
∑

m τm. These criteria for desirable solutions suggest a powerful method,

namely linear programming [99].

The general linear programming problem varies some inputs (here the times {τm})

seeking to minimise some linear function of these inputs (here the total time T ) subject

to a number of equality constraints (here Eq. (5.3)) and inequality constraints (here,

that each τm ≥ 0). We adopted a simple approach, using the inbuilt Matlab function

linprog.

It is important to consider the computational complexity of linear programming,

as this determines how the time required to find a solution scales with the number of

qubits q. The precise computational complexity of linear programming is known to be

poorly defined, depending on both the algorithm used and the details of the problem,

and with the worst case behaviour being very different from the typical case [99].

The Matlab function linprog has a choice of two algorithms: the original simplex

algorithm developed by Dantzig [100], and a more modern interior point algorithm

[101]. Both algorithms typically have computational complexity between O(n2) and

O(n3), where n, the dimension of the problem, can be taken as the sum of the number

of rows and columns in the constraint matrix, so that here n = r + s ≈ 2q. We

investigated this question experimentally by simply timing the program. All results

are for the simplex algorithm unless otherwise stated.
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Step 3: Extracting solutions

As the linear programming algorithm is fundamentally trying to minimise T , subject

to the positivity constraint and the target phases, the algorithm prefers solutions

where many of the {τm} are zero. (This is not specific to this problem, but is a general

feature of linear programming solutions [102].) The linear programming solution has

at most only as many non-zero times as the number of constraints r in the problem.

If the problem involves extensive refocusing rather than rescaling then solutions with

an even smaller number of non-zero times can be found.

It is obviously not necessary to explicitly implement the time periods of length

0, and so the overcomplete sign matrix, S, can be replaced by a reduced matrix, R,

by selecting only r or fewer columns from S which correspond to non-zero evolution

times.

Step 4: Optimising the solutions

One subtlety is that the order of columns in the R matrix does not affect the phases

produced, but different orderings of these columns can lead to pulse sequences with

different numbers of pulses. As minimising the number of pulses is desirable it is

useful to explore different permutations of the R matrix, seeking for the arrangement

which gives the smallest number of sign changes.

If the matrix is not too large then exhaustive permutation can be practical, but

in larger cases it is more sensible to select a number of random permutations and

keep the best one found. Experience so far suggests that different permutations can

require numbers of pulses that differ by a factor of around two. We also find that

the pulse pattern corresponding to the original R matrix is typically relatively good,

although rarely the absolute best.
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Step 5: Building the pulse sequence

From this optimal reduced matrix R, a pattern of pulses can be generated by applying

a π pulse to every qubit whose sign changes. It is important to remember that all

interactions start at +1 and must end at +1, which can be modelled by adding

initial and final columns to R containing entirely +1. These additional columns have

evolution times set to zero, and so are not actually implemented, but the resulting

sign changes make it necessary to apply pulses to some qubits at the start and end

of the sequence. This also ensures that the number of π pulses applied to each qubit

is even, which is required to create true spin echoes.

As the reduced matrix has r ≈ q2/2 times the final pulse sequence will have O(q2)

time periods and O(q3) individual π pulses, which is a very significant improvement

on naive methods.

5.4.1 General solutions

We have repeated calculations of this kind in a large variety of fictitious spin systems

with increasing numbers of qubits, up to q = 18, and solutions have always been found.

For larger values of q these solutions are always more time-efficient than the sequential

approach, and are usually far quicker. The greatest savings are found in cases where

a moderate number of gates need to be implemented in parallel, and particularly

when unused long-range couplings are significantly weaker than the couplings being

controlled.

Until now we have described the problem as if there was a unique optimal solution

which the linear programming locates. In fact there are multiple equivalent solutions,

from among which the linear programming chooses one. These alternative solutions

can be easily generated by permuting the columns of the S matrix before running the

algorithm, but as they all have the same number of individual time periods and take
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the same total time there is no good reason to do this.

We note in passing that these optimal solutions are only optimal for implementa-

tions containing only delays and π pulses. If it is desired to implement an evolution

corresponding to a weak long-range coupling then it may be quicker to use swap

gates and related methods to implement long-range interactions through a chain of

stronger short-range interactions [103, 104]. Even in such cases, however, the ideas

described here can be used to assist in the design of such indirect gates.

Computation time complexity

The principal downside of this approach is that the computational time needed to run

linear programming increases with the size of the basis set, and this grows as s = 2q

for the current method. As discussed above a computation time scaling proportional

to (s+ r)2 or (s+ r)3, where r is the number of equality constraints, is likely, which

for large q is dominated by the exponential growth in s. This is confirmed by a plot

of time required on a desktop computer (Intel Core i7-9700, 3.0–4.7 GHz, with 12 MB

cache and 40 GB RAM), shown in Fig. 5.5. The linear behaviour at large q on this

semi-log plot indicates exponential computational time complexity, and the gradient

is consistent with the time required scaling as about 4q.

Although attempts have been made to parallelise linear programming algorithms,

progress so far has been limited [105]. Thus, this method seems to be practical only

up to a small number of qubits, perhaps q = 20. Indeed much above 20 qubits

it becomes difficult even to hold the S matrix in memory on a desktop computer,

although this could be sidestepped with a customised algorithm. While it is true that

20 is quite a large number of qubits in the context of conventional NMR or even NMR

QIP, we do not want to restrict ourselves to NMR spin systems but to extend to more

general quantum systems which have the potential for a scalable quantum computing
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Figure 5.5: The computation time required to find a linear programming solution on a
desktop computer as a function of q. For small values of q this time is almost constant,
but rises exponentially for larger q, rendering this method impractical beyond around
20 qubits. Timings are shown for the interior point algorithm, but results were very
similar for the simplex algorithm. Error bars (estimated by repetition) are comparable
to the size of the symbols, and the line simply joins the individual points.

architecture. Fortunately, a more sophisticated approach is available which takes time

only polynomial in q, albeit with a high power.

5.4.2 Rescaling in larger systems

The fundamental problem which slows down the rescaling algorithm is the exponen-

tially large size of the overcomplete basis. This basis contains s = 2q columns, from

which the linear programming selects at most r = q(q + 1)/2, equal to the number

of interactions, and in many cases fewer. For moderate values of q, these numbers

r and s are quite similar, but the difference grows rapidly with q, leading one to

wonder whether there is some way to cut down the size of S before starting the linear

programming step. Is it really necessary to include a very large number of columns,

the great majority of which will eventually be discarded? In this regard we note that

once one has identified the appropriate reduced sign matrix then the times required

can be found by direct inversion of this r by r square matrix. However it is clear that

most of the hard work is done in locating the appropriate columns used to construct
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the reduced sign matrix.

Starting from the other extreme, one could just select r random columns from the

full sign matrix and try to invert this. However, this process can fail in a number of

ways. Firstly, the reduced matrix might not be of full rank (although this is unlikely

when s � r) and so may not have an inverse. Even for a reduced matrix with full

rank, the set of times obtained from the inversion process is very likely to include

some negative times which are not physically implementable. Lastly, even if all the

times are non-negative, the total time will not normally be the desired minimum, and

so the sequence will not be time-optimal.

Between these extremes there is a middle way: using linear programming on a

reduced, but still overcomplete, basis set. The current linear programming approach

starts from the largest conceivable basis set, containing all of the s = 2q possible sign

patterns, which guarantees finding an optimal solution but also makes the process

slow. One might imagine choosing some subset of columns at random, and attempting

linear programming on this subset. For large values of q the gap between the full size

s = 2q and the minimum size r becomes very significant. It is thus worth exploring

how many columns need to be picked so that linear programming generally finds a

solution. There is no guarantee that such solutions will be time optimal, but as long

as the random choice contains all the components of at least one optimal solution,

then linear programming will find this. Given the very large number of equivalent

solutions identified for moderate values of q it seems plausible that this could be

achieved with quite a small subset.

The RROS method

In the random reduced overcomplete set (RROS) method, instead of using all s

columns of the sign matrix S as in the exhaustive approach, we choose just kr columns
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Figure 5.6: The effectiveness of the RROS method selecting kr columns at random,
showing how the probability of the algorithm finding a solution depends on q and k.
Calculations were performed for q ranging from 10 to 22 but only four selected values
are shown. Error bars on the q = 12 points were estimated using Bayesian credible
intervals; error bars for other curves are very similar. Fitted sigmoidal curves were
used to estimate the value of k at which this success probability reached 50%. The
inset shows the location of this transition point as a function of q. Error bars are
estimated using error propagation from the sigmoidal fit results; the smooth curve
has no significance and is plotted simply to guide the eye.

from S, for some k > 1, and run linear programming. Of course, one does not have

to explicitly construct the entire S matrix and then choose the kr columns as these

kr columns correspond to the binary representations of kr distinct decimal numbers

chosen randomly from 0 to s− 1. Our experience so far suggests that the probability

of finding a possible solution, which achieves the desired phases using only positive

evolution times, increases as k increases, with a transition point around k = 2, at

which the probability of a random set giving a solution reaches 50%.

This observation is substantiated by the empirical evidence in Fig. 5.6. RROS

was run 500 times for values of q ranging from 10 to 22 with k varied between 1 and

3, and the fraction of occasions f when linear programming found a suitable solution

was calculated. Error bars on these estimates were calculated using Bayesian credible
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intervals [106], corresponding to the region of the probability density function within

±34% of the median, equivalent to 1 standard deviation for a Normal distribution.

It is clear that the probability of success rises sharply as k passes some critical value,

with this transition becoming sharper as q is increased. To help locate this transition

point a sigmoidal logistic function [106],

f(k) =
1

1 + exp[−b(x− c)]
, (5.16)

was fitted for each value of q, with c being the transition point at which the success

probability passes 50%, and b indicating the sharpness of the transition. Although

this function was chosen for convenience it clearly fits fairly well. A plot of the value

of c as a function of q shown as an inset to Fig. 5.6 suggests that the transition lies

just above k = 2. For large values of q this transition becomes sharp, so that for

k ≥ 2.5 it is almost certain that a solution will be found.

If a solution is found then this solution will be time-optimal for the subset of

columns chosen, but there is no guarantee that this will be the overall optimum,

taking the shortest possible time. Unsurprisingly the probability of finding a solution

reaching the shortest possible time increases as k increases, but investigating this

question in detail is challenging, as for large values of q the overall time-optimal

solution cannot be located in a reasonable time. Nevertheless our preliminary studies

suggest that for large q the quality of solutions plateaus around k ≈ 4, and so there

is little point going beyond this in practice. For small values of q it seems to be

necessary to use a slightly larger value of k, but in these cases it is more sensible just

to use direct solution of the full S matrix anyway.
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Results for large numbers of qubits

The use of a smaller basis set permits RROS to be extended to much larger values of

q. This was investigated by running the algorithm for q between 10 and 60, as shown

in Fig. 5.7. For RROS the time required to perform linear programming depends not

only on the randomly chosen Hamiltonian and target phases but also on the precise

choice of columns, and so timings were repeated 10 times using different choices. As

expected for k = 4 a solution was located in every case.

The simplex algorithm was found to be slightly faster than the interior point

algorithm for q ≤ 31, but the interior point algorithm was faster for q ≥ 32, and

became much faster at high q. The discontinuity in the interior point timings between

q = 31 and q = 32 may indicate a change in the precise algorithm used by Matlab.
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Figure 5.7: The computation time required to perform linear prediction using RROS
with k = 4. The simplex method was found to be fastest for q ≤ 31, with the interior
point method faster for q ≥ 32. Error bars for q ≤ 60 indicated the mean and SD over
10 repetitions. The smooth curve with the form Ar3 is fitted to interior point timings
in the range 32 ≤ q ≤ 60. Data points for q > 60 are single repetitions and were
not included in the fit. The fact that these points lie very close to the extrapolated
fit suggests that our fitted curve is a good model. The red points on the left show
timings for exhaustive calculations, demonstrating the huge time gains possible with
RROS.
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For RROS the dimension of the problem is n = r + kr and so we expect a

computational complexity between O(r2) and O(r3). The smooth curve in the figure

was fitted to the timings from the interior point algorithm for the range 32 ≤ q ≤ 60

using a power function, and takes the form Ar3, consistent with our expectations

(including the power as an additional fitting parameter gave a value indistinguishable

from 3). The timings for the simplex algorithm appear to lie between O(r4) and

O(r5), which is much slower than the interior point.

With the simplex algorithm the number of time periods required was always ap-

proximately equal to r (in some cases a small number of time periods were negligibly

short and so could be dropped). The number of pulses required was determined for

the R matrix as originally found, without further optimisation, and was typically

around qr/2 ≈ q3/4, confirming our previous expectations. With the interior point

algorithm the solutions always use all kr time periods, with a large number of very

short times rather than a clear division into zero and non-zero times. These initial

solutions can then be simplified by choosing a smaller subset of k′r columns, with

k′ ≈ 1.2, corresponding to the columns with the largest time values in the original

solution. Surprisingly the computational time for these recalculations appears to be

linear in k, while a quadratic or cubic dependence might have been expected.

The calculation was then extended to higher values of q, using only a single rep-

etition, and these data points were found to lie very close to the extrapolated curve.

As r ≈ q2/2 this gives a pragmatic computational time scaling of O(q6), which is

polynomial in the number of qubits. Extrapolating this curve still further suggests

that calculations with up to about 150 qubits could be practical, but the Matlab

implementation linprog runs out of memory above q = 125. This limit should be

solvable by a custom implementation of linear programming.
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5.4.3 Summary of the linear programming method

We have presented a practical algorithm which is guaranteed to find the minimum

time solution to rescaling Ẑ and ẐZ terms in the internal Hamiltonian of a quantum

computer with up to about 20 qubits. Above 20 qubits the direct approach becomes

intractable, but random sampling will extend this (although the solution might not be

quite time optimal) to more than 100 qubits. Beyond about 150 qubits the q6 scaling

of the computational time for a fully coupled system renders any known approach

impractical. It is, however, very unlikely that any system of that size would still be

fully coupled, as couplings are usually only substantial between nearby qubits. In

partially coupled systems r is linear in q rather than quadratic, and allowing for this

should permit the process to be extended to hundreds or even thousands of qubits.

Although described in the language of NMR the techniques used are applicable to

any equivalent system, where an always-on two-qubit interaction commutes with the

single-qubit background terms. It may be of particular value in solid state platforms,

such as superconducting circuits, in which 2D lattices of qubits are developed with

a sparse coupling network (generally nearest-neighbour). In such very large systems

it is likely that the underlying structure in the pattern of interactions will allow

symmetries to be exploited, potentially simplifying the problem greatly.

5.5 Hamiltonian rescaling in qubit arrays with nearest-

neighbour couplings

In the previous section, we have described methods for finding time-optimal rescal-

ing sequences in systems of up to around 20 qubits, and near-optimal sequences for

around 100 qubits. However, these methods do not scale to larger systems, as the

computational time required to find such solutions grows rapidly with the number of



121

qubits. The most general form of the Hamiltonian,

Ĥ/~ =
∑
i

Ωi

2
Ẑi +

∑
i<j

ωij
4
ẐiẐj. (5.17)

will have all offsets and all possible couplings present, but couplings are generally

only significant between nearby qubits. For example, superconducting qubits are of-

ten engineered in a square-lattice [22] and can have couplings limited to only nearest

or next-nearest neighbour qubits if circuits are well microwave engineered [107]. Here

we describe a method based on graph colouring for rapidly finding near-optimal se-

quences in these highly practical locally coupled systems. Remarkably we find that in

this partially-coupled scenario, which is very realistic for large-scale superconducting

circuits, the refocusing and rescaling of always-on couplings can be efficiently pro-

grammed, requiring only linear time to design control sequences and linear number

of control pulses.

We start by applying the refocusing scheme to the smallest possible case of a

nearest-neighbour square lattice, and then generalise to arbitrary lattice sizes. Ini-

tially we will assume the square lattice to be engineered with identical couplings

between nearest neighbours and no long range couplings at all, but both of these

restrictions will subsequently be partly relaxed.

We assume throughout this section that it is possible to apply ideal single qubit

gates to any combination of qubits, despite the presence of the background Hamil-

tonian, finding the simplest set of control pulses rather than considering how these

pulses might themselves be implemented. Experimental implementations will need

to use either general approaches such as gradient-ascent pulse engineering (GRAPE)

pulses [74], or specific methods tailored to this precise situation [108, 109, 110], but

we will leave these pulse engineering improvement in future studies.
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FIG. 1: Networks to (a) refocus all offsets and couplings in a
square of four qubits with only nearest-neighbour couplings,
and (b) keep only the coupling between qubits 3 and 4. Here
X indicates a not gate while U indicates evolution under the
background Hamiltonian. Labels on the left indicate which
qubits the not gates are applied to.

the couplings in the system, as well as any offsets present,
using the circuit of spin-echoes shown in Fig. 1(a). Here,
the unitary U describes the evolution of the system under
the background Hamiltonian H given by the propagator
U = exp (−iHt/~), while the not gates are represented
by X. As there is no coupling to be refocused between
qubits 1 and 3 it is possible to apply the same pattern of
not gates to them both, and similarly for qubits 2 and 4,
so only two distinct patterns of not gates are required.

This network can also be extended to retain a single
coupling, as shown in Fig. 1(b). In this network the same
pattern of not gates is applied to qubits 3 and 4, and the
corresponding coupling is retained, while the remaining
couplings are refocused [7]. Remarkably these networks
can be easily extended to retain any pattern of couplings
in a square lattice system.

III. SQUARE LATTICES

This extension works by colouring the square lattice, as
described in [7]. The system can be described as a non-
complete graph, with vertices corresponding to qubits
and edges to couplings, with only some of the possible
edges present. The graph can be coloured by assigning a
colour to each vertex, and is said to be properly coloured
if no two connected vertices are the same colour. Thus in
the original fully-decoupled square of four qubits we can
colour qubits 1 and 3 black and qubits 2 and 4 white,
while to retain a single coupling the pair of qubits in-
volved must be assigned a third colour, say red. To
implement a colouring use patterns of not gates cor-
responding to distinct Walsh functions [7, 16] for each
colour.

This colouring pattern can be tessellated across a lat-
tice, as shown in Fig. 2, by colouring alternate qubits
black and white. Here we show a four-by-four patch con-
taining sixteen qubits, which can be embedded in a larger
lattice, retaining a single coupling while refocusing all the
other interactions. The required pulse sequence can be

FIG. 2: Retaining a single nearest neighbour coupling in
a square lattice requires three colours: the main lattice is
coloured alternately black and white while the two coupled
qubits are coloured red. Grey dashed lines shown nearest-
neighbour couplings which have been refocused.

obtained by assigning black qubits B to the first Walsh
pattern, white qubits W to the second, and the two red
qubits R to the third, to obtain the sequence

U XWR U XBR U XWR U XBR, (2)

where XWR indicates that not gates are applied to the
white and red qubits, and so on. Just like the sequence
for the four-qubit system, this sequence requires only 4
time periods, but now requires 2q+ 4 pulses for a system
of q qubits. The total time required to implement the net-
work for a π/2 evolution, corresponding to a controlled-
not gate, is

T = 1/2J, (3)

where the nearest-neighbour couplings are of size 2πJ .
This is the same time as is needed for an isolated cou-
pling, as the retained coupling evolves at full strength.

IV. SINGLE-QUBIT INTERACTIONS

The approach above will refocus all single-qubit inter-
actions, but it is simple to modify the X gates in the net-
work to implement single-qubit rotations directly. This
relies on the identity [19]

πφ2
πφ1

= 2(φ2 − φ1)z, (4)

so that applying two π rotations around axes in the xy-
plane separated by an angle δ is equivalent to performing
a z-rotation through an angle 2δ. These rotations can be
performed by modifying any pair of X gates in any refo-
cusing network, and as each qubit is controlled separately
different rotations can be applied to different qubits at
no cost in time or pulse count.

Figure 5.8: Networks to (a) refocus all offsets and couplings in a square of four qubits
with only nearest-neighbour couplings, and (b) keep only the coupling between qubits
3 and 4. Here X indicates a gate while U indicates evolution under the background
Hamiltonian. Labels on the left indicate which qubits the gates are applied to.

5.5.1 Square lattices

We begin with the smallest possible square lattice, containing four qubits with identi-

cal nearest neighbour couplings ωj,j+1 and ω14 only. Non nearest-neighbour pairs have

no coupling, so ω13 = ω24 = 0. We can refocus all the couplings in the system, as well

as any offsets present, using the circuit of spin-echoes shown in Fig. 5.8(a). Here, the

unitary U describes the evolution of the system under the background Hamiltonian

Ĥ given by the propagator U = exp
(
− iĤt

~

)
, while the gates are represented by X.

As there is no coupling to be refocused between qubits 1 and 3 it is possible to apply

the same pattern of gates to them both, and similarly for qubits 2 and 4, so only

two distinct patterns of gates are required.

This network can also be extended to retain a single coupling, as shown in

Fig. 5.8(b). In this network the same pattern of gates is applied to qubits 3 and 4,

and the corresponding coupling is retained, while the remaining couplings are refo-

cused [63]. These networks can be extended to retain any pattern of couplings in a

square lattice system.

This extension works by colouring the square lattice, as described in [63]. The

system can be described as a noncomplete graph, with vertices corresponding to
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U U
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2, 4 X X

(b) 1

U U

X
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X

2 X X

3, 4 X X X X

FIG. 1: Networks to (a) refocus all offsets and couplings in a
square of four qubits with only nearest-neighbour couplings,
and (b) keep only the coupling between qubits 3 and 4. Here
X indicates a not gate while U indicates evolution under the
background Hamiltonian. Labels on the left indicate which
qubits the not gates are applied to.

the couplings in the system, as well as any offsets present,
using the circuit of spin-echoes shown in Fig. 1(a). Here,
the unitary U describes the evolution of the system under
the background Hamiltonian H given by the propagator
U = exp (−iHt/~), while the not gates are represented
by X. As there is no coupling to be refocused between
qubits 1 and 3 it is possible to apply the same pattern of
not gates to them both, and similarly for qubits 2 and 4,
so only two distinct patterns of not gates are required.

This network can also be extended to retain a single
coupling, as shown in Fig. 1(b). In this network the same
pattern of not gates is applied to qubits 3 and 4, and the
corresponding coupling is retained, while the remaining
couplings are refocused [7]. Remarkably these networks
can be easily extended to retain any pattern of couplings
in a square lattice system.

III. SQUARE LATTICES

This extension works by colouring the square lattice, as
described in [7]. The system can be described as a non-
complete graph, with vertices corresponding to qubits
and edges to couplings, with only some of the possible
edges present. The graph can be coloured by assigning a
colour to each vertex, and is said to be properly coloured
if no two connected vertices are the same colour. Thus in
the original fully-decoupled square of four qubits we can
colour qubits 1 and 3 black and qubits 2 and 4 white,
while to retain a single coupling the pair of qubits in-
volved must be assigned a third colour, say red. To
implement a colouring use patterns of not gates cor-
responding to distinct Walsh functions [7, 16] for each
colour.

This colouring pattern can be tessellated across a lat-
tice, as shown in Fig. 2, by colouring alternate qubits
black and white. Here we show a four-by-four patch con-
taining sixteen qubits, which can be embedded in a larger
lattice, retaining a single coupling while refocusing all the
other interactions. The required pulse sequence can be

FIG. 2: Retaining a single nearest neighbour coupling in
a square lattice requires three colours: the main lattice is
coloured alternately black and white while the two coupled
qubits are coloured red. Grey dashed lines shown nearest-
neighbour couplings which have been refocused.

obtained by assigning black qubits B to the first Walsh
pattern, white qubits W to the second, and the two red
qubits R to the third, to obtain the sequence

U XWR U XBR U XWR U XBR, (2)

where XWR indicates that not gates are applied to the
white and red qubits, and so on. Just like the sequence
for the four-qubit system, this sequence requires only 4
time periods, but now requires 2q+ 4 pulses for a system
of q qubits. The total time required to implement the net-
work for a π/2 evolution, corresponding to a controlled-
not gate, is

T = 1/2J, (3)

where the nearest-neighbour couplings are of size 2πJ .
This is the same time as is needed for an isolated cou-
pling, as the retained coupling evolves at full strength.

IV. SINGLE-QUBIT INTERACTIONS

The approach above will refocus all single-qubit inter-
actions, but it is simple to modify the X gates in the net-
work to implement single-qubit rotations directly. This
relies on the identity [19]

πφ2
πφ1

= 2(φ2 − φ1)z, (4)

so that applying two π rotations around axes in the xy-
plane separated by an angle δ is equivalent to performing
a z-rotation through an angle 2δ. These rotations can be
performed by modifying any pair of X gates in any refo-
cusing network, and as each qubit is controlled separately
different rotations can be applied to different qubits at
no cost in time or pulse count.

FIG. 1. Networks to (a) refocus all offsets and couplings in a
square of four qubits with only nearest-neighbour couplings,
and (b) keep only the coupling between qubits 3 and 4. Here
X indicates a not gate while U indicates evolution under the
background Hamiltonian. Labels on the left indicate which
qubits the not gates are applied to.

by X. As there is no coupling to be refocused between
qubits 1 and 3 it is possible to apply the same pattern of
not gates to them both, and similarly for qubits 2 and 4,
so only two distinct patterns of not gates are required.

This network can also be extended to retain a single
coupling, as shown in Fig. 1(b). In this network the same
pattern of not gates is applied to qubits 3 and 4, and
the corresponding coupling is retained, while the remain-
ing couplings are refocused [7]. These networks can be
extended to retain any pattern of couplings in a square
lattice system.

This extension works by colouring the square lattice, as
described in [7]. The system can be described as a non-
complete graph, with vertices corresponding to qubits
and edges to couplings, with only some of the possi-
ble edges present. The graph can be coloured by as-
signing a colour to each vertex, and is said to be prop-
erly coloured, corresponding to complete refocusing, if
no two connected vertices are the same colour. Thus in
the fully-decoupled square of four qubits we can colour
qubits 1 and 3 black and qubits 2 and 4 white, while to
retain a single coupling the pair of qubits involved must
be assigned the same third colour, say red, as shown in
Fig. 2(a). To implement a colouring, we use patterns
of not gates corresponding to distinct Walsh functions
[7, 15] for each colour.

This colouring pattern can be tessellated across a lat-
tice, as shown in Fig. 2(b), by colouring surrounding
qubits alternately black and white. Here we show a four-
by-four patch containing sixteen qubits, which can be
embedded in a larger lattice, retaining a single coupling
while refocusing all the other interactions. The required
pulse sequence can be obtained by assigning black qubits
B to the first Walsh pattern, white qubits W to the sec-
ond, and the two red qubits R to the third, to obtain the
sequence

U Xwr U XBR U XWR U XBR, (2)

(a) (b)

FIG. 2. (a) Retaining a nearest neighbour coupling in a square
requires three colours: decoupled qubits are coloured black
and white, while the coupled qubits are coloured red. Grey
dashed lines show couplings which have been refocused. (b)
The same result can be achieved in a larger array by colouring
surrounding qubits alternately black and white.

where XWR indicates that not gates are applied to the
white and red qubits, and so on. Just like the sequence
for the four-qubit system, this sequence requires only 4
time periods, but now requires 2q+ 4 pulses for a system
of q qubits. The total time required to implement the net-
work for a π/2 evolution, corresponding to a controlled-
not gate, is T = 1/2J , where the nearest-neighbour cou-
plings are of size 2πJ . This is the same time as is needed
for an isolated coupling, as the retained coupling evolves
at full strength.

The approach above will refocus all single-qubit inter-
actions, but it is simple to modify the X gates in the net-
work to implement single-qubit rotations directly. This
relies on the identity [18]

πφ2πφ1 = 2(φ2 − φ1)z, (3)

so that applying two π rotations around axes in the xy-
plane separated by an angle δ is equivalent to performing
a z-rotation through an angle 2δ. These rotations can be
performed by modifying any pair of X gates in any refo-
cusing network, and as each qubit is controlled separately
different rotations can be applied to different qubits at
no cost in time or pulse count.

PARALLEL GATES

If it is desired to retain several different coupling inter-
actions then this can be achieved most simply by apply-
ing such patterns back to back, changing the colouring
at each stage, but it is more efficient to as far as possi-
ble perform evolutions in parallel. For simple cases this
can be achieved as shown in Fig. 3. Qubits which are
part of the same coupling island, that is qubits which are
connected either directly or indirectly by retained cou-
plings, have been coloured the same colour. (Note that
the single yellow qubit forms an island on its own.)

Figure 5.9: (a) Retaining a nearest neighbour coupling in a square requires three
colours: decoupled qubits are coloured black and white, while the coupled qubits
are coloured red. Grey dashed lines show couplings which have been refocused. (b)
The same result can be achieved in a larger array by colouring surrounding qubits
alternately black and white.

qubits and edges to couplings, with only some of the possible edges present. The

graph can be coloured by assigning a colour to each vertex, and is said to be properly

coloured, corresponding to complete refocusing, if no two connected vertices are the

same colour. Thus in the fully-decoupled square of four qubits we can colour qubits

1 and 3 black and qubits 2 and 4 white, while to retain a single coupling the pair

of qubits involved must be assigned the same third colour, say red, as shown in

Fig. 5.9(a). To implement a colouring, we use patterns of gates corresponding to

distinct Walsh functions [35, 63] for each colour.

This colouring pattern can be tessellated across a lattice, as shown in Fig. 5.9(b),

by colouring surrounding qubits alternately black and white. Here we show a four-

by-four patch containing sixteen qubits, which can be embedded in a larger lattice,

retaining a single coupling while refocusing all the other interactions. The required

pulse sequence can be obtained by assigning black qubits B to the first Walsh pattern,

white qubits W to the second, and the two red qubits R to the third, to obtain the

sequence

U Xwr U XBR U XWR U XBR, (5.18)

where XWR indicates that NOT gates are applied to the white and red qubits, and
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so on. Just like the sequence for the four-qubit system, this sequence requires only 4

time periods, but now requires 2q + 4 pulses for a system of q qubits. The total time

required to implement the network for a π evolution, corresponding to a CNOT gate

[35], is T = 1/2J , where the nearest-neighbour couplings are of size ω = 2πJ . This is

the same time as is needed for an isolated coupling, as the retained coupling evolves

at full strength.

The approach above will refocus all single-qubit interactions, but it is simple to

modify the X gates in the network to implement single-qubit rotations directly. This

relies on the identity [111]

πφ2πφ1 = 2(φ2 − φ1)z, (5.19)

so that applying two π rotations around axes in the xy-plane separated by an angle δ

is equivalent to performing a z-rotation through an angle 2δ. These rotations can be

performed by modifying any pair of X gates in any refocusing network, and as each

qubit is controlled separately different rotations can be applied to different qubits at

no cost in time or pulse count.

5.5.2 Parallel gates

If it is desired to retain several different coupling interactions then this can be achieved

most simply by applying such patterns back to back, changing the colouring at each

stage, but it is more efficient to as far as possible perform evolutions in parallel. For

simple cases this can be achieved as shown in Fig. 5.10. Qubits which are part of the

same coupling island, that is qubits which are connected either directly or indirectly

by retained couplings, have been coloured the same colour. (Note that the single

yellow qubit forms an island on its own.)

This simple approach will only be successful when, as here, all the couplings which

could appear in an island are retained. In such cases this simple colouring strategy
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FIG. 3: Retaining a more complex pattern of couplings in a
square lattice: this pattern requires four colours.

V. PARALLEL GATES

If it is desired to retain several different coupling inter-
actions then this can be achieved most simply by apply-
ing such patterns back to back, changing the colouring
at each stage, but it would clearly be more efficient to as
far as possible perform evolutions in parallel. For simple
cases this is easily performed, as depicted in Fig. 3.

In this figure, qubits which are part of the same cou-
pling island, that is qubits which are connected either
directly or indirectly by retained couplings, have been
coloured the same colour. This simple approach will only
be successful when, as shown here, all the couplings which
could appear in an island are in fact present. (Note that
the single yellow qubit forms an island on its own.) In
such cases this simple colouring strategy will retain all
the desired couplings while refocusing all the couplings
between islands, reproducing the desired pattern in one
go. As before, the total time required is simply T = 1/2J ,
the same as for an isolated coupling.

It might appear that this approach would require the
number of colours to equal the number of islands, but in
fact it is never necessary to use more than four, as is-
lands which are completely disconnected (that is, islands
which are not connected by couplings in the underly-
ing Hamiltonian) can be safely coloured the same colour.
By the four-colour-map theorem this will never require
more than four colours [20]. In particular, the black and
white background colours used in earlier figures are no
longer required. These four colours can be assigned to
four Walsh functions, requiring T to be divided up into
eight equal time periods. Assigning the most common
colours to the two lowest Walsh functions, which both
require two pulses, and the two rarer colours to the next
two Walsh functions, which require four pulses, means
that the total number of pulses required in a system of q
qubits lies between 2q and 3q.

Many target patterns cannot, however, be achieved in
this way, as they have one or missing couplings. Consider,
for example, the pattern shown in Fig. 4, where the black
couplings must be retained, and the dashed red couplings
must not be retained although they connect qubits within

FIG. 4: A target pattern of couplings which cannot be im-
plemented with a single colouring pattern. Although the grey
qubits are easily decoupled from each other and from the black
island, it is impossible to retain all the desired black cou-
plings without also retaining the undesired couplings shown
as dashed red lines.

the main island. Any colouring which implements all the
black couplings that must be retained will also implement
the unwanted red couplings, and so this target pattern
cannot be implemented with any single colouring pattern.

VI. MULTIPLE COLOURINGS

There is, however, a simple method for achieving any
target pattern using two sequential colourings, each using
four colours. The first pattern assigns two colours to the
odd-numbered rows and another two to the even num-
bered rows, thus ensuring that no vertical couplings can
be retained. Along a row, the colour of the first qubit
is arbitrary, but the following qubit must be the same
colour if the corresponding coupling is to be retained,
and the other colour if the coupling is to be refocused.
The second pattern implements vertical couplings in an
analogous way.

A pair of colourings which implements the target cou-
plings in Fig. 4 is shown in Fig. 5. Any target pattern
at all can be implemented in this way, in a total time
2T . This total time will be divided into 16 equal time
periods, separated by no more than 6q individual pulses.

It is useful to compare this time with timings found
by our previous algorithm [16] based on linear program-
ming, which is guaranteed (when an exhaustive basis set
is used) to find a true minimum-time solution. The com-
putational complexity of this algorithm renders it im-
practical for large arrays, but for four-by-four arrays with
nearest-neighbour couplings it is perfectly possible to use
it. We have analysed a very large number of randomly
chosen targets in four-by-four arrays, and in every case
the optimal solution required a total time of either T (in
cases with no missing couplings, so a single colouring is
possible) or 1.5T (in cases where this is not possible).

Thus the implementation time required for our colour-
ing based networks is slightly longer than the absolute
minimum required, but our colourings are far easier to de-
sign, with a computation time scaling only linearly with

Figure 5.10: Retaining a more complex pattern of couplings in a square lattice: this
pattern requires four colours.

will retain all the desired couplings while refocusing all the couplings between islands,

reproducing the desired pattern in one go. As before, the total time required is just

T = 1/2J , the same as for an isolated coupling.

It might appear that this approach would require the number of colours to equal

the number of islands, but in fact it is never necessary to use more than four, since

islands which are completely disconnected (that is, islands which are not connected

by couplings in the underlying Hamiltonian) can be safely coloured the same. By the

four-colour-map theorem this will never require more than four colours [112]. These

four colours can be assigned to four Walsh functions [35], requiring T to be divided

up into eight equal time periods. Assigning the most common colours to W1 and W2,

which both require two pulses, and the two rarer colours to W3 and W4, which require

four pulses, means that the total number of pulses required in a system of q qubits

lies between 2q and 3q.

Although this method will work for some simple target patterns, it will not work in

general, since many target patterns have one or more missing couplings. Consider, for

example, the pattern shown in Fig. 5.11, where the black couplings must be retained,

and the dashed red couplings must not be retained although they connect qubits

within the main island. Any colouring which implements all the black couplings that

must be retained will also implement the unwanted red couplings, and so this target
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FIG. 3: Retaining a more complex pattern of couplings in a
square lattice: this pattern requires four colours.

V. PARALLEL GATES

If it is desired to retain several different coupling inter-
actions then this can be achieved most simply by apply-
ing such patterns back to back, changing the colouring
at each stage, but it would clearly be more efficient to as
far as possible perform evolutions in parallel. For simple
cases this is easily performed, as depicted in Fig. 3.

In this figure, qubits which are part of the same cou-
pling island, that is qubits which are connected either
directly or indirectly by retained couplings, have been
coloured the same colour. This simple approach will only
be successful when, as shown here, all the couplings which
could appear in an island are in fact present. (Note that
the single yellow qubit forms an island on its own.) In
such cases this simple colouring strategy will retain all
the desired couplings while refocusing all the couplings
between islands, reproducing the desired pattern in one
go. As before, the total time required is simply T = 1/2J ,
the same as for an isolated coupling.

It might appear that this approach would require the
number of colours to equal the number of islands, but in
fact it is never necessary to use more than four, as is-
lands which are completely disconnected (that is, islands
which are not connected by couplings in the underly-
ing Hamiltonian) can be safely coloured the same colour.
By the four-colour-map theorem this will never require
more than four colours [20]. In particular, the black and
white background colours used in earlier figures are no
longer required. These four colours can be assigned to
four Walsh functions, requiring T to be divided up into
eight equal time periods. Assigning the most common
colours to the two lowest Walsh functions, which both
require two pulses, and the two rarer colours to the next
two Walsh functions, which require four pulses, means
that the total number of pulses required in a system of q
qubits lies between 2q and 3q.

Many target patterns cannot, however, be achieved in
this way, as they have one or missing couplings. Consider,
for example, the pattern shown in Fig. 4, where the black
couplings must be retained, and the dashed red couplings
must not be retained although they connect qubits within

FIG. 4: A target pattern of couplings which cannot be im-
plemented with a single colouring pattern. Although the grey
qubits are easily decoupled from each other and from the black
island, it is impossible to retain all the desired black cou-
plings without also retaining the undesired couplings shown
as dashed red lines.

the main island. Any colouring which implements all the
black couplings that must be retained will also implement
the unwanted red couplings, and so this target pattern
cannot be implemented with any single colouring pattern.

VI. MULTIPLE COLOURINGS

There is, however, a simple method for achieving any
target pattern using two sequential colourings, each using
four colours. The first pattern assigns two colours to the
odd-numbered rows and another two to the even num-
bered rows, thus ensuring that no vertical couplings can
be retained. Along a row, the colour of the first qubit
is arbitrary, but the following qubit must be the same
colour if the corresponding coupling is to be retained,
and the other colour if the coupling is to be refocused.
The second pattern implements vertical couplings in an
analogous way.

A pair of colourings which implements the target cou-
plings in Fig. 4 is shown in Fig. 5. Any target pattern
at all can be implemented in this way, in a total time
2T . This total time will be divided into 16 equal time
periods, separated by no more than 6q individual pulses.

It is useful to compare this time with timings found
by our previous algorithm [16] based on linear program-
ming, which is guaranteed (when an exhaustive basis set
is used) to find a true minimum-time solution. The com-
putational complexity of this algorithm renders it im-
practical for large arrays, but for four-by-four arrays with
nearest-neighbour couplings it is perfectly possible to use
it. We have analysed a very large number of randomly
chosen targets in four-by-four arrays, and in every case
the optimal solution required a total time of either T (in
cases with no missing couplings, so a single colouring is
possible) or 1.5T (in cases where this is not possible).

Thus the implementation time required for our colour-
ing based networks is slightly longer than the absolute
minimum required, but our colourings are far easier to de-
sign, with a computation time scaling only linearly with

Figure 5.11: A target pattern of couplings which cannot be implemented with a single
colouring pattern. Although the grey qubits are easily decoupled from each other and
from the black island, it is impossible to retain all the desired black couplings without
also retaining the undesired couplings shown as dashed red lines.

pattern cannot be implemented with any single colouring pattern.

5.5.3 Multiple colourings

There is, however, a simple method for achieving any target pattern with two se-

quential colourings, each using four colours. As an example a pair of colourings

which implements the target couplings in Fig. 5.11 is shown in Fig. 5.12. Pattern (a)

assigns two colours to the odd-numbered rows and two more to the even numbered

rows, thus ensuring horizontal couplings can be controlled while all vertical couplings

will be refocused. Along a row, the colour of the first qubit is arbitrary, but the fol-

lowing qubit must be the same colour if the corresponding coupling is to be retained,

and the other colour if it is to be refocused. Pattern (b) assigns colours to columns

instead of rows to control vertical couplings in an analogous way.

As any subset of horizontal couplings can be selected by the first colouring, and

any subset of vertical couplings can be selected by the second, any target pattern at

all can be implemented in this way, in a total time 2T . This total time will be divided

into 16 equal time periods, separated by no more than 6q individual pulses.

It is useful to compare this result with timings found by our previous algorithm

based on linear programming with an exhaustive basis set, which is guaranteed to find
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(a)

(b)
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Figure 5.12: A solution implementing the target couplings in Fig. 5.11 using two
sequential colouring patterns, (a) and (b).

a true minimum-time solution. The computational complexity of this algorithm ren-

ders it impractical for large arrays, but for four-by-four arrays with nearest-neighbour

couplings it is perfectly practical. We have analysed a very large number of randomly

chosen targets in four-by-four arrays, and in every case the optimal solution required

a total time of either T (in cases with no missing couplings, so a single colouring is

possible) or 1.5T (in cases where this is not possible).

The implementation time required for our colouring based networks, 2T , is slightly

longer than the absolute minimum required, but these colourings are far easier to

design, with a computation time scaling only linearly with the total number of qubits,

and so can be applied to systems any number of qubits. The number of gates required

is also greatly reduced, from O(q2) for linear programming based solutions to O(q).
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5.5.4 Next-nearest neighbours

Until now we have assumed that only nearest-neighbour interactions are important,

with all others being too small to matter. In practice, real physical systems are

likely to also have non-zero couplings at longer range. It is reasonable to expect

such couplings to drop with distance in well-engineered devices, making the next-

nearest neighbour interactions, across the diagonals of the square array, the most

significant. In the original two-colour refocusing scheme qubits connected by next-

nearest neighbour interactions will be the same colour, both black or both white, and

so these interactions will be retained rather than refocused, leading to a significant

error in the final gate implementation.

This is not a problem with the general four-colour scheme, as the use of different

colours for alternate rows and columns guarantees that diagonally connected qubits

will be of different colours. Thus these networks automatically suppress any un-

wanted diagonal couplings, which can therefore simply be ignored. Suppressing even

longer range couplings is more complicated, but can be achieved using larger num-

bers of colouring patterns with more colours used in each pattern, as described in the

Appendix A.5.

5.5.5 Different evolution times

The parallel gates approach, however, hides a further important assumption: it is not

sufficient to retain two different couplings if they are required to evolve for different

times, either because different couplings must evolve through different angles, or

because apparently equivalent couplings will have different strengths, and so will

need different evolution times to achieve the same angle.

It might seem necessary to apply such gates using different echo sequences, but in

fact they can be partly combined. Consider two couplings in the same group, where
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one requires evolution for a total time TA and the second for a time TB, with TB > TA.

The naive approach is to use two different colouring patterns, one implementing the

first coupling for time TA, and another implementing the second coupling for TB. In

fact these periods can be carried out partly in parallel: during the first period, which

lasts for time TA, both couplings are retained, while for the second period, which lasts

for time TB − TA, only the second coupling is retained. Thus both couplings can be

carried out in a total time TB, and the method generalises for any number of distinct

couplings strengths.

It follows that any pattern of couplings can be achieved in an evolution time

equal to the sum of the longest evolution times required for horizontal and vertical

couplings, which itself is no more than 2Tmax, where Tmax = 1/2Jmin is the evolution

time required for the slowest gate. However the resulting sequences will contain O(q)

evolution times and O(q2) pulses, while designing such sequences requires sorting the

evolution times into ascending order, with computational time complexity O(q log q).

They will also be impractical to implement experimentally, as the differences between

very similar times may be smaller than the clock resolution.

Rather than implementing a very large number of distinct evolution times pre-

cisely, it makes more sense to use a much smaller number of evolutions to approximate

all the desired times. This is most easily achieved by dividing the range of evolution

times by successive powers of two, in effect encoding each evolution time as a binary

number. Using k different evolution times results in k-bit precision, with an expo-

nential increase in precision with a linear increase in the number of evolution times

used. By accepting a degree of approximation one can reduce the time complexity

from O(q log q) to O(kq), and reduce the pulse count from O(q2) to O(kq), where the

constant k depends on the accuracy required. For example, using 20 distinct delays

will allow angles to be approximated to a precision better than 10−6.
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5.5.6 Summary of the colouring method

The colouring technique described here allows the efficient control of interactions in

qubit arrays of arbitrary size, provided the couplings are constrained to be local.

While the resulting pulse sequences take slightly longer to implement than the abso-

lute minimum time required, the computational time is vastly reduced, from O(4q) for

exhaustive linear programming, or O(q6) for RROS [35], right down to O(q), render-

ing them practical in systems with thousands or even millions of qubits. The number

of control pulses is also greatly reduced, from O(q2) to O(q), thus reducing implemen-

tation errors. The method can handle unwanted next-nearest neighbour couplings,

and is easily extended in a scalable way to systems with variable coupling strengths

or evolution angles.

5.6 Conclusion

To conclude, we compare the physical and computational resource for each method

and discuss the improvement from the same algorithm compilation using the conven-

tional NMR approach (“Naive” in Table 5.1).

Naive LP RROS Colouring Colouring*

Total duration
∑

i<j
θi,j

2Ji,j
max{ θi,j

2Ji,j
} max{ θi,j

Ji,j
} max{ θi,j

Ji,j
} max{ θi,j

Ji,j
}

No. of time periods O(q3) O(q2) O(q2) O(q) O(k)
Pulse counts O(q4) O(q3) O(q3) O(q2) O(kq)
Complexity O(1) O(4q) O(q6) O(q log q) O(q)
Number of qubits no limit 20 150 millions billions
Connectivity A-to-A A-to-A A-to-A NN NN

Table 5.1: Resource comparison of Hamiltonian simulation

In Subsec. 5.2.3, we have reviewed the naive approach using an efficient decoupling

pulse sequence [63, 64], and estimated the total duration and the pulse count of the

Hamiltonian simulation. The benefit of the conventional approach is its simplicity in
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designing the decoupling sequence, which allows the compilation of the Hamiltonian

simulation possible regardless of the number of qubits and the coupling pattern. By

carving out a single two-qubit interaction while decoupling all other couplings, we can

compile a Hamiltonian simulation using the gate-based approach straightforwardly.

However, the simplicity in the algorithm compiling complexity comes at a price of

unfavourable scaling in physical resources such as total duration and the pulse count

of the pulse sequence. Since nearly all couplings are turned off in each two-qubit gate

application, most of the entangling resource in the coupled qubits has been wasted

each step. Also, the number of pulses required for the decoupling sequence scales

with the number of qubits q, so the pulse sequence will get crowded as we increase

the number of qubits. This introduces more single-qubit gate errors and does not

reduce the duty cycle of active quantum operation in a large number of qubits, which

makes the conventional NMR approach infeasible for our motivation to implement a

large-scale quantum computation using native interactions.

To overcome the limitation of the conventional NMR approach, we avoid turning

off most of the couplings. We utilise the couplings present in the system as much as

possible by simultaneously evolving them and controlling individual phase accumula-

tion using a tailored spin-echo sequence. The generation of the pulse sequence and its

efficiency are not trivial in a large system, so we use a computer to find and optimise

the pulse sequence. In a sense, this is a quantum-classical hybrid approach where we

use a classical computer to efficiently compile the Hamiltonian simulation algorithm

to make the most of the quantum hardware, reducing the cost of the spin-echo pulse

sequence both in time and pulse counts. Since it relies on classical computers to find

the pulse sequence, the extensibility of the protocol (“Number of qubits” in Table 5.1)

depends on the trade-off between the computational complexity required for the al-

gorithm to find the optimal pulse sequence (“Complexity” in Table 5.1) and physical
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resource needed in the quantum hardware (“Total duration” and “Pulse counts” in

Table 5.1). The computational complexity of finding the hardware-efficient Hamilto-

nian rescaling pulse sequence can be saved by using the prior knowledge of the system

(“Connectivity” in Table 5.1), which results different compilation strategies (top row

of Table 5.1).

In the linear programming approach (“LP” in Table 5.1), we could significantly

reduce the total duration
∑

i<j
θi,j

2Ji,j
of the naive approach to max{ θi,j

2Ji,j
}, which at

most reduces the total duration by a factor of q2, where q is the number of qubits.

This was made possible by allowing simultaneous time-evolution of many two-qubit

interactions and by reformulating the pulse sequence design problem to a linear pro-

gramming problem. Since it uses a classical computer to find the optimal pulse

sequence, the maximum size of the multi-qubit spin-echo sequence is limited to 20

qubits. The maximum size available in this method can be increased to 150 qubits

by the randomised method, which is reasonable for all-to-all coupled systems such

as trapped-ions [9]. Still, the computer-based approach is ultimately limited by the

inability of simulating a quantum system using classical computers.

Further improvement in the extensibility could be achieved by customising the de-

coupling strategy for sparsely-coupled qubits, giving up the general strategy for the

all-to-all coupling network. In particular, we have considered the nearest-neighbour

coupling network, which is common in superconducting circuits, and showed its scal-

ability to billions of qubits. The most crucial result is its scaling of the pulse counts

to the number of qubits. In the error-bounded case (“Colouring*” in Table 5.1), the

number of pulses does not scale with the number of qubits, which means pulses will

not be crowded even as we increase the number of qubits indefinitely. This gives us

the benefit of having the duty cycle constant even we increase the number of qubits,

which is also critical for alleviating the heating problem in quantum computers.
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Chapter 6

Strongly coupled transmon qubits

The previous chapter described how spin-echo techniques could be potentially com-

bined with single-qubit control to compile quantum algorithms hardware efficiently

in quantum systems with always-on interactions. This chapter investigates the issues

that arise when we attempt to implement such techniques in real superconducting

circuits. Specifically, we will look at systematic errors due to reduced readout ad-

dressability and dressed qubit evolution.

In the first half of this chapter, we introduce the practical issues in operating

always-on coupled qubits and the experimental protocols we have developed to control

and characterise strongly coupled qubits. Using measurement and controlling tech-

niques that take the strong coupling effect into account, we have discovered a unique

problem in strongly-coupled qubits, which was crucial for discussing the future scaling

of the quantum computing architecture using always-on coupling in superconducting

qubits. In the latter half of this chapter, we show our analysis of the potential problem

and show a theoretical prediction of the future development of quantum computing

using native interaction.
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6.1 Experimental techniques for strongly coupled

transmon qubits

To investigate the strong residual interaction for quantum computing, we tested a

pair of qubits in device 4Q3 that had a strong residual coupling strength of ζ/2π =

3.9 MHz. Since the standard dispersive readout and the single-qubit gate tune-

up introduced in Chapter 3 do not take the strong coupling into account, we have

developed specialised measurement techniques that overcome the unusual systematic

errors due to the strong coupling.

6.1.1 Joint dispersive readout

In a typical quantum processor based on circuit QED, a qubit is coupled to a dedicated

resonator to read out the qubit’s state independently. Each resonator is designed to

couple one qubit and is supposed to read out the qubit’s state isolated from other

qubits. This is the same for the coaxmon architecture, where we assume each res-

onator coupling to a qubit in the same unit cell, being well isolated from nearby

qubits. As the qubit-qubit coupling increases, the indirect coupling of a resonator to

nearby qubit increases, and the resonator’s response reflects multiple qubits’ state.

In order to correctly interpret the response of the readout resonators, we must take

into account the fact that they jointly measure two qubits simultaneously [113, 114].

In this section, we introduce the joint readout method to investigate the systematic

readout error in a strongly coupled two-coaxmon system and show the process of

correcting the measurement error by post processing the experimental results.
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6.1.2 Analysing joint readout in the IQ plane

As we introduced in Sec. 3.1.3, a qubit’s state can be determined by the in-phase and

the quadrature-phase voltage of the readout resonator’s response, and the ground

and the excited states of the qubit correspond to two different points on the IQ

plane. However, when a resonator is coupled to two qubits, the dispersive shifts by

both qubits affect the resonator response, and we can distinguish four two-qubit basis

states |00〉, |01〉, |10〉 and |11〉 on the IQ plane (see Fig. 6.1).

Similar to the standard averaged measurement protocol, we set a reference axis

by fitting a line to the four basis points in each IQ plane as indicated by black dashed

lines in Fig. 6.1. Measured points in each IQ plane are projected to the reference

axes, and the ensemble average and their correlation can be described as weighted

Figure 6.1: Experimental result of jointly reading out four basis states |00〉, |01〉, |10〉
and |11〉 on the IQ plane. Each state was prepared for 10000 times and we measured
them by two resonators coupled to (a) the first qubit and (b) the second qubit. Small
points represent the average of 100 shots and large points represent the average of all
shots. (c) shows the correlation of the measurement results defined by the product of
the in-phase and the quadrature-phase results of the first and the second resonator.
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sums of the two qubit population and their correlation as follows,

〈V̂ (1)〉 = 〈ψ| V̂ (1) |ψ〉 = β
(1)
II + β

(1)
ZI 〈Z̃I〉+ β

(1)
IZ 〈ĨZ〉+ β

(1)
ZZ 〈Z̃Z〉 , (6.1)

〈V̂ (2)〉 = 〈ψ| V̂ (2) |ψ〉 = β
(2)
II + β

(2)
ZI 〈Z̃I〉+ β

(2)
IZ 〈ĨZ〉+ β

(2)
ZZ 〈Z̃Z〉 , (6.2)

〈V̂ (c)〉 = 〈ψ| V̂ (1) · V̂ (2) |ψ〉 = β
(c)
II + β

(c)
ZI 〈Z̃I〉+ β

(c)
IZ 〈ĨZ〉+ β

(c)
ZZ 〈Z̃Z〉 , (6.3)

where β
(i)
II , β

(i)
ZI , β

(i)
IZ and β

(i)
ZZ (i = 1, 2, c) are coefficients obtained from calibration

experiments implemented as follows.

First, we prepare four basis states |00〉, |01〉, |10〉 and |11〉, and record the averaged

voltage projected to the reference axis (blacked dashed line), which are described as

〈V̂ (i)
00 〉, 〈V̂

(i)
01 〉, 〈V̂

(i)
10 〉 and 〈V̂ (i)

11 〉. Assuming that we prepared the basis states perfectly,

the measured voltages satisfy the following linear equations,

〈V̂ (i)
00 〉 = 〈00| V̂ (i) |00〉 = β

(i)
II + β

(i)
ZI + β

(i)
IZ + β

(i)
ZZ , (6.4)

〈V̂ (i)
01 〉 = 〈01| V̂ (i) |01〉 = β

(i)
II + β

(i)
ZI − β

(i)
IZ − β

(i)
ZZ , (6.5)

〈V̂ (i)
10 〉 = 〈10| V̂ (i) |10〉 = β

(i)
II − β

(i)
ZI + β

(i)
IZ − β

(i)
ZZ , (6.6)

〈V̂ (i)
11 〉 = 〈11| V̂ (i) |11〉 = β

(i)
II − β

(i)
ZI − β

(i)
IZ + β

(i)
ZZ . (6.7)

where β
(i)
II , β

(i)
ZI , β

(i)
IZ and β

(i)
ZZ (i = 1, 2, c) can be obtained by solving the linear

equation.

In the previous studies [113, 114], only one resonator was used to measure the two-

qubit state, meaning only resonator response, 〈V̂ (1)〉 or 〈V̂ (2)〉 of Eq. (6.1) ∼ (6.3)

was available in one experimental run. Therefore, to estimate 〈Z̃I〉, 〈ĨZ〉 and 〈Z̃Z〉,

it was necessary to implement three measurements of the same state, each applying
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pre-rotations of Î ⊗ Î, X̂ ⊗ Î and Î ⊗ X̂ as follows,

〈V̂ 〉II = 〈ψ| (Î ⊗ Î)V̂ (Î ⊗ Î) |ψ〉 = βII + βZI 〈Z̃I〉+ βIZ 〈ĨZ〉+ βZZ 〈Z̃Z〉 , (6.8)

〈V̂ 〉XI = 〈ψ| (X̂ ⊗ Î)V̂ (X̂ ⊗ Î) |ψ〉 = βII − βZI 〈Z̃I〉+ βIZ 〈ĨZ〉 − βZZ 〈Z̃Z〉 , (6.9)

〈V̂ 〉IX = 〈ψ| (Î ⊗ X̂)V̂ (Î ⊗ X̂) |ψ〉 = βII + βZI 〈Z̃I〉 − βIZ 〈ĨZ〉 − βZZ 〈Z̃Z〉 ,(6.10)

and solve the linear equation using the measured voltages 〈V̂ 〉II , 〈V̂ 〉XI and 〈V̂ 〉IX .

However, by having two resonator responses 〈V̂ (1)〉 and 〈V̂ (2)〉 and the expectation

value of their correlation 〈V̂ (c)〉, we can reconstruct 〈Z̃I〉, 〈ĨZ〉 and 〈Z̃Z〉 using results

of a single experimental run and solving the linear equation of Eq. (6.1) ∼ (6.3).

6.1.3 Readout pulse calibration

With the ability to quantify the jointness of the readout by β coefficients, we aim

to minimise the jointness by tuning the readout pulse parameters. Since β coef-

ficients are experimentally determined by resonator responses, they depend on the

physical readout pulse parameters such as the drive frequency, pulse amplitude and

duration. Fig. 6.2 shows the measured β coefficients swept by various readout pulse

parameters. We can see that βZI(βIZ) is the dominant factor in the response of the

resonator 1 (2) and magnitudes of other coefficients indicate the effect from the other

qubit. Therefore, ratios βIZ/βZI (βZI/βIZ) and βIZ/βZI(βZZ/βIZ) indicate the read-

out errors of resonator 1 (2) affected by the nearby qubit and we choose the readout

pulse parameters that minimise these ratios while maximising the signal-to-noise ra-

tio. For example, in the case of the first qubit of device 4Q3 (left side of Fig. 6.3),

we choose the readout drive frequency of 10.834GHz, which has maximal SNR while

having small βIZ/βZI and βZZ/βZI (dashed gray line in Fig. 6.3). As for the read-

out pulse amplitude, the SNR and the jointness increases monotonically in the weak
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Figure 6.2: Readout pulse calibration taking the jointness of the readout into account.
Drive frequency (a), pulse amplitude (b) and pulse duration (c) are swept to find the
optimal readout pulse parameters. Left (right) column shows the result from the
resonator coupled to the first (second) qubit of device 4Q3. The upper graph of each
parameter shows the actual values of the β parameters and the second graph shows
the ratio of the residual readout errors to the desired signal.

drive regime, and we choose the pulse amplitude in this regime because the resonator

response gets complicated if we put too much power. Typically, we choose the drive

amplitude where the increase of the SNR with the pulse amplitude gets gentler than

the increase of βIZ/βZI and βZZ/βZI . Regarding the readout pulse duration, the

SNR decreases after it reaches its peak around 1 ∼ 2 µs, so we set the duration at

the peak.



139

6.1.4 Joint state tomography

Having all coefficients β
(i)
II , β

(i)
ZI , β

(i)
IZ and β

(i)
ZZ (i = 1, 2, c), we can estimate the two-

qubit pseudo-population 〈Z̃I〉, 〈ĨZ〉 and the correlation 〈Z̃Z〉 of an unknown quantum

state using Eq. (6.1),(6.2) and (6.3). For example, measured IQ voltages in Fig. 6.1

can be transformed to 〈Z̃I〉 and 〈ĨZ〉 using β(1) and β(2), which are shown in Fig. 6.3.

Here we normalise the results assuming perfect preparation of the basis states, and

in future when single-shot readout works, this would no longer be needed.

To fully understand the behaviour of the two-qubit state, the expectation values

of two-qubit Pauli operators required for the full two-qubit state tomography can

be obtained by applying basis transformation (X̂−π
2

and Ŷπ
2
) before the readout.

Fig. 6.4 shows the quantum state tomography of the two-qubit state during a Ramsey
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11

Figure 6.3: Measurement results of single-qubit Pauli operators 〈Z̃I〉 and 〈ĨZ〉 after
the joint-readout correction. Red, green, blue and yellow points indicate experimen-
tal runs prepared in |00〉, |01〉, |10〉 and |11〉. Data points used in this figure are
transformed from the In-phase and Quadrature-phase voltages displayed in Fig. 6.1.
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Figure 6.4: Joint quantum state tomography of a Ramsey interferometry experiment
on the first qubit. Without the joint-readout correction (orange), some data points
go outside the computational subspace, which are unphysical. Blue points are post-
processed data after the joint-readout correction.

interferometry experiment on the first qubit. The quantum state tomography without

the joint readout correction, indicated by orange points, have large deviation from

the expected Ramsey oscillation, where data points in 〈X̃I〉, 〈Ỹ I〉, 〈X̃Z〉 and 〈Ỹ Z〉

oscillate outside the computational subspace (see Fig. 6.5). Moreover, the length of

the two-qubit Bloch vector defined by the square sum of each Pauli expectation values,

| ~Bv| = 1
4

∑
i,j | 〈P̃i ⊗ Pj〉 |, (Pi, Pj = I,X, Y, Z) exceeds | ~Bv| = 1, which indicates that

the joint-readout correction is necessary for avoiding unphysical results. With the

help from post-processing, these nonidiealities in measurements could be suppressed

(blue points in Fig. 6.4 and 6.5), so we have applied the joint-readout correction

protocol for all remaining measurements on device 4Q3 displayed in this chapter
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Figure 6.5: Different representations of the Ramsey interferometry experiment on the
first qubit of device 4Q3. (a) The Bloch vector of the two qubit state and (b) a trace
of the Ramsey oscillation on the first qubit’s Bloch sphere. Both the one-qubit and
the two-qubit Bloch vector representation show the overshoot of the measurement
result without the joint-readout correction (orange points) and the post-processing
mitigates the readout error.

6.2 Single-qubit gate calibration

In the previous section, we have seen how the strong always-on qubit-qubit coupling

affected the qubit readout and introduced the post-processing technique to correct

the systematic error. In this section, we discuss how the qubit control is influenced by

the always-on coupling and introduce our tune-up strategy to calibrate single-qubit

gates in the presence of a strong static coupling.

When the qubit-qubit coupling is not negligible, the dynamics of a qubit depends

on the coupled qubit’s state. Crucially, the optimal pulse parameters depend on the

neighbouring qubit’s state since the qubit’s resonant frequency changes due to the ZZ

coupling. In the following subsections, we discuss the effect of the always-on coupling

when we optimise control pulse parameters.



142

6.2.1 State-dependent optimal pulse parameters

As we have dicussed in Chapter 3, the half-DRAG pulse is responsible for minimising

leakage and detuning errors. In the always-on Ising coupled system, the resonant

frequency of a qubit depends on the coupled qubit’s state, so the detuning of the

microwave drive from the qubit’s frequency is dependent on the state of the other

qubit. This makes the optimal DRAG coefficient different depending on the coupled

qubit’s state and we need to take this effect into account when we calibrate single-

qubit gates.

Fig. 6.6 shows the experimental result of the DRAG coefficient tune-up condi-

tioned on the state of the neighbouring qubit. The upper figure shows the result of

the DRAG coefficient calibration when the coupled qubit was in the ground state,

and the lower figure shows the result when the other qubit was in the excited state.

The optimal DRAG coefficient were 0.0024 (0.0103) when the coupled qubit was in

the ground (excited) state, and we can see that the optimal DRAG coefficient of each

case is far from the optimum in the other case.

1.0

0.5

0.0

0.5

Z

0.0024

0.005 0.000 0.005 0.010 0.015 0.020

DRAG coefficient [arb.]
0.6

0.4

0.2

0.0

0.2

0.4

Z

0.0103

Figure 6.6: DRAG coefficient calibration when the neighbouring qubit is in the ground
(upper plot) or the excited (lower plot) state. The colour of the data points and the
fitting function for the DRAG coefficient calibration are introduced in Sec. 3.2.4.
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Figure 6.7: The optimal pulse amplitude obtained by iterating the ping-pong tune-up
when the neighbouring qubit was in the ground (blue) or the excited states (orange).

Similarly, the pulse amplitude converges to different optimal value depending on

the state of the neighbouring qubit. For example, in one instance of the ping-pong

calibration, the pulse amplitude converged to 0.167 (0.170) when the other qubit was

in the ground (excited) state as shown in Fig. 6.7.

6.2.2 State-dependent tune-up

The fact that the optimal pulse parameters depend on the neighbouring qubit’s state

gives us another complexity in our calibration routine and it limits the average single-

qubit gate fidelity in general quantum algorithms.

However, if we know the state of the qubits before we apply the pulse, we can

choose the calibrated pulse parameters depending on the qubits’ state. For exam-

ple, when we implement the state-dependent Ramsey experiment, we apply the gate

sequence as follows,

Initialise in |00〉 − Î ⊗ X̂(g)
π − X̂

(e)
π
2
⊗ Î − wait− X̂(e)

−π
2
⊗ Î −measure

Initialise in |00〉 − Î ⊗ Î − X̂(g)
π
2
⊗ Î − wait− X̂(g)

−π
2
⊗ Î −measure
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In this case, we assume that the second qubit is in the ground or the excited state

while we are implementing the Ramsey interferometry experiment on the first qubit.

X̂
(g)
π (X̂

(e)
π ) is a X̂π pulse using pulse parameters that are calibrated when the other

qubit was in the ground (excited) state. Experiments with a small number of gates or

first few gates in quantum algorithms are fine with this approach, so we have used this

calibration method when we implemented a careful analysis of a Ramsey experiment

in the next section.

Nevertheless, we usually do not know the qubits’ state during general quantum

algorithms run, so the biased calibration might lead to additional error. Therefore,

when the qubit state is arbitrary, we set the pulse parameters to the average value

of the calibrated result in each configuration to minimise the gate error on average.

Although single-qubit gates produced by the above-mentioned calibration protocol

have non-negligible rotation errors, to the best of our knowledge, this is the best

approach of tuning up single-qubit gates with a simple waveform under always-on

coupling.

In future, we could improve the average single-qubit gate fidelity using advanced

pulse shaping techniques such as numerically optimised pulses [74] and analytical

dynamically corrected gates [89], which can take the effect of the always-on coupling

into account during single-qubit gates.

6.3 Deviation from pure Ising interaction

With specialised measurement and control techniques, we have investigated the evo-

lution of a strongly-coupled two-transmon system in detail.

Initially, we expected that the residual interactions in the capacitively coupled

transmon qubits generate pure Ising interactions. However, in the case of device
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Figure 6.8: Fast oscillation in the strongly-coupled two-qubit dynamics. The graph
shows the quantum state tomography of the Ramsey interferometry experiment on
the first qubit. Orange (blue) points is the result when the second qubit was in the
ground (excited) state and they are post-processed taking the effect of the jointness
of the readout into account.

4Q3, we have observed two-qubit dynamics that could not be explained solely by the

Ising interaction. Fig. 6.8 shows the result of the Ramsey interferometry experiment

on the first qubit when the second qubit was in the ground state (orange points) or

the excited state (blue points). As we can see from the plot, there is a high frequency

component in addition to the oscillation caused by the Ising interaction.

To understand the origin of the extra oscillation, we have simulated the same

Ramsey experiment on a computer. In the simulation, we modelled the system by

the following Hamiltonian and simulated the time evolution after preparing the two-

qubit state to |+, 0〉 (orange) and |+, 1〉 (blue),

Ĥ/~ =
∑
i=1,2

(ωiâ
†
i âi +

αi
2
â†i â
†
i âiâi) + J(â†1â2 + â1â

†
2), (6.11)

where annihilation operator âi is truncated to three levels. We have used the physical

parameters of device 4Q3 for ωi, αi (i=1,2) in the Hamiltonian to model the exact dy-

namics in the experiment (see Appendix A.1 for the device parameters). The coupling
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strength J in the simulation was adjusted to be the value that makes the simulated

Ising evolution (slower oscillation frequency) close to the experimental result.

In the aim of characterising the fast oscillation by available device parameters,

we have derived the time evolution analytically using perturbation theory. The time

evolution of the two-qubit state under Eq. (6.11) can be described as follows,

|ψ(t)〉 = exp

(
−iĤt

~

)
|ψ(0)〉 = P̂ † exp

(
−iĤDt

~

)
P̂ |ψ(0)〉

≈ P̂ (2)† exp

(
−iĤ

(2)
D t

~

)
P̂ (2) |ψ(0)〉 = Û (2)(t) |ψ(0)〉 = |ψ(2)(t)〉 , (6.12)

where ĤD is the diagonalised Hamiltonian of Ĥ, and P̂ is an invertible matrix that is

made up of eigenvectors of Ĥ. To give the analytical expression of the time evolution,

we have derived the diagonalised Hamiltonian using the perturbation theory to the

second order instead of numerically diagonalising the Hamiltonian (see Appendix A.6

for the detailed derivation and the analytical expression of Ĥ(2)
D and P̂ (2)).

The quantum state tomography of a time evolution of the first qubit can be repro-

duced by solving the Schrödinger equation for the two-qubit system and calculating

the expectation values of measurement operators σ̂⊗ Î (σ̂ = X̂, Ŷ , Ẑ) in the rotating

frame of both qubits,

〈σ̂ ⊗ Î〉
(2)

(t) = 〈ψ(2)(t)| Û (2)
rot(t)(σ̂ ⊗ Î)Û

(2)†
rot (t) |ψ(2)(t)〉 (6.13)

= 〈ψ(0)| Û (2)′†(t)(σ̂ ⊗ Î)Û (2)′(t) |ψ(0)〉 , (6.14)

Û
(2)
rot(t) = exp

(
−iω

(2)
10 t

2
ẐÎ − iω

(2)
01 t

2
ÎẐ

)
, (6.15)

where Û (2)′(t) = Û
(2)†
rot (t)Û (2)(t), ~ω(2)

mn = 〈m,n| Ĥ(2)
D |m,n〉. To reproduce the state

dependent Ramsey oscillation experiment on the first qubit, we set the initial state
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as |ψ(0)〉 = |+, 0〉 or |+, 1〉 and calculated the following for σ̂ = X̂, Ŷ , Ẑ,

〈σ̂ ⊗ Î〉
(2)

g (t) = 〈+, 0| Û (2)′†(t)(σ̂ ⊗ Î)Û (2)′(t) |+, 0〉 , (6.16)

〈σ̂ ⊗ Î〉
(2)

e (t) = 〈+, 1| Û (2)′†(t)(σ̂ ⊗ Î)Û (2)′(t) |+, 1〉 . (6.17)

The exact solution according to the second-order perturbation theory has many terms

that are not relevant in the discussion, so we will only introduce the approximated

form in this section (see Appendix A.6 for the full analytical expression). In the case

where the detuning is close to the anharmonicity of the first qubit, we can approximate

the time evolution as follows,

〈X̂ ⊗ Î〉
(2)

g (t) ≈ cos2 θ cos
ζt

2
, (6.18)

〈Ŷ ⊗ Î〉
(2)

g (t) ≈ cos2 θ sin
ζt

2
, (6.19)

〈Ẑ ⊗ Î〉
(2)

g (t) ≈ 0, (6.20)

〈X̂ ⊗ Î〉
(2)

e (t) ≈ P 2
55 cos2 θ cos

(
ζ

2

)
t

+ P 2
75 cos2 θ cos

(
ζ

2
+ ω

(2)
20 − ω

(k)
11

)
t, (6.21)

〈Ŷ ⊗ Î〉
(2)

e (t) ≈ −P 2
55 cos2 θ sin

(
ζ

2

)
t

− P 2
75 cos2 θ sin

(
ζ

2
+ ω

(2)
20 − ω

(2)
11

)
t, (6.22)

〈Ẑ ⊗ Î〉
(2)

e (t) ≈ 2P 2
55P

2
75 sin2

(ω(2)
20 − ω

(2)
11

2

)
t, (6.23)

where θ = arctan
(
J
∆

)
, ∆ = ω

(0)
10 − ω

(0)
01 , ζ = (E

(2)
11 − E

(2)
10 − E

(2)
01 )/~, ~ω(0)

mn =

〈m,n| Ĥ |m,n〉 and Pmn is the (m,n)th element of the P̂ (2) matrix (see Appendix A.6

for the detail),
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P55 =
1√

1 + (
√

2J
∆−α2

)2 + (
√

2J
∆+α1

)2

, (6.24)

P75 = −
√

2J

∆ + α1

· 1√
1 + (

√
2J

∆−α2
)2 + (

√
2J

∆+α1
)2

. (6.25)

Using these analytical formulae, we could reproduce the fast oscillation in the Ramsey

experiment by simulation, which are plotted in Fig. 6.9. Also, we have confirmed

that the approximated result of Eq. (6.20)∼(6.23) are almost the same as the full

analytical expression of the second order perturbation, so we will use these formulae

for the following analysis.

Since the fast oscillation in the Ramsey experiment could be simulated by the

second order perturbation theory, we have considered the origin of the unwanted

fast oscillation and its amplitude. Mathematically, the deviation from the ideal Ising

evolution originates from the transformation matrix P̂ that diagonalises the original

Hamiltonian. This can be interpreted as the tilt of the dressed qubit basis from the

bare basis becoming non-negligible when the qubit-qubit coupling is strong and the

native Hamiltonian evolution producing a fast oscillation around the tilted basis with

1.0
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Figure 6.9: Simulation of the fast oscillation in the two-qubit of Eq. (6.20)∼(6.23)
matched very well with the exact second-order perturbation result of
Eq. (A.29)∼(A.39).
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ω
(2)
fast/~ = ∆ + α1 = ζ(2)

2
+ ω

(2)
20 − ω

(2)
11 . The amplitude of the faster oscillation is given

by Eq. (6.21) and (6.22) which is,

cos2 θP 2
75 =

∆√
J2 + ∆2

· 2J2

(∆ + α1)2
· 1

1 + (
√

2J
∆−α2

)2 + (
√

2J
∆+α1

)2
. (6.26)

A factor of 2J2

(∆+α1)2 in Eq. (6.26) explains that the amplitude of the unwanted oscil-

lation becomes large when the detuning and the anharmonicity of the first qubit are

close. Therefore, it is better to make |∆ + α1| large enough so that the excessive

oscillation becomes small. However, the same applies for the second qubit when the

detuning is close to the second qubit’s anharmonicity, so we need to consider the tilt

of the second qubit’s dressed basis as well. In the case of |∆ − α2| < |∆ + α1|, the

dominant error comes from the second qubit’s fast oscillation which is described as

the second term of the following,

〈Î ⊗ X̂〉
(2)

e (t) ≈ P 2
55 cos2 θ cos

(
ζ(2)

2

)
t+ P 2

35 cos2 θ cos

(
ζ(2)

2
+ ω

(2)
02 − ω

(2)
11

)
t,

〈Î ⊗ Ŷ 〉
(2)

e (t) ≈ −P 2
55 cos2 θ sin

(
ζ(2)

2

)
t− P 2

35 cos2 θ sin

(
ζ(2)

2
+ ω

(2)
02 − ω

(2)
11

)
t,

where,

cos2 θP 2
35 =

∆√
J2 + ∆2

· 2J2

(∆− α2)2
· 1

1 + (
√

2J
∆−α2

)2 + (
√

2J
∆+α1

)2
. (6.27)

Ideally, we want to suppress (6.26) and (6.27) at the same rate while making

the Ising interaction strong. Although it is possible to set the detuning very large

to make 2J2

(∆+α1)2 and 2J2

(∆−α2)2 small, this modification will make the Ising coupling

strength ζ = − 2J2(α1+α2)
(∆+α1)(∆−α2)

small as well. This leaves us a question of how to choose

device parameters such as ∆, α1 and α2 that minimise the unwanted fast oscillation

while keeping Ising evolution strength. Thanks to formulae (6.26) and (6.27) derived
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in this section, we are now able to answer this question, and we will give design

criteria for future devices in the next section.

6.4 Design criteria for future devices

In the previous section, we have discussed the unwanted two-qubit evolution depend-

ing on the device parameters such as ∆, α1 and α2. If the qubits’ lifetime were

infinite, we could design small coupling strength and large detuning to suppress the

fast oscillation amplitude to the desired level. However, in reality, qubits’ lifetime are

finite and we need stronger Ising interaction to minimise incoherent errors. Therefore,

it is vital to consider the trade-off between the incoherent errors and the errors due

to the tilted bases. The aim of this section is to find the suitable device parameters

J and ∆ that minimise both incoherent and bases errors, given lifetime τ and qubit

anharmonicities α1 and α2.

First, we would like to have errors due to the dressed bases of both qubits to

be equal so that one of them does not dominate over the other. The condition for

the detuning and anharmonicites can be derived by equating unwanted oscillation

amplitudes of both qubits formulated by Eq. (6.26) and (6.27),

P 2
35 = P 2

75 ⇔
(∆ + α1

∆− α2

)2

= 1

⇔ α1 = −α2 or ∆ =
α2 − α1

2
. (6.28)

The former solution makes ζ = − 2J2(α1+α2)
(∆+α1)(α2−∆)

= 0, so this is not suitable for obtaining
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the Ising interaction. The latter solution of Eq. (6.28) leads to,

P 2
35 = P 2

75 =
8J2

(α1 + α2)2 + 16J2
(6.29)

ζ = −2π
8J2

α1 + α2

, (6.30)

which can be used to estimate the errors for given device parameters.

Incoherent errors can be characterised by a ratio,

ετ =
τZZ
τ

=
|α1 + α2|

8J2τ
, (6.31)

where τ is the lifetime of qubits and τZZ = |2π
ζ
| is the time it takes for the Ising

interaction to evolve full rotation. On the other hand, the errors due to the qubit-

qubit dressing can be quantified as (see Appendix A.7 for the detail),

εd = 1− cos2 θP55 ≈
J2

∆2
+

16J2

(α1 + α2)2
, (6.32)

where θ = arctan
(
J
∆

)
and P55 is taken from Eq (6.24). In the ideal scenario, we do

not want to have either of ετ and εd dominate the other,

ετ = εd ⇔ −α1 + α2

8J2τ
≈ J2

∆2
+

16J2

(α1 + α2)2
(6.33)

∴ J2 ≈ |α
2
1 − α2

2|
16
√
τ
·

√
|α1 + α2|

5α2
1 − 6α1α2 + 5α2

2

(6.34)

therefore,

ζ = −2π(α1 − α2)

2
√
τ

·

√
|α1 + α2|

5α2
1 − 6α1α2 + 5α2

2

(6.35)

is the optimal Ising interaction for given lifetime τ and target anharmonicities. Impor-
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tantly, the Ising coupling strength should be decreased quadratically as the lifetime

gets longer to balance the incoherent error and the error from the qubit-qubit dress-

ing. Using these formulae, we have plotted the expected errors given lifetime and

realistic device parameters in Fig. 6.10.

This analysis can provide design criteria for optimal performance of always-on

Ising-coupled transmon devices and predicts that we should be able to achieve error

levels of 1.0× 10−2 ∼ 5.0× 10−3 with current state-of-the art coherence of 100 µs ∼

1000 µs. It remains to be seen whether this scheme can compete with conventional

gate-based approach using cross resonance gates in a similar architecture using fixed-

frequency and fixed-coupling circuits. Further work on error correction with always-on

coupling will be necessary in order to realise the fault-tolerance [41, 109, 110]. The

surface code error correction would be the suitable candidate for this architecture

because it only requires nearest-neighbour interactions and local operations in the

error correcting syndrome [115, 116, 117].
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Figure 6.10: Expected errors given lifetime and device parameters such as anhar-
monicities and qubit-qubit detuning. Here, we plotted the result of the ideal scenario,
where the incoherent error and the qubit-qubit dressing error are equall.
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Chapter 7

Conclusion and outlook

7.1 Conclusion

This thesis introduced a novel spin-echo-based quantum computing strategy using

always-on coupling and presented a detailed analysis for future scaling. Remarkably,

the Hamiltonian rescaling protocol enabled the hardware-efficient native interactions

to be programmable in an efficient time. This result inspired a pragmatic approach

to utilise residual couplings in superconducting circuits as computational resources

instead of treating them as error sources.

Chapter 4 showed the proof-of-principle experiment of the variational quantum

eigensolver (VQE) and the error mitigation using the always-on coupled transmons.

The trial wave function of the VQE was encoded straightforwardly by timings of spin-

echo pulses in a hardware-efficient manner. Moreover, the magnitude of the artificial

noise in the zero-noise extrapolation could be selected continuously without extra

calibration of two-qubit interaction, which reduced the error mitigation experimental

costs. Lastly, the idea of the hardware compilation of variational quantum algorithms

inspired the discovery of the general hardware-efficient compilation scheme based on
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spin-echo sequences.

In Chapter 5, we have introduced the general Hamiltonian rescaling protocol using

novel spin-echo techniques. In this paradigm, we encode quantum algorithms by

timings of spin-echo pulses, and we have developed two distinct methods to rescale

Hamiltonians. The first algorithm optimises a pulse sequence to rescale all-to-all

coupled Hamiltonian using linear programming, which minimises the total duration

of the pulse sequence. Although the optimisation by linear programming only allows

pulse sequences for up to 20 qubits, randomised protocol extends the limit to hundreds

of qubits, giving a near time-optimal pulse sequence. We have estimated the physical

resource needed for this protocol and have seen dramatic reductions in the total

duration, time periods and pulse counts compared to the conventional naive approach

adopted in NMR [63, 64]. For future applications, the linear programming approach

can be applied to various hardware platforms with all-to-all Ising couplings such

as NMR and trapped-ions. The second algorithm focused on the extensibility of

the Hamiltonian rescaling protocol and we have shown that the pulse generation

algorithm based on graph colouring could also find near time-optimal pulse sequences

for billions of nearest-neighbour coupled qubits. Notably, the pulse count scales linear

to the number of qubits, meaning the number of pulses per qubit stays constant for

arbitrary Hamiltonian rescaling. This allows the duty cycle to be constant and low

even if we increase the number of qubits.

Chapter 6 investigated the potential limitation of spin-echo based quantum com-

puting to superconducting circuits. By repeating trial-and-error in actual experiments

using strongly-coupled transmons, we have addressed potential problems in this archi-

tecture such as readout, control and excessive qubit-qubit dressing. The jointness of a

two-qubit readout could explain the systematic readout errors in the strongly-coupled

transmons, and we could minimise the jointness by optimising measurement pulse pa-
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rameters. The jointness of the readout could further be calibrated by post-processing,

which helped to characterise the two-qubit dynamics in detail. The detailed analysis

of the two-qubit dynamics uncovered a potential issue that could be encountered in

dispersively coupled qubits. A strong qubit-qubit dressing in the dispersively coupled

transmons added unwanted evolution that deviates the free evolution from the ideal

Ising Hamiltonian. This was a potential problem for our quantum computing strat-

egy because we have assumed pure Ising Hamiltonian to be rescaled by spin-echoes.

Nevertheless, we could explain the origin of the unwanted oscillation and gave analyt-

ical formulae that quantify the error. The formulae allowed us to predict qubit-qubit

dressing errors given realistic device parameters, and we have laid out the circuit

design principles to mitigate the nonidealities for future devices.

7.2 Outlook

In general, quantum computing is aiming to achieve two counteracting objectives. On

the one hand, we want to isolate a quantum system from the environment as much as

possible to preserve quantum coherence. On the other hand, we desire maximum ac-

cessibility to process and read out qubits’ state quickly. Simply put, the more control

on the qubits we ask, the more disturbance we make in the system. Unlike con-

ventional superconducting quantum computing architectures, our strategy does not

rely on externally generated two-qubit gates. Since we use the two-qubit interaction

already present in the circuit, potential noise channels from the environment and the

total heat flow to the system can be reduced significantly. As discussed in Chapter 5,

the duty cycle of the quantum operation can be hugely reduced because we replaced

two-qubit gate pulses with the native interaction. In one possible scenario where

the limitation of the cooling power inhibits the extension of quantum computers, our
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approach might become a powerful candidate for future scaling. Already, the current

cooling system is known to hold up to only several hundreds of qubits, and the heating

problem will be more significant if the qubit’s lifetime gets longer. The longer lifetime

requires more isolation from the environment, which demands a stronger drive if we

mainly use external microwave fields to operate qubits. On the other hand, if we

choose the native interaction for entangling operation, we do not need to send strong

microwave pulses relentlessly, so the heating problem can be alleviated when we have

more qubits with longer qubit lifetime in the future.

Although this thesis aimed to implement spin-echo-based hardware compilation

on dispersively coupled transmons lattice, it can be applied to various hardware plat-

forms. The linear programming approach might be useful for the all-to-all Ising

couplings in trapped ions, and our algorithms can generate hardware-efficient pulse

sequences for a system of hundreds of all-to-all coupled qubits, which are suitable for

the near term trapped-ion quantum computers. Another interesting direction is to

explore the spin-echo based compilation on bosonic qubits realised by superconduct-

ing circuits. The bosonic qubits on superconducting circuits utilise the qubit-cavity

dispersive coupling for quantum information processing [19, 118], which is, in a sense,

the closest hardware platform to the system studied in this thesis.

As with other quantum computing architectures, we need to keep improving on

reducing errors during computation. In addition to the errors discussed in Chapter

6, one of the dominant errors in this architecture is single-qubit errors. Although

we have assumed perfect single-qubit operation in developing the spin-echo-based

Hamiltonian rescaling, the single-qubit control under the always-on coupled qubits

has extra complexity in calibrating gates. Learning from the previous studies in other

always-on coupled systems such as NMR and the bosonic qubits [74, 119], numerically

optimised pulses might be useful to minimise the effect from the always-on coupling.
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We have assumed the Ising interaction for the Hamiltonian rescaling protocol, but

it is not confined to limited applications. Diagonal unitaries produced by the Ising

Hamiltonian can be directly implemented to subroutines in many useful quantum al-

gorithms such as the quantum Fourier transform [37], the quantum phase estimation,

the surface code error syndrome [22, 41], the quantum approximate optimisation al-

gorithm [42] and the variational quantum eigensolver [43]. It would be interesting to

know how the Hamiltonian rescaling techniques reduce the computational resources

to implement these algorithms. In fact, computer simulations of a similar spin-echo-

based compilation scheme of the quantum simulation algorithm and the quantum

Fourier transform algorithm have shown better performances than the traditional

circuit model compilation [34, 37]. Although their pulse sequence generation proto-

col does not give general solutions to more than six qubits and does not guarantee

the minimum time duration, their results suggest that the spin-echo-based approach

might be a promising alternative to the gate-based compilation. As we developed al-

gorithms that produce Hamiltonian rescaling pulse sequences for a large scale qubits

network in near-optimal time, it would be worth testing their hardware efficiency in

concrete quantum algorithms on larger scale experiments in the future.
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Appendix A

Appendix

A.1 Device characteristics

In this section, we summarise the device parameters for qubits used in this thesis.

2Q1 4Q3
Parameter Unit Q1 Q2 Q1 Q2

ωr/2π MHz 10503.2 9469.9 10810.7 11275.1
ωq / 2π MHz 6623.0 6079.1 6806.7 7118.2
χ / 2π MHz 2.93 2.62 1.95 2.30
α / 2π MHz -299 -310 -322 -294
EJ/h GHz 22.1 18.4 21.8 25.5
EC/h MHz 269.9 276 289 268
EJ/EC MHz 81.8 66.5 75.5 95.4
g / 2π MHz 406.8 331.1 327.5 386.5

T1 µs 26.19 19.07 6.87 9.38
T2E µs 21.87 25.59 7.01 8.92

ζ / 2π MHz -0.942 -3.908
J / 2π MHz 13.56 8.475
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A.2 Clifford gate decomposition

For the randomised benchmarking implemented in this thesis, we used the Clifford

decomposition using the physical gates X̂π, Ŷπ, X̂π
2
, Ŷπ

2
, X̂−π

2
, Ŷ−π

2
as follows [120].

Clifford gate Physical gate decomposition

Ĉ1 Î

Ĉ2 Ŷπ
2
· X̂π

2

Ĉ3 X̂−π
2
· Ŷ−π

2

Ĉ4 X̂π

Ĉ5 Ŷ−π
2
· X̂−π

2

Ĉ6 X̂π
2
· Ŷ−π

2

Ĉ7 Ŷπ
Ĉ8 Ŷ−π

2
· X̂π

2

Ĉ9 X̂π
2
· Ŷπ

2

Ĉ10 X̂π · Ŷπ
Ĉ11 Ŷπ

2
· X̂−π

2

Ĉ12 X̂−π
2
· Ŷπ

2

Ĉ13 Ŷπ
2
· X̂π

Ĉ14 X̂−π
2

Ĉ15 X̂π
2
· Ŷ−π

2
· X̂−π

2

Ĉ16 Ŷ−π
2

Ĉ17 X̂π
2

Ĉ18 X̂π
2
· Ŷπ

2
· X̂π

2

Ĉ19 Ŷ−π
2
· X̂π

Ĉ20 X̂π
2
· Ŷπ

Ĉ21 X̂π
2
· Ŷ−π

2
· X̂π

2

Ĉ22 Ŷπ
2

Ĉ23 X̂−π
2
· Ŷπ

Ĉ24 X̂π
2
· Ŷπ

2
· X̂−π

2

A.3 Coefficients for the VQE

Here we list the Hamiltonian coefficients of Eq. (4.2) used for finding the ground state

energy of a Hydrogen molecule by the variational quantum eigensolver (VQE) [30].
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Bond distance g0 g1 g2 g3 g4 g5

0.200000 2.848903 0.567814 -1.450770 0.679939 0.079069 0.079069

0.250000 2.186800 0.544944 -1.286955 0.671920 0.079790 0.079790

0.300000 1.725163 0.521502 -1.145829 0.663088 0.080603 0.080603

0.350000 1.382707 0.498174 -1.022598 0.653652 0.081498 0.081498

0.400000 1.118227 0.475398 -0.914468 0.643787 0.082469 0.082469

0.450000 0.908269 0.453443 -0.819396 0.633633 0.083511 0.083511

0.500000 0.738108 0.432466 -0.735525 0.623305 0.084619 0.084619

0.550000 0.597894 0.412548 -0.661192 0.612892 0.085789 0.085789

0.600000 0.480777 0.393715 -0.594994 0.602464 0.087019 0.087019

0.650000 0.381861 0.375961 -0.535782 0.592079 0.088305 0.088305

0.700000 0.297552 0.359251 -0.482619 0.581783 0.089643 0.089643

0.750000 0.225155 0.343537 -0.434736 0.571613 0.091030 0.091030

0.800000 0.162599 0.328763 -0.391490 0.561599 0.092463 0.092463

0.850000 0.108264 0.314866 -0.352336 0.551767 0.093936 0.093936

0.900000 0.060858 0.301788 -0.316805 0.542134 0.095447 0.095447

0.950000 0.019335 0.289470 -0.284493 0.532716 0.096990 0.096990

1.000000 -0.017158 0.277855 -0.255045 0.523525 0.098562 0.098562

1.050000 -0.049326 0.266891 -0.228156 0.514569 0.100158 0.100158

1.100000 -0.077757 0.256529 -0.203556 0.505854 0.101773 0.101773

1.150000 -0.102942 0.246724 -0.181014 0.497385 0.103403 0.103403

1.200000 -0.125294 0.237436 -0.160327 0.489165 0.105044 0.105044

1.250000 -0.145165 0.228629 -0.141317 0.481195 0.106692 0.106692

1.300000 -0.162856 0.220270 -0.123829 0.473475 0.108341 0.108341

1.350000 -0.178625 0.212331 -0.107726 0.466004 0.109988 0.109988

1.400000 -0.192695 0.204787 -0.092888 0.458780 0.111628 0.111628

1.450000 -0.205261 0.197616 -0.079205 0.451800 0.113259 0.113259

1.500000 -0.216494 0.190799 -0.066582 0.445062 0.114875 0.114875

1.550000 -0.226542 0.184318 -0.054931 0.438560 0.116475 0.116475

1.600000 -0.235538 0.178157 -0.044174 0.432291 0.118054 0.118054

1.650000 -0.243600 0.172304 -0.034240 0.426248 0.119611 0.119611

1.700000 -0.250829 0.166746 -0.025063 0.420427 0.121142 0.121142

1.750000 -0.257320 0.161470 -0.016586 0.414822 0.122646 0.122646

1.800000 -0.263152 0.156466 -0.008753 0.409425 0.124120 0.124120

1.850000 -0.268399 0.151724 -0.001515 0.404232 0.125564 0.125564

1.900000 -0.273126 0.147234 0.005172 0.399234 0.126975 0.126975

1.950000 -0.277390 0.142986 0.011352 0.394426 0.128354 0.128354

2.000000 -0.281244 0.138971 0.017061 0.389800 0.129698 0.129698

2.050000 -0.284731 0.135180 0.022336 0.385350 0.131008 0.131008

2.100000 -0.287894 0.131606 0.027209 0.381068 0.132283 0.132283

2.150000 -0.290768 0.128238 0.031709 0.376949 0.133523 0.133523

2.200000 -0.293385 0.125069 0.035865 0.372986 0.134728 0.134728

2.250000 -0.295774 0.122091 0.039702 0.369171 0.135899 0.135899

2.300000 -0.297960 0.119295 0.043243 0.365499 0.137035 0.137035

2.350000 -0.299966 0.116673 0.046511 0.361964 0.138137 0.138137

2.400000 -0.301812 0.114218 0.049525 0.358560 0.139206 0.139206

2.450000 -0.303514 0.111921 0.052304 0.355280 0.140243 0.140243

2.500000 -0.305090 0.109776 0.054866 0.352119 0.141247 0.141247

2.550000 -0.306552 0.107773 0.057227 0.349072 0.142221 0.142221

2.600000 -0.307912 0.105907 0.059401 0.346134 0.143164 0.143164

2.650000 -0.309182 0.104169 0.061403 0.343300 0.144077 0.144077

2.700000 -0.310371 0.102553 0.063246 0.340564 0.144963 0.144963

2.750000 -0.311487 0.101051 0.064941 0.337923 0.145820 0.145820

2.800000 -0.312537 0.099658 0.066500 0.335371 0.146651 0.146651

2.850000 -0.313529 0.098365 0.067934 0.332906 0.147456 0.147456

2.900000 -0.314467 0.097168 0.069251 0.330523 0.148236 0.148236

2.950000 -0.315358 0.096061 0.070461 0.328218 0.148993 0.148993

3.000000 -0.316204 0.095037 0.071572 0.325988 0.149726 0.149726

3.050000 -0.317011 0.094090 0.072592 0.323829 0.150436 0.150436

3.100000 -0.317782 0.093217 0.073529 0.321739 0.151126 0.151126

3.150000 -0.318519 0.092411 0.074387 0.319713 0.151795 0.151795
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A.4 Pulses for refocusing

Consider a system of q fully-coupled qubits where we seek to refocus all the one-

qubit interactions and retain one single two-qubit interaction. This is most efficiently

achieved by assigning the two coupled qubits to the Walsh function W1, with the

remaining qubits assigned from W2 up to Wq−1 in sequence. As Wn contains n sign

changes it requires n π pulses when n is even, and n + 1 pulses when n is odd, with

the additional pulse needed to restore the Hamiltonian to its original sign.

The overall number of pulse required is then obtained by summing these pulse

counts from n = 1 to q − 1, remembering to include W1 twice, giving a total of

q(q − 1)

2
+

⌈
q − 1

2

⌉
+ 2 ≤ q2

2
+ 2.

Thus the total number of pulses required to retain a single two-qubit interaction is

approximately q2/2.

A.5 Longer range couplings

In the main text we describe a method for implementing a desired coupling pattern

in an engineered system containing only nearest-neighbour couplings. While longer

range couplings are likely to be significantly weaker than nearest neighbour couplings,

they will not in general be zero, and so could lead to significant errors. Fortuitously

our control scheme also refocuses next-nearest-neighbour couplings, across the diago-

nals of each square, which are likely to be the biggest error couplings. Here we consider

the problem of refocussing longer range error couplings, which can be achieved using

larger numbers of colouring patterns each of which contains more colours.

We begin by considering the case of error couplings between qubits separated
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by two edges horizontally or vertically (qubits separated by one horizontal and one

vertical edge give rise to the diagonal error couplings considered previously). As

before we will first colour the horizontal edges and then the vertical edges. When

colouring horizontal edges we now have to divide the qubits into three groups of rows,

rather than two, so that members of each group are at least three rows apart. Within

each row a further problem arises, as we cannot directly retain couplings along two

sequential horizontal edges without also retaining the error coupling between the two

end qubits. Instead we have to use two separate colourings, retaining the two edges

separately. This is most simply achieved by retaining odd and even numbered edges

in separate steps. Within each row it is necessary to use three colours so that a colour

is never repeated two qubits apart.

Putting this together we use two colouring patterns for the horizontal edges, and

two for the vertical edges, making four patterns overall. Each pattern requires three

separate colours for each of three sets of rows or columns, making nine colours in

total. As before all diagonal error couplings will be automatically refocussed if the

corresponding horizontal and vertical errors are refocussed.

This approach can be generalised to error couplings over any distance: to correctly

handle all couplings between qubits n horizontal or vertical edges apart it is sufficient

to use 2n colouring patterns, each of which has (n + 1)2 different colours. For the

simplest case of nearest-neighbour couplings we have n = 1 and so two different

four-colourings suffice, as described in the main text.
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A.6 Second-order perturbation theory of coupled

two transmons

Here we consider diagonalising the following coupled two-qubit Hamiltonian,

Ĥ = Ĥ0 + V̂ , (A.1)

Ĥ0 = ~
∑
i=1,2

(ωiâ
†
i âi +

αi
2
â†i â
†
i âiâi), (A.2)

V̂ = ~J(â†1â2 + â1â
†
2). (A.3)

The aim of this section is to give the analytical expression of the following diagonal-

isation using the second-order perturbation theory,

Ĥ = P̂ †ĤDP̂ ≈ P̂ (2)†ĤDP̂
(2). (A.4)

where diagonalised matrix ĤD and the transformation matrix P̂ are approximated to

the second order by Ĥ(2)
D and P̂ (2).

According to the second-order perturbation theory, the eigenenergies and eigen-

vectors can be expressed as follows,

E(2)
n = E(0)

n +
∑
m 6=n

| 〈m(0)| V̂ |n(0)〉 |2

E
(0)
n − E(0)

m

, (A.5)

|n(2)〉 = |n(0)〉+
∑
m6=n

〈m(0)| V̂ |n(0)〉
E

(0)
n − E(0)

m

|m〉

+
∑
m 6=n

∑
k 6=n

〈m(0)| V̂ |k(0)〉 〈k(0)| V̂ |n(0)〉
(E

(0)
n − E(0)

k )(E
(0)
n − E(0)

m )
|m(0)〉 , (A.6)

where E
(0)
n and |n(0)〉 are the eigenenergies and the eigenvectors of the unpurturbed

Hamiltonian Ĥ0.
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The second-order diagonalised Hamiltonian ĤD

(2)
and the transformation matrix

P̂ (2) can be reconstructed by E
(2)
n and |n(2)〉,

Ĥ(2)
D = diag(E

(2)
00 , E

(2)
01 , E

(2)
02 , E

(2)
10 , E

(2)
11 , E

(2)
12 , E

(2)
20 , E

(2)
21 , E

(2)
22 ) (A.7)

E
(2)
00 = ~ω(2)

00 = E
(0)
00 (A.8)

E
(2)
01 = ~ω(2)

01 = E
(0)
01 −

J2

∆
(A.9)

E
(2)
02 = ~ω(2)

02 = E
(0)
02 −

J2

∆− α2

(A.10)

E
(2)
10 = ~ω(2)

10 = E
(0)
10 +

J2

∆
(A.11)

E
(2)
11 = ~ω(2)

11 = E
(0)
11 −

2J2(α1 + α2)

(∆ + α1)(α2 −∆)
= E

(0)
11 + ζ (A.12)

E
(2)
12 = ~ω(2)

12 = E
(0)
12 +

( 3J2

∆ + 2α1

− 4J2

∆ + α1 − α2

)
(A.13)

E
(2)
20 = ~ω(2)

20 = E
(0)
20 +

J2

∆ + α1

(A.14)

E
(2)
21 = ~ω(2)

21 = E
(0)
21 +

(
− 3J2

∆ + 2α1

+
4J2

∆ + α1 − α2

)
(A.15)

E
(2)
22 = ~ω(2)

22 = E
(0)
22 +

( 6J2

∆ + α1 − 2α2

− 6J2

∆ + 2α1 − α2

)
(A.16)

where ∆ = ω1 − ω2,

P24 = −P42 = sinα, P22 = −P44 = cosα, (A.17)

P68 = −P86 = sin β, P66 = −P88 = cos β, (A.18)

P33 =
1

Σ1

, P53 = − 1

Σ1

·
√

2J

∆− α2

, P73 =
1

Σ1

· ζ

2∆ + α1 − α2

, (A.19)

P35 =
1

Σ2

·
√

2J

∆− α2

, P55 =
1

Σ2

, P75 = − 1

Σ2

·
√

2J

∆ + α1

, (A.20)

P37 = − 1

Σ3

· ζ

2∆ + α1 − α2

P57 =
1

Σ3

·
√

2J

∆ + α1

, P77 =
1

Σ3

, (A.21)
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where Pmn is the (m,n)th element of P̂ (2), α = arctan J
∆

, β = arctan 2J
∆+α1−α2

and,

Σ1 =

√
1 +

( √2J

∆− α2

)2

+
( ζ

2∆ + α1 − α2

)2

, (A.22)

Σ2 =

√
1 +

( √2J

∆− α2

)2

+
( √2J

∆ + α1

)2

, (A.23)

Σ3 =

√
1 +

( √2J

∆ + α1

)2

+
( ζ

2∆ + α1 − α2

)2

. (A.24)

Using the diagonalised Hamiltonian and its transformation matrix, the time evolution

of a two-qubit wave function can be approximated by,

|ψ(t)〉 = exp

(
−iĤt

~

)
|ψ(0)〉 = P̂ † exp

(
−iĤDt

~

)
P̂ |ψ(0)〉

≈ P̂ (2)† exp

(
−iĤ

(2)
D t

~

)
P̂ (2) |ψ(0)〉 = Û (2)(t) |ψ(0)〉 = |ψ(2)(t)〉 , (A.25)

and the expectation values of measurement operators σ̂ ⊗ Î (σ̂ = X̂, Ŷ , Ẑ) in the

rotating frame of both qubits can be described as,

〈σ̂ ⊗ Î〉
(2)

(t) = 〈ψ(2)(t)| Û (2)
rot(t)(σ̂ ⊗ Î)Û

(2)†
rot (t) |ψ(2)(t)〉 (A.26)

= 〈ψ(0)| Û (2)†(t)(σ̂ ⊗ Î)Û (2)(t) |ψ(0)〉 , (A.27)

Û
(2)
rot(t) = exp

(
−iω

(2)
10 t

2
ẐÎ − iω

(2)
01 t

2
ÎẐ

)
, (A.28)

where ~ω(2)
mn = 〈m,n| Ĥ(2)

D |m,n〉. In the case of the state-dependent Ramsey interfer-
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ometry experiment, we set the initial state was set to |ψ(0)〉 = |+, 0〉 or |+, 1〉,

〈X̂ ⊗ Î〉
(2)

g (t) = 〈+, 0| Û (2)†(t)(X̂ ⊗ Î)Û (2)(t) |+, 0〉

= cos2 θ cos
ζt

2
+ sin2 θ cos

(
ζ

2
− ω(2)

01 + ω
(2)
10

)
t (A.29)

≈ cos2 θ cos
ζt

2

〈X̂ ⊗ Î〉
(2)

e (t) = 〈+, 1| Û (2)†(t)(X̂ ⊗ Î)Û (2)(t) |+, 1〉

= P 2
35

[
cos2 θ cos

(
ζ

2
+ ω

(2)
02 − ω

(2)
11

)
t (A.30)

+ sin2 θ cos

(
ζ

2
+ ω

(2)
01 + ω

(2)
02 − ω

(2)
10 − ω

(2)
11

)
t
]

+ P 2
55

[
cos2 θ cos

(
ζ

2

)
t+ sin2 θ cos

(
ζ

2
+ ω

(2)
01 − ω

(2)
10

)
t
]

(A.31)

+ P 2
75

[
cos2 θ cos

(
ζ

2
+ ω

(2)
20 − ω

(2)
11

)
t (A.32)

+ sin2 θ cos

(
ζ

2
+ ω

(2)
01 + ω

(2)
20 − ω

(2)
10 − ω

(2)
11

)
t
]

≈ P 2
55 cos2 θ cos

(
ζ

2

)
t+ P 2

75 cos2 θ cos

(
ζ

2
+ ω

(2)
20 − ω

(2)
11

)
t
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〈Ŷ ⊗ Î〉
(2)

g (t) = 〈+, 0| Û (2)†(t)(Ŷ ⊗ Î)Û (2)(t) |+, 0〉

= cos2 θ sin
ζt

2
+ sin2 θ sin

(
ζ

2
− ω(2)

01 + ω
(2)
10

)
t (A.33)

≈ cos2 θ sin
ζt

2

〈Ŷ ⊗ Î〉
(2)

e (t) = 〈+, 1| Û (2)†(t)(Ŷ ⊗ Î)Û (2)(t) |+, 1〉

= −P 2
35

[
cos2 θ sin

(
ζ

2
+ ω

(2)
02 − ω

(2)
11

)
t (A.34)

+ sin2 θ sin

(
ζ

2
+ ω

(2)
01 + ω

(2)
02 − ω

(2)
10 − ω

(2)
11

)
t
]

− P 2
55

[
cos2 θ sin

(
ζ

2

)
t+ sin2 θ sin

(
ζ

2
+ ω

(2)
01 − ω

(2)
10

)
t
]

(A.35)

− P 2
75

[
cos2 θ sin

(
ζ

2
+ ω

(2)
20 − ω

(2)
11

)
t (A.36)

+ sin2 θ sin

(
ζ

2
+ ω

(2)
01 + ω

(2)
20 − ω

(2)
10 − ω

(2)
11

)
t
]

≈ −P 2
55 cos2 θ sin

(
ζ

2

)
t− P 2

75 cos2 θ sin

(
ζ

2
+ ω

(2)
20 − ω

(2)
11

)
t

(A.37)

〈Ẑ ⊗ Î〉
(2)

g (t) = 〈+, 0| Û (2)†(t)(Ẑ ⊗ Î)Û (2)(t) |+, 0〉

= sin2 2θ sin2
(ω(2)

01 − ω
(2)
10

2

)
t (A.38)

≈ 0

〈Ẑ ⊗ Î〉
(2)

e (t) = 〈+, 1| Û (2)†(t)(Ẑ ⊗ Î)Û (2)(t) |+, 1〉

= − sin2 2θ sin2
(ω(2)

01 − ω
(2)
10

2

)
t+ 2P 2

55P
2
75 sin2

(ω(2)
11 − ω

(2)
20

2

)
t

+ 2P 2
35P

2
55 sin2

(ω(2)
02 − ω

(2)
11

2

)
t+ 2P 2

75P
2
35 sin2

(ω(2)
02 − ω

(2)
20

2

)
t(A.39)

≈ 2P 2
55P

2
75 sin2

(ω(2)
11 − ω

(2)
20

2

)
t

where θ = arctan
(
J
∆

)
, and the last line for each operator is the approximated result

when ∆� J and P55, P75 � P35.
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A.7 Error due to the qubit-qubit dresssing

Following the analytic experession of the Ramsey oscillation introduced in the previ-

ous section, the evolution on the first qubit’s Bloch sphere can be described by the

following three-dimensional vector when the second qubit is in the excited state,

~v′ =


x′

y′

z′

 =


cos2 θ cos

(
ζt
2

)
+ P 2

75 cos2 θ cos
(
ζ
2

+ ω
(2)
20 − ω

(2)
11

)
t

−P 2
55 cos2 θ sin

(
ζt
2

)
− P 2

75 cos2 θ sin
(
ζ
2

+ ω
(2)
20 − ω

(2)
11

)
t

2P 2
55P

2
75 sin2

(
ω

(2)
11 −ω

(2)
20

2
t
)

 . (A.40)

However, in the ideal case, the evolution of the first qubit under the pure Ising

interaction is as follows,

~v =


x

y

z

 =


cos
(
ζt
2

)
− sin

(
ζt
2

)
0

 . (A.41)

The distance between two vectors is,

d(t) = |~v′ − ~v|

=
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

≈
√

[−1 + cos2 θP 2
55 + cos2 θP 2

75 cos2(ω11 − ω20)t]2 + sin4(ω11 − ω20)t cos4 θP 2
75,

so the error due to the qubit-qubit dressing can be defined as the average of the

deviation over time,

εd = d(t) (A.42)

≈ 1− cos2 θP 2
55. (A.43)
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Kanazawa, Abhinav Kandala, George A. Keefe, Kevin Krsulich, William Lan-

ders, Eric P. Lewandowski, Douglas T. McClure, Giacomo Nannicini, Adinath

Narasgond, Hasan M. Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth

Srinivasan, Neereja Sundaresan, Cindy Wang, Ken X. Wei, Christopher J.

Wood, Jeng-Bang Yau, Eric J. Zhang, Oliver E. Dial, Jerry M. Chow, and

Jay M. Gambetta. Demonstration of quantum volume 64 on a superconducting

quantum computing system. Quantum Science and Technology, 6(2), 8 2020.

[54] Joseph Rahamim. Development of a coaxial circuit QED architecture for quan-

tum computing - ORA - Oxford University Research Archive. PhD thesis, Uni-

versity of Oxford, Oxford, 2019.

[55] Jay Gambetta, Alexandre Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Ma-

jer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Qubit-photon in-

teractions in a cavity: Measurement-induced dephasing and number splitting.

Physical Review A - Atomic, Molecular, and Optical Physics, 74(4):042318, 10

2006.

[56] Alexandre Blais, Arne L. Grimsmo, S.M. Girvin, and Andreas Wallraff. Circuit

quantum electrodynamics. Reviews of Modern Physics, 93(2):025005, 5 2021.

[57] Nicolas Didier, Eyob A. Sete, Marcus P. Da Silva, and Chad Rigetti. Analytical

modeling of parametrically modulated transmon qubits. Physical Review A,

97(2):022330, 2 2018.



178

[58] VoolUri and DevoretMichel. Introduction to quantum electromagnetic circuits.

International Journal of Circuit Theory and Applications, 45(7):897–934, 7

2017.

[59] A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, Jens Koch, J. M.

Gambetta, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J.

Schoelkopf. Controlling the spontaneous emission of a superconducting trans-

mon qubit. Physical Review Letters, 101(8):080502, 8 2008.

[60] Forschungszentrum Julich. Quantum Information Processing Lecture Notes.

Technical report, FORSCHUNGSZENTRUM JULICH, 2013.

[61] J A Jones. Quantum Computing with NMR. Prog. NMR Spectrosc., 59:91–120,

2011.

[62] Lorenza Viola, Emanuel Knill, and Seth Lloyd. Dynamical decoupling of open

quantum systems. Physical Review Letters, 82(12):2417–2421, 3 1999.

[63] J. A. Jones and E. Knill. Efficient Refocusing of One-Spin and Two-Spin In-

teractions for NMR Quantum Computation. Journal of Magnetic Resonance,

141(2):322–325, 12 1999.

[64] Debbie W. Leung, Isaac L. Chuang, Fumiko Yamaguchi, and Yoshihisa Ya-

mamoto. Efficient implementation of coupled logic gates for quantum compu-

tation. Physical Review A - Atomic, Molecular, and Optical Physics, 61(4):7, 3

2000.

[65] Tanja B C Behrle. Simulation and Measurements of Single and Coupled Coaxial

lbits. Master thesis, 2017.



179

[66] X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen, D. Hover, J. Miloshi, R. Slat-

tery, F. Yan, J. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver. Ther-

mal and Residual Excited-State Population in a 3D Transmon Qubit. Physical

Review Letters, 114(24):240501, 6 2015.

[67] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D.

Oliver, Y. Nakamura, and J. S. Tsai. Flux-driven Josephson parametric ampli-

fier. Applied Physics Letters, 93(4):042510, 7 2008.

[68] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang,
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