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Abstract

Over the past 10 years there has been a huge advance in the performance power

of deep neural networks on many supervised learning tasks. Over this period these

models have redefined the state of the art numerous times on many classic machine

vision and natural language processing benchmarks. Deep neural networks have

also found their way into many real-world applications including chat bots, art

generation, voice activated virtual assistants, surveillance, and medical diagnosis

systems. Much of the improved performance of these models can be attributed to

an increase in scale, which in turn has raised computation and energy costs.

In this thesis we detail approaches of how to reduce the cost of deploying deep

neural networks in various settings. We first focus on training efficiency, and to

that end we present two optimisation techniques that produce high accuracy models

without extensive tuning. These optimisers only have a single fixed maximal step size

hyperparameter to cross-validate and we demonstrate that they outperform other

comparable methods in a wide range of settings. These approaches do not require

the onerous process of finding a good learning rate schedule, which often requires

training many versions of the same network, hence they reduce the computation

needed. The first of these optimisers is a novel bundle method designed for the

interpolation setting. The second demonstrates the effectiveness of a Polyak-like

step size in combination with an online estimate of the optimal loss value in the

non-interpolating setting.

Next, we turn our attention to training efficient binary networks with both binary

parameters and activations. With the right implementation, fully binary networks

are highly efficient at inference time, as they can replace the majority of operations

with cheaper bit-wise alternatives. This makes them well suited for lightweight or

embedded applications. Due to the discrete nature of these models conventional

training approaches are not viable. We present a simple and effective alternative to

the existing optimisation techniques for these models.
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Chapter 1

Introduction

1.1 Motivation

During the past decade deep neural networks have been extremely successful when

applied to many supervised learning tasks (LeCun et al., 2015). The areas of machine

vision and natural language processing have seen significant progress when adopting

neural network based approaches (Krizhevsky et al., 2012; Devlin et al., 2019). Since

these successes, the performance of deep neural networks has steadily improved

mainly due to increased model sizes, data set sizes and refined training techniques.

Alongside progress in research settings, neural networks have found their way into

many commercial applications such as machine translation (Vaswani et al., 2017),

virtual assistants (Van Den Oord et al., 2016), cancer detection (Ragab et al., 2019)

and image generation Ramesh et al. (2022).

However, the utilisation of neural networks in many interesting settings is still

infeasible. This is typically due to one of three main factors: a lack of suitable

training data, the difficulty in training the model, or the cost of computational

resources required. In this thesis we provide various techniques to help alleviate

the latter two of the aforementioned issues. Specifically, introducing effective and

easy to use training techniques for deep neural networks, including quantised neural
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networks, which reduce the computational cost of deployment once trained. We

draw inspiration from convex optimisation literature, and adapt these ideas for the

deep learning setting.

1.2 Deep Neural Networks

Neural networks are parametric functions that map from some input space to a

target space, where the type of each space is task dependent. In this thesis we will

also use “weights” interchangeably to refer to the parameters of a neural networks.

The freedom to choose the input and output spaces to represent different data types

gives neural networks a lot of flexibility and allows them to encode functions useful

for an extremely wide range of applications. For the task of image classification the

input is the space of all images, possibly with a given height and width, and the

output would be a vector representing a score for each of the image classes. Then an

input image can be classified to the class with the largest respective output score.

Alternatively, for monocular depth prediction the output space would instead be a

single channel image of the same size as the input, where the intensity of each pixel

encodes the distance from the camera at a given location. For audio classification

the input would be a waveform, or possibly its Fourier transform, and the output

would be a string of predicted characters or phonemes.

In order to allow neural networks to learn these highly complex and non-linear re-

lationships, the function described by the neural network is designed to be extremely

flexible. This is achieved by making neural networks “deep”, specifically by stack-

ing many layers that perform parameterised linear transformations and non-linear

operations. Many versions of these simple building blocks have been proposed to

help boost performance for different applications. In general increasing the number

of parameters of a network, increases its expressive capacity and allows it to encode

a more complex mapping from the input space to the output. This can be realised
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by both using a larger number of layers, a larger number of weights in each layer, or

most commonly, increasing both. Indeed, it has been proven that in the limit, when

increasing the number of parameters, even shallow models with a few layers become

universal function approximators (Hornik et al., 1989). Moreover, recent theory has

shown that over-parameterisation is necessary if one wants to construct a function

that interpolates the data smoothly (Bubeck and Sellke, 2021).

In practice, the trend over the last decade has been to stack increasing numbers

of layers with evermore parameters to create deeper and deeper networks. These

very large networks are capable of expressing almost any functional relationship

over very large data sets. However, the increased size comes with additional com-

putational and memory costs. Moreover, some of the largest models now have

many billions of parameters and have a significant energy cost associated with them

(Brown et al., 2020; Ramesh et al., 2022; Yuan et al., 2021). Hence, a key area of

research is developing techniques to reduce the computational cost of deep networks.

Many techniques have been proposed for achieving this (Neill, 2020), including using

quantised parameters such as binary values (Gholami et al., 2021). In this thesis

we consider deep neural networks, which for convenience we will often refer to as

simply “neural networks”.

1.3 Learning as Optimisation

Training a deep neural network is conventionally formulated as a mathematical

optimisation problem (Goodfellow et al., 2016). The most popular paradigm is

empirical risk minimisation, where one aims to minimise a scalar risk or loss function.

The optimisation variable is a vector containing the parameters of the network to

be trained. The loss function quantifies the risk or error of a prediction made over

a set of training examples. Due to the highly non-convex nature of deep networks,

and their large number of parameters in practice, finding an exact solution is not
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feasible. Instead, a local minimum with low loss is deemed sufficient. However, this

too is not the ultimate goal of supervised learning. Indeed, one really aims to find a

model with good generalisation, that is, a model that makes accurate predictions on

unseen examples. Optimising the performance on unseen examples is not directly

possible. Instead a training set, which is assumed to be sampled from the same data

generating distribution, is used.

Due to the over parameterised nature of deep neural networks it is often advan-

tageous to complement the loss by a regularisation function. This function aims

to penalise the complexity of the model and thus prevents overfitting and promote

generalisation. We will refer to the sum of the loss and regularisation functions as

the objective function or learning objective. In the majority of settings the param-

eters of the network are unconstrained or free to take any real value. However, this

is not always the case and constraints can be applied to the weights of the network.

This is typically done either as a different form of regularisation or when training a

neural network with quantised parameters.

Many large networks can achieve, at least approximately, the minimum feasible

loss value. For non-negative loss functions this is zero loss. If so, these models are

said to interpolate the training set. We will refer to tasks where this property holds

as the interpolation setting. As networks grow in size and capacity this setting

becomes more likely on a given data set and hence it has become the focus of both

empirical and theoretical research. The non-interpolation setting, by contrast, refers

to cases where the network is unable to easily achieve zero training loss. This setting

typically arises due to a relatively small network size compared to the complexity

and size of the data set.
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1.4 Optimisation Algorithms

Many iterative optimisation algorithms have been proposed to minimise the learning

objective of deep neural networks. Due to the high dimensionality of the resulting

optimisation problems, first order methods dominate. These methods use only first

order information at each iteration, specifically, the loss and gradient of the loss

with respect to the parameters. The computation and memory cost required in

calculating and storing the Hessian and higher order derivatives makes exact second

order methods infeasible. Stochastic optimisation techniques are best suited to the

task due to the large data sets required for best results when training deep networks.

These methods sample a small subset of the data set at each iteration to evaluate

the gradient, hence giving a stochastic estimate at a lower computational cost.

The majority of neural network optimisation techniques were originally intro-

duced in the optimisation literature for convex or non-convex optimisation prob-

lems. These algorithms typically come with provable convergence guarantees when

applied to convex or smooth and non-convex functions. However, when training

deep neural networks these guarantees rarely apply in practice. Instead, careful

manual selection of hyperparameters is required to get good results. This is partic-

ularly true for stochastic gradient descent (SGD) (Robbins and Monro, 1951) and

its derivatives, where the selection of the step size throughout training is critical.

Even the same network architecture trained on different instances of the same task

can require different schedules (He et al., 2016).

This deficiency and the dependence on good hyperparameters more generally, is

one of the major obstacles in deployment of neural networks, as it increases the cost.

This cost may take the form of manual tuning by a knowledgeable practitioner or

extra computation by trying a large number of values. This is exacerbated further by

the diversity of applications and specialist versions of neural networks that have been

proposed. Hence, easy to use optimisation techniques that are widely applicable,

are still an active area of research and form the focus of this thesis.
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1.5 Thesis Outline and Contributions

Chapter 2 In Chapter 2 we review common techniques used for the training of

deep feed-forward neural networks. We discuss popular algorithms such as stochastic

gradient descent (Robbins and Monro, 1951), adaptive gradient methods and line

search methods proposed for deep learning. We detail the situations in which these

methods excel and highlight their shortcomings. We then talk about more recent

optimisation algorithms developed for the interpolation setting including Stochastic

Polyak Step (SPS) (Loizou et al., 2021), and ALI-G (Berrada et al., 2020). We

focus particularly on ALI-G, as this method forms the inspiration for the work in

Chapters 4 and 5.

Chapter 3 We introduce mathematical notation in Chapter 3. We formulate

the standard supervised learning objective and related concepts. Additionally we

introduce the mathematics behind many of the approaches previously discussed in

Chapter 2.

Chapter 4 In Chapter 4 we propose a novel method for training deep neural net-

works that are capable of interpolation. At each iteration this method constructs

a stochastic approximation of the learning objective. The approximation used is

known as a bundle and is a pointwise maximum of linear functions. Our bundle

contains a constant function that lower bounds the empirical loss. This enables us

to compute an automatic adaptive learning rate, and thus an accurate solution. In

addition, our bundle includes linear approximations computed at the current iterate

and other linear estimates of the model parameters. The use of these additional ap-

proximations makes this method significantly more robust to its hyperparameters.

Based on its desirable empirical properties, we term the method Bundle Optimisa-

tion for Robust and Accurate Training (BORAT). In order to operationalise BO-

RAT, we design a novel algorithm for optimising the bundle approximation efficiently
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at each iteration. We establish the theoretical convergence of BORAT in both con-

vex and non-convex settings. Using standard publicly available data sets we provide

a thorough comparison of BORAT to other single hyperparameter optimisation al-

gorithms. Our experiments demonstrate that BORAT matches the state-of-the-art

generalisation performance for these methods and is the most robust.

Chapter 5 We then turn our attention to the non-interpolating setting, that is,

learning problems, where we do not expect to obtain zero or close to zero training

loss. We introduce a novel algorithm, ALI-G+, which is based around the Polyak

step size (Polyak, 1969). As we no longer have access to the optimal loss values a

priori, this algorithm instead estimates these for each sample online. To realise this,

we introduce a simple but highly effective heuristic for approximating the optimal

value based on previous loss evaluations. Again we provide rigorous experimentation

on a range of problems. From our empirical analysis we demonstrate the effective-

ness of our approach, which outperforms other single hyperparameter optimisation

methods on many standard benchmarks.

Chapter 6 In Chapter six we introduce quantised neural networks with a par-

ticular focus on binary neural networks (BNN) or networks that are designed so

the majority of the parameters take the values -1 or 1. We additionally introduce

what we will refer to as fully binary neural networks (FBNN) which have primarily

binary activations as well, making them well suited to lightweight hardware. These

networks cannot be trained using continuous optimisation algorithms due to their

discrete weights and mostly zero gradients. Hence, the algorithms detailed in Chap-

ter 2 are unsuitable for training BNN. In this chapter we detail existing methods for

training quantised neural networks, such as the popular straight through estimator

method (Courbariaux et al., 2015).
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Chapter 7 In Chapter 7 we present a simple but effective method for training fully

binary neural networks (FBNN) which we name Binary Networks the Easy Way, or

BNEW for short. FBNN offer significant improvements in memory efficiency, energy

usage, and inference speed over their floating point counterparts. Our approach

to training FBNN splits the task into two phases. In the first phase, a model

with binary activations and floating point weights is trained. In the second, a

concave regulariser is added to encourage the weights to become binary. BNEW

offers an alternative optimisation scheme to the straight through estimator that

doesn’t require an auxiliary set of weights during training. We show the effectiveness

of BNEW by improving the state-of-the-art classification accuracy of a FBNN on

the challenging ImageNet data set (Deng et al., 2009).

1.6 Publications

The work in this thesis has led to the following peer-reviewed publications:

• Work described in Chapter 4 resulted in the following publication:

Alasdair Paren, Leonard Berrada, Rudra P. K. Poudel and M. Pawan Kumar.

2021. ‘A Stochastic Bundle Method for Interpolating Networks’. Journal of

Machine Learning Research.

• Work described in Chapter 5 resulted in the following publication:

Alasdair Paren, Rudra P. K. Poudel and M. Pawan Kumar. 2022. ‘Faking In-

terpolation Until You Make It’. Transactions on Machine Learning Research.

• Work described in Chapter 7 resulted in the following publication:

Alasdair Paren and Rudra P. K. Poudel. 2022. ‘Training Binary Neural Net-

works the Easy Way’. British Machine Vision Conference 2022.
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Chapter 2

Related Work

2.1 Introduction

In this chapter we discuss existing techniques proposed for the training of deep neural

networks. We start by introducing Stochastic Gradient Descent (SGD)(Robbins

and Monro, 1951) as it forms the basis of many subsequent optimisation methods.

SGD is still popular due to its strong generalisation performance. However, this

performance is heavily dependent on the step size, also known as the learning rate,

being adjusted during training. This is done through use of a manually selected

step size or learning rate schedule. This deficiency makes SGD difficult to efficiently

apply to new problems. We then discuss how subsequent optimisation techniques

aimed to remove this requirement. These approaches can, for the most part, be

grouped into three main categories; line search methods, adaptive gradient methods

and Polyak-like step size methods.

2.2 Stochastic Gradient Descent

SGD was introduced by Robbins and Monro (1951) as an optimisation technique

for monotone functions. SGD is a Stochastic version of the older gradient descent

algorithm (GD), used for many convex and non-convex problems. GD is an itera-
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tive method that only uses first order derivative information. Specifically, it uses

the gradient of the learning objective calculated over the entire training set. At

each step GD simply selects the next iterate to be along the ray described by the

negative gradient direction, where the gradient is evaluated at the current iterate.

The distance in this direction is given by the present step size multiplied by the mag-

nitude of the gradient. The computation of the objective’s gradient scales linearly

with the size of the training set. So while GD works well for problems with a small

training set, the cost of each step becomes increasingly expensive as the data set

inceases in size. Empirical results are nearly always improved by using a larger data

set that samples more of the relevant input space. To this end data augmentation

schemes that artificially increase the size of the training set by orders of magnitude

are commonplace. This makes the per iteration cost of GD infeasible in most real

world settings.

Stochastic Gradient Descent (SGD), in contrast, does not evaluate the gradient of

the objective calculated over the entire training set at each iteration. A small subset

or mini-batch of the training set is sampled and used instead. This gives a stochastic

estimate of the gradient. Importantly, the iteration time no longer depends on the

size of the training set so any training set size can be used, without affecting the run

time. If a large training set is used, each example is just sampled less frequently.

The iteration cost of SGD scales linearly with the mini-batch size and trades off

the stochasticity of this estimate against the computational and memory cost of

its calculation. In practice, the batch size is typically determined by the hardware

used for training. It is common to use the largest size that fits into the hardware

memory. However, using a smaller batch size can often produce superior results,

as the noise in the gradients can help the algorithm escape bad local minima in

the learning objective. All deep neural network optimisation techniques that have

seen wide success follow this approach and use a mini-batch at each iteration to

calculate stochastic estimates of information of the objective. When minimising
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an optimisation problem constrained to a convex set SGD is modified to include a

projection back onto the feasible set after each update. This algorithm is known as

Projected Stochastic Gradient Descent (PSGD).

SGD and PSGD have been used to produce state-of-the-art generalisation perfor-

mance for many supervised learning tasks. For established learning problems using

deep feed forward networks, once effective step size schedules have been found, SGD

is rarely outperformed by other optimisation techniques. However, the downside of

SGD is that it requires the manual design and refinement of a learning rate schedule

for best performance. Many forms of schedule have been proposed in the literature,

including piecewise constant (Huang et al., 2017), geometrically decreasing (Szegedy

et al., 2015), and warm starts with cosine annealing (Loshchilov and Hutter, 2017).

Consequently, practitioners who wish to use SGD in a novel setting need to find a

good schedule to use for their learning task. To that end, they first need to choose

the parameterisation of the schedule and then tune the corresponding hyperparam-

eters. For example, a piecewise linear scheme requires an initial learning rate value,

a decay factor, and a list of times or metric to determine at which points in training

to decay the learning rate. This results in a large search space which increases expo-

nentially in combination with other problem dependent quantities, such as constants

controlling regularisation or batch size. As SGD can be sensitive to these hyper-

parameters, and their optimal values often are highly interdependent, the resulting

cross-validation scheme necessary for best results can be prohibitively expensive.
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Figure 2.1: SGD learning rate schedules proposed in the literature

2.3 Momentum

SGD and related methods are commonly used in combination with momentum,

either “Nesterov momentum” or “Polyak momentum”. When using Polyak momen-

tum the last update vector is stored. At each step a convex combination of the

stored and the newly calculated updates is applied. The weighting of these two

vectors is a hyperparameter that must be selected before training. A weighting of 0

would correspond to no momentum, while a weighting of 0.9 for the previous step

is commonly used. This technique is named momentum due to the stored update

sharing similarity to the momentum of a ball rolling around the loss landscape.

Alternatively, momentum can be thought of as a computationally cheap method

for reducing the noise from mini-batching in each update. The gradient calculated

on a mini-batch can have high variance particularly when the batch size is small.

Momentum entails using an exponential moving average of recent gradients for the

update rather than a single evaluation, which helps reduce this noise. Nesterov

momentum (Nesterov, 1983) modifies this idea so the gradient is evaluated at the

iterate with the momentum already applied. Nesterov momentum boasts an optimal

convergence rate for convex problems. However, for deep learning problems where

no such proof exists both variants are still popular.
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2.4 Line Search Methods.

Line search methods use perhaps the most obvious alternative to avoid manually

selecting a step size schedule. As their name suggests, these approaches run a line

search algorithm at each step to automatically pick a step size. A linear search

algorithm performs a search procedure along the ray in the negative gradient direc-

tion rather than using the pre-selected step size of SGD. A series of trial points are

sampled using a heuristic. A trial point is selected to be the next iterate if it satisfies

a criterion. A number of different variants have been suggested in the literature,

depending on the exact heuristic and criterion used.

Vaswani et al. (2019) present algorithms based on the Armijo and Goldstein line

search methods (Armijo, 1966), classically used for deterministic gradient descent.

They also introduce heuristics with the aim of minimising the number of extra

forward passes required, which they claim reduces the average number required to

one extra per batch. While these methods provide strong guarantees for convex

problems they can be temperamental training deep neural networks.

Mutschler and Zell (2020) and Hao et al. (2021) present a modification to stan-

dard line search methods. Instead of performing a linear search, these works assume

the loss function is approximately parabolic in the negative gradient direction and

aim to fit a quadratic approximation. Mutschler and Zell (2020) provide empirical

justification for this approximation. With this assumption only a single extra loss

and gradient is needed to fit a quadratic model. Hence only one extra loss and gradi-

ent evaluation is required. Hao et al. (2021) detail a variant that samples the loss at

many points along the negative gradient direction, and then fits a quadratic model

using least squares. In both cases once the approximation has been constructed and

has positive curvature it can be minimised in closed form. If however the curvature

of the loss in negative gradient direction is negative, a fixed step size is used, or the

mini-batch is re-sampled.

Line search methods can present strong performance, however, they have two
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major deficiencies. First, line search methods require additional computation per

batch over typical first order methods, resulting in a longer training time. Second,

while removing the need for a step size schedule they invariably introduce extra hy-

perparameters governing the heuristics on how trial points are selected or whether

a trial point is accepted as the next iterate. While these hyperparameters are fixed

over training and do typically not require a schedule they must be tuned per experi-

ment for best results. Poorly selected hyperparameters can result in many extra loss

evaluations being required thereby increasing the run time significantly or resulting

in poor optimisation performance.

2.5 Adaptive Gradient Methods

Adaptive Gradient methods also aim to remove the need for a learning rate sched-

ule. However instead of searching ahead in parameter space these approaches use

heuristics based on previous gradient evaluations to scale a single fixed learning rate

for each parameter independently. Many Adaptive Gradient methods have been

proposed with slightly different heuristics, such as Adagrad (Duchi et al., 2011),

Adam (Kingma and Welling, 2014) or more recently Adabound (Luo et al., 2019),

RMSPROP (Tieleman and Hinton, 2012) and many other variants (Zeiler, Zeiler;

Orabona and Pál, 2015; Défossez and Bach, 2017; Levy, 2017; Mukkamala and Hein,

2017; Zheng and Kwok, 2017; Bernstein et al., 2018; Chen and Gu, 2018; Shazeer

and Stern, 2018; Zaheer et al., 2018; Chen et al., 2019; Loshchilov and Hutter, 2019;

Luo et al., 2019; Heo et al., 2021). These algorithms are easy to use as they require a

single fixed learning rate hyperparameter to be selected that tends to provide decent

results over a wide range of values (Sivaprasad et al., 2020). However, once tuned,

other optimisation algorithms such as SGD or line search methods provide supe-

rior generalisation performance over Adaptive Gradient methods on a wide range of

supervised learning benchmarks (Berrada et al., 2020; Wilson et al., 2017).
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2.6 Methods for Interpolation

As neural networks have increased in size, the interpolation property, as described

in Chapter 1, has become more common on small a medium sized data sets. This

property was initially utilised by early efforts to analyse the convergence speed of

SGD. In the interpolation setting Ma et al. (2018); Vaswani et al. (2019) and ,Zhou

et al. (2019) demonstrate that SGD achieves the convergence rates of full-batch

gradient descent.

In the interpolation setting, it is known a priori that the optimal function value

is simply the minimum possible function value. Hence, for all non-negative loss

functions zero loss will be reached. Moreover, it implies that the minimum function

value must be achieved for all samples simultaneously. This allows a Polyak-like

step size to be used (Polyak, 1969). The Polyak step size selects the next iterate

to be at the point where the ray in the negative gradient direction intercepts the

hyperplane corresponding to zero loss. Without any modification this approach does

not perform well for highly non-convex deep learning tasks, as it can result in very

large updates to the parameters. However, this issue can be remedied by use of a

fixed maximal step size, which reduces the magnitude of all updates to below this

value.

Berrada et al. (Berrada et al., 2020) introduced the ALI-G algorithm specif-

ically designed for settings where interpolation holds. At each step ALI-G solves

an interpolation aware proximal problem. The closed form solution is a Polyak-like

step size with a maximal learning rate, which gives a strong justification for a step

size of this form. When applied to common deep learning benchmarks the ALI-G

algorithm produces strong empirical results. Specifically, ALI-G outperforms all

Adaptive Gradient Methods, almost achieving the performance of SGD with a be-

spoke learning rate schedule, without requiring one itself. Alongside this empirical

success, Berrada et al. provide convergence bounds of ALI-G applied to convex

problems and a special set of non-convex problems. We give extra detail on the
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ALI-G algorithm in Chapter 3 as it forms the foundation for the ideas explained in

Chapters 4 and 5. Loizou et al. (2021) present a very similar algorithm to ALI-G

which they name Stochastic Polyak Step (SPS). The SPS step size does not have

a clear derivation and has a slightly different form to that of ALI-G, containing

two hyperparameters rather than one. However, this difference allows theoretical

results with milder assumptions to be established for SPS. Out of SPS and ALI-G

once properly tuned ALI-G offers slightly better empirical performance on standard

benchmarks (Berrada et al., 2021). In their work Stochastic Gradient Descent with

Polyak’s Learning Rate Oberman and Prazeres (2019) proposed a Polyak-like Step

Size for which they provide some theoretical results. However, in order to estimate

the minimum loss they suggest training the model with tuned SGD first, which

limits is practicality. The L4 algorithm (Rolinek and Martius, 2018) instead uses a

modified version of the Polyak step size. However, the L4 algorithm computes an

online estimate of the minimum loss value rather than relying on the interpolation

property. This requires three hyperparameters, which are sensitive to noise and

crucial for empirical convergence of the method. In addition, L4 does not come with

convergence guarantees. S Finally, Liu et al. (2019) propose to exploit interpola-

tion to prove convergence of a new acceleration method for deep learning. However,

their experiments suggest that the method still requires the use of a hand-designed

learning rate schedule.

Many of the optimisation methods for interpolation, such as ALI-G and SPS

remove the need for a learning rate schedule while retaining performance similar to

SGD. This makes these algorithms far more easily applied in new settings where a

good learning rate schedule is not known in advance. ALI-G is perhaps the best

for new settings, as it only requires a single maximal learning rate parameter to be

selected. However these methods can still be costly to tune when there are other

task specific parameters. Finally, these methods rely on the interpolation property

thus it does not make sense to use them outside this setting.
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Chapter 3

Preliminaries

3.1 Learning Task

As described in Chapter 1, a neural network is a parameterised mapping g : H → Y

where H ∈ Rn denotes a task specific “input” space and Y ∈ Rm denotes a relevant

“output” space. In this thesis we will use w ∈ Rd to represent the vector containing

the parameters of the network. The goal of training a neural network is to find a

setting of w such that for certain inputs xi the network produces a desired output

yi, where yi = g(xi,w).

For most machine learning tasks we are only interested in some subset of the

input space x ∈ X ⊂ H. For example, while the input space H could be the space

of all images for autonomous driving applications, one might only be interested

in street scenes. Mathematically defining any subset X in a rigorous way is highly

subjective and almost impossible. Instead, a finite set of test examples {(xtest
j ,ytest

j ) :

j ∈ 1, ..., J} is used to measure performance.

Hence, the goal of the learning task is to find a w that achieves strong per-

formance on this test set. To quantify performance, a task specific scalar function

h(yi,y
test
i ) is used. For classification tasks h is commonly accuracy which gives a

score of 1 if the class denoted by yi matches that of ytest
i and 0 otherwise. With-
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3.2. LOSS FUNCTION

out loss of generality we will assume larger values of h imply better performance

on the chosen tasks. In other words, we want to maximise Ej∈J [h(yj,y
test
j )] where

J is a distribution, typically uniform, over {1, ..., J}. It is not possible to opti-

mise a loss calculated on unseen data, thus a training set is used {xtrain
z ,ytrain

z } for

z ∈ {1, ..., Z}, which is assumed to have been produced by the same data generating

distribution as the test set. It is common to make use of an additional validation

set to provide an estimate of the test performance during training.

3.2 Loss Function

Many performance metrics h are unsuitable for direct optimisation, even when cal-

culated over the training set, as they have zero gradient almost everywhere and are

discontinuous. Hence, a loss function with more desirable properties is used. A

common example of this is classification accuracy h, which cannot easily be directly

optimised. Instead, a loss function such as the Cross Entropy (CE) or multi-class

hinge loss is used. We define ℓz(g(xz,w),yz) to be the loss function for the zth

training example. For ease of notation we will drop the dependence of ℓz on the xz

and yz and just write ℓz as a function of the parameters of the network ℓz(w).

We assume that each ℓz admits a known lower bound B. For the vast majority of

loss functions used in machine learning, such as cross-entropy, hinge losses, or norm

based losses for regression, the lower bound is B = 0. For a loss function where B

is not zero, simply adding a constant −B to ℓz, results in a lower bound of 0. We

can now define the loss over the training set as an expectation over z ∈ Z:

f(w) ≜ Ez∈Z [ℓz(w)]. (3.1)
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3.3. REGULARISATION

3.3 Regularisation

It is often desirable to encourage generalisation by use of a non-negative regular-

isation function Rλ(w). The typical choices for R are λ
2
∥w∥2, λ

2
∥w∥1, or some

combination of the two. In both cases λ is a hyperparameter that governs the

strength of the regularisation, where λ = 0 corresponds to no regularisation being

used. In this thesis Rλ ≜ λ
2
∥w∥2 unless stated otherwise.

3.4 Problem Formulation

The task of training a neural network can be expressed as the optimisation problem

(P). Or in other words we aim to find a feasible vector of parameters w⋆ ∈ Ω that

minimizes f :

w⋆ ∈ argmin
w∈Ω

f(w) +Rλ(w), (P)

Where Ω the feasible region expressing any constraints on the parameters of the

network. For unconstrained problems, one can set Ω = Rd. We refer to the minimum

value of f over Ω as f⋆: f⋆ ≜ minw∈Ω f(w).

3.5 Interpolation

In Chapter 4 we consider problems that satisfy the interpolation property, as de-

scribed in Chapter 1, which we formally introduce here. For neural networks that

can interpolate the data, we assume the following property holds:

∃w⋆ : ∀z ∈ Z, ℓz(w⋆) ≤ ϵ, (3.2)

where ϵ is a tolerance on the amount of error in the interpolation assumption. We

will often want to make reference to the case when ϵ = 0. Following previous work

(Ma et al., 2018) we will refer to this setting as perfect interpolation. The interpo-
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3.6. FIRST ORDER METHODS

lation property is satisfied in many practical cases, since modern neural networks

are typically trained in an overparameterised regime, where the parameters of the

model far exceed the size of the training data (Li et al., 2020). Additionally, most

modern DNN architectures can be easily increased in size and depth, allowing them

to interpolate all but the largest data sets. Note, the data have to be labelled con-

sistently for this to be possible. For instance, it is impossible to interpolate a data

set with two instances of the same image that have two different labels.

3.6 First Order Methods

Stochastic first order iterative algorithms are currently the best approach for finding

a good solution to problem (P), and hence training deep neural networks. Moreover,

all optimisation algorithms discussed in this thesis will be of this type. In this section

we briefly introduce these methods and some useful notation. These approaches start

at a starting point w0, which corresponds to the parameters of the neural network

after some initialisation scheme. For example, sampling from a zero mean Gaussian

where standard deviation depends on the location of the parameter in the network

(He et al., 2015). Once initialised, an update to the parameters for the network

is repeatedly applied for T steps or until some stopping condition is reached. We

will use the subscript t to denote the time step or iteration number. At each step a

mini-batch of the training set is selected by sampling b indexes z ∈ Z where b is the

batch size. Thus we use zt to denote the mini batch sampled at time t. This mini

batch is then used to calculate ℓzt(w) and its gradient with respect to wt, which we

denote with ∇ℓzt(wt). In practice, calculating these quantities involves performing

a “forward pass” to compute ℓzt(g(xzt ,w),yzt). This is followed by a “backwards

pass”, where backpropagation is used to compute ∇ℓzt(wt).
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3.7 Proximal Perspective of SGD and PSGD

SGD and the related PSGD algorithm have insightful interpretations which help

explain the importance of its step size, and set the stage for the more complex ALI-

G optimiser (Berrada et al., 2020). The PSGD algorithm can be seen as solving a

sequence of proximal problems. Within each proximal problem, a minimisation is

performed over an approximate local model of the loss. This approximation is the

first order Taylor’s expansion of ℓzt around the current iterate and a proximal term.

At time step t, this proximal problem has the form:

wt+1 = argmin
w∈Ω

{
1

2ηt
∥w −wt∥2 + ℓzt(wt) +∇ℓzt(wt)

⊤(w −wt)

}
. (3.3)

Here ηt is the learning rate at time t. For convex Ω, problem (3.3) can be solved

in two steps: first solving the unconstrained problem and then projecting w onto Ω

using Euclidean Projection. Setting Ω = Rd removes the need for projection and we

recover SGD. To solve the unconstrained problem one can find the point at which

the gradient is zero, via differentiation, to recover the following closed form update:

wt+1 = wt − ηt∇ℓzt(wt). (3.4)

In practice, this update is often used in conjunction with momentum as described in

Chapter 2. Nesterov momentum (Nesterov, 1983) gives rise to the following updates:

m0 = 0 (3.5)

mt = µmt−1 − ηt∇ℓzt(wt), (3.6)

wt = wt−1 − ηt∇ℓzt(wt) + µmt. (3.7)

Here µ is the momentum hyperparameter, and is typically set to µ = 0.9. When

Polyak momentum is used instead equation (3.7) is replaced with wt = wt − ηtmt.
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3.8 Adaptive Moment Estimation (Adam)

The Adam optimiser (Kingma and Ba, 2015) is probably the most popular Adaptive

Gradient Method (Chen et al., 2019). Adam has found wide success due to its lack

of sensitivity with respect to its hyperparameters, and the broad range of settings

where it produces good results. Adam has found particular success for settings where

there is no clear objective being minimised, such as training GANs and Q-learning

with function approximation (Wilson et al., 2017).

The Adam optimiser is an adaptive gradient method; that is, it uses previous

gradient information to inform the step size with the aim to remove the need for a

learning rate schedule. However, Adam often produces best results when used with

a decreasing learning rate so use of a schedule is still common in practice.

Adam scales a global step size independently for each parameter. This gives it an

advantage over methods such as SGD that uses the same step size for all parameters.

This is especially true when the magnitude and variance of the gradients for each

parameter are significantly different, or where gradients are sparse. Adam effectively

normalises the magnitude of updates, giving larger step size to parameters which

have historically had smaller gradients. This is achieved by keeping track of a

running average of the first and second moments of the gradients for each parameter.

The first moment is used functionally similar to Polyak Momentum (Section 3.7).

The inverse of the square root or second moment is used to scale the learning rate.
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3.8. ADAPTIVE MOMENT ESTIMATION (ADAM)

Mathematically, the Adam update can be expressed as follows:

m̂t =
mt

1− βt
1

, (3.8)

mt = β1mt−1 + (1− β1)∇ℓzt(wt), (3.9)

v̂t =
vt

1− βt
2

, (3.10)

vt = β2vt−1 + (1− β2)∇ℓzt(wt)
2, (3.11)

wt = wt−1 −
η√
v̂t + ϵ

m̂t, (3.12)

where η is the learning rate hyperparameter and β1, β2, ϵ are constants, which are

typically set to the following values β1 = 0.9, β2 = 0.999, ϵ = 10−8.

Since Adam’s inception a number of variants have been proposed. To name a

couple AdamP (Heo et al., 2021) suggest a modification of Adam designed for op-

timising networks including batch-norm layers (Ioffe and Szegedy, 2015). Whereas

Loshchilov and Hutter (2019) claim to provide a better method of applying regular-

isation when using Adam. A number of works have scrutinised Adam’s theoretical

performance. Wilson et al. (2017) and Reddi et al. (2018) both present compelling

arguments against the use of Adam. These works provide simple convex optimisa-

tion problems where Adam does not converge to the optimal solution. Since these

results, significant work has been put into proving theoretical guarantees for Adam.

Chen et al. (2019) and Défossez et al. (2020) detail convergence proofs for Adam

in stochastic non-convex and convex settings respectively. However these results

require η to vary as a function of β1 and β2 which is not suggested in the original

paper. Adam’s empirical performance has also been called into question. Reddi

et al. (2018) show that on many standard supervised learning benchmarks, non-

adaptive methods such as SGD produce superior generalisation performance over

Adam and other adaptive gradient methods. However Sivaprasad et al. (2020), in-

stead suggest when tuning is limited, Adam provides superior results over SGD. We

note that these two points of view do not really contradict each other as the work
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3.9. ADAPTIVE LEARNING-RATES FOR INTERPOLATION WITH
GRADIENTS (ALI-G)

of Reddi et al. (2018) assumed that all methods had been tuned and had access

to good hyperparameters. Despite these criticisms, the original Adam algorithm

remains popular due to its ease of use.

3.9 Adaptive Learning-rates for Interpolation with

Gradients (ALI-G)

Berrada et al. (2020) consider problems of type (P) where the interpolation property

(3.2) holds and they propose a Polyak-like step size for this setting. Figure 3.1 gives

a geometric representation of the Polyak step size when applied to a function f(w)

with f⋆ = 0. The ALI-G step size is derived by identifying a deficiency for the

Figure 3.1: Illustration of the Polyak step size in 1D. In this case, and further
assuming that f⋆ = 0, the algorithm coincides with the Newton-Raphson method for
finding roots of a function (Berrada et al., 2020)

interpolating setting in the SGD proximal problem, as detailed in Equation (3.3).

We know in this setting ℓz will approach zero. As this happens the approximation of

the loss inside each proximal minimisation permits negative values even though the

loss for (P) is defined to be non-negative. Specifically when η
2
∥∇ℓzt(wt)∥2 ≥ ℓzt(wt)

the value of the minimum of (3.3) will be negative. Thus, Berrada et al. (2020)

propose to address this issue by altering (3.3) by taking the pointwise maximum of

the lower bound 0 and the linear approximation of ℓz. Hence, the ALI-G proximal
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problem can be expressed as:

wt+1 = argmin
w∈Ω

{
1

2η
∥w −wt∥2 + max{0, ℓzt(wt) +∇ℓzt(wt)

⊤(w −wt)}
}
. (3.13)

This minimisation is non-smooth and thus is best solved in the dual. Constructing

the Lagrange dual gives:

argmax
α∈[0,1]

{
−η

2
∥α∇lzt(wt)∥2 + αlzt(wt)

}
, (3.14)

where α is the dual variable. This dual problem is a maximisation over a constrained

concave function in one dimension. Hence, one can obtain the optimal point by

projecting the unconstrained solution onto the feasible region. This results in the

following closed form solution:

γt = min

{
lzt(wt)

η∥∇lzt(wt)∥2
, 1

}
. (3.15)

From the Karush–Kuhn–Tucker (KKT) conditions, Berrada et al. (2020) recover the

following update:

wt+1 = wt − γtη∇lzt(wt). (3.16)

Specifically, the ALI-G step size automatically scales down a maximal learning rate

η to an appropriate value by a factor γt ∈ [0, 1]. The ALI-G update can be viewed

as a stochastic analogue of the Polyak step size (Polyak, 1969) with the addition of

a maximal value η. Berrada et al. (2020) often achieve best results when ALI-G is

used in conjunction with a Nestorov momentum as described in equations (3.6) and

(3.7).
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3.9. ADAPTIVE LEARNING-RATES FOR INTERPOLATION WITH
GRADIENTS (ALI-G)

3.9.1 Regularisation

In order to ensure that interpolation holds, Berrada et al. (2020) incorporate regular-

isation as a constraint on the feasible domain rather than via use of a regularisation

function Rλ(w). Specifically, they define: Ω =
{
w ∈ Rd : ϕ(w) ≤ r

}
for some value

of r. In the deep learning setting, this allows the objective function to be driven close

to zero without unrealistic assumptions about the value of the regularisation term

for the final set of parameters. This framework can handle any constraint set Ω on

which Euclidean projections are computationally efficient. This includes the feasible

set induced by ℓ2 regularisation: Ω =
{
w ∈ Rd : ∥w∥22 ≤ r

}
, for which the projec-

tion is given by a simple rescaling of w. If it is desired not to use regularisation,

one can define Ω = Rd, and the corresponding projection is the identity.

3.9.2 Performance

The ALI-G update is computationally cheap with the evaluation of ∥∇lzt(wt)∥2,

and the projection onto Ω being the only extra computation required over SGD.

ALI-G does not require a learning rate schedule and produces strong generalisation

performance on a number of supervised learning tasks (Berrada et al., 2020). Thus,

it offers a competitive alternative to SGD. However, it has two major shortcomings.

First, it is sensitive to its hyperparameters and typically requires the learning rate

η, batch size b and feasible radius r to be tuned for best results. Second, it can only

be used when the interpolation property holds. Addressing these two deficiencies

forms the inspiration for the work in Chapters 4 and 5 respectively.
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Chapter 4

Bundle Optimisation for Robust

and Accurate Training (BORAT)

4.1 Introduction

As discussed in Section 3.9, the ALI-G optimiser (Berrada et al., 2020) has many de-

sirable properties. In this chapter, inspired by ALI-G, we introduce a novel method

for training deep neural networks that are capable of interpolation. ALI-G can be

sensitive to hyperparameters such as its maximial step size, the mini-batch size,

and task regularisation amount. Our method helps alleviate this weakness of ALI-G

and offers reduced sensitivity to its hyperparameters. This increased robustness is

achieved by using a more complex model of the loss within each proximal prob-

lem. The choice of this model results in an optimiser that requires far less tuning

of its hyperparameters while achieving comparable generalisation performance to

algorithms such as ALI-G or SGD with a refined learning rate schedule. This is

particularly evident when applied to challenging non-smooth losses. Consequently

this leads to a reduction in the time, cost, and energy required when finding a high

accuracy network for a new task. Additionally, our method also produces superior

results over ALI-G in the presence of label noise.
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A key insight of our approach is the observation that ALI-G’s approximation of

the loss is a bundle of size two; or specifically the pointwise maximum of two linear

functions. This leads to the natural extension of using bundle sizes larger than two.

We consider the general case where the pointwise maximum over a small number

of stochastic linear approximations is used to model the loss, where N is used to

denote the number of linear approximations used. Similar to ALI-G, when using a

bundle of size N , we utilise one linear approximation to enforce the lower bound

on the loss 0 = minw ℓ(w). This enables us to automatically adapt the magnitude

of each update to an appropriate value. The remaining N − 1 approximations,

are used to better approximate the loss, making our method significantly more

robust to its hyperparameters. Based on its desirable empirical properties, we term

our method Bundle Optimisation for Robust and Accurate Training (BORAT). In

order to operationalise BORAT, we design a novel algorithm for optimising the

bundle approximation efficiently at each iteration. We establish the theoretical

convergence of BORAT in both convex and non-convex settings. Using standard

publicly available data sets, we provide a thorough comparison of BORAT to other

single hyperparameter optimisation algorithms. Our experiments demonstrate that

BORAT matches the state-of-the-art generalisation performance for these methods

and is more robust.

4.2 Bundle Methods

Bundles and Bundle Methods have been previously proposed for the optimisation of

non-smooth convex functions (Lemaréchal et al., 1995; Smola et al., 2007; Auslen-

der, 2009). However, these works do not treat the stochastic case, as they consider

small problems where the full gradient can be cheaply evaluated. Asi and Duchi

(2019) introduced a bundle method as part of their family of proximal stochastic

optimisation algorithms for convex problems. However, their work did not focus
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4.3. THE BORAT ALGORITHM

on the training of neural networks. Hence, to our knowledge, BORAT is the first

proposed bundle method specifically for the optimisation of neural networks. Addi-

tionally, we note the following weaknesses of the bundle version of the Aprox family,

introduced by Asi and Duchi (2019). First, their method is assumed to have an

exponentially decaying learning rate schedule, and even in the interpolating convex

setting requires two hyperparameters. Second, Asi and Duchi (2019) do not provide

details on how to solve each proximal problem efficiently.

4.3 The BORAT Algorithm

In this section we detail the BORAT algorithm. We start by introducing BORAT’s

proximal problem that is exactly solved at each iteration. We explain its advantages

and disadvantages in relation to the SGD and ALI-G proximal problems. Each BO-

RAT proximal problem is best solved in the dual. Hence, we next introduce the dual

problem, which permits a far more efficient solution due to its low dimensionality.

When more than two linear approximations are used within a bundle a closed form

solution is no longer possible. Hence, we next detail our novel direct method for

efficiently solving the dual problem arising. This algorithm exploits the small size

of the bundle to compute the exact optimum by solving a finite number of linear

systems, removing the need for an inner iterative optimisation algorithm.

4.3.1 Advantages of Bundles with More Than Two Pieces

While ALI-G has many favourable qualities, its local model of the loss is still crude.

Using extra approximations allows us to model more variation over the parameter

space and positive curvature of the loss. The main disadvantage of a larger bundle is

it requires multiple gradient evaluations to be performed and then held in memory,

and does not permit a closed form solution. We next give two motivating examples

to demonstrate why using a more complex model of the loss is worth these drawbacks
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4.3. THE BORAT ALGORITHM

and in general leads to increased robustness with respect to the algorithm’s maximal

step size η.

Any convex function can be perfectly modelled by the pointwise maximum over

an infinite number of linear approximations. While intractable, performing a min-

imisation over this model could recover the true optimum by definition. With this

perfect model any value of η could be used. Indeed, setting η to a large enough

value would recover the optimum in a single step. This example demonstrates that,

at least asymptotically, as the accuracy of the local model increases we can expect

a reduced dependence on the correct scale of the step size.

w=− 3
5

w∗
w=3

5

f : w 7→ w2 − |w|3
Linearizations of f

Figure 4.1: A simple example where the ALI-G step size oscillates due to non-
convexity. For this problem, ALI-G only converges if its maximal learning rate η
is less than 10. By contrast, for the same example BORAT with N > 2 converges
for all values of η. Additionally, for η ≥ 10 it converges to the optimum in a single
update.

Figure 4.1 provides a non-convex motivating example for use of larger values of

N . Here we demonstrate a 1D symmetric function where ALI-G does not converge

for large η. Instead it oscillates between the two values w = −3/5 and w = 3/5.

However, if we were to use a bundle with a N ≥ 3 our model of the loss would

include both the linear approximations at w = −3/5 and w = 3/5 simultaneously

and hence when minimising over this model we converge to the optimum for any

value of η. While this is a carefully constructed synthetic example, it highlights why
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we expect a more accurate model of the loss to help reduce the dependence on the

step size.

4.3.2 Primal Problem

Similar to SGD and ALI-G, BORAT exactly solves a proximal optimisation problem

calculated over an approximation of the loss at every iteration. BORAT’s approx-

imation is a bundle of size N , or in other words the pointwise maximum over N

linear functions. Each linear approximation of the loss is constructed at a point

ŵn
t using a different stochastic evaluation of the loss function, denoted as ℓznt . The

subscript t indicates the iteration number and the superscript n indexes over the N

linear approximations. As before, the subscript z indexes the training example or

examples in the batch at time t. Thus, the BORAT proximal problem N can be

expressed as:

wt+1 = argmin
w∈Ω

{
1

2η
∥w −wt∥2 + max

n∈[N ]
{ℓznt (ŵn

t ) +∇ℓznt (ŵn
t )⊤(w − ŵn

t )}
}
, (4.1)

where we use the notation [N ] to define the set of integers {1, ..., N} and Ω ={
w ∈ Rd : ∥w∥22 ≤ r

}
. We now show how to convert (4.1) into the more convenient

form of maxn∈[N ]

{
an⊤(w −wt) + bn

}
. Within a bundle, each linear approximation

is formed around a different point ŵn
t . Hence, in order to write each linear approx-

imation in the aforementioned compact form we split each linear term in two. The

first piece is a constant term, that does not depend on w, and is a multiple of the

vector between the current iterate and the centre of each approximation ŵn
t −wt.

The second term is linear in w −wt, for all linear approximations. This gives the

following expanded form for the bundle as:

max
n∈[N ]

{
ℓznt (ŵn

t )−∇ℓznt (ŵn
t )⊤(ŵn

t −wt) +∇ℓznt (ŵn
t )⊤(w −wt)

}
. (4.2)
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If we define bnt = ℓznt (ŵn
t ) − ∇ℓznt (ŵn

t )⊤(ŵn
t − wt), we can simplify the expression

into the desired form. Hence, we now consider the BORAT proximal problem at

time t with a bundle of size N as:

wt+1 = argmin
w∈Ω

{
1

2η
∥w −wt∥2 + max

n∈[N ]

{
∇ℓznt (ŵn

t )⊤(w −wt) + bnt
}}

. (4.3)

For BORAT we always set ŵ1
t = wt and use the last linear approximation to enforce

the lower bound on the loss. This is done by setting ∇ℓzt(ŵN
t ) = [0, ..., 0]⊤, bNt =

B = 0. We give details on how we select ŵn
t for n ∈ {2, ..., N − 1} in Section 4.3.4.

Thus, each bundle is composed of N − 1 linear approximations of the function, and

the lower bound on the loss. These linear approximations of the loss need to be

stored in memory during each step. Hence, in order to fit on a single GPU we only

consider small bundle sizes in this work (N ≤ 5). For clarity we depict a 1D example

for a bundle with N = 3 in Figure 4.2.

Unlike SGD, the BORAT proximal problem (4.3) is not smooth and hence cannot

be solved by simply setting the derivatives to zero. Instead we choose to solve each

proximal problem in the dual. Thus we refer to the proximal problem (4.3) as the

primal problem.
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wt = ŵ
1
t

w⋆ŵ2
t

wt+1

f⋆

Loss function lz1t
Loss function lz2t
Linearization at ŵ1

t

Linearization at ŵ2
t

Lower Bound B

Model of f

Figure 4.2: Illustration of a BORAT bundle (N = 3) in 1D, shown in green. Two
stochastic samples ℓz1t and ℓz2t of the loss function f are shown in red and blue
(solid lines). The bundle is formed by taking the pointwise maximum of three linear
approximations (dashed lines) and a proximal term. Two of these linear approxi-
mations are formed using the loss functions ℓz1t and ℓz2t , and the last enforces the
known lower bound on the loss. Here the BORAT approximation gives a more ac-
curate model than the approximation used by ALI-G, which would only include the
linearization at ŵ1

t and the lower bound B. In this example this improved accuracy
allows for BORAT to make more progress towards w⋆. Specifically, BORAT would
selected wt+1 for its next iterate, where as ALI-G would select ŵ2

t .

4.3.3 Dual Problem

The dual of (4.3) is a constrained concave quadratic maximisation over N dual

variables α1, ..., αN , and can be concisely written as follows (see Appendix A for

derivation):

αt = argmax
α∈∆N

D(α), where D(α) = −η
2
α⊤A⊤

t Atα+α⊤bt. (4.4)

Here At is a N × d matrix whose nth row is ∇ℓzt(ŵn
t ). We define bt = [b1t , ..., b

N
t ]⊤,

α = [α1, α2, . . . , αN ]⊤ and ∆N is a probability simplex over the N variables. The

dual problem (4.4) has a number of features that make it more appealing for optimi-

sation than the primal (4.3). First, the primal problem is defined over the parameter

space w ∈ Rd, where d is in the order of thousands if not millions for modern deep

neural networks. In contrast, the dual variables are of dimension N, where N is

likely a small number due to the memory requirements. Second, the dual is smooth
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and hence allows for faster convergence with standard optimisation techniques. Fur-

thermore, as will be seen shortly, we use the fact that the dual feasible region is a

tractable probability simplex to design a customised algorithm for its solution. We

detail this algorithm in Section 4.3.5. Once we have found the dual solution αt, we

recover the following update from the KKT conditions:

wt+1 = wt − ηAtαt. (4.5)

The form of the update (4.5) deserves some attention. Since each row of At is

either the gradient of the loss ℓznt or a zero vector, and αt belongs to the probability

simplex, the update step moves in the direction of a non-negative linear combination

of negative gradients −∇ℓznt (ŵn
t ). Due to the definitions of ∇ℓzt(ŵN

t ) = [0, ..., 0]⊤

and bNt = 0, any weight given to αN reduces the magnitude of the resulting step.

This has the effect that as the loss value gets close to zero BORAT automatically

decreases the size of the step taken.

4.3.4 Selecting Additional Linear Approximations for the

Bundle

When constructing bundles of size N > 2, we are faced with two design decisions

regarding how to select additional linear approximations to add to the bundle. First,

where in parameter space should we construct the additional linear approximations

ŵn
t ? And second, should we use the same mini-batch of data when constructing the

stochastic linear approximations, or should we sample a new batch to evaluate each

linear approximation?

Selecting ŵn
t . Ideally, we would select the location of the linear approximations

ŵn
t for n ∈ {2, ..., N − 1} in order to maximise the progress made towards w⋆ at

each step. However, without the knowledge of w⋆ a priori and due to the high
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dimensional and non-convex nature of problem (P), this is infeasible. Instead, we

make use of a heuristic. Inspired by the work of previous bundle methods for convex

problems (Smola et al., 2007; Asi and Duchi, 2019) we select ŵn
t using the following

method:

ŵn
t = argmin

w∈Rd

{
1

2η
∥w −wt∥2 + max

k∈[n−1]

{
∇ℓzkt (ŵk

t )⊤(w −wt) + bkt

}}
. (4.6)

In other words we construct the bundle by recursively adding linear approximations

centred at the current optimum. This method of selecting additional linear approx-

imations is appealing as it requires no extra hyperparameters and helps refine the

approximation in the region of parameter space that would be explored by the next

update.

Re-sampling z for additional linear approximations. When constructing

additional linear approximations we choose to re-sample z. Concretely, we use a

new mini-batch of data to construct each stochastic linear approximation. While it

is possible to construct all N−1 non-zero linear approximations using the same batch

of data we find this does not work well in practice. Indeed, such a method behaves

similarly to taking multiple consecutive steps of SGD on the same mini-batch, which

tends to produce poor optimisation performance.

Summary. We now summarise the bundle construction procedure for N > 2. We

construct a bundle around wt by first using two linear approximations, one centred

atwt and the second given by a known lower bound on the loss. We then sequentially

add linear approximations until we have N . These extra linear approximations are

constructed one at a time using new batches of data and centred around the point

that is the current minimizer of the bundle. We note that each parameter update

of BORAT uses N − 1 batches of data. Therefore, BORAT updates the parameters

N − 1 fewer times than SGD in an epoch (given the same batch size). Once the
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bundle is fully constructed we update wt. At this stage we apply momentum (if

enabled) and project back on the feasible set Ω.

The construction of the bundle requires solving a minimization problem for each

newly added piece when N ≥ 2. Therefore, it is critical that such a problem gets

solved very efficiently. We next detail how we do this by solving the corresponding

dual problem for N ≥ 2.

4.3.5 Efficient Dual Algorithm to Compute N ≥ 2 Linear

Pieces

In the general case (N > 2), the dual has more than 1 degrees of freedom and

cannot be written as a 1D minimisation. Thus, the method derived for the case

N = 2 is no longer applicable. This means it is not possible to obtain a simple

closed form update. We must instead run an inner optimisation to solve (4.4) at

each step. Many methods exist for maximising a concave quadratic objective over a

simplex. Two algorithms particularly well suited to problems of the form (4.4) are

Conditional Gradients (Frank and Wolfe, 1956) or Homotopy Methods (Bach et al.,

2011). However, we propose a novel algorithm that exploits the fact that N is small

to find the maximum directly. This method decomposes the problem of solving (4.4)

into several subproblems, which provides two computational conveniences. First, the

BORAT algorithm repeatedly searches for solutions to a bundle with only one newly

added linear approximation since the last search. As one might expect, this task

shares a great number of subproblems with the previous solution and allows for

much of the computation to be reused. Second, our dual algorithm allows for a

parallel implementation, which makes it very fast on the hardware commonly used

for deep learning. To illustrate the efficiency of our dual method, the run time of

the dual solution, that is finding αt once we have constructed (4.4), takes less than

5% of the time spent in the call of the optimiser. Note, due to the large size of the

networks and the small size of N , the majority of the call time is dominated by the
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computation of A⊤
t At and Atαt.

We now formally introduce our dual solution algorithm. Our method uses the

observation that at the optimal solution in a simplex the partial derivatives will be

equal for all non-zero dimensions. This observation can be formally stated as:

Proposition 1 (Simplex Optimality Conditions). Let F : RN → R be a concave

function. Let us define α∗ = argmaxα∈∆ F (α). Then there exists c ∈ R such that:

∀n ∈ [N ] such that αn
∗ > 0, we have:

∂F (α)

∂αn

∣∣∣∣
α=α∗

= c. (4.7)

In other words, the value of the partial derivative is shared among all coordinates of

α∗ that are non-zero.

This proposition can be easily proved by contradiction. If the partial derivatives

are not equal, then moving in the direction of the largest would result in an increase

in function value. Likewise, moving in the negative direction would produce a de-

crease. Hence, the current point cannot be optimal. Please see Appendix C for a

formal proof of Proposition 1.

In the following paragraphs we explain how this proposition can be used to break

up the task of solving problem (4.4) into 2N − 1 subproblems. These subproblems

arise from considering a unique subset I of non-zero dimensions of α. Each of these

subproblems involves finding the unconstrained optimum and checking if this point

lies within the simplex. We now give an example of a single subproblem. To simplify

notation, let Q ≜ ηA⊤
t At. We note that:

∂D(α)

∂α

∣∣∣∣
α=α∗

= −Qα∗ + bt. (4.8)

If we knew that α∗ had exclusively non-zero coordinates, then by applying Proposi-

tion (1) to the dual objective D we can recover a solution α∗ by solving the following
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linear system: α∗

−c

 = solvex≥0


Q 1

1⊤ 0

x =

bt
1


 . (4.9)

The first N rows of the system would enforce that α∗ satisfies the condition given by

Proposition 1, and the last row of the linear system would ensure that the coordinates

of α∗ sum to one. In the general case, we do not know which coordinates of α∗

are non-zero. However, since typical problems are in low-dimension N , we can

enumerate all possibilities of subsets of non-zero coordinates for α∗.

We detail this further. We consider a non-empty subset I ⊆ [N ], for which we

define:

Q[I×I] ≜ (Qi,j)i∈I,j∈I , b[I] ≜ (bt,i)i∈I . (4.10)

We then solve the corresponding linear subsystem:

ϕ(I)

−c

 ≜ solvex≥0


Q[I×I] 1

1⊤ 0

x =

b[I]
1


 . (4.11)

This ϕ(I) ∈ R|I| can then be lifted to RN by setting zeros at coordinates not contained

in I. Formally, we define ψ(I) ∈ RN such that:

∀i ∈ [N ], ψ
(I)
i =


ϕ
(I)
i if i ∈ I,

0 otherwise.

(4.12)

Therefore, given I ⊆ [N ], we can generate a candidate solution ψ(I) for problem

(4.4) by solving a linear system in dimension |I|. In the following proposition, we

establish that doing so for all possibilities of I guarantees finding the correct solution:

Proposition 2 (Problem Equivalence). We define the set of feasible solutions reached

by the different candidates ψ(I):

Ψ =
{
ψ(I) : I ⊆ [N ], I ̸= ∅

}
∩∆N . (4.13)
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Then we have that:

argmax
α∈∆N

D(α) = argmax
ψ∈Ψ

D(ψ). (4.14)

In other words, we can find the optimal solution of (4.4) by enumerating the members

of Ψ and picking the one with highest objective value.

This proposition is trivially true because Ψ is simply the intersection between

(i) the original feasible set ∆N and (ii) the set of vectors that satisfy the necessary

condition of Optimality given by Proposition 1. This insight results in Algorithm 1

which returns an optimal solution to the dual problem. We characterise this claim

in the following proposition.

Proposition 3 (Sets of Solutions). Algorithm 1 returns a solution α∗ that satisfies

α∗ ∈ argmaxα∈∆N
D(α). This is true even when the dual does not have a unique

solution. Proof given in Appendix A.3.

Algorithm 1 Dual Optimisation Algorithm

Require: η, N , P = {S : S ⊆ {1, 2, ..., N}, S ̸= ∅}, Q = ηA⊤
t At, bt, dmax = 0.

1: for I ∈ P do

2: Q̂ =

[
Q[I×I] 1
1⊤ 0

]
, b̂ =

[
b[I]
1

]
▷ see Equation (4.10) for definitions

3: ϕ[I] = solvex

(
Q̂x = b̂

)
▷ solve the subsystem, see Equation (4.11)

4: if ϕ
[I]
i ≥ 0, ∀i ∈ {1, 2, ..., |I|} then ▷ check for non-negativity of solution

5: ψ(I) = select(ϕ[I], I) ▷ select elements according to Equation (4.12)
6: d = −1

2
ψ(I)⊤Qψ(I) +ψ(I)⊤bt ▷ compute the dual value

7: if d ≥ dmax then ▷ save maximum value
8: dmax = d,α∗ = ψ(I)

9: Return α∗ ▷ return optimal value

Procedurally, Algorithm 1 starts by computing Q = −ηA⊤
t At and bt to form a

“master” system Qx = b. We consider each of the 2N − 1 subsystems of Qx = bt

defined by an element of the set I (lines 1-3), where I represents the set of non-

zero dimensions of each subsystem. For each subsystem we get an independent

subproblem. To ensure the solution to each subproblem will satisfy
∑N

n=1 x
n = 1

and all partial derivatives have equal value, an extra row-column is introduced to
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each system (line 2). We then compute the point which satisfies the optimality

conditions detailed in Proposition 1 for each subsystem, by solving for x. We then

check if each of these points is feasible, that is, belongs to ∆N by examining signs

xn ≥ 0,∀n ∈ {1, ..., n} (line 4). Note, we have by construction
∑N

n=1 x
n = 1. Finally,

we select α∗ as the feasible point with maximum dual value (lines 7-8). The optimal

α∗ is then used to define the weight update (4.5). For example, if α∗ = [1, 0, ..., 0]⊤

an SGD step wt+1 = wt − η∇ℓzt(wt) will be taken.

The BORAT algorithm can be viewed as automatically picking the best step out

of a maximum of (2N − 1) possible options, where each option has a closed form

solution. Although the computational complexity of this method is exponential in

N , this algorithm is still very efficient in practice for two reasons. First, we only

consider small N . Second, as subproblems can be solved independently, it permits a

parallel implementation. With a fully parallel implementation the time complexity

of this algorithm reduces to O (N3). Empirically, with such an implementation,

for N ≤ 10 we observe an approximately linear relationship between N and time

taken per training epoch. See Appendix B.1 for a comparison of training epoch time

between BORAT and SGD.

4.3.6 Computational Considerations

The method of adding linear approximations detailed in (4.6) requires running Al-

gorithm 1 at each inner loop iteration. However in practice if we keep track of the

best dual value when adding an additional element αn one need only compute the

2n−1 new subproblems that include non-zero αn. Thus, we actually only need to run

Algorithm 1 fully once for each bundle, that is once per N − 1 batches.

4.3.7 Summary of the Algorithm

The full BORAT method is outlined in Algorithm 2. The bundle is constructed in

lines 3-7. sequentially finding the minimiser and adding a linear approximation at
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its location. Note we can reuse much of the computation between subsequent calls

to Algorithm 1 line 6. In practice we effectively interleave a single call to Algorithm

1 for dual of dimension N with a single inner loop of Algorithm 2 lines 4-7. However

we have shown them separately for clarity.

Once we have a bundle of size N we instead update wt, apply momentum and

project back onto the feasible region Ω in lines 8-10.

In the majority of our experiments, we accelerate BORAT with Nesterov mo-

mentum see Algorithm 2.

We use Nesterov momentum as we find this helps produce strong generalisation

performance. When momentum is not use we simply replace line 9 10 of Algorithm

2 with wt+1, ŵ
1
t+1 = ΠΩ

(
ŵn+1

t

)
.

Algorithm 2 The BORAT Algorithm

Require: learning rate η, maximum bundle size N ≥ 2, initial feasible w0 ∈ Ω .
1: t = 0, ŵ1

0 = w0

2: while not converged do
3: for n = 1, ..., N − 1 do ▷ add element to bundle
4: Sample zt,n ∈ Z, and compute ℓznt (ŵn

t ), ∇ℓznt (ŵn
t )

5: compute −ηA⊤
t At and bt ▷ add extra row-column

6: α∗ = argmaxα∈∆n

{
−η

2
α⊤A⊤

t Atα+α⊤bt
}
▷ see Algorithm 1 for details

7: ŵn+1
t = wt − ηAtα

∗

8: vt = µvt−1 − ηAtα
∗ ▷ nesterov Momentum

9: wt+1, ŵ
1
t+1 = ΠΩ (wt + µvt) ▷ here ΠΩ is the projection onto Ω

10: t = t+ 1

11: end while

4.4 Justification and Analysis

The interpolation setting gives, f⋆ = 0 by definition. However, more subtly, it also

allows the updates to rely on the stochastic estimate ℓzt(wt) rather than the exact

but expensive f(wt). Intuitively, this is possible because in the interpolation setting,

we know the global minimum is achieved for each loss function ℓzt(wt) simultane-

ously. The following results formalise the convergence guarantee of BORAT in the

50



4.4. JUSTIFICATION AND ANALYSIS

stochastic setting. Note, here we prove these results for BORAT with a minor mod-

ification, that is, all linear approximations are formed using the same mini-batch of

data, ℓznt = ℓzt for all n ∈ {2, ..., N − 1}. In practice, we find that by using the same

batch for constructing the N − 1 linear approximations performs significantly worse

than re-sampling a new mini-batch for each. We speculate this decrease in perfor-

mance mirrors the decrease seen when running multiple SGD updates on the same

batch before re-sampling. Specifically, the optimiser focuses too much on minimis-

ing ℓz on each step rather than the average f . However, this modification simplifies

the proof significantly as we only require computing expectations with respect to a

single mini-batch zt.

First, we consider the standard convex setting, where we additionally assume

the interpolation assumption is satisfied and that each ℓz is Lipschitz continuous.

Next, we consider an important class of non-convex functions used for analysis in

previous works related to interpolation (Vaswani et al., 2019).

Theorem 1 (Convex and Lipschitz). Let Ω be a convex set. We assume that for

every z ∈ Z, ℓz is convex and C-Lipschitz. Let w⋆ be a solution of (P), and assume

that we have perfect interpolation: ∀z ∈ Z, ℓz(w⋆) = 0. Then BORAT for N ≥ 2

applied to f satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f⋆ ≤ C

√
∥w0 −w⋆∥2

(T + 1)
+
∥w0 −w⋆∥2

η(T + 1)
. (4.15)

Hence, BORAT recovers the same asymptotic rate as SGD without the need to

reduce the learning rate η during training. In the Appendix A.4 we show that for

convex and β-smooth and the α-strongly convex settings BORAT recovers rates of

O(1/T ) and O(exp(αT )), respectively.

We follow earlier work (Vaswani et al., 2019) and provide a convergence rate for

BORAT applied to non-convex functions that satisfy the Restricted Secant Inequal-

ity (RSI). A function is said to satisfy the RSI condition with constant µ over the
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set Ω if the following holds:

∀w ∈ Ω, ⟨∇ℓz(w),w −w⋆⟩ ≤ µ||w −w⋆||. (4.16)

Theorem 2 (RSI). We consider problems of type (P). We assume ℓz satisfies the

RSI with constant µ, smoothness constant β and perfect interpolation e.g. lz(w
∗) =

0, ∀z ∈ Z. Then if set η ≤ η̂ = min{ 1
4β
, 1
4µ
, µ
2β2} then in the worst case we have:

f(wT+1)− f ∗ ≤ exp

((
−3

8
η̂µ

)
T

)
||w0 −w∗||2. (4.17)

Thus in this setting BORAT recovers the same asymptotic rate as SGD.

4.5 Experiments

We split the experimental results into two sections. Section 4.5.1 demonstrates the

strong generalisation performance of BORAT on a wide range of tasks. Here we

compare BORAT to other single hyperparameter optimisation algorithms. Section

4.5.2 shows results for tasks where SGD and ALI-G are sensitive to the learning

rate. For these tasks BORAT increases both the robustness to the learning rate and

the task regularisation hyperparameter.

We choose to investigate BORAT with (N = 3) and (N = 5), and refer to the re-

sulting algorithms as BORAT3 and BORAT5, respectively. For N ≥ 2 BORAT uses

more than one batch of data for each update. In order to give a fair comparison we

keep the number of passes through the data and total gradient evaluations constant

for all experiments. This has the effect that BORAT3 and BORAT5 respectively

make a half and a quarter of the weight updates of SGD or ALI-G. The time per

epoch of BORAT is very similar to those of all other methods, see Appendix C for

more details. Hence, all methods have approximately the same run time per epoch.

Consequently, faster convergence in terms of number of epochs translates into faster
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convergence in terms of wall-clock time.

The code to reproduce our results is publicly available1. For baselines we use

the official implementation in PyTorch, where available (Paszke et al., 2017). We

use our implementation of L4, which we unit-test against the official TensorFlow

implementation (Abadi et al., 2015). We employ the official implementation of

DFW2 and we reuse their code for the experiments on SNLI and CIFAR.

4.5.1 Effectiveness of BORAT

We empirically compare BORAT to commonly used optimisation algorithms for

deep learning using standard loss functions. In this section the hyperparameters

of each algorithm are thoroughly cross-validated to select a best performing model.

We consider a wide range of problems: training a wide residual network on SVHN,

training a Bi-LSTM on the Stanford Natural Language Inference data set, training

both wide residual networks and densely connected networks on the CIFAR data

sets, and lastly, training a wide residual network on the Tiny ImageNet data set.

For these problems, we demonstrate that BORAT3 and BORAT5 obtain compa-

rable performance to SGD with a hand-tuned learning rate schedule, and typically

outperform adaptive gradient methods. Finally, in order to demonstrate the scal-

ability of BORAT to large-scale settings, we empirically assess the performance

of BORAT and its competitors in terms of training objective on CIFAR-100 and

ImageNet. Note that the tasks of training wide residual networks on SVHN and

CIFAR-100 are part of the DeepOBS benchmark (Schneider et al., 2019), which

aims to standardise baselines for deep learning optimisers. In particular, these tasks

are among the most difficult ones of the benchmark, because the SGD baseline ben-

efits from a manual schedule for the learning rate whereas BORAT uses a single

fixed value. Despite this, our set of experiments demonstrates that BORAT obtains

competitive performance in relation to SGD. In addition, our method significantly

1https://github.com/oval-group/borat
2https://github.com/oval-group/dfw
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outperforms adaptive gradient methods. All experiments were performed on a single

GPU (SVHN, SNLI, CIFAR) or on up to 4 GPUs (ImageNet).

4.5.1.1 Wide Residual Networks on SVHN

Setting. The SVHN data set contains 73k training samples, 26k testing samples

and 531k additional easier samples. From the 73k difficult training examples, we

select 6k samples for validation; we use all remaining (both difficult and easy) ex-

amples for training, for a total of 598k samples. We train a wide residual network

16-4 following Zagoruyko and Komodakis (2016).

Method. For SGD, we use the manual schedule for the learning rate of Zagoruyko

and Komodakis (2016). For L4Adam and L4Mom, we cross-validate the main learn-

ing rate hyperparameter α to be in {0.0015, 0.015, 0.15} (0.15 is the value recom-

mended by Rolinek and Martius (2018)). For other methods, the learning rate

hyperparameter is tuned as a power of 10. The ℓ2 regularisation is cross-validated

in {0.0001, 0.0005} for all methods except ALI-G and BORAT. For ALI-G and

BORAT, the regularisation is expressed as a constraint on the ℓ2-norm of the pa-

rameters, and its maximal value is set to 100. SGD, ALI-G, BORAT and BPGrad

use a Nesterov momentum of 0.9. All methods use a dropout rate of 0.4 and a fixed

budget of 160 epochs, following Zagoruyko and Komodakis (2016). A batch size of

128 is used for all experiments.

Results. A comparison with other methods is presented in Table 4.1. On this rela-

tively easy task, most methods achieve about 98% test accuracy. Despite the cross-

validation, L4Mom does not converge on this task. However, note that L4Adam

achieves accurate results. Even though SGD benefits from a hand-designed sched-

ule, BORAT and other adaptive methods obtain comparable performance on this

task.
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Test Accuracy on SVHN (%)

Adagrad 98.0 BPGrad 98.1
AMSGrad 97.9 L4Adam 98.2
DFW 98.1 ALI-G 98.1
L4Mom 19.6 BORAT3 98.1
Adam 97.9 BORAT5 98.1

SGD 98.3 SGD† 98.4

Table 4.1: In red, SGD benefits from a hand-designed schedule for its learning rate.
In black, adaptive methods, including ALI-G, have a single hyperparameter for their
learning rate. SGD† refers to the performance reported by Zagoruyko and Komodakis
(2016).

4.5.1.2 Bi-LSTM on SNLI

Setting. We train a Bi-LSTM of 47M parameters on the Stanford Natural Lan-

guage Inference (SNLI) data set (Bowman et al., 2015). The SNLI data set consists

of 570k pairs of sentences, with each pair labelled as entailment, neutral or con-

tradiction. This data set is used as a pre-training corpus for transfer learning to

many other natural language tasks where labelled data is scarcer (Conneau et al.,

2017), much like ImageNet is used for pre-training in computer vision. We follow

the protocol of Berrada et al. (2019) and we reuse their results for the baselines.

Method. For L4Adam and L4Mom, the main hyperparameter α is cross-validated

in {0.015, 0.15} – compared to the recommended value of 0.15, this helped conver-

gence and considerably improved performance. The SGD algorithm benefits from a

hand-designed schedule, where the learning rate is decreased by 5 when the valida-

tion accuracy does not improve. Other methods use adaptive learning rates and do

not require such a schedule. Thus, the value of the main hyperparameter η is cross-

validated as a power of ten for the other methods. Following the implementation

by Conneau et al. (2017), no ℓ2 regularisation is used. The algorithms are evalu-

ated with the Cross-Entropy (CE) loss and the multi-class hinge loss (SVM), except

for DFW which is designed for use with an SVM loss only. For all optimisation
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algorithms, the model is trained for 20 epochs, using a batch size of 64, following

Conneau et al. (2017).

Test Accuracy on SNLI (%)

CE SVM CE SVM

Adagrad∗ 83.8 84.6 Adam∗ 84.5 85.0
AMSGrad∗ 84.2 85.1 BPGrad∗ 83.6 84.2
DFW∗ - 85.2 L4Adam 83.3 82.5
L4Mom 83.7 83.2 BORAT3 84.4 85.2
ALI-G 84.8 85.2 BORAT5 84.5 85.2

SGD∗ 84.7 85.2 SGD† 84.5 -

Table 4.2: In red, SGD benefits from a hand-designed schedule for its learning rate.
In black, adaptive methods have a single hyperparameter for their learning rate.
With an SVM loss, DFW and ALI-G are procedurally identical algorithms – but in
contrast to DFW, ALI-G can also employ the CE loss. Methods in the format X∗

reuse results from Berrada et al. (2019). SGD† is the result from Conneau et al.
(2017).

Results. Table 4.2 compares BORAT against the other optimisers. When in com-

bination with the hinge loss BORAT achieves the joint best performance with ALI-G,

DFW and SGD with a learning rate schedule. When considering the CE loss ALI-G

performed best by a small margin.

4.5.1.3 Wide Residual Networks and Densely Connected Networks on

CIFAR

Setting. We follow the methodology of Berrada et al. (2019). We test two archi-

tectures: a Wide Residual Network (WRN) 40-4 (Zagoruyko and Komodakis, 2016)

and a bottleneck DenseNet (DN) 40-40 (Huang et al., 2017). We use 45k samples for

training and 5k for validation. The images are centred and normalized per channel.

We apply random horizontal flipping and random crops for data augmentation.

Method. We compare BORAT to ALI-G and other common single hyperparam-

eter optimisers. Here, we cross validate the hyperparameters in order to find the
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best performing network for each method. AMSGrad was selected in Berrada et al.

(2019) because it was the best adaptive method on similar tasks, outperforming in

particular Adam and Adagrad. In addition to these baselines, we also provide the

performance of L4Adam, L4Mom, AdamW (Loshchilov and Hutter, 2019) and Yogi

(Zaheer et al., 2018). We follow the cross validation scheme of Berrada et al. (2019)

restating it here for completeness. All methods employ the CE loss only, except

for the DFW algorithm, which is designed to use an SVM loss. The batch size is

cross-validated in {64, 128, 256} for the DN architecture, and {128, 256, 512} for the

WRN architecture. For L4Adam and L4Mom, the learning rate hyperparameter α

is cross-validated in {0.015, 0.15}. For AMSGrad, AdamW, Yogi, DFW, ALI-G,

and BORAT the learning rate hyperparameter η is cross-validated as a power of

10 (in practice η ∈ {0.1, 1} for BORAT). SGD, DFW, and BORAT use a Nesterov

momentum of 0.9. For all methods excluding ALI-G, BORAT, and AdamW, the ℓ2

regularisation is cross-validated in {0.0001, 0.0005} on the WRN architecture, and

is set to 0.0001 for the DN architecture. For AdamW, the weight-decay is cross-

validated as a power of 10. For ALI-G, and BORAT, ℓ2 regularisation is expressed as

a constraint on the norm of the vector of parameters; and its value is cross-validated

in {50, 75, 100}. For all optimisation algorithms, the WRN model is trained for

200 epochs and the DN model for 300 epochs, following Zagoruyko and Komodakis

(2016) and Huang et al. (2017) respectively.

Results. Table 4.3 details the results of the comparison of BORAT against other

single hyperparameter optimisers for the CE loss only. In this setting, BORAT out-

performed AMSGrad, AdamW, Yogi, L4Adam and L4 Mom, and constant step size

SGD by a large margin. ALI-G achieved ever so slightly better results than BO-

RAT on CIFAR-100 using the WRN model, and performed about equally or slightly

worse on the other tasks. The next best method was DFW which also has the re-

striction that it can only be used in conjunction with the hinge loss. ALI-G and
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BORAT produced the test accuracy achievable using SGD with the manual learning

rate schedules from Huang et al. (2017) and Zagoruyko and Komodakis (2016) for

half of the model data set combinations considered. For these tasks BORAT pro-

vided state-of-the-art results without the need for the learning rate to be manually

adapted throughout training. For the remaining two combinations, training a DN

on CIFAR-10 and training a WRN on CIFAR-100, BORAT lags in performance by

approximately 0.2% and 2%, respectively, with minor variation depending on which

version of BORAT is used. Note, SGD with a hand-tuned learning rate schedule

provides a reasonable upper limit on the generalisation performance achievable, due

to the amount of time researchers have put into improving these schedules.

Test Accuracy on CIFAR (%)

CIFAR-10 CIFAR-100

WRN DN WRN DN

SGD 91.2 91.5 67.8 67.5
AMSGrad 90.8 91.7 68.7 69.4
AdamW 92.1 92.6 69.6 69.5
Yogi 91.2 92.1 68.7 69.6
DFW 94.2 94.6 76.0 73.2
L4Adam 90.5 90.8 61.7 60.5
L4Mom 91.6 91.9 61.4 62.6
ALI-G 95.4 94.5 76.1 76.2
BORAT3 95.4 94.9 76.0 76.5
BORAT5 95.0 94.9 75.8 75.7

Table 4.3: Test accuracy of single hyperparameter optimisation methods. Each re-
ported result is an average over three independent runs; the standard deviations and
optimal hyperparameters are reported in Appendix B.3 (the standard deviations are
at most 0.4 for ALI-G and BORAT).

4.5.1.4 Wide Residual Networks on Tiny ImageNet

Setting. Tiny ImageNet contains 200 classes for training where each class has

500 images. The validation set contains 10,000 images. All images are RGB with

64x64 pixels. Thus, Tiny ImageNet is significantly more challenging than the CIFAR

data sets. The test-set contains 10,000 images, however the ground truth labels are
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not freely available. We again use the Wide Residual Network (WRN) detailed in

Section 4.5.1.1. The images are centred and normalized per channel. We apply

standard data augmentation with random horizontal flipping and random crops.

Method. We investigate the ability of SGD (with a constant step size), ALI-G,

and BORAT to train a WRN on Tiny ImageNet. We use Adam (Kingma and Ba,

2015) as an indicator of what can be expected from a popular adaptive method

applied to the same task. We make use of both the cross entropy (CE) and multi-

class hinge (SVM) losses. The learning rate hyperparameter η is cross-validated in

powers of 10, a batch size of 128 and a training time of 200 epochs was used for all

experiments. The ℓ2 regularisation is cross-validated in powers of 10 for Adam. For

constant step size SGD, ALI-G, and BORAT we make use of the constrained base

regularisation detailed in Section 3.9.1, cross-validating r ∈ {50, 100, 150, 200, 250}.

Additionally, all methods excluding Adam use a Nesterov momentum of 0.9.

Results. The best results for SGD, ALI-G, BORAT, and Adam are shown in

Table 4.4. For both losses Adam performs worst, only achieving 2.4% validation

accuracy when optimising the SVM loss. The best results are achieved by BORAT

with N = 5 and N = 3 for the CE and SVM losses respectively. These results

suggest the added gain of BORAT is more pronounced for larger more challenging

data sets.

Validation Accuracy on Tiny ImageNet (%)

CE Loss Hinge Loss

Adam 55.0 2.4
SGD 59.4 23.2
ALI-G 61.1 24.9
BORAT3 61.1 44.1
BORAT5 62.1 39.4

Table 4.4: Validation accuracy of single hyperparameter optimisation methods on
the Tiny ImageNet data set for cross entropy and hinge loss.
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4.5.1.5 Comparing Training Performance on CIFAR-100

In this section we empirically assess the performance of BORAT and its competitors

in terms of training objective on CIFAR-100. In order to have comparable objective

functions, the ℓ2 regularisation is deactivated. The learning rate is selected as a

power of ten for best final objective value, and the batch size is set to its default

value. For clarity, we only display the performance of SGD, Adam, Adagrad, and

BORAT (DFW does not support the cross-entropy loss). The L4 methods diverge

in this setting. Here, SGD uses a constant learning rate to demonstrate the need

for adaptivity. Therefore, all methods use one hyperparameter for their learning

rate. All methods use a fixed budget of 200 epochs for WRN-CIFAR-100 and 300

epochs for DN-CIFAR-100. As can be seen in Figure 4.3, BORAT provides similar

training performance to ALI-G and outperforms the other baseline algorithms on

both tasks. Here, BORAT3 and BORAT5 are slightly slower than ALI-G due to the

lower number of parameter updates performed.
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Figure 4.3: Objective function over the epochs on CIFAR-100 (smoothed with a
moving average over 5 epochs). ALI-G and BORAT reach a value that is an order
of magnitude better than the baselines.

4.5.1.6 Training at Large Scale

We demonstrate the scalability of BORAT by training a ResNet18 (He et al., 2016)

on the ImageNet data set and comparing against ALI-G. In order to satisfy the
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interpolation assumption, we employ a loss function tailored for top-5 classification

(Lapin et al., 2016), and we do not use data augmentation. Our focus here is on

the training objective and accuracy. ALI-G and BORAT use the following training

setup: a batch size of 1024 split over 4 GPUs, an ℓ2 maximal norm of 400 for w,

a maximal learning rate of 10, and no momentum. As can be seen in Figure 4.4,

ALI-G and BORAT reach 99% top-5 accuracy in 12 epochs, and accurately minimise

the objective function to 2 · 10−4 within 90 epochs.
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Figure 4.4: Training performance of a ResNet-18 learning with different versions of
BORAT on ImageNet. Note that all versions converge at similar rates even though
BORAT3 and BORAT5 make far fewer updates for larger values of N .

4.5.2 Robustness of BORAT

In this section we show that using additional linear approximations increases the

robustness of BORAT to its learning rate η and the problem regularisation amount

r. BORAT produces high accuracy models for a wider range of values than SGD and

ALI-G. Hence, on problems where SGD and ALI-G are sensitive to their learning

rate BORAT with N ≥ 2 produces the best performance. These results demonstrate

the advantage of using a larger bundle to model the loss in each proximal update.

In order to illustrate this increased robustness we assessed the stability of con-

stant step size SGD, ALI-G, BORAT3, and BORAT5 to their hyperparameters. We

additionally provide results for Adam in Appendix B.2. Robustness is assessed by
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completing a grid search over η and r for a number of tasks while holding the batch

size and epoch budget constant. This allows us to assess the range of values where

these algorithms produce high accuracy models. We perform this grid search for

six tasks split over the CIFAR-100 and Tiny ImageNet data sets. We choose these

data sets as they are challenging yet a model capable of interpolation can still fit

on a single GPU. We compare against SGD with a constant learning rate for two

reasons. First, SGD effectively uses a bundle of size 1, composed of only the lin-

earization around the current iterate. Second, constant step size SGD has a single

learning rate hyperparameter with the same scale as BORAT and also permits the

constraint-based regularisation described in Section 3.9.1.

4.5.2.1 Wide Residual Networks on CIFAR-100 and Tiny ImageNet

Setting. The CIFAR-100 and Tiny ImageNet data sets are described in detail in

Sections 4.5.1.3 and 4.5.1.4, respectively.

Method. We ran four separate experiments on the CIFAR-100 data set. The first

two of these experiments examine the robustness to hyperparameters of SGD, ALI-

G, and BORAT when in combination with the cross entropy (CE) and multi-class

hinge (SVM) losses. For the second two experiments on CIFAR-100 we investigate

the same algorithms in the presence of label noise. We limit ourselves to the CE

loss for these two experiments. Label noise is applied by switching the label of the

images in the training set with probability p to a random class label in the same

superclass. We repeat the experiments without label noise on the more challenging

Tiny ImageNet data set, resulting in six different settings. For all algorithms we

train a wide residual network (WRN) detailed in Section 4.5.1.3 and make use of

a Nesterov momentum of 0.9 as we found its use produced superior generalisation

performance. For all experiments we use a batch size of 128 and perform a grid

search over the 20 hyperparameter combinations given by the Cartesian product of
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r ∈ {50, 100, 150, 200, 250} and η ∈ {0.01, 0.1, 1.0, 10.0}.
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Figure 4.5: Comparison of SGD, ALI-G and BORAT’s robustness to hyperparame-
ters when increasing N for the CE and SVM losses. Experiments are performed on
the CIFAR-100 data set. Colour represents test performance, where darker colours
correspond to higher values. For both losses, increasing N allows for higher learning
rates to be used while still producing convergent behaviour. Additionally, for the CE
loss and η ∈ {1.0, 10.0} larger N allows for a smaller r or greater levels of regular-
isation to be used. Consequently, increasing N improves the overall robustness to
hyperparameters, while not sacrificing generalisation performance.

Results. We first discuss the results for the CIFAR-100 data set. Figure 4.5

details the robustness of SGD, ALI-G and BORAT for the CE and SVM losses

without label noise. We provide results for the Adam optimiser in Appendix B.2.

In these two settings ALI-G exhibits similar robustness to constant step size SGD,

however, it outperforms SGD in terms of the performance of the best model trained.

On the CE loss, SGD and ALI-G are reasonably robust, providing good results for

the majority of hyperparameter combinations with η ≤ 1. For the SVM loss all

algorithms are sensitive to their learning rate η. SGD and ALI-G only produce an

increase in accuracy for small values of η, hence no model achieves high accuracy

in the 200 epoch budget. For both losses, increasing N improves the robustness
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and produces convergent behaviour for larger values of η and smaller values of r.

This is particularly pronounced for the SVM loss. Here, permitting larger η allows

for a high accuracy network to be trained within the 200 epoch budget. For both

losses η = 0.01 BORAT3 and BORAT5 slightly underperformed compared to ALI-G

and SGD. This is simply a consequence of these methods making significantly fewer

updates. In spite of this, the resultant effect of increasing the bundle size is a larger

range of hyperparameters that produce good generalisation performance.

The results from the label noise experiments are shown in Figure 4.6. For p = 0.1

the results closely mirror those where no label noise is used, shown in Figure 4.5,

however, here all models achieve roughly 0 − 5% worse test performance. When

the noise is increased to p = 0.5 the test error increases drastically by 0− 25%. In

both cases where p = 0.1 and p = 0.5, increasing N obtains better results for a

larger range of values of η and r. Interestingly, using N = 3, 5 results in the best

performance when p = 0.5. This is somewhat expected since using a larger bundle

size means more samples are used to calculate each parameter update and hence

helps reduce the effect of the label noise.
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Figure 4.6: Test accuracy of SGD, ALI-G, BORAT3, and BORAT5’s robustness to
hyperparameters when trained on CIFAR-100 with noisy labels. Here we give results
with two different levels of noise p = 0.1 (upper row) and p = 0.5 (lower row). For
readability purposes, the colour encodes test accuracy, where darker colours corre-
spond to higher values. Increasing N allows for higher learning rates and greater
levels of regularisation to be used. Additionally, when the level of noise is high
(p = 0.5, lower row), BORAT significantly outperforms SGD and ALI-G.

Figure 4.7 details the robustness of SGD, ALI-G and BORAT for the Tiny Im-

ageNet experiments. We provide results for the Adam optimiser in Appendix B.2.

These results show BORAT offers improved robustness on multiple data sets as we

recover similar performance to CIFAR-100. For the CE loss increasing N allows for

slightly higher learning rates and greater levels of regularisation to be used for the

CE loss. For the SVM loss BORAT produces models with reasonable accuracy for

a few of the hyperparameters combinations with η ∈ {0.1, 1.0} as opposed to SGD

and ALI-G which produce poor results for all learning rates excluding η = 1.0. Con-

sequently, when training with the SVM loss, BORAT produces a drastically better

model than SGD and ALI-G. This happens despite BORAT making significantly

fewer updates of wt in the 200 epochs.
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Figure 4.7: Comparison of SGD, ALI-G, and BORAT’s robustness to hyperparame-
ters on the Tiny ImageNet data set. Here we investigate the effect of increasing the
bundle size when in use with the CE and Hinge losses. Colour represents validation
performance, where darker colours correspond to higher values. Where the CE loss
is used BORAT produces an increase in the range of hyperparameters that result in
high accuracy models. For the SVM loss BORAT is the only optimiser to produce
highly accurate results.

Across all six experiments BORAT consistently produces high accuracy models

for a larger range of hyperparameter combinations than SGD or ALI-G. This is par-

ticularly pronounced for the SVM loss experiments where the decreased sensitivity

of BORAT makes all the difference between finding hyperparameters that result in

a high accuracy model and not. Consequently, in comparison to its competitors,

BORAT is systematically more robust to the choice of learning rate and regular-

isation hyperparameter, and also offers better generalisation more often than not.

Therefore, we particularly recommend using BORAT for tasks where hyperparam-

eter tuning is a highly time consuming task.
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4.6 Discussion

In this chapter we have introduced BORAT a bundle method designed for the op-

timisation of DNNs capable of interpolation. BORAT offers similar performance to

ALI-G while boasting increased robustness by way of a greater bundle size. BORAT

produces high accuracy models for a larger range of hyperparameters and is particu-

larly effective when using the multi-class hinge loss or in the presence of label noise.

Our results suggest that BORAT is presently the most robust single hyperparameter

optimisation method for deep neural networks.

It may be possible to modify BORAT so that it can make a parameter update

after each gradient evaluation by cleverly selecting how linear approximations are

added and removed from the bundle. If done correctly, this may lead to a further

increase in the speed of convergence. However, we leave this to future work. When

keeping the total number of gradient evaluations constant, a downside of using a

larger bundle size for BORAT is that the number of parameter updates decreases.

Despite this, in our experiments, BORAT is able to obtain good results within the

same budget of passes through the data. Notably, this also means that BORAT

has a time per epoch comparable to that of adaptive gradient methods. Another

potential criticism of BORAT is that its memory footprint grows linearly with the

bundle size. However, in practice, our results show that using a bundle size of

three, which corresponds to the same memory cost as Adam, is often sufficient to

obtain improved robustness. Finally, the applicability of BORAT can be limited by

the required assumption of interpolation. While we argue that this interpolation

property is satisfied in many interesting use cases, it may not hold true for one or

more of the following confounding factors: (i) limited size of the neural network; (ii)

large size of the training data set, which is becoming increasingly common in machine

learning; and (iii) complexity of the loss function, such as in adversarial training.

Furthermore, the concept of interpolation itself is ill-defined for unsupervised tasks.

In the next chapter we generalise ALI-G to non-interpolating settings.
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Chapter 5

Faking Interpolation Until You

Make It (ALI-G+)

5.1 Introduction

In this chapter, we propose an optimisation method for the non-interpolating setting.

We introduce a novel extension of ALI-G (Berrada et al., 2020) to tasks where the

interpolation property does not hold. As we no longer have access to the optimal

loss values a priori, we instead estimate it for each sample online. To realise this, we

introduce a simple but highly effective heuristic for approximating the optimal value

based on previous loss evaluations. We provide rigorous experimentation on a range

of problems. From our empirical analysis we demonstrate the effectiveness of this

approach, which outperforms other single hyperparameter optimisation methods.

Our algorithm is based on the observation that any non-interpolating problem

can be made to satisfy the interpolation property once a point that minimises the

training objective is known. One simply modifies each loss to be the pointwise

maximum of the loss function and its value at the optimal point. Moreover, one

only requires the knowledge of this optimal loss value for every example and not the

location of the minimiser in parameter space. Hence, if one is able to approximate
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the loss values at an optimal point with reasonable accuracy, one should be able to

replicate the desirable characteristics of algorithms such as ALI-G and SPS (Loizou

et al., 2021). Specifically, an algorithm with a single fixed hyperparameter that is

easy to tune, and has strong generalisation performance. We present an optimisation

method that approximates the optimal function values online using a heuristic in

combination with a Polyak step size. We name our algorithm Adaptive ALI-G

(ALI-G+), as it makes use of a modified ALI-G step size iteratively to update the

parameters.

We conduct a thorough empirical evaluation of ALI-G+ on a variety of tasks

against strong baselines. We provide results for matrix factorisation, binary classifi-

cation using RBF kernels, image classification on the SVHN, CIFAR, Tiny ImageNet

and ImageNet data sets, review classification and next character prediction. These

tasks are designed to provide a mix of non-interpolating and interpolating problems.

In all cases ALI-G+ outperforms all other single hyperparameter methods, often by

a significant margin. These results demonstrate that estimating the optimal loss

value online is an effective approach for selecting the step size.

5.2 Training in Non-Interpolating Settings

While the interpolation setting has received a lot of attention from recent work,

many interesting problems do not satisfy this assumption. This could be for any

of the following reasons: i) the model size could be limited due to hardware or

power constraints, such as for embedded devices; ii) the data set is very large,

for example, the vast majority of models trained on the ImageNet data set (Deng

et al., 2009) do not achieve zero training loss; iii) complexity of the loss function,

such as in adversarial training; iv) label noise can make interpolation impossible

by creating a one to two mapping between inputs and labels. Thus, we think this

setting is deserving of bespoke optimisation algorithms that are easy to use and
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produce strong generalisation performance.

5.2.1 Motivation.

Our algorithm is motivated by trying to approximate ℓz(w⋆) online, and as a result

recover interpolation. Thus, we introduce a scalar ℓ̃kz to store our estimate for each

example in the training set. We refer to these scalars as approximate optimal values

(AOVs) and the superscript k indicates how many times the approximation has

been updated. Our algorithm alternates between two “steps” i) using the current

approximation of the optimal loss ℓ̃kz to inform the step size, (see Algorithm 3); and

ii) improving the approximations based on the best previous iterates, (see Algorithm

4). We describe these “steps” in detail in the following two sections.

5.2.2 Related work.

The idea of trying to approximate loss values online in combination with a Polyak

step size has also recently been explored by Davtyan et al. (2022) who use a global

approximation to the loss based on Kalman filtering. Conversely Gower et al. (2021)

present and number of different schemes using this idea. These include an algorithm

they name Moving TArgetted Stochastic Polyak Step or MOTAPS, which like ALI-

G+ constructs a estimate for each training example. MOTAPS enjoys some nice

theoretical properties, such as provable convergence on convex problems. However,

the authors only show results for deep learning problems when interpolation holds

or approximately holds, so it unclear how well their method works in practice.

5.2.3 Updating the Parameters.

ALI-G+ uses the same stochastic version of the Polyak step size as ALI-G Equation

(3.16). However, we replace the optimal loss value ℓz(w⋆) = 0 with its current

approximation ℓ̃kz . Hence, at time t the ALI-G+ algorithm uses the following weight

70
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update:

wt+1 = wt − γtg′t, (5.1)

γt ≜ max

{
min

{
η,
ℓzt(wt)− ℓ̃kz
∥∇ℓzt∥2

}
, 0

}
. (5.2)

We define g′t ≜ (∇ℓzt(wt)+λwt), where η and λ are the hyperparameters controlling

the maximum step size and weight decay amount, respectively. The loss, AOV and

gradient values are averaged over the mini-batch. As we do not require the interpo-

lation assumption to hold, we do not need to use the constraint based regularisation

of ALI-G, and can simply make use of weight decay, which allows for easy compari-

son with other algorithms. It is worth noting here that the max with 0 is no longer

redundant as there is no guarantee that (ℓzt(wt)− ℓ̃kz) will be positive. Without this

positivity constraint a negative step size could be used resulting in a gradient ascent

step. Moreover if ℓzt(wt) is already lower than its AOV ℓ̃kz then we have already

completed our goal for this sample in this “step”. In the next “step” we can then

update this AOV to a lower value, which we describe in the next section. The full

procedure for updating the parameters given the AOVs is outlined in Algorithm 3.

In Appendix D.1 we detail some unsuccessful parameter update schemes.

Algorithm 3 ALI-G with AOVs

1: Input: time horizon T , initial point w0, maximum step size η, AOVs ℓ̃ and λ.

2: for t = 0, ..., T − 1 do

3: Sample zt ∈ Z, ℓzt(wt), ∇ℓzt(wt)

4: Set γt = max
{

min
{
η,

ℓzt (wt)−ℓ̃kz
∥∇ℓzt∥2

}
, 0
}

5: wt+1 = wt − γt(∇ℓzt(wt) + λwt)

6: Return w̄ ≈ argmint∈{1,...,T} {f(wt)}
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Figure 5.1: The possible AOV updates of a single sample. The thick black line
represents AOV values. Blue line depicts ℓz(w̄), Thin black line represents previous
AOV value. Panel (a) shows the update if an AOV has not been reached. Panel (b)
conversely shows the process for a AOV that has been reached for the first time, the
AOV is lowered half way to the previous value. Panel (c) shows samples that have
reach their AOV for consecutive sections have the same absolute decrease in value
applied.

5.2.4 Updating the AOVs.

To replicate the performance of algorithms for interpolation we want the approxi-

mation ℓ̃kz to tend towards ℓz(w⋆) throughout training. Due to the stochastic and

non-convex nature of training neural networks it is impossible to guarantee this be-

haviour. However, we present a simple scheme for updating the AOVs that demon-

strates strong empirical performance as shown in Section 5.4. This scheme is in-

spired by both the curriculum learning literature and the work of Hazan and Kakade

(2022), which presents a theory for a similar scheme for the convex and deterministic

settings. The AOV update scheme is designed to be both reactive and optimistic.

By reactive we mean that if a specific sample returns a constant loss its AOV will

tend toward this value. By optimistic we mean that the AOVs are updated to a

lower value than the current best loss value for this sample, in the hope that a fur-

ther decrease in loss is possible. In practice the loss values of specific samples can

fluctuate throughout training especially when data augmentation is used. However,

the step size is calculated on a batch of data, and hence is relatively robust to this

noise.

The AOV update scheme is as follows: we store the vectors ℓ̃k,∆z, ℓ(w̄) contain-

ing (ℓ̃kz , ∆z, ℓz(w̄))∀z ∈ Z, where w̄ = argmint∈{0,...,T} {f(wt)} in memory and ∆z is
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the last positive update to the corresponding AOV. The AOVs ℓ̃kz , are initialised to

our known lower bound on the loss B. ∆z is initialised to zero. The training dura-

tion is split into K equal sections each with length T . During each of these sections

we keep the AOVs fixed and try to get a good estimate of ℓz(w̄) for each example.

After each of the K sections we update all AOVs simultaneously. Each AOV is

updated depending on whether it has been “reached”, that is, if (ℓz(w̄) ≤ ℓ̃kz) is

true. In both cases we are optimistic that the loss can be decreased further from its

current value. Hence, if an AOV hasn’t been reached it is updated by simply aver-

aging ℓz(w̄) and ℓ̃kz , see Figure 5.1 (a). This increases this AOV to halfway between

the loss at the best point visited and its current value. However, if (ℓz(w̄) ≤ ℓ̃kz) we

instead try decreasing ℓ̃kz halfway to the last value that was reached ℓ̃k−1
z , Figure 5.1

(b). If the zth AOV is reached again in successive sections we reduce ℓ̃kz each time by

the same magnitude, see Figure 5.1 (c). Thus, even if an AOV is incorrectly updated

to a value higher than ℓz(w⋆) it can easily be corrected by consecutive reductions.

Lastly we ensure AOVs are never decreased below the lower bound B. Hence, for

non-negative losses AOVs are always positive.

This scheme can be thought of as defining a curriculum for the non-interpolating

setting. Rather than first focusing on easy examples, at the beginning all examples

are treated equally. After time, examples that are identified as hard are given less

importance, and the optimiser does not try to optimise these examples further. It

makes sense to not focus on the hardest examples as we know we cannot achieve zero

loss on all samples simultaneously. In Appendix D.1 we detail some unsuccessful

AOV update schemes.
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Algorithm 4 ALI-G+ Algorithm

1: Input: time horizon Tmax, K = 5, w̄0 and ∆0
z = 0, ℓ̃0z = B, ∀z ∈ Z and λ.

2: for epoch k = 1, ..., K do

3: Run Algorithm 3 with w̄k−1, Tmax

K
, ℓ̃k, η and λ to obtain w̄k.

4: for z ∈ Z do

5: if ℓz(w̄) ≤ ℓ̃kz then

6: ℓ̃k+1
z ← max{ ℓ̃

k
z+ℓ̃k−1

z

2
, B}

7: ∆k+1
z ← ∆k

z

8: else

9: ℓ̃k+1
z ← ℓ̃kz+ℓz(w̄)

2

10: ∆k+1
z ← ℓ̃kz−ℓz(w̄)

2

11: k ← k + 1

12: Return w̄K

5.2.5 Implementation Details.

For the above scheme to work well, it is important that the AOVs are not updated

too frequently, as this can lead to them trending towards ℓz(w̄) too fast. However,

it is also important that the AOVs are updated a sufficient number of times so

they can approximate ℓz(w⋆), if ℓz(w⋆) is large. We find K = 5 provides a good

balance between these considerations and fix K to this value. However, ALI-G+ is

relatively robust to the choice of K and produces good results for k ∈ [5, 10]. In

the Appendix D.3 we provide additional results for K ∈ {3, 10, 20}. Furthermore,

to save computation we i) avoid calculating f(wt) exactly and instead approximate

this online during each epoch and ii) we use wk−1
T in the place of w̄k−1 in line 3 of

Algorithm 4. This results in ALI-G+ having a similar run time to SGD, where the

only extra computation is the updating of the vectors ℓ̃k, ℓ̃k−1, ℓ(w̄) and evaluating

the norm of the gradients. As is common practice we report the results of the model

with the best validation performance found during training.
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5.2.6 Data Augmentation.

Data augmentation can be thought of in two ways. First, it increases the size of the

data set by adding new examples that are simply transformed versions of others.

Second, it makes online alterations to the original number of examples. As ALI-G+

is designed for the optimisation of non-interpolating problems, which often have

large data sets, we choose to view data augmentation in the second way and save

only a single AOV for all possible augmentations. When viewing data augmentation

in the first way, training regimes where the number of epochs is less than the number

of possible transformations would only visit each example less than once on average.

Hence, approximating the optimal value would be challenging. Moreover, for many

common data augmentation transforms, such as random crops of images, we would

expect the optimal loss value to be highly correlated between the same example

under different versions of the transformation. To support this claim we calculate

the loss value of all possible crops for a subset of 5000 images chosen from a selection

of common data sets. We find empirically, at the start of training that the variance

between loss values is on average 20 times lower for the different crops of the same

image compared to randomly chosen images. During training we observe this ratio

drops to 5 times lower.

5.3 Worst Case Behaviour

We provide the following bound on ALI-G+ for smooth and convex functions. As

ALI-G+ is computationally identical to ALI-G before the first AOV update we can

modify the result of Berrada et al. (2020) to give a worst case bound.

Theorem 3 (Worst Case Bound - Smooth and Convex). We assume that for every

z ∈ Z, ℓz is convex and β-smooth. Let w⋆ be a solution of (P) such that ∀z ∈

Z, ℓz(w⋆) ≤ ε. Further assume that η ≤ 1
2β

and λ = 0. Then if we apply ALI-G+
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with a maximal learning rate of η to f , we have:

min
t
f(wt)− f⋆ ≤

∥w0 −w⋆∥2

η( T
K

+ 1)
+ ϵ. (5.3)

See Appendix C.1 for derivation. We provide a similar bound for the smooth

and strongly convex setting in Appendix C.2.

5.4 Experiments

In this section we test the hypothesis that a Polyak-like step size in combination

with AOVs can produce high accuracy models in the non-interpolating setting. We

investigate this through rigorous experiments comparing ALI-G+ against a wide

range of single hyperparameter optimisation algorithms on a variety of problems.1

The problems include both non-interpolating and interpolating settings. We start

with relatively simple problems such as matrix factorisation and binary classification

using RBF kernels. We then consider the training of deep neural networks on popular

image classification benchmarks. Here we use small models for two reasons: i) to

induce non-interpolation and ii) to be able to investigate a wider range of data sets,

hyperparameters and baselines. Ideally we would have included results for large

models trained on even larger data sets, to ensure non-interpolation. However, this

was not within the limits of our computational resources. We have tried to perform

as thorough a set of experiments as possible and our experimental setup is on par

with, in fact often exceeds, prior work in this area of machine learning in terms of

data sets and baselines considered (Vaswani et al., 2019; Loizou et al., 2021).

We show that our approach scales to large problems by providing results on the

ImageNet data set. Furthermore, we do not just show results for computer vision

data sets but also for two NLP tasks, highlighting the flexibility of our approach.

All experiments are conducted in PyTorch (Paszke et al., 2017) and are performed

1code available at https://github.com/Alasdair-P/alig plus
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on a single GPU except for the ImageNet experiments which use two.

5.4.1 Simple Optimisation Benchmarks

Setting. We first demonstrate the performance of ALI-G+ on matrix factorisation

and RBF Binary Classification using tasks detailed in Vaswani et al. (2019). The

matrix factorisation task can be expressed as:

min
W1,W2

Ex∈X[||W1W2x−Ax||2], (5.4)

where X is a data set of 1000 examples drawn fromN (x; 0, I),A ∈ R10×6 is randomly

generated to have condition number 1010, W1 ∈ R10×k, W1 ∈ Rk×6, A. The rank

of the factorisation k is selected to be one of four different values resulting in two

problems where interpolation holds and two where it does not. For the binary

classification tasks with radial basis functions we use the mushrooms and ijcnn

data set from the LIBSVM library of SVM problems (Chang and Lin, 2011). The

mushrooms data set satisfies the interpolation assumption, whereas ijcnn does not.

Method. We compare ALI-G+ against Parabolic Approximation Line Search

(PAL) (Mutschler and Zell, 2020) and a selection of the optimisation methods used

in Vaswani et al. (2019). We additionally reuse their code for the baselines. These

optimisation algorithms contain a collection of strong line search and adaptive gra-

dient methods, all of which do not require a learning rate schedule. Additionally,

the majority have a single step size hyperparameter which makes for fair comparison

with ALI-G+ .

Results. The results of these experiments are shown in Figures 5.2 and 5.3. On

the non-interpolating tasks (rank 1 and rank 4 matrix factorisation and binary classi-

fication on the ijcnn data set), ALI-G+ performs comparably to the best algorithms,

specifically, PAL (Mutschler and Zell, 2020) and SLS (Vaswani et al., 2019). On the
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Figure 5.2: Training performance on the matrix factorisation problem of Vaswani
et al. (2019). In the settings where interpolation does not hold, namely the Rank
1 and Rank 4 problems, ALI-G+ quickly achieves the loss floor. For the Rank 10
and True Model problems ALI-G+ does not minimise the loss to machine precision,
such as SLS (Vaswani et al., 2019) and PAL (Mutschler and Zell, 2020), however,
it still provides rapid optimisation to at worst > 10−4.
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Figure 5.3: Training and validation performance on the mushrooms and ijcnn data
sets (Chang and Lin, 2011). On the mushroom data set, where interpolation holds,
ALI-G+ fails to achieve the same training loss as the line search methods. However,
in both non-interpolating and interpolating settings ALI-G+ obtains equally good
validation performance as the best baseline.

interpolating tasks ALI-G+ fails to minimise the training loss to machine precision

like PAL and SLS. However, it attains the same validation performance, which is

impressive as ALI-G+ is not designed for the interpolation setting. For these tasks

using ALI-G would be a better option.

5.4.2 Image Classification Experiments

Setting. We run experiments on a broad range of image classification bench-

marks. Specifically we use the SVHN (Netzer et al., 2011), CIFAR-10, CIFAR-100

(Krizhevsky, 2009) and Tiny ImageNet data sets. The SVHN and CIFAR data

sets are comprised of 32x32 pixel RGB images. For the SVHN data set we use the

split proposed in Berrada et al. (2020) resulting in 598k training, 6k validation and
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26k test samples. SVHN and CIFAR-100 both have 10 classes and CIFAR-100 has

100. The Tiny ImageNet data set is more challenging and contains 100k training

examples of 64x64 pixels split over 200 classes. For the Tiny ImageNet data set the

ground truth labels of the test set are not freely available so we report validation

scores instead. All images are normalised per channel and when data augmenta-

tion is used we apply standard random flips and crops. For the majority of data

sets we present results with and without data augmentation. The exceptions being

SVHN, which is not designed for data augmentation. For all data sets we make use

of the cross entropy loss to train a small 8 layer ResNet (He et al., 2016) containing

90k parameters with 16 channels in the first layer. These tasks were chosen to give

examples of i) interpolation (SVHN); ii) near interpolation (CIFAR-10) and iii) non-

interpolation resulting from limited model size (CIFAR-100 and Tiny ImageNet).

Method. We compare ALI-G+ against PAL (Mutschler and Zell, 2020), ALI-G

(Berrada et al., 2020), AdamP (Heo et al., 2021), SPS (Loizou et al., 2021), the

optimisation methods used in Vaswani et al. (2019), SGD with a constant learning

rate (SGDConst) and SGD with a step learning rate schedule (SGDStep). SGDStep

benefits from a manually tuned learning rate schedule developed by He et al. (2016)

while all other methods have at most a single step size or maximum step size hy-

perparameter that is cross-validated as powers of ten. Hence, SGDStep requires far

more tuning and does not provide a fair comparison. However, it is included for

completeness. For all optimisation algorithms the problem regularisation hyperpa-

rameter is selected from λ ∈ {10−3, 10−4, 10−5, 0}. ALI-G uses constraint based

regularisation, (see section 3.9.1); r was selected from r ∈ {50, 100, 200,∞}. All

other hyperparameters are left at their default values. SGDstep we use the learning

rate schedules detailed in He et al. (2016). See Table D.2 in Appendix D.4 for more

details of hyperparameters used. We reuse the schedule proposed for the CIFAR

data sets for SVHN and Tiny ImageNet, reducing the learning rate by a factor of 10
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both halfway and three quarters through training. A fixed batch size of 128 and an

epoch budget of 200 are used for all experiments. As is common for deep learning

experiments we accelerate SGD, ALI-G and ALI-G+ with a Nesterov momentum of

0.9. SLSPolyak, Adam and Adabound also include momentum-like terms which we

leave at their default settings. We performed 3 runs for all experiments and report

the average.

SVHN CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet
Test Acc (%) Val Acc (%)

Model Small ResNet ResNet18

Data Aug No No Yes No Yes No Yes Yes

SGDStep 95.4 84.1 87.6 51.0 59.6 39.8 43.2 71.1

SGDConst 94.2 80.6 87.0 49.0 57.3 36.6 41.3 57.5
ALI −G 93.8 80.6 86.2 47.5 57.9 35.6 41.8 63.7
SPS 93.9 81.1 86.8 43.7 53.1 20.5 23.8 63.9
Adabound 93.1 75.6 85.2 44.0 55.4 34.2 40.1 62.9
Adam 94.0 79.7 86.0 48.1 56.2 35.9 41.3 62.6
AdamP 93.8 79.9 85.9 47.6 58.2 36.3 41.7 63.5
Coin 92.1 75.5 84.1 42.4 54.0 31.0 36.2 61.5
SLSArmijo 93.0 81.5 85.7 31.6 42.0 11.2 11.1 63.2
SLSGoldstein 92.3 78.3 86.4 45.5 57.2 33.0 40.4 62.6
SLSPolyak 93.5 79.8 85.9 43.6 54.0 31.3 38.3 62.7
PAL 94.2 81.5 86.7 39.8 57.0 35.3 40.8 63.6
ALI-G+ 95.5 85.0 87.2 56.1 59.4 39.8 42.6 67.8

Table 5.1: Accuracies of optimisation methods on a selection of standard image
classification data sets. The model and data set combinations have been chosen to
include both interpolating and non-interpolating tasks. The standard deviation of
the accuracy was at most 0.3 for ALI-G+ . SGDstep is the only method to benefit
from a manually designed step size schedule. All other methods have at most one
fixed step size hyperparameter. On these tasks ALI-G+ outperforms all other single
hyperparameter methods, often by a large margin.

Results. The accuracy of the best performing model for each optimisation method

is shown in Table 5.1. On the tasks considered, ALI-G+ does at least as well as all

other line search and adaptive gradient methods. On many tasks it outperforms all

other methods by a significant margin. The main exception being on CIFAR-10 with
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Figure 5.4: The black solid lines show curves produced by training a small ResNet
on CIFAR-100 using the ALI-G+ optimiser. Here η = 1.0, λ = 0.001 and no data
augmentation was used. The AOVs are updated every 40 epochs. Until epoch 120
the mean loss is significantly higher than the mean AOV and thus the maximum step
size η is used for the majority of updates. The blue dotted curve shows the results
when the mean step size is used for all batches. The large difference in performance
between these methods demonstrates the superiority of using a step size tailored to
each batch. Appendix D.2 we provide additional training curves for ALI-G+ in a
variety of settings.

data augmentation where SGDConst produced similar test accuracy. The dominant

performance of ALI-G+ shows the lack of strong algorithms for non-interpolating

settings. The performance benefit of ALI-G+ is most notable when the interpolation

property is far from satisfied or when data augmentation is not used. For example,

on the challenging Tiny ImageNet data set ALI-G+ produces validation accuracy

4% higher than the next best. Empirically we observe that ALI-G+ is almost twice

as fast as the line search methods, significantly faster than Adam, and has a run

time within a couple of percent of SGD. Typical training curves for ALI-G+ are

shown in Figure 5.4. We present results for ALI-G+ with different values of K and

a global step size in Appendix D.3

5.4.3 Large Image Classification Experiments

Setting. The ImageNet data set (Deng et al., 2009) contains 1.2M large RGB

images of various sizes split over 1000 classes. For our experiments we use the

following data augmentation. All images are normalised per channel, randomly

cropped to 224x224 pixels and horizontal flips are applied with probability 0.5. For

validation a centre crop is used and no flips are performed. For ImageNet the ground
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truth labels are not freely available so we report validation scores instead. We train

a ResNet18 containing 11.7M parameters (He et al., 2016). Due to the large number

of images and data augmentation the interpolation assumption does not hold. We

opted to not use a larger model to save on computation requirements and to ensure

interpolation was not approximately satisfied.

Method. Due to computational constraints for all methods we reuse the best hy-

perparameters identified on Tiny ImageNet for the ImageNet experiments. However,

the batch size is increased to 256 and the epoch budget is reduced to 90. For SGDstep

we use the learning rate schedule described in He et al. (2016). Note, different learn-

ing rate schedules are suggested for CIFAR and ImageNet, again highlighting the

weakness of using SGDstep where a good learning rate schedule is not known in

advance.

Results. The validation accuracy of each optimisation method is shown in the last

column of Table 5.1. On this task, ALI-G+ outperforms all line search and adaptive

gradient methods by at least 3.5%. Additionally, ALI-G+ was significantly quicker

to train than two of the next best performing methods. SLSArmijo and PAL took

20 and 12 hours longer to train than ALI-G+ , respectively. These results show the

advantage of ALI-G+ for training on large data sets over comparable techniques,

especially line search methods.

Runtime and Memory Analyses. In Table 5.2 we include the run time for

training a ResNet18 split across two NVIDIA TITAN XP GPUs on ImageNet. ALI-

G+’s run time is comparable to adaptive gradient methods and faster than line

search approaches. During training ALI-G+ requires that an additional 3|Z| floats

are stored where |Z| is the size of the training set. This extra memory requirement

may seem large, however, in many scenarios 3|Z| is orders of magnitude times smaller

than the number of parameters of the model d. For a concrete example, when
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training the ResNet18 on ImageNet, 3|Z| ≈ 3.8M , however, ResNet18 requires

11.7M floats for the parameters alone, at least 11.7M for gradients and then roughly

the same again for storing activations and their gradients. Thus, the additional

memory requirement of ALI-G+ is negligible.
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Table 5.2: Wall clock time for training ResNet18 on ImageNet with various single
hyperparameter methods. Here ALI-G+ is as fast as adaptive gradient methods.

5.4.4 NLP Experiments

Setting. For NLP Experiments we consider two tasks. The first is binary classi-

fication of reviews on the IMDB data set using a bi-directional LSTM. The second

is the training of a Recurrent Neural Network (RNN) for character-level language

modelling on the Tolstoi War and Peace data set, which forms part of the DeepOBS

benchmark (Schneider et al., 2019). The bi-directional LSTM has 1 layer and the

RNN has 2 layers. Both models have 128 hidden units per layer. By selecting these

models the interpolation property is satisfied on the IMDB data set but not on the

Tolstoi data set.

Method. We compare ALI-G+ against the majority of the algorithms used in

section 5.4.2. However, we use a slightly modified cross-validation scheme; each

optimiser’s step size or maximum step size hyperparameter is again cross-validated

as powers of ten. The weight decay amount λ was selected from {0.01, 0.001} for the

IMDB classification task, and was not applied to biases. For this task a batch size

of 128 and an epoch budget of 100 was used. In contrast, no regularisation, a batch

size of 50 and an epoch budget of 150 was used for Tolstoi character prediction.
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5.5. DISCUSSION

Results. On the easy IMDB review classification task a large number of the op-

timisation methods achieved close to zero training loss and similar accuracies. The

best performing of these were Adam and ALI-G+ , which attained a test accuracy

of 87.9% and 88.0%, respectively. For the harder character prediction task using

the Tolstoi data set ALI-G+ was the best performing algorithm by over 1%. The

full results are shown in Table 5.3. These results reinforce i) that ALI-G+ consis-

tently achieves highly competitive results in a wide range of settings; and ii) in the

non-interpolating setting ALI-G+ is particularly effective.
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IMDB LSTM 87.5 82.7 87.9 87.6 73.4 78.6 67.1 85.1 88.0 87.7
Tolstoi RNN 49.4 41.7 57.9 56.9 30.0 39.0 31.3 52.9 59.7 59.4

Table 5.3: Test accuracy of single hyperparameter optimisation methods on NLP
data sets. For both data sets ALI-G+ is the best performing task with Adam a close
second. However, on the relatively easy IMDB review classification task a large
number of the optimisation methods achieved close to zero training loss and similar
test accuracy.

5.5 Discussion

In this chapter we have introduced ALI-G+, an optimisation algorithm designed for

settings where interpolation does not hold. In run time and generalisation perfor-

mance ALI-G+ demonstrates its effectiveness outperforming a wide range of mod-

ern neural network optimisation techniques on standard image classification bench-

marks. We now briefly discuss three directions to explore further with ALI-G+.

The first would be to characterise the conditions where ALI-G+ offers provable con-

vergence to the global optimum. In the stochastic, Lipschitz continuous and convex
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setting this would require additional assumptions on the data set and loss. However,

ALI-G+ is designed for training deep neural networks where convergence proofs are

not practical. The second idea is a modification to ALI-G+ when data augmentation

is used. Here one could make use of a convenient distribution, to model the spread

of ℓz(w̄) given by the data augmentation. When updating the AOVs one could then

use a lower confidence bound on this distribution. Finally, a promising direction

that could be used to extend ALI-G+ would be its application to distillation, where

the teacher network could be used to generate AOVs for the student. While these

ideas seem like natural extensions we instead next turn our attention to the training

of binary neural networks, which is the focus of the next two chapters.
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Chapter 6

Binary Neural Networks

6.1 Motivation

As mentioned in Chapter 2, there is a trend towards the use of increasingly larger

neural networks. Leveraging exceptionally large neural networks has led to some of

the most exciting breakthroughs in machine learning. For example, GPT-3 (Brown

et al., 2020), a very large transformer architecture, redefined the state of the art for

language modelling. However, large models with billions of parameters have inher-

ent limitations. Due to their computational costs, training large neural networks

requires large, expensive, and power hungry hardware. For example, the largest ver-

sion of GPT-3 required a staggering 1023 floating-point operations during training

(Brown et al., 2020). Additionally, specific hardware can be required at inference

time to run large models at reasonable speeds. This dependence on specialised hard-

ware presents two major drawbacks for using large models. First, it restricts their

use in power, size, or compute limited settings such as mobile devices and remote

sensing applications. For some use cases it may be possible to offload the heavy

computation to the cloud. However, this depends on the bandwidth and stability

of the connection and criticality of the application, and thus is not always possible.

Second, even in applications where dedicated hardware is not a limiting factor, the
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6.2. QUANTISED NEURAL NETWORKS

energy usage of very large overparameterized models can still be significant, and

this conflicts with a push to a more sustainable future. These limitations have led

to significant work to reduce the memory and computational costs of neural net-

works while retaining strong generalisation performance. Many different methods

have been proposed to this end, including distillation, efficient architectural choices,

network pruning, and various compression and quantisation techniques. At the mo-

ment these are all active areas of research and it remains unclear which provide the

best results (Neill, 2020).

6.2 Quantised Neural Networks

Quantised neural networks constrain nearly all their parameters to be an element

of a finite set Q, where the number of elements of Q is small, typically a power of

2. This reduces the memory required to store the network and for some choices of

Q can result in more efficient computations within the parameterised layers of the

network. This makes these networks well-suited to deployment on devices where

memory or computation is limited.

6.3 Binary Neural Networks

Binary neural networks (BNN) are an extreme form of network quantisation where

Q = {−1, 1}. Binary parameters require only a single bit to store, compared to

standard 32 bit floats. Thus BNN can offer up to a 32-fold reduction in memory re-

quirements, depending on what fraction of the parameters are quantised. Binarized

Neural Networks or Fully binary neural networks (FBNN) take this idea further,

restricting all inputs to the parameterised layers of the network to the set {−1, 1}

as well. The majority of the computational cost of neural networks is taken by

computing matrix multiplication within the parameterised layers. As all numbers

within FBNN parameterised layers are binary they allow the majority of floating
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point arithmetic operations to be replaced by faster bit-wise operations, which can

be performed on cheaper hardware. In these models, a dot product can be imple-

mented using a bit-wise XNOR operation followed by a bit count operation (Hubara

et al., 2016). This is in contrast to conventional floating point models where a dot

product requires numerous floating point multiplications and accumulation opera-

tions. On devices with less parallelism such as many CPUs, converting a network

to an FBNN can offer a drastic 50 fold increase in inference speed (Rastegari et al.,

2016).

6.4 Training Binary Neural Networks

In this section we detail a common set of assumptions when considering BNNs and

we state how this paradigm impacts research on their training. Typically a BNN

is desired to efficiently perform some inference task on some lightweight hardware.

For example it might be advantageous to use an FBNN to control the steering and

navigation in a self driving electric car due to the lower energy usage. It is assumed

that the model performing this task does not need to be trained in-place on the

lightweight hardware. Instead, a setting where extra computational resources are

available can be used. Revisiting our example, a high performance computing cluster

could be used by the company developing the navigation system. Once trained, the

final BNN is downloaded onto the many lightweight devices executing the task,

the car in our example. Hence it is normally assumed when training BNNs extra

resources can be used and thus most works use floating point parameters during

this phase. Additionally, as inference or test performance is the focus the training

cost and time are not the number one concern when considering BNNs. While this

is the dominant paradigm in the literature, there are of course many interesting

exceptions.

For some less extreme choices of Q, such as using 8 bit floats to encode each
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parameter, it is possible to achieve good results by first training a conventional real

valued network and then converting the chosen parameters to be elements of Q.

This has the advantage that it can be done in a data free manner, which may be

useful if the training data are confidential. For a thorough review of this area we

refer the interested reader to the work by Wang et al. (2018). For more extreme

forms of quantisation, such as BNN, novel training schemes have been demonstrated

to produce superior results Yuan et al. (2021). Due to the discrete nature of binary

parameters, existing continuous optimisation techniques, such as those described in

Chapter 2, are unsuitable for training BNNs. In this section we give an overview of

the three main strategies for training these models.

6.5 Quantisation Scheme

The exact constraints on the parameters and activations within a quantised network

is known as a quantisation scheme. Many quantisation schemes have been proposed

in the literature, offering different benefits. We refer the interested reader to Gholami

et al. (2021) for a review of this area. While the selection of a scheme is an active area

of research, the focus of this thesis is the optimisation strategy of neural networks

rather than their architectural design. Hence, we now introduce a canonical binary

quantisation scheme which we use as a testbed for investigating the optimisation of

FBNN.

6.5.1 Binary Activations

In order to ensure that the activations of an FBNN are binary, the sign function is

applied to the inputs of parameterised layers, such as linear or convolutional layers:

sign(a) =
1, for a ≥ 0,

−1, for a < 0.
(6.1)
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The gradient of the sign function is zero almost everywhere and hence in order to

backpropagate gradients through the model it is necessary to approximate the sign

function’s derivative with a continuous alternative. A common choice for this ap-

proximation is the Straight Through Estimator, which approximates the derivative

of sign(a) in the backwards pass with:

∂sign(a)

∂a
=

1, for |a| ≤ 1

0, for |a| > 1
. (6.2)

Alternatively, Liu et al. (2020, 2018a) use the following approximation,

∂sign(a)

∂a
=

2a+ 2, for −1 ≤ a ≤ 0

2− 2a, for 0 ≤ a ≤ 1

0, for 1 ≤ |a|

. (6.3)

6.5.2 Binary Parameters

When considering BNN we use wb to represent the subset of model parameters w

that we want to take binary values. For clarity note that wb does not always encode

the final quantised values themselves. In other words, during an intermediate stage

of training, wb may refer to a real valued vector. However, this should be clear

from the context. We aim to obtain a model with wb ∈ {−1, 1}p. As is common

practice we let some parameters retain real values. We denote the vector containing

these unconstrained parameters with wr ∈ Rd−p. The subset wr typically includes

the weights in the first and last layers of the network, all biases, and parameters of

batch norm layers. Within this notation w is simply the concatenation of wb and

wr. Finally, we define the feasible set Φ ≜ {−1, 1}p ∪ Rd−p which represents all

constraints on w. Hence, to convert (P) to express the problem of training a BNN

or FBNN we set Ω = Φ. Thus, the task of training an FBNN can be formulated as
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follows:

w⋆ ∈ argmin
w∈Φ

f(w). (B)

This is a highly non-linear non-convex mixed integer program and thus is NP hard

in general, and hence does not permit an efficient exact solution.

6.5.3 Naive PSGD

Naively applying PSGD as described in equation (6.4) to the binary parameters

would require an extremely large step size ηt and hence would not lead to stable

optimisation. Thus, we next discuss how notable previous works have instead tackled

optimising (B).

wb
t+1 = sign(wb

t − ηt∇ℓzt(wb
t )). (6.4)

6.5.4 The Straight Through Estimator Method (STE)

What has now become known as The Straight Through Estimator Method (STE)

was first introduced in Courbariaux et al. (2015) as a method to train neural net-

works with binary weights and real valued activations. A year later Hubara et al.

(2016) showed that this method could be used to train neural networks with both

binary weights and activations. The STE method relies on introducing a second

set of auxiliary parameters w̃b ∈ Rp used to represent the binary parameters during

training. These auxiliary parameters are quantised via the sign function to calculate

wb before every forward pass.

wb
t = sign(w̃b

t ). (6.5)

The gradient is then evaluated on the model with the binary parameters wb
t . How-

ever, this gradient is used to update the auxiliary parameters in the backwards pass.
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This optimisation scheme at time step t can be succinctly described as follows:

w̃b
t+1 = Π[−1,1](w̃

b
t − ηt∇ℓzt(wb

t )), (6.6)

wr
t+1 = wr

t − ηt∇ℓzt(wr
t ), (6.7)

where Π[−1,1] is the projection on the the set [−1, 1]p. In other words w̃b is used

to accumulate gradients and allows successive gradients to change the sign of a

parameter. In practice, the Adam update (3.12) is used in equation (6.6) and (6.7).

Hence, wb can be calculated using the following equations:

w̃b
t = sign(wb

t−1). (6.8)

m̂t =
mt

1− βt
1

, (6.9)

mt = β1mt−1 + (1− β1)∇ℓzt(w̃b
t ), (6.10)

v̂t =
vt

1− βt
2

, (6.11)

vt = β2vt−1 + (1− β2)∇ℓzt(w̃b
t )

2, (6.12)

wb
t = wb

t−1 −
η√
v̂t + ϵ

m̂t. (6.13)

The STE method has been used as the workhorse in training many interesting

extensions since the pioneering work of Courbariaux et al. (2015) and Hubara et al.

(2016). Some of these works focus on adding extra scalars and parameters (Lin et al.,

2017; Rastegari et al., 2016), different quantisation schemes (Wan et al., 2018; Zhu

et al., 2017; Li et al., 2016), and architectures designed for quantised weights (Liu

et al., 2018b).

Recently, the STE method has been used to good effect by works such as Liu

et al. (2020), which have by clever architectural design pushed the performance

of FBNN, and offer state-of-the-art results. Of special note are the works that

removed the need for real valued weights during training (Zhou et al., 2016; Deng

et al., 2018; Wang et al., 2018). These works present methods suited to training
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on low compute devices. However, in this thesis we choose to focus on the more

standard assumption that extra resources are available at training time, and the

goal is to develop a lightweight model for inference.

6.5.5 Mirror Descent

Ajanthan et al. (2021) introduced a new method of training BNNs using Mirror

Descent. Mirror Descent is a well studied first-order optimisation method for con-

strained convex problems (Nemirovsky et al., 1983). However, its application to

the training of BNNs had not been explored previously. In particular, Ajanthan

et al. (2021) introduce a numerically stable implementation of Mirror Descent that

shares a lot of similarity with the STE method. For convenience, we will refer to

this method as binary mirror descent (BMD). BMD also introduces an auxiliary set

of parameters w̃b. However, in BMD both sets of parameters w̃b and wb take real

values throughout training. Similar to the STE method, w̃b is mapped to wb before

every forward pass, however here the following relation is used:

wb
t = tanh(βtw̃

b
t ), (6.14)

where βt is a temperature parameter. The gradient is evaluated at wb
t , and then

equations (6.6) and (6.7) are used to update w̃b
t . It is worth noting that as βt →∞,

this mapping becomes equivalent to the sign function, and in this case BMD is

identical to the STE method. However, in the BMD method, βt starts at a low

value β0 ≈ 1 and is increased throughout training according to the following scheme

βt = βt−1λrate. Mirror descent is a well studied algorithm, and is more principled

than the STE method which lacks strong justification from theory.

6.5.6 ProxQuant

Bai et al. (2019) introduced ProxQuant, a surprisingly simple and effective algorithm
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for training neural networks with binary weights. ProxQuant is notably different

from the earlier STE method and its derivatives. The ProxQuant algorithm does

not require an additional auxiliary set of parameters, instead it acts on a single set

of real valued weights that are initialised to a pre-trained floating point network.

Throughout the training procedure wb is slowly encouraged to become binary by

use of a regularisation function R(w). The regularisation function suggested by Bai

et al. (2019) penalises either the l1 or l2 norm of the distance between wb and its

quantised value. For a binary quantisation scheme these can be detailed as follows:

R(w) = ∥wb − sign(wb)∥2, (6.15)

R(w) = |wb − sign(wb)|. (6.16)

From either of these regularisation functions a proximal operator can be derived:

proxλR(wt) = argmin
w

{
λR(w) + ∥w −wt∥22

}
. (6.17)

With the proximal operator defined, the ProxQuant algorithm at time t can be

summarised as:

w̃b
t+1 = proxηtλtR

(
w̃b

t − ηt∇ℓzt(wb
t )
)

(6.18)

However, Bai et al. (2019) suggest, in practice, that the Adam update (3.12) is used

within the proximal operator. The regularisation amount λt is increased throughout

training according to a linear scheme, in order to slowly push wb to take binary

values. To ensure all weights are binary in the final model for the last section of

training wb is projected onto the set {−1, 1}p and then wr is fine-tuned, with the

values of wb fixed to their final values.

ProxQuant provides an alternative method to the STE method and its derivatives

which is simple and produces binary models with strong generalisation performance.

However, Bai et al. (2019) only consider networks with floating point activations
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and do not suggest FBNN as an extension. Indeed, if trying to apply a continuation

method such as this to train FBNN it is not obvious if one should binarise both

weights and activations simultaneously or sequentially. Additionally, the authors

only provide results for small models trained on relatively simple data sets; there

is no indication if ProxQuant scales well to large models trained on data sets with

more realistic image sizes.
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Chapter 7

Training Binary Neural Networks

the Easy Way (BNEW)

7.1 Introduction

In this chapter we present a simple but effective method for training fully binary

neural networks (FBNN). Specifically, models where the majority of weights and

activations are constrained to the set {−1, 1}. These models offer significant im-

provements in memory efficiency, energy usage and inference speed over their floating

point counterparts. Our approach to training FBNN splits the task into two phases.

In the first phase, a model with binary activations and floating point weights is

trained. In the second, a concave regulariser is added to encourage the weights to

become binary. This work is orthogonal to improvements of FBNN architectures,

and offers an alternative optimisation scheme to the existing binary network opti-

misation schemes. Our method doesn’t require an auxiliary set of weights during

training and can be easily applied to any architecture without modification. Finally,

we get strong results on ImageNet almost matching the state of the art.
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7.2 Algorithm

7.2.1 Problem Formulation

We do not try to optimise (B) directly and instead relax the constraintwb ∈ {−1, 1}p

to wb ∈ [−1, 1]p. In order to ensure quantised solutions we introduce a concave

regularisation function RBNEW (w) resulting in the formulation:

w⋆ ∈ argmin
w∈Ω

Fλ ≜ f(w) + λRBNEW (w), (Pbin)

where Ω ≜ [−1, 1]p ∪ Rd−p and RBNEW (w) ≜ −∥wb∥2 + p. Here the addition of p

ensures the non negativity of the objective, however, we will suppress this term for

clarity. It is clear that as λt → ∞ any solution to the above problem must have

wb ∈ {−1, 1}p, as all other solutions would incur infinite cost. With (Pbin) in this

form we can make use of a projected stochastic gradient descent (PSGD) update,

which we detail in Section 7.2.2.

7.2.2 Parameter Update

In order to find a solution to (Pbin) at time step t we solve the following proximal

problem:

wt+1 = argmin
w∈Ω

{ 1

2ηt
∥w −wt∥2 + ℓzt(wt) +∇ℓzt(wt)

⊤(w −wt)− λt∥wb∥2
}
. (7.1)

As (7.1) is smooth and Ω is a convex set we can simply solve for wt+1 to get the

following update for wb:

wb
t+1 = Π[−1,1]

(
1

1− 2λtηt
(wb

t − ηt∇ℓzt(wb
t ))

)
, (7.2)

≈ Π[−1,1]

(
(1 + 2λtηt)(w

b
t − ηt∇ℓzt(wb

t ))
)
, (7.3)
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where the second equality is approximately equal for small λt. A derivation is

provided in Appendix E. The real value parameters wr are updated according to

(6.7). Note, when λt = 0, (7.3) is identical to PSGD. In practice the Adam update

is used over the SGD update shown inside of (6.7) and (7.3). This is done as we

find it produces better empirical results. In order to find a good solution to (Pbin)

we used the following training process.

7.2.3 Training Procedure

Our training procedure is split into three phases. In the first phase we train a

neural network with binary activations and real valued weights. In the second phase

of training we slowly encourage the weights to become binary. Finally, we project

wb onto the set {−1, 1}p, and fine-tune the real valued parameters. At a high level

our training process is similar to that of ProxQuant and enjoys the same asymptotic

convergence rate, see Section 7.3.

Pretraining Phase. Similar to the work of Liu et al. (2018a, 2020) we first train

a neural network with binary activations and real valued weights. This is achieved

by the addition of sign activations before each convolution layer. This results in

the input to intermediate convolutional layers being binary. Our pretraining phase

is different from that of ProxQuant in the following three ways. First, as we are

concerned with training models with binary activations, the model trained during

the pretraining phase has binary activations. Second, we use the Adam optimiser

rather than SGD during the pretraining phase. Third, we use PSGD or (7.3) with

λt = 0, in other words we project wb to the set [−1, 1]p after every iteration. These

last two changes address an issue with ProxQuant where the accuracy drops a lot

during the first few iterations of the quantisation phase. This reduction is caused

as a lot of the useful structure in the network is destroyed by wb being suddenly

clipped to [−1, 1]p and a jump to a much higher effective learning rate for some
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parameters, as a result of switching from SGD to Adam.

Quantisation Phase. Once the first phase of training is complete we proceed

with the quantisation phase. In this phase we slowly move from a model with

both real valued weights and binary activations to a model with binary weights and

activations. We start from the best model from pretraining and increase the weight

of the regularisation function λt throughout this phase, according to a linear rate

λt = t ·λrate. In general, completing the quantisation phase over a longer time frame

with a lower value of λrate produces better results.

Finetuning. Before the last few epochs of training we project wb onto the set of

quantised values {−1, 1}p. We then set ∇ℓzt(wb
t ) = 0. This process is done in order

to ensure all weights are binary and to fine-tune the real value parameters wr to

the final values of wb.

Figure 7.1: Different choices for regularisation functions penalising non-binary
weights.

7.2.4 Choice of Regularisation Function

Bai et al. (2019) present two different choices for regularisation functions, detailed

in equation (6.15). While these are natural choices, and produce reasonable results,

both functions have their largest gradients close to zero. Hence, as λt is increased the
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weights close to zero are quickly pushed in either the positive or negative direction.

Moreover, once Et[∇ℓzt(wb
t )] ≤ Et[λt∇R(wb

t )] it becomes difficult for wb to change

sign for the rest of training. Figure 7.1 depicts our choice of regularisation function

RBNEW (w) ≜ −∥wb∥2 + p and those introduced in Bai et al. (2019). We suggest

RBNEW is a more appropriate choice for the following reasons. First, RBNEW has

small gradient close to zero. This means parameters close to zero do not experience

as large an update towards −1 or +1 as parameters already close to these values.

Hence, in general the parameters close to their quantised values are more incentivized

to take binary values first, then followed by those with smaller absolute value. The

large gradient of RBNEW close to −1 or +1 is designed to help prevent parameters

oscillating around these values. Finally, and most importantly we find that our

RBNEW produces better results in practice.

7.3 Theoretical Justification

BNEW enjoys the same theoretical convergence rate as ProxQuant. Here we restate

the result presented in Bai et al. (2019). We note that the following rate assumes

that f is smooth which is not the case when including ReLU or sign functions within

the network. However, as suggested in Bai et al. (2019) it is easy to use smoothed

alternatives to these functions. For example, tanh(kx) with an appropriate choice

of k can be used in place of sign(x) to get a desired level of smoothness.

Theorem 4 (BNEW). We assume that f is β-smooth. Let F∗ ≜ minΩ Fλ(w). We

further assume that ηt = 1
2β
, ∀t and we have access to the batch gradient ∇f and

λt = λ then if we use BNEW with updates (6.7) and (7.3) for T steps we have:

∥∇Fλ(wTbest
)∥2 ≤ Cβ(Fλ(w0)− F∗)

T
, (7.4)

where C > 0 is a constant and Tbest is defined as Tbest ≜ argmin1≤t≤T ∥wt −wt−1∥.
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7.4 Experiments

Our experiments are split into two sections. In the first we investigate the perfor-

mance of BNEW using a small FBNN on CIFAR-100 (Krizhevsky, 2009). In the

second section we show that BNEW scales to large FBNN and data sets by training

a ReActNet (Liu et al., 2020) on the ImageNet data set (Deng et al., 2009).

7.4.1 Small Scale Experiments

Setting. Many of the previous works on FBNNs only present results for large over

parameterised models (Ajanthan et al., 2021; Liu et al., 2020, 2018a). While these

models may seem appealing due to the smaller accuracy degradation from their real

valued counterparts, smaller FBNN architectures are preferable to run on embedded

devices. In this section we provide results by training a small ResNet20 (He et al.,

2016), on the CIFAR-100 data set (Krizhevsky, 2009). This data set contains 60,000,

32x32 pixel RGB images split over 100 classes. We modified a ResNet20 to include

a similar block structure to ReActNets, detailed in Liu et al. (2020). This results

in a small effective FBNN with d = 0.28M. We let the weights in the first and last

layers of the network, all biases, parameters of batch norm layers, and bottleneck

layers retain floating point values. This results in a model which is 95% binary and

requires 12.5 times less memory to store compared to its floating point counterpart.

The speed of this model would depend on the exact hardware used at inference

time. However, due to its similarity in design to models suggested by Rastegari

et al. (2016) a speed increase of up to 50 times is likely when using this FBNN, over

a real valued ResNet20 on CPU.

Method: Here we compare BNEW against the STE method as described in Sec-

tion 6.5.4, and BMD described in Section 6.5.5. We select these methods as they

are optimisation algorithms that can be used to train any FBNN. Importantly they

do not require any modification of the network architecture, which sets them apart
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from many works on FBNN.

For a fair comparison we use the following hyperparameters and strategies for

all methods. We use a batch size of 128. We present results for quantisation phases

with two different epoch budgets, specifically 200 and 1000. We use Adam with a lin-

early decaying learning rate schedule with η0 ∈ {0.01, 0, 001}. For BMD and BNEW

we cross-validate λrate ∈ {1.003, 1.01, 1.03, 1.1, 1.3} and λrate = {0.001, 0.0001}, re-

spectively. To ensure the wb has binary values for both of these methods the real

valued weights are finetuned for the final 20 epochs, as described in Section 7.2.3.

We include results for a baseline ResNet20 with real valued weights and activations

for use as a reference, trained according to the scheme described in He et al. (2016).

All results are computed over five runs with different random seeds. We use the

same pre-trained models with binary activations and real valued parameters as the

starting point for all methods as described in Section 7.2.3. While the authors of

BMD do not suggest this for their method, we find it produces superior results. All

images are centred and normalised per channel and are subject to random flips and

crops during training.

Specifically we replace the cross entropy loss with a loss that minimises the

Kullback–Leibler divergence between a real valued teacher model and the binary

student. This is done during both the pretraining and quantisation phases.

Results: The results of the CIFAR-100 experiments are shown in Table 7.1. For

all methods the longer quantisation phase, and use of distillation produces superior

results. Thus if the computation budget allows, training for longer and utilising

distillation should be encouraged to produce a stronger binary model. BNEW saw

the largest gain in accuracy when using a higher epoch training budget. For the 1000

epoch budget BNEW produced the best binary model outperforming the alternatives

by 0.7%, and thus resulting in an accuracy degradation of less than 10% over its

floating point counterpart. For the 200 epoch budget the STE method was the most
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Table 7.1: Resulting accuracies when training a modified FBNN ResNet20 on the
CIFAR-100 data set with different FBNN training schemes.

Training Epochs: 200 1000

Optimiser Distillation Test Accuracy (%)

Real Valued No 67.1σ0.7 -

STE No 53.6σ0.9 55.0σ0.5
BMD No 53.3σ0.4 54.8σ0.5
BNEW No 52.7σ0.3 55.0σ0.3

STE Yes 56.1σ0.4 56.8σ0.3
BMD Yes 55.7σ0.6 56.8σ0.5
BNEW Yes 55.8σ 0.5 57.5σ0.3

successful, and we would recommend its use when the training budget is limited,

however this is not the typical paradigm for FBNN.

7.5 Ablation Study

Setting. In this section we investigate the performance when removing various as-

pects of the ReActNet architectures (Liu et al., 2020). ReActNet is a bespoke fully

binary neural network architecture, which achieves state-of-the-art performance on

ImageNet. ReActNet is based on MobileNet (Howard et al., 2019) with a number

of modifications making it better suited for use with binary weights and activations.

In Section 7.4.1 we provided results of training a ResNet20 (He et al., 2016) with

these modifications using STE, BMD and BNEW. Here, using the same model we

investigate the effect of removing these modifications one at a time on the perfor-

mance of BNEW. We also provide results produced using the STE method for a

comparison. We do this to help disentangle what architectural choices are useful

irrespective of optimisation method.

Method. Similar to Section 7.4.1 we use a 200 epoch budget and η0 = 0.01 in com-

bination with a linearly decaying step size schedule. We use η0 = 0.01 with a linear
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decay for the pretraining and quantisation phases. We use λrate = 0.01. We again

report test error and standard deviation values calculated over five independent runs

with different random seeds.

Baseline. The baseline model that we perform the Ablation study on is the model

detailed in Section 7.4.1 trained with distillation.

Learnable Bias Layers. Liu et al. (2020) increase the expressive power of Re-

ActNet by using RSign and RPReLU activation functions rather than the non-

parametric versions; Sign and PReLU. RSign and RPReLU are generalised acti-

vation functions, which effectively add additional real valued parameters to each

channel in the form of a bias, see Liu et al. (2020) for more details. This modifica-

tion can be viewed as adding several learnable bias layers to the model. These extra

layers are located before each sign activation and before and after each PReLU.

However, as these biases are per channel, in practice they only increase the size and

computational cost of the network marginally.

PReLU vs ReLU. To quantify the benefit of the PReLU non-linearities we train

an additional model containing the learnable bias layers in combination with ReLU

activations instead of the PReLU activations.

Parameter Scaling. ReActNet uses a binary quantisation scheme where the bi-

nary parameters are scaled per channel, specifically with w ∈ {−αc, αc} where c

indexes over the output channels of a given layer. The scalars αc are calculated to

be the mean of the absolute values of the parameters in the cth output layer. Note,

once a model is trained, that parameters wb can then be converted to {−1, 1}p by

multiplying the relevant batch-norm parameters by αc. We employ a similar scal-

ing, but we use a learnable scale per channel, as this leads to an easier comparison.

However, we note in both cases, due to the presence of batch norm, the inclusion of
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the scalars should have little to no effect.

Distillation. Similar to Section 7.4.1 we detail the performance without distilla-

tion.

Choice of Approximation for Sign Function’s Gradient. In equations (6.2)

and (6.3) we detail two choices to approximate the gradient of the sign function. In

Section 7.4.1 we made use of the more complex version (6.3), here we investigate

the effect of instead using the original Straight Through Estimator (equation (6.2))

as suggested in Hubara et al. (2016). We label the model with this modification

“Classic STE”.

Binary First and Last Layers. It is standard to retain floating point parameters

within the first and last layer of an FBNN. We investigate the effect of making these

layers binary as well.

Binary Bottlenecks. A number of recent works (Bethge et al., 2019; Liu et al.,

2020) recommend against binary 1x1 convolutional layers in bottlenecks. We inves-

tigate the effect on performance of ignoring this advice, and quantising these layers

as well.

No Pretraining. In order to determine how important the pretraining phase is

to the accuracy we try skipping this phase. We instead run the quantisation phase

directly on a random initialisation.

Different Regularisation functions. Finally we include results for BNEW using

the regularisation functions detailed in (6.15).
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7.5.1 Results.

The results of the ablation study are shown in Table 7.2. Out of all the modifications

considered here, binarising the first and last layer caused the largest accuracy degra-

dation of over 10%. Binarising the bottleneck layers resulted in the second largest

drop of 4%, reaffirming the suggestion of Bethge et al. (2019) that binary bottleneck

layers should be avoided. Removing distillation resulted in the third largest drop

in accuracy at a more modest 3%. Skipping the per-training phase and training

the model from scratch resulted in a performance loss of roughly 2%. Using ReLU

activations but still including the bias layers resulted in a 1.3% drop. Not using the

learnable bias layers only resulted in a 0.2% drop in accuracy suggesting that in this

setting these floating point weights could be excluded with minor cost, resulting in

even faster inference. We found in this study that the classic STE performed better

than the more complex approximation of the sign function, equation (2), introduced

by Liu et al. (2018b). However, the difference here is not statistically significant,

and we would suggest trying both versions as there does not seem to be a consensus

in the literature on which works better (Liu et al., 2018b; Bethge et al., 2019).

The results of this ablation study suggest that the performance of a FBNN archi-

tecture is insensitive to the training method used. The differences in the changes in

performance between the two methods were relatively consistent, with STE slightly

outperforming BNEW due to the small epoch budget used.

As a result of the ablation study we repeat the experiments from Section 7.4.1

with a model that uses the Classic STE to approximate the gradient of the sign

function and does not include weight scaling parameters. Distillation was used

again. We present the results of this experiment in Table 7.3. These changes boost

performance in general, suggesting that these aspects of the ReActNet architecture

are not always necessary. For this model, all optimisation schemes work nearly

identically for both settings, the exception being BMD which performed worse for

the 1000 epoch budget. We next investigate how BNEW scales by training a much
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larger binary model on the ImageNet data set.

Table 7.2: Ablation study test accuracies.

Real Values 67.1σ0.7

Optimiser STE BNEW

Baseline 56.1σ0.4 55.8σ0.5

No Learnable Bias Layers 55.6σ0.5 55.6σ0.6
No Prelu 54.3σ0.1 54.5σ0.3
No Scale 56.2σ0.3 56.0σ0.5
No Distillation 53.6σ0.9 52.7σ0.5
Classic STE 56.5σ0.3 56.0σ0.4
Binary First and Last 43.5σ1.2 42.5σ0.5
Binary Bottlenecks 52.9σ0.3 51.8σ0.3
No Pretrain 55.0σ0.2 54.0σ0.5
Rℓ1 - Regulariser NA 54.5σ0.5
Rℓ2 - Regulariser NA 54.9σ0.4

Table 7.3: Accuracies of modified mini-ReActNet on CIFAR-100 data set.

Training Epochs: 200 1000

Optimiser Test Accuracy (%)

Real Valued 67.1σ0.7

STE 56.2σ0.4 57.3σ0.4
BMD 56.0σ0.4 56.9σ0.4
BNEW 56.0σ0.3 57.4σ0.4

7.5.2 ImageNet Experiments

Setting. The ImageNet data set is a large data set with more realistic image sizes

than CIFAR. Thus, it gives a indication of what sort of performance is possible

when using an FBNN for a real world image classification application. We give

more details of this data set in Section 5.4.3.

Method. On this data set we train a ReActNet-A (Liu et al., 2020), and use their

data augmentation scheme. The ground truth labels for ImageNet are not freely
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available and hence we report validation scores instead. We follow the training

methodology of Liu et al. (2020), however in phase two of training we use BNEW

rather then the STE to convert the parameters within wb from real values to binary

values. We use λrate = 0.01 η0 = 10−3, epochs = 500, epochfreeze = 400. We restart

the linear decay of the η for the finetuning phase. We do not change any other

hyperparameters except the batch size which we reduce to 220 due to hardware

constraints. We compare against other FBNN models trained on ImageNet with

comparable compute budgets as calculated by Liu et al. (2020). Specifically we

compare against, XNORnet (Rastegari et al., 2016), BiRealNet (Liu et al., 2018a),

BMD (Ajanthan et al., 2021), Real-to-Bin (Martinez et al., 2020), BOP (Helwegen

et al., 2019) 2nd Order BOP (2OB) (Suarez-Ramirez et al., 2021) and ReActNet

(Liu et al., 2020).

Table 7.4: Accuracies of different FBNN of comparable computational budget evalu-
ated on the ImageNet data set.

Architecture Distillation Backbone Optimiser Accuracy

XNORnet No ResNet18 STE 51.2
BiRealNet No ResNet18 STE 56.4
ReActNet No ResNet18 BOP 56.6
ReActNet No ResNet18 2OB 57.2
ReActNet Yes ResNet18 STE 65.5
Real-to-Bin Yes ResNet18 STE 65.4
ReActNet Yes ResNet18 STE 65.5

ReActNet Yes MobileNet STE 69.4
ReActNet Yes MobileNet BNEW 69.7

Results. BNEW achieves an accuracy of 69.7% which is 0.3% higher than the

state-of-the-art performance of Liu et al. (2020). This is an especially encouraging

result due to the fact that their network architecture was designed for use with the

STE method. This shows our simple approach for training FBNN easily scales to

large models and produces strong results. BNEW is particularly well suited to train
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very large BNN, that do not fit on a single GPU when trained with the STE or

BMD methods due to its reduced memory requirement.

7.6 Discussion

In this chapter we have introduced BNEW; an effective and simple method for train-

ing neural networks with both binary weights and activations. To our knowledge,

this is the first demonstration that a simple continuation method is effective for

models of this type. BNEW’s simplicity makes it easily applicable in a wide range

of settings. Additionally, it has the following advantageous qualities over the STE

and BMD methods: i) better or comparable empirical results ; ii) does not require

additional parameters during training; and iii) a clear objective that is being min-

imised and a strong theoretical justification. BNEW also has two main weaknesses.

First the full training procedure must be completed up to the fine tuning phase be-

fore one has any indication of the final performance. Second, BNEW’s effectiveness

has a dependence on the hyperparamater λrate which needs to be selected to ensure

wb becomes mostly binary before the finetuning phase. However, this issue can

be circumvented by continuing training until this is so. In this work we have only

shown results for binary quantisation, however, it would be trivial to extend BNEW

to other quantisation schemes by modifying the regularisation function RBNEW .
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Conclusion

8.1 Summary

In this thesis, we present three optimisation algorithms for training deep neural

networks in different settings.

In Chapter 4, we showed how a bundle approximation can be used for training

interpolating networks which we named Bundle Optimiser for Robust and Accurate

Training (BORAT). We showed how to combine N steps of a gradient based optimiser

to form a single proximal update. BORAT has a comparable run time to the existing

ALI-G optimiser, while reducing the sensitivity of the optimisation to the learning

rate, regularisation parameter, and label noise. This results in an optimisation

algorithm that requires less tuning, and thus reduces the expected time and energy

needed to train a high accuracy model.

In Chapter 5, we presented a second extension to ALI-G that allows it to be easily

applied to the non-interpolating setting without adding any extra hyperparameters.

We named this extension ALI-G+, as it increases the number of settings in which

ALI-G can be applied. ALI-G+ uses a simple heuristic to estimate the optimal loss

value per sample online. This results in an easy to use optimiser that does not

require a learning rate schedule. ALI-G+ performs favourably against other single
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hyperparameter optimisation techniques, both in the non-interpolating and many

interpolating settings.

In Chapter 7, we shifted our focus to training deep neural networks with both

binary weights and activations. Here, we proposed Binary Networks the Easy Way

(BNEW) which offers a simple but effective alternative method for training fully

binary models. This method simply relaxes the constraint set to its convex hull and

introduces a concave regularisation function. This function is applied to the subset

of the network parameters it is desired to quantise. The method starts by training

a network with binary activations and real valued parameters. Then the strength of

the regularisation is increased to encourage the chosen parameters to become binary.

BNEW has two main advantages. First, it has a smaller memory footprint during

training, as it does not require auxiliary parameters. Second, BNEW offers strong

empirical results when given a sufficient epoch budget.

These three optimisation algorithms are designed to be easy to use and reduce

the energy requirements of neural networks in different settings. BORAT and ALI-

G+ aim to minimise the energy needed in finding a high accuracy model in the

interpolating and non-interpolating settings, respectively. Conversely, BNEW aims

to reduce the energy cost at inference time by facilitating the easy training of highly

accurate binary models that can be run on less powerful hardware or with cheaper

hardware instructions. Although the power of scaling up neural networks has led

to some very spectacular results Saharia et al. (2022); Brown et al. (2020); Shoeybi

et al. (2019); Devlin et al. (2019), the increasing cost of these models, both in

terms of money and energy demands, is less well publicised. While less sensational

investigation into methods to reduce these costs is equally important and necessary

of further work. To this end, in the following section we explore a few directions for

research that we believe to be important to help achieve this goal.
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8.1.1 Future Work

In this section we highlight a few areas of research we believe would have high impact

in improving the efficiency of deploying neural networks.

The first direction is further research to improve the efficiency of training neural

networks. While BORAT and ALI-G+ both produce strong results with a single

fixed hyperparameter they do not yet outperform SGD with a well tuned sched-

ule. As a result of this, SGD with a large cross-validation scheme is common in

order to maximise network performance. This is particularly prevalent in machine

learning research itself, where generalisation performance is often used as the only

performance metric. Thus, extensively refining hyperparameters to boost perfor-

mance is highly incentivised. Sivaprasad et al. (2020) introduce the idea of training

efficiency, and state optimiser performance should take account for hyperparameter

tuning; however these idea yet to see widespread adoption.

Outside the field of machine learning research, foundation models (Bommasani

et al., 2021) offer the promise of reduced training costs. “Foundation Models” is

a recent name given to very large models trained on extremely large data sets.

Foundation Models are typically transformers (Vaswani et al., 2017) and trained

in an unsupervised or semi-unsupervised fashion. These models demonstrate the

ability to be very easily converted to new tasks, often by simply adding a new final

layer on top of the fixed parameters of the base model. This layer can even be

found by ridge regression and can offer good performance on new tasks even with

very limited training data (Galanti et al., 2021). The main issue with foundation

models is their vast size, many having billions of parameters (Yuan et al., 2021).

Thus, while finding a new model with high accuracy is relatively cost efficient in

terms of compute, these savings are quickly lost at inference time. Foundation

models also require a large amount of memory due to their size. It remains to be

seen to what level foundation models can be compressed without losing their strong

generalisation and transfer learning performance. However recently, some works are
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starting to tackle this question (Du et al., 2021).

This leads into another area we believe is in need of further research, that is,

models with low memory and inference costs. We believe the largest outstanding

question here is what form of network compression is most effective? Specifically,

when aiming to produce a model with a set size, inference budget and training

budget, which network compression scheme results in the model with the best gen-

eralisation performance? These methods have been compared qualitatively but to

the best of our knowledge it is an open question which method is currently the most

cost effective (Neill, 2020). We speculate that this is because a fair quantitative

comparison of these techniques is difficult, especially when considering a wide range

of tasks and scales.

Finally, it is worth mentioning research directly into the improvement of hard-

ware efficiency, as this would have a large impact on the environmental cost of

deploying neural networks. While not normally categorised as machine learning

research, reducing the run-time energy, manufacturing, and end of life costs of hard-

ware such as GPUs and TPUs, typically used to deploy neural networks, would be

highly beneficial.

In the coming decade, machine learning has the potential to benefit humanity

in a number of ways. However, it is essential that its impact on the environment

is minimised so its contribution to global climate change does not undermine these

benefits.
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Appendix A

Appendix: Proofs of Theorems in

Chapter 4

A.1 Dual Derivation

Lemma 1. The dual of the primal problem (4.3), can be written as follows:

sup
α∈∆N

{
−η

2
α⊤A⊤

t Atα+α⊤bnt

}
.

Where At is defined as a d×N matrix, whose nth row is ∇ℓznt (ŵn
t ), bnt = [b1t , ..., b

N
t ]⊤

and α = [α1, α2, . . . , αN ]⊤.

Proof. We start from the primal problem:

argmin
w∈Rd

{
1

2η
||w −wt||2 + max

n∈[N ]

{
∇ℓznt (ŵn

t )⊤(w −wt) + bnt
}}

, (A.1)
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We define w̃ = w −wt.

min
w∈Rd

{
1

2η
||w̃||2 + max

n∈[N ]

{
∇ℓznt (ŵn

t )⊤w̃ + bnt
}}

,

min
w∈Rd,ζ

{
1

2η
||w̃||2 + ζ

}
subject to: ζ ≥ ∇ℓznt (ŵn

t )⊤w̃ + bnt , ∀n ∈ [N ],

min
w̃∈Rd,ζ

sup
αn≥0,∀n

{
1

2η
||w̃||2 + ζ −

N∑
n=1

αn(ζ −∇ℓznt (ŵn
t )⊤w̃ − bnt )

}
,

sup
αn≥0,∀n

min
w̃∈Rd,ζ

{
1

2η
||w̃||2 + ζ −

N∑
n=1

αn(ζ −∇ℓznt (ŵn
t )⊤w̃ − bnt )

}
, (strong duality)

sup
αn≥0,∀n

min
w̃∈Rd,ζ

{
1

2η
||w̃||2 + ζ +

N∑
n=1

αn(∇ℓznt (ŵn
t )⊤w̃ + bnt − ζ)

}
.

The inner problem is now smooth in w̃ and ζ. We write the KKT conditions:

∂·
∂w̃

=
w̃

η
+

N∑
n=1

αn∇ℓznt (ŵn
t ) = 0

∂·
∂ζ

= 1−
N∑

n=1

αn = 0

We define ∆N ≜ {α ∈ RN :
∑N

n=1 α
n = 1, αn ≥ 0, n = 1, ..., N} as a probability

simplex over the elements of α. Thus, when we plug in the KKT conditions we

obtain:

sup
α∈∆N

{
1

2η
||η

N∑
n=1

αn∇ℓznt (ŵn
t )||2 +

N∑
n=1

αn

(
−∇ℓznt (ŵn

t )⊤(η
N∑

m=1

αm∇ℓzmt (ŵm
t )) + bnt

)}
,

sup
α∈∆N

{
η

2
||

N∑
n=1

αn∇ℓznt (ŵn
t )||2 − η

N∑
n=1

αn(∇ℓznt (ŵn
t )⊤

N∑
m=1

αm∇ℓzmt (ŵm
t )) +

N∑
n=1

αnbnt

}
,

sup
α∈∆N

{
η

2
||

N∑
n=1

αn∇ℓznt (ŵn
t )||2 − η||

N∑
n=1

αn∇ℓznt (ŵn
t )||2 +

N∑
n=1

αnbnt

}
,

sup
α∈∆N

{
−η

2
||

N∑
n=1

αn∇ℓznt (ŵn
t )||2 +

N∑
n=1

αnbnt

}
.

Using the definitions of At, b
n
t and α, we can recover the following compact form
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for the dual problem:

sup
α∈∆N

{
−η

2
α⊤A⊤

t Atα+α⊤bnt

}
.

A.2 Proof of Proposition 1

Proposition 1. Let F : RN → R be a concave function. Let us define α∗ =

argmaxα∈∆ F (α). Then there exists c ∈ R such that:

∀n ∈ [N ] such that αn
∗ > 0, we have:

∂F (α)

∂αn

∣∣∣∣
α=α∗

= c. (A.2)

In other words, the value of the partial derivative is shared among all coordinates of

α∗ that are non-zero.

Proof. We start from the optimality condition for constrained problems:

⟨∇F (α∗),α∗ −α⟩ ≥ 0, ∀α ∈ ∆ (A.3)

We consider the point α̂. Without loss of generality we assume α̂ is equal to α∗ for

all but two dimensions i and j. We let α̂i = 0 and α̂j = α∗
i + α∗

j . Hence, we know

α̂ ∈ ∆ as we have
∑

i α̂i =
∑

i α
∗
i = 1 and α̂i ≥ 0, ∀i. Letting α = α̂ in (A.3) give

us:

−∂F (α∗)

∂αi

α∗
i +

∂F (α∗)

∂αj

α∗
i ≥ 0. (A.4)

Rearranging we have:

∂F (α∗)

∂αj

α∗
i ≥

∂F (α∗)

∂αi

α∗
i . (A.5)
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Hence, for any α∗
i ̸= 0, we have:

∂F (α∗)

∂αj

≥ ∂F (α∗)

∂αi

. (A.6)

Noticing this result holds for any i and j gives us the following and proves the result.

∂F (α∗)

∂αj

=
∂F (α∗)

∂αi

= c (A.7)
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A.3 Proof of Proposition 3

Proposition 3. Algorithm 1 returns a solution α∗ that satisfies α∗ ∈ argmaxα∈∆N
D(α).

This is true even when a the dual does not have a unique solution.

Proof. Let x∗ ∈ argmaxα∈∆N
D(α) such that x∗ has a maximal number of zero

coordinates. x∗ exists as we know the solution set is non-empty. Let I be the set

of non-zero coordinates of x∗. We denote by S(I) the set of solutions to the linear

system associated with I:

S(I) ≜
{
x ∈ R|I| : Q̃x = b̃,x ≥ 0

}
,where, Q̃ ≜

Q[I×I] 1

1⊤ 0

 and, b̃ =

b[I]
1

 .
(A.8)

S(I) is a polytope as it is the intersection between the probability simplex and a

linear sub-space. Therefore it admits a vertex representation:

S(I) = Conv(V(I)) (A.9)

such that Conv(·) denotes the convex hull operation, and V(I) is a finite set. Since

S(I) contains x∗[I], S(I) is non-empty and neither is V(I). Let v be and element of

V(I). Note, that if v had one or more zero coordinates, it would be a solution after

lifting to RN . It would also be an optimal solution to the dual as good as x∗ while

having more zero coordinates than x*. This is impossible by the definition of x∗.

Thus, we can conclude v has exclusively non-zero coordinates.

Since v is an external point of S(I), see section 2.1 of Bertsekas (2009) for a defi-

nition, it then follows from proposition 2.1.4b of Bertsekas (2009) that the columns

of Q̃ are independent. Therefore, the linear system admits a unique solution x∗,

which is found by Algorithm 1.
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A.4 Convex Results

Lemma 2. Adding additional linear approximations to the bundle of BORAT can

never result in a lower maximal dual value. Formally:

Dm(α∗) ≥ Dl(α∗) ∀m > l. (A.10)

Proof. Any vector of ∆l can be lifted to ∆m by appending m− l zeros to it, which

does not impact the value of the objective function. The lifted set ∆l is then a

subset of ∆m, hence the result (maximisation performed over a larger space).

Theorem 5 (Convex). We assume that Ω is a convex set, and that for every z ∈

Z, ℓz is convex. Let w⋆ be a solution of (P), and assume that we have perfect

interpolation: ∀z ∈ Z, ℓz(w⋆) = 0. Then BORAT for N ≥ 2 applied to f satisfies:

∥wt+1 −w∗∥2 ≤ ∥wt −w∗∥2 − 2η max
α∈∆N

D(α), (A.11)

where D is defined in (4.4).

Proof. We start by plugging the parameter update into the expression for the Eu-

clidean distance from the next iterate to the optimal point:

∥wt+1 −w∗∥2 ≤ ∥ΠΩ(wt − ηAtαt)−w∗∥2, (A.12)

≤ ∥wt − ηAtαt −w∗∥2, (ΠΩ projection)

(A.13)

≤ ∥wt −w∗∥2 + η2∥Atαt∥2 − 2η⟨Atαt,wt −w∗⟩, (expanding)

(A.14)

∥wt+1 −w∗∥2 − ∥wt −w∗∥2 ≤ η2∥Atαt∥2 − 2η⟨Atαt,wt −w∗⟩, (rearranging)

(A.15)

119



A.4. CONVEX RESULTS

= η2∥Atαt∥2 − 2η⟨Atαt,wt −w∗⟩ (A.16)

= η2∥Atαt∥2 − 2η⟨Atαt,wt − ŵn
t ⟩ − 2η⟨Atαt, ŵ

n
t −w∗⟩, (A.17)

= η2∥Atαt∥2 − 2η⟨Atαt,wt − ŵn
t ⟩ − 2η

N−1∑
n=1

αn∇ℓzt(ŵn
t )⊤(ŵn

t −w∗), (Atα
N
t = 0)

(A.18)

≤ η2∥Atαt∥2 − 2η⟨Atαt,wt − ŵn
t ⟩ − 2η

N−1∑
n=1

αn
t (ℓzt(ŵ

n
t )− ℓzt(w∗)), (convexity)

(A.19)

≤ η2∥Atαt∥2 − 2η
N−1∑
n=1

αn∇ℓzt(ŵn
t )⊤(wt − ŵn

t )− 2η
N−1∑
n=1

αn
t (ℓzt(ŵ

n
t )− ℓzt(w∗)),

(A.20)

≤ η2∥Atαt∥2 − 2η
N−1∑
n=1

αn[ℓzt(ŵ
n
t )−∇ℓzt(ŵn

t )⊤(ŵn
t −wt)] + 2η

N−1∑
n=1

αn
t ℓzt(w

∗),

(A.21)

≤ η2∥Atαt∥2 − 2ηαtbt − 2η
N−1∑
n=1

αn
t ℓzt(w

∗), (bt definition) (A.22)

≤ −2ηD(αt) + 2η
N−1∑
n=1

αn
t ℓzt(w

∗), (D definition) (A.23)

≤ −2ηD(αt) + 2η(1− αN
t )ℓzt(w

∗), (
N∑

n=1

αn
t = 1) (A.24)

≤ −2ηD(αt), (ℓzt(w
∗) = 0, perfect interpolation) (A.25)

≤ −2η max
α∈∆N

D(α) (αtdefinition) (A.26)

A consequence of Lemma 2 is that the convergence rate given by Theorem 1

improves as N increases.

120



A.4. CONVEX RESULTS

A.4.1 Convex and C-Lipschitz

Theorem 1 (Convex and Lipschitz). Let Ω be a convex set. We assume that for

every z ∈ Z, ℓz is convex and C-Lipschitz. Let w⋆ be a solution of (P), and assume

that we have perfect interpolation: ∀z ∈ Z, ℓz(w⋆) = 0. Then BORAT for N ≥ 2

applied to f satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f⋆ ≤ C

√
∥w0 −w⋆∥2

(T + 1)
+
∥w0 −w⋆∥2

η(T + 1)
. (4.15)

Proof. We start from (A.26), hence we have:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2ηD(αt) (A.27)

From Lemma 2 we additionally have that D2(α∗) ≤ DN>2(α∗) hence, we consider

N = 2 as this provides the worst rate.

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2ηD2(αt) (A.28)

For N = 2 we have exactly two subproblems, and hence we can write the dual in

the following compact form:

D2(αt) =


−η

2
∥gzt∥2 + ℓzt(wt), if η∥gzt∥2 ≤ ℓzt(wt)

1
2η

ℓzt (wt)2

∥gzt∥2
if η∥gzt∥2 ≥ ℓzt(wt)

(A.29)

We now introduce IT and JT as follows:

IT ≜
{
t ∈ {0, ..., T} : η∥gzt∥2 ≥ ℓzt(wt)

}
JT ≜ {0, ..., T} \ IT
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Defining 1 to be the indicator function we can write:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 + 1(t ∈ IT )η
(
η∥gzt∥2 − 2ℓzt(wt)

)
− 1(t ∈ JT )

(
ℓzt(wt)

2

∥gzt∥2

)
.

(A.30)

From our definition of IT for all t ∈ IT we have η∥gzt∥2 ≥ ℓzt(wt), hence, we can

write:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 1(t ∈ IT )ηℓzt(wt)− 1(t ∈ JT )

(
ℓzt(wt)

2

∥gzt∥2

)
.

(A.31)

Summing over T :

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 − η
∑
t∈IT

ℓzt(wt)−
∑
t∈JT

(
ℓzt(wt)

2

∥gzt∥2

)
(A.32)

Using ∥wT+1 −w⋆∥2 ≥ 0, we obtain:

η
∑
t∈IT

ℓzt(wt) +
∑
t∈JT

(
ℓzt(wt)

2

∥gzt∥2

)
≤ ∥w0 −w⋆∥2. (A.33)

From
(

ℓzt (wt)2

∥gzt∥2

)
≥ 0, we get:

∑
t∈IT

ℓzt(wt) ≤
1

η
∥w0 −w⋆∥2. (A.34)

Likewise, using the observation that ℓz ≥ 0, we can write:

∑
t∈JT

ℓzt(wt)
2

C2
≤
∑
t∈JT

ℓzt(wt)
2

∥gzt∥2
≤ ∥w0 −w⋆∥2. (A.35)
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Dividing by C2:

∑
t∈JT

ℓzt(wt)
2 ≤ C2∥w0 −w⋆∥2. (A.36)

Using the Cauchy-Schwarz inequality, we can further write:

(∑
t∈JT

ℓzt(wt)

)2

≤ |JT |
∑
t∈JT

ℓzt(wt)
2. (A.37)

Therefore, we have:

∑
t∈JT

ℓzt(wt) ≤ C
√
|JT |∥w0 −w⋆∥2. (A.38)

We can now put together inequalities (A.34) and (A.38) by writing:

T∑
t=0

ℓzt(wt) =
∑
t∈JT

ℓzt(wt) +
∑
t∈IT

ℓzt(wt) (A.39)

T∑
t=0

ℓzt(wt) ≤
1

η
∥w0 −w⋆∥2 + C

√
|JT |∥w0 −w⋆∥2 (A.40)

T∑
t=0

ℓzt(wt) ≤
1

η
∥w0 −w⋆∥2 + C

√
(T + 1)∥w0 −w⋆∥2 (A.41)

Dividing by T + 1 and taking the expectation over zt, we finally get:

f

(
1

T + 1

T∑
t=0

wt

)
− f⋆ ≤

1

T + 1

T∑
t=0

f(wt)− f⋆, (f is convex) (A.42)

f

(
1

T + 1

T∑
t=0

wt

)
− f⋆ ≤ C

√
∥w0 −w⋆∥2

(T + 1)
+
∥w0 −w⋆∥2

η(T + 1)
. (A.43)
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A.4.2 Convex and Smooth

Lemma 3. Let z ∈ Z. Assume that ℓz is β-smooth and non-negative on Rd. Then

we have:

∀(w) ∈ Rd, ℓz(w) ≥ 1

2β
∥∇ℓz(w)∥2

Note that we do not assume that ℓz is convex.

Proof. Let w ∈ Rd. By Lemma 3.4 of Bubeck (2015), we have:

∀ u ∈ Rd, |ℓz(u)− ℓz(w)−∇ℓz(w)⊺(u−w)| ≤ β

2
∥u−w∥2.

Therefore, we can write:

∀ u ∈ Rd, ℓz(u) ≤ ℓz(w) +∇ℓz(w)⊺(u−w)|+ β

2
∥u−w∥2.

Since ∀ u, lz(u) ≥ 0, we have:

∀ u ∈ Rd, 0 ≤ ℓz(w) +∇ℓz(w)⊺(u−w)|+ β

2
∥u−w∥2.

We now choose u = − 1
β
∇lz(w), which yields:

∀ u ∈ Rd, 0 ≤ ℓz(w)− 1

β
∥∇ℓz(w)∥2 +

β

2
∥∇ℓz(w)∥2,

which gives the desired result.

Theorem 3 (Convex and Smooth - Large η). We assume that Ω is a convex set,

and that for every z ∈ Z, ℓz is convex and β-smooth. Let w⋆ be a solution of (P),

and assume that we have perfect interpolation: ∀z ∈ Z, ℓz(w⋆) = 0. Then BORAT
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for N ≥ 2 applied to f with η ≥ 1
2β

satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f⋆ ≤ 2β

∥w0 −w⋆∥2

T + 1
. (A.44)

Proof. We start from Equation (A.32) we have:

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 − η
∑
t∈IT

ℓzt(wt)−
∑
t∈JT

(
ℓzt(wt)

2

∥gzt∥2

)
. (A.45)

Now using Lemma 3 we can write:

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 − η
∑
t∈IT

ℓzt(wt)−
1

2β

∑
t∈JT

ℓzt(wt). (A.46)

From our assumption on η ≥ 1
2β

we can write:

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 −
1

2β

∑
t∈IT

ℓzt(wt)−
1

2β

∑
t∈JT

ℓzt(wt), (A.47)

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 −
1

2β

T∑
t=0

ℓzt(wt). (A.48)

Using ∥wT+1 −w⋆∥2 ≥ 0, we obtain:

T∑
t=0

ℓzt(wt) ≤ 2β∥w0 −w⋆∥2. (A.49)

Dividing by T + 1 and taking the expectation over zt, we finally get:

f

(
1

T + 1

T∑
t=0

wt

)
− f⋆ ≤

1

T + 1

T∑
t=0

f(wt)− f⋆, (f is convex)

f

(
1

T + 1

T∑
t=0

wt

)
− f⋆ ≤ 2β

∥w0 −w⋆∥2

T + 1
.
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Theorem 4 (Convex and Smooth - Small η). We assume that Ω is a convex set,

and that for every z ∈ Z, ℓz is convex and β-smooth. Let w⋆ be a solution of (P),

and assume that we have perfect interpolation: ∀z ∈ Z, ℓz(w⋆) = 0. Then BORAT

for N ≥ 2 applied to f with η ≤ 1
2β

satisfies:

f

(
1

T+1

T∑
t=0

wt

)
− f⋆ ≤ 2β

∥w0 −w⋆∥2

T + 1
. (A.50)

Proof. Now considering the η ≤ 1
2β

starting from (A.51)

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 − η
∑
t∈IT

ℓzt(wt)−
1

2β

∑
t∈JT

ℓzt(wt), (A.51)

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 − η
∑
t∈IT

ℓzt(wt)− η
∑
t∈JT

ℓzt(wt), (A.52)

∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 − η
T∑
t=0

ℓzt(wt). (A.53)

Using ∥wT+1 −w⋆∥2 ≥ 0, we obtain:

T∑
t=0

ℓzt(wt) ≤
1

η
∥w0 −w⋆∥2. (A.54)

Dividing by T + 1 and taking the expectation over zt, we finally get:

f

(
1

T + 1

T∑
t=0

wt

)
− f⋆ ≤

1

T + 1

T∑
t=0

f(wt)− f⋆, (f is convex)

f

(
1

T + 1

T∑
t=0

wt

)
− f⋆ ≤

∥w0 −w⋆∥2

η(T + 1)
.
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A.4.3 Strongly Convex

Finally, we consider the α-strongly convex and β-smooth case.

Lemma 4. Let z ∈ Z. Assume that ℓz is α-strongly convex, non-negative on Rd,

and such that inf ℓz = 0. Then we have:

∀w ∈ Rd,
ℓz(w)

∥∇ℓz(w)∥2
≤ 1

2α
. (A.55)

Proof. Let w ∈ Rd and suppose that ℓz reaches its minimum at w ∈ Rd (this

minimum exists because of strong convexity). By definition of strong convexity, we

have that:

∀ ŵ ∈ Rd, ℓz(ŵ) ≥ ℓz(w) +∇ℓz(w)⊤(ŵ −w) +
α

2
∥ŵ −w∥2 (A.56)

We minimize the right hand side over ŵ, which gives:

∀ŵ ∈ Rd, ℓz(ŵ) ≥ ℓz(w) +∇ℓz(w)⊤(ŵ −w) +
α

2
∥ŵ −w∥2

≥ ℓz(w)− 1

2α
∥∇ℓz(w)∥2

(A.57)

Thus, by choosing ŵ = w and re-ordering, we obtain the following result (a.k.a. the

Polyak-Lojasiewicz inequality):

ℓz(w)− ℓz(w) ≤ 1

2α
∥∇ℓz(w)∥2 (A.58)

However, we have ℓz(w) = 0 which concludes the proof.

Lemma 5. For any a, b ∈ Rd, we have that:

∥a∥2 + ∥b∥2 ≥ 1

2
∥a− b∥2. (A.59)

Proof. This is a simple application of the parallelogram law, but we give the proof

127



A.4. CONVEX RESULTS

here for completeness.

∥a∥2 + ∥b∥2 − 1

2
∥a− b∥2 = ∥a∥2 + ∥b∥2 − 1

2
∥a∥2 − 1

2
∥b∥2 + a⊤b

=
1

2
∥a∥2 +

1

2
∥b∥2 + a⊤b

=
1

2
∥a+ b∥2

≥ 0

Lemma 6. Let z ∈ Z. Assume that ℓz is α-strongly convex and achieves its (possibly

constrained) minimum at w⋆ ∈ Ω. Then we have:

∀w ∈ Ω, ℓz(w)− ℓz(w⋆) ≥
α

2
∥w −w⋆∥2 (A.60)

Proof. By definition of strong-convexity (Bubeck, 2015), we have:

∀w ∈ Ω, ℓz(w)− ℓz(w⋆)−∇ℓz(w⋆)
⊤(w −w⋆) ≥

α

2
∥w −w⋆∥2. (A.61)

In addition, since w⋆ minimises ℓz, then necessarily:

∀w ∈ Ω, ∇ℓz(w⋆)
⊤(w −w⋆) ≥ 0. (A.62)

Combining the two equations gives the desired result.

Finally, we consider the α-strongly convex and β-smooth case. Again, our proof

yields a natural separation between η ≥ 1
2β

and η ≤ 1
2β

.

Theorem 5 (Strongly Convex - Large with large η). We assume that Ω is a convex

set, and that for every z ∈ Z, ℓz is α-strongly convex and β-smooth. Let w⋆ be a

solution of (P), and assume that we have perfect interpolation: ∀z ∈ Z, ℓz(w⋆) = 0.
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Then BORAT for N ≥ 2 and applied to f with a η ≥ 1
2β
satisfies:

E[f(wt+1)]− f(w⋆) ≤
β

2
exp

(
−αt

4β

)
∥w0 −w⋆∥2. (A.63)

Proof. We start from (A.31):

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 1(t ∈ IT )ηℓzt(wt)− 1(t ∈ JT )

(
ℓzt(wt)

2

∥gzt∥2

)
.

(A.64)

We next use Lemma 3 write:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 1(t ∈ IT )ηℓzt(wt)− 1(t ∈ JT )
1

2β
ℓzt(wt). (A.65)

Now we use our assumption on η to give:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 −
1

2β
ℓzt(wt). (A.66)

Taking expectations:

E[∥wt+1 −w⋆∥2] ≤ ∥wt −w⋆∥2 −
1

2β
f(wt). (A.67)

Using Lemma 6:

E[∥wt+1 −w⋆∥2] ≤ ∥wt −w⋆∥2 −
α

4β
∥wt −w⋆∥2. (A.68)
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We use a trivial induction over t and write:

E[∥wt+1 −w⋆∥2] ≤
(

1− α

4β

)
∥wt −w⋆∥2, (A.69)

E[∥wt+1 −w⋆∥2] ≤
(

1− α

4β

)t

∥w0 −w⋆∥2. (A.70)

(A.71)

Given an arbitrary w ∈ Rd, we now wish to relate the distance ∥w −w⋆∥2 to the

function values f(w)− f(w⋆). From smoothness, we have:

f(wt+1)− f(w⋆) ≤ ∇f(w⋆)
⊤(wt+1 −w⋆) +

β

2
∥wt+1 −w⋆∥2. (A.72)

However, we know by definition ∇f(w⋆) = 0, hence:

f(wt+1)− f(w⋆) ≤
β

2
∥wt+1 −w⋆∥2. (A.73)

Taking expectations:

E[f(wt+1)]− f(w⋆) ≤
β

2
E[∥wt+1 −w⋆∥2]. (A.74)

Hence, we recover the final rate:

E[f(wt+1)]− f(w⋆) ≤
β

2

(
1− α

4β

)t

∥w0 −w⋆∥2, (A.75)

E[f(wt+1)]− f(w⋆) ≤
β

2
exp

(
−αt

4β

)
∥w0 −w⋆∥2. (A.76)

Theorem 6 (Strongly Convex - Small η). We assume that Ω is a convex set, and

that for every z ∈ Z, ℓz is α-strongly convex and β-smooth. Let w⋆ be a solution

of (P), and assume that we have perfect interpolation: ∀z ∈ Z, ℓz(w⋆) = 0. Then
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BORAT for N ≥ 2 and applied to f with a η ≤ 1
2β
satisfies:

E[f(wt+1)]− f(w⋆) ≤
β

2
exp

(
−αηt

2

)
∥w0 −w⋆∥2. (A.77)

Proof. We start from (A.31):

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 1(t ∈ IT )ηℓzt(wt)− 1(t ∈ JT )

(
ℓzt(wt)

2

∥gzt∥2

)
.

(A.78)

We next use Lemma 3 write:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 1(t ∈ IT )ηℓzt(wt)− 1(t ∈ JT )
1

2β
ℓzt(wt). (A.79)

Now we use our assumption on η to give:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − ηℓzt(wt) (A.80)

Taking expectations:

E[∥wt+1 −w⋆∥2] ≤ ∥wt −w⋆∥2 − ηℓzt(wt) (A.81)

Using Lemma 6

E[∥wt+1 −w⋆∥2] ≤ ∥wt −w⋆∥2 −
αη

2
∥wt −w⋆∥2 (A.82)

We use a trivial induction over t and write:

E[∥wt+1 −w⋆∥2] ≤
(

1− αη

2

)
∥wt −w⋆∥2, (A.83)

E[∥wt+1 −w⋆∥2] ≤
(

1− αη

2

)t
∥w0 −w⋆∥2, (A.84)

(A.85)
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Given an arbitrary w ∈ Rd, we now wish to relate the distance ∥w −w⋆∥2 to the

function values f(w)− f(w⋆). From smoothness, we have:

f(wt+1)− f(w⋆) ≤ ∇f(w⋆)
⊤(wt+1 −w⋆) +

β

2
∥wt+1 −w⋆∥2. (A.86)

However, we know by definition ∇f(w⋆) = 0, hence:

f(wt+1)− f(w⋆) ≤
β

2
∥wt+1 −w⋆∥2. (A.87)

Taking expectations:

E[f(wt+1)]− f(w⋆) ≤
β

2
E[∥wt+1 −w⋆∥2]. (A.88)

Hence, we recover the final rate:

E[f(wt+1)]− f(w⋆) ≤
β

2

(
1− αη

2

)t
∥w0 −w⋆∥2, (A.89)

E[f(wt+1)]− f(w⋆) ≤
β

2
exp

(
−αηt

2

)
∥w0 −w⋆∥2. (A.90)

A.5 Non-Convex Results

Here we provide the proof of Theorem 2, which we restate for clarity. To simplify

our analysis, we consider the BORAT algorithm with N = 3. We prove these results

for BORAT with the minor modification that all linear approximations are formed

using the same mini-batch of data, ℓznt = ℓzt for all n ∈ {2, ..., N − 1}.

Theorem 2 (RSI). We consider problems of type (P). We assume ℓz satisfies the

RSI with constant µ, smoothness constant β and perfect interpolation e.g. lz(w
∗) =
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0, ∀z ∈ Z. Then if set η ≤ η̂ = min{ 1
4β
, 1
4µ
, µ
2β2} then in the worst case we have:

f(wT+1)− f ∗ ≤ exp

((
−3

8
η̂µ

)
T

)
||w0 −w∗||2. (4.17)

In order to derive the proof for Theorem 2 we first give a brief overview of

BORAT with N = 3. We detail the (2N − 1) possible subproblems (7 in this case),

and the resulting values of αt for each. We show for η ≤ 1
2β

, only a sub-set of

the subproblems result in valid solutions with optimal points within the simplex.

Finally, we derive a rate that we assume is optimal for all t for each of the remaining

subproblems Lastly, by taking the minimum of these rates we construct the worst

case rate.

A.5.1 BORAT with N = 3

With N = 3 the bundle is made of three linear approximations. These are the lower

bound on the loss, a linear approximations made at the current point, and at the

optimum of the bundle of size two. Hence, this third linear approximation is made

at the location one would reach after taking an ALI-G step. Note, here we use γt to

denote the optimal value of α1 as given by 3.15. As some of these proofs get quite

involved, we make use of the following abbreviations to save space:

ŵ1
t = wt, gzt = ∇ℓznt (wt), b1t = ℓznt (wt),

ŵ2
t = w′

t, g′zt = ∇ℓznt (w′
t), b2t = ℓznt (w′

t) + ηγt⟨gzt , g′zt⟩.

Where w′
t is defined as w′

t = wt − ηγt∇ℓznt (wt), where γt = min{1,
ℓznt

(wt)

η∥∇ℓznt
(wt)∥2}.

With this notation defined, the BORAT primal problem for this special case can be
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simplified to:

wt+1 = argmin
w∈Rd

{
1

2η
||w −wt||2 + max

{
⟨gzt ,w −wt⟩+ b1t , ⟨g′zt ,w −wt⟩+ b2t , 0

}}
.

(A.91)

The dual of (A.91) can be written as:

αt = argmax
α∈∆3

{
−η

2
||α1gzt + α2tg′zt ||

2 + α1ℓznt (wt) + α2ℓznt (w′
t) + α2ηγt⟨gzt , g′zt⟩

}
.

(A.92)

For N = 3 we have the following parameter update:

wt+1 = wt − α1tη∇ℓznt (wt)− α2tη∇ℓznt (w′
t), (A.93)

A.5.2 Subproblems

Algorithm 1 solves (2N − 1) subproblems, Each of these linear systems corresponds

to one of the loci of the simplex, defining the feasible set. We refer to each of these

(2N −1) options as subproblems. However, each subproblem can also be interpreted

as a sub-system of Qα = b, (see line 2 of Algorithm 1 for definitions). For N = 3

the form of Qα = b is detailed in (A.94).



η||gzt ||2 η⟨gzt , g′zt⟩ 0 1

η⟨gzt , g′zt⟩ η||g′zt ||
2 0 1

0 0 0 1

1 1 1 0





α1

α2

α3

c


=



b1

b2

0

1


, (A.94)

where c is defined in Theorem 1. Each subproblem is defined by setting a unique

subset of the dual variables αn to zero, before solving for the remaining variables. For

(N = 3) we have exactly seven subproblems, which we each give a unique label, see
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Table A.1. For clarity, we detail a few specific subproblems. The SGD subproblem

corresponds to setting α2, α3 = 0, and recovers the SGD update. Likewise, the

ESGD step corresponds to setting α1, α3 = 0 and recovers an update similar to the

extra gradient method. Finally, by setting α2 = 0 before solving the system we

recover an ALI-G like step, hence, we label this subproblem as the ALI-G step. If a

subproblem results in a α ∈ ∆3 we refer to that subproblem as feasible, conversely,

if it results in a α /∈ ∆3 we refer to that subproblem as infeasible. Algorithm 2

computes the dual value for all feasible subproblems and selects the largest. This

subproblem’s α is then used in (A.93) to update the parameters. The closed form

solutions for α for each of the 7 subproblems are listed in Table A.1. We use a

subscript to show that α belongs to a certain subproblem. For example αSGD =

[1, 0, 0].

Table A.1: Subproblems for N = 3.

α1 α2 α3 Label

1 0 0 SGD

0 1 0 SEGD

0 0 1 ZERO

0 b2
η||g′zt ||

2 1− b2
η||g′zt ||

2 EALIG

b1
η||gzt ||2

0 1− b1
η||gzt ||2

ALIG

η||g′zt ||
2−2η⟨gzt ,g′zt ⟩+b1−b2

η||gzt−g′zt ||
2

η||gzt ||2+b2−b1
η||gzt−g′zt ||

2 0 MAX2

b1||g′zt ||
2−b2g⊤ztg

′
zt

η||gzt ||2||g′zt ||
2−η||gztg′zt ||

2

b2||gzt ||2−b1g⊤zta2

η||gzt ||2||g′zt ||
2−η||gztg′zt ||

2 1− α1 − α2 MAX3
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A.5.3 Dual Values

The corresponding expressions for the dual values for the seven different subproblems

are detailed below:

DZERO(α) = 0,

DSGD(α) = −η
2
||gzt ||2 + ℓznt (wt),

DESGD(α) = −η
2
||g′zt ||

2 + ℓznt (w′
t) + ηγt⟨gzt , g′zt⟩,

DALIG(α) =
1

2η

ℓznt (wt)
2

||gzt ||2
,

DEALIG(α) =
1

2η

(
ℓznt (w′

t) + ηγt⟨gzt , g′zt⟩
)2

||g′zt ||2
,

DMAX2(α) =
1

2η||gzt − g′zt ||2

(
(ℓznt (w′

t)− ℓznt (wt))
2 + 2η

(
ℓznt (w′

t)||gzt ||2 + ℓznt (wt)||g′zt ||
2
)

− 4ηℓznt (wt)⟨gzt , g′zt⟩+ 2η2||gzt||2⟨gzt , g′zt⟩ − η
2||gzt ||2||g′zt ||

2

)
,

DMAX3(α) =
1

2

(
ℓznt (w′

t)gzt + ηγt⟨gzt , g′zt⟩gzt − ℓznt (wt)g
′
zt

)2
η||gzt||2||g′zt ||2 − η⟨gzt , g′zt⟩2

.

The dual value for each subproblem is simply derived by inserting the closed

form expression for α for each subproblem detailed in Table A.1 into (4.4). These

dual values observe a tree-like hierarchy,

DMAX3 ≥ DMAX2, DALIG, DEALIG,

DMAX2 ≥ DSGD, DESGD,

DALIG ≥ DSGD, DZERO,

DEALIG ≥ DESGD, DZERO.

This hierarchy is a consequence of the subproblems maximising the dual over pro-

gressively larger spaces, ∆n−1 ⊂ ∆n.
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A.5.4 Feasible Subproblems

To give a worst case rate on the convergence of BORAT with N = 3, we first prove

for smooth functions and small η, only certain subproblems will be feasible. We

start with a useful lemma, before proving this result.

Lemma 7. Let z ∈ Z. Assume that ℓz is β-smooth. If we define w′ = w−η∇ℓz(w)

and η ≤ 1
β
then we have:

∀(w) ∈ Rd, ⟨∇ℓz(w),∇ℓz(w′)⟩ ≥ 0.

Note that we do not assume that ℓz is convex.

Proof.

2⟨∇ℓz(w),∇ℓz(w′)⟩ = −||∇ℓz(w)−∇ℓz(w′)||2 + ||∇ℓz(w)||2 + ||∇ℓz(w′)||2

2⟨∇ℓz(w),∇ℓz(w′)⟩ ≥ −β2||w −w′||2 + ||∇ℓz(w)||2 + ||∇ℓz(w′)||2, (smoothness)

2⟨∇ℓz(w),∇ℓz(w′)⟩ ≥ −β2η2||∇ℓz(w)||2 + ||∇ℓz(w)||2 + ||∇ℓz(w′)||2, (w′ definition)

⟨∇ℓz(w),∇ℓz(w′)⟩ ≥ 1

2
(1− β2η2)||∇ℓz(w)||2 +

1

2
||∇ℓz(w′)||2,

⟨∇ℓz(w),∇ℓz(w′)⟩ ≥ 0. (
1

β
≥ η)

Lemma 8 (Feasible subproblems). If ℓznt has smoothness constant β and we set

η ≤ 1
2β

for the BORAT algorithm with N = 3 detailed in Section A.5.1, the ALI-G,

EALIG and MAX3 subproblems will always be infeasible.

Proof. We start by showing the ALI-G step is infeasible. From Lemma 3 we have:

ℓz(w)

||gzt||2
≥ 1

2β
.

For the ALI-G step to be feasible we require α3
ALIG > 0 or 1 −

ℓznt
(wt)

η||gzt ||2
> 0. Rear-
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ranging, then we have:

η >
ℓznt (wt)

||gzt||2
.

Combining these two inequalities gives:

η >
ℓz(w)

||gzt ||2
≥ 1

2β
.

Hence, for any 1
2β
≥ η, η >

ℓznt
(wt)

||gzt ||2
cannot hold. We now use a similar argument to

show that the EALIG subproblem is infeasible. For EALIG to be feasible we require

α3
EALIG > 0, plugging in the closed form solution for α3

EALIG gives:

η >
ℓznt (w′

t) + ηγt⟨gzt , g′zt⟩
||g′zt ||2

=
ℓznt (w′

t) + η⟨gzt , g′zt⟩
||g′zt ||2

=
ℓznt (w′

t)

||g′zt||2
+
η⟨gzt , g′zt⟩
||g′zt ||2

≥
ℓznt (w′

t)

||g′zt ||2
≥ 1

2β
,

where the penultimate inequality makes use of ⟨gzt , g′zt⟩ ≥ 0, which is a direct

application of Lemma 7. The final inequality is a direct application of Lemma 3.

Again, it is clear that the condition η >
ℓznt

(w′
t)

||g′zt ||
2 cannot be satisfied for η ≤ 1

2β
.

We show that the MAX3 step is never taken for η ≤ 1
2β

. First, we show that the

dual value for the MAX3 step can be written as:

DMAX3(α) =
1

2

(
ℓznt (wt)α

1t + ℓznt (w′
t)α

2t + ηγtα
2t⟨gzt , g′zt⟩

)
.

We start from the dual value stated in Section A.5.3.

DMAX3(α) =
1

2

(
ℓznt (w′

t)gzt + ηγt⟨gzt , g′zt⟩gzt − ℓznt (wt)g
′
zt

)2
η||gzt ||2||g′zt ||2 − η⟨gzt , g′zt⟩2

,
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expanding,

DMAX3(α) =
1

2
ℓznt (w′

t)

(
ℓznt (w′

t)gzt + ηγt⟨gzt , g′zt⟩gzt − ℓznt (wt)g
′
zt

)
η||gzt||2||g′zt ||2 − η⟨gzt , g′zt⟩2

gzt︸ ︷︷ ︸
=α2

+
1

2
ηγt⟨gzt , g′zt⟩

(
ℓznt (w′

t)gzt + ηγt⟨gzt , g′zt⟩gzt − ℓznt (wt)g
′
zt

)
η||gzt ||2||g′zt ||2 − η⟨gzt , g′zt⟩2

gzt︸ ︷︷ ︸
=α2

− 1

2
ℓznt (wt)

(
ℓznt (w′

t)gzt + ηγt⟨gzt , g′zt⟩gzt − ℓznt (wt)g
′
zt

)
η||gzt ||2||g′zt ||2 − η⟨gzt , g′zt⟩2

g′zt .︸ ︷︷ ︸
=−α1

Using the definitions of α1
MAX3 and α2

MAX3 we recover the following expression for

the MAX3 subproblem’s dual function:

DMAX3(α) =
1

2

(
ℓznt (wt)α

1t + ℓznt (w′
t)α

2t + ηγtα
2t⟨gzt , g′zt⟩

)
.

With the dual function in this form it is easy to upper bound the feasible dual value

for the MAX3 subproblem as DMAX3 ≤ 1
2

max
{
ℓznt (wt), ℓznt (w′

t) + ηγt⟨gzt , g′zt⟩
}

.

This is a consequence of the fact that α ∈ ∆ must hold for feasible steps. However,

from the hierarchy of dual values we have the lower bounds DMAX3 ≥ DSGD and

DMAX3 ≥ DESGD, on the MAX3 dual value (see Section A.5.3). If either of these

lower bounds have a larger value than the feasible dual value’s upper bound, the

MAX3 step will not be feasible. We now show that this is always the case for

η ≤ 1
2β

. In order to do this we consider two cases.

We first assume ℓznt (wt) ≥ ℓznt (w′
t)+ηγt⟨gzt , g′zt⟩. Hence, we know the maximum

feasible value for DMAX3 = 1
2
ℓznt (wt), if either DSGD or DESGD have a larger dual

value we can conclude that the MAX3 step is infeasible.

DSGD(α) = −η
2
||gzt ||2 + ℓznt (wt),
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Hence, if the following condition holds, we know the MAX3 step will be infeasible:

1

2
ℓznt (wt) ≤ −

η

2
||gzt ||2 + ℓznt (wt).

Thus, the converse must hold for the MAX3 step to be feasible:

1

2
ℓznt (wt) ≥ −

η

2
||gzt ||2 + ℓznt (wt),

which is equivalent to,

η ≥
ℓznt (wt)

||gzt||2
.

Using the same logic as stated for the ALI-G step we know this condition is never

satisfied for η ≤ 1
2β

.

We now assume ℓznt (wt) ≤ ℓznt (w′
t) + ηγt⟨gzt , g′zt⟩ and thus we know the max

feasible value of DMAX3 ≤ 1
2
ℓznt (w′

t) + 1
2
ηγt⟨gzt , g′zt⟩, again if either DSGD or DESGD

have larger values, we know the MAX3 subproblem is infeasible:

DESGD(α) = −η
2
||g′zt||

2 + ℓznt (w′
t) + ηγt⟨gzt , g′zt⟩.

Hence for the MAX3 step to be valid we must have:

1

2
ℓznt (w′

t) + ηγt⟨gzt , g′zt⟩ ≤ −
η

2
||g′zt ||

2 + ℓznt (w′
t) + ηγt⟨gzt , g′zt⟩,
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which is equivalent to,

η ≤
ℓznt (w′

t) + ηγt⟨gzt , g′zt⟩
||g′zt||2

.

Again, the same condition exist as for the EALIG step, which we have already

proven can never be feasible for η ≤ 1
2β

. Hence, the MAX3 subproblem is never

feasible for η ≤ 1
2β

.

Lemma 9. For any set of vectors a, b, c then, the following inequality holds:

−2||a− b||2 ≤ −||a− c||2 + 2||b− c||2.

Proof. First consider two vectors x and y.

0 ≤ ||x− y||2,

0 ≤ ||x||2 + ||y||2 − 2⟨x,y⟩

2⟨x,y⟩ ≤ ||x||2 + ||y||2,

||x+ y||2 = ||x||2 + ||y||2 + 2⟨x,y⟩,

||x+ y||2 ≤ 2||x||2 + 2||y||2,

−2||x||2 ≤ 2||y||2 − ||x+ y||2.

Setting x = a− b and y = b− c gives the desired result.

Lemma 10. Let z ∈ Z. Assume that ℓz is β-smooth and non-negative on Rd. Then

we have:

∀(w) ∈ Rd, ℓz(w) ≥ 1

2β
||∇ℓz(w)||2

Note that we do not assume that ℓz is convex.
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Proof. Let w ∈ Rd. By Lemma 3.4 of Bubeck (2015), we have:

∀ u ∈ Rd, |ℓz(u)− ℓz(w)−∇ℓz(w)⊺(u−w)| ≤ β

2
||u−w||2.

Therefore we can write:

∀ u ∈ Rd, ℓz(u) ≤ ℓz(w) +∇ℓz(w)⊺(u−w)|+ β

2
||u−w||2.

And since ∀ u, lz(u) ≥ 0, we have:

∀ u ∈ Rd, 0 ≤ ℓz(w) +∇ℓz(w)⊺(u−w)|+ β

2
||u−w||2.

We now choose u = − 1
β
∇lz(w), which yeilds:

∀ u ∈ Rd, 0 ≤ ℓz(w)− 1

β
||∇ℓz(w)||2 +

β

2
||∇ℓz(w)||2,

which gives the desired result.

We next derive the rate for each of the remaining feasible steps, that is, SGD,

ESGD and MAX2.

A.5.5 SGD Subproblem

Lemma 11. We assume that Ω = Rd, for every z ∈ Z, ℓz(w) is β smooth and sat-

isfies the RSI condition with constant µ. Let w∗ be a solution of f(w). We assume

∀z ∈ Z, ℓznt (w∗) = 0. Then, if we apply BORAT with η ≤ η̂ = min{ 1
4β
, 1
4µ
, µ
β2} and

we take the step resulting from the SGD subproblem for all t we have:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2.
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Proof.

||wt+1 −w∗||2 ≤ ||ΠΩ(wt − ηg′zt)−w
∗||2, (A.95)

≤ ||wt − ηgzt −w∗||2, (A.96)

= ||wt −w∗||2 + η2||gzt ||2 − 2η⟨gzt ,wt −w∗⟩, (A.97)

≤ ||wt −w∗||2 + η2||gzt ||2 − 2ηµ||wt −w∗||2. (A.98)

We have ||gzt ||2 ≤ 2βℓznt (wt) from Lemma 3 and ℓznt (wt) ≤ β
2
||wt − w∗||2 from

smoothness giving ||gzt ||2 ≤ β2||wt − w∗||2. We can now upper bound the right

hand side producing:

||wt+1 −w∗||2 ≤ ||wt −w∗||2 + η2β2||wt −w∗||2 − 2ηµ||wt −w∗||2, (A.99)

||wt+1 −w∗||2 ≤ (1− 2ηµ+ η2β2)||wt −w∗||2, (A.100)

||wt+1 −w∗||2 ≤
(
1− η(2µ− ηβ2)

)
||wt −w∗||2. (A.101)

Now, if we select η ≤ η̂ = min{ 1
2β
, 1
4µ
, µ
β2} in the worst case we get:

||wt+1 −w∗||2 ≤ (1− η̂µ)||wt −w∗||2. (A.102)

Taking expectations with respect to zt:

E[||wt+1 −w∗||2] ≤ E[(1− η̂µ)||wt −w∗||2]. (A.103)

Noting that wt does not depend on zt, and neither does w∗ due to the interpolation

property:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2. (A.104)
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A.5.6 ESGD Subproblem

Lemma 12. Let z ∈ Z. We assume that ℓz is β-smooth and non-negative on Rd.

Additionally, we assume that η ≤ 1
2β
. If we define γt

.
= min{1,

ℓznt
(wt)

η||gzt||2}, then we

have:

γt = 1, ∀t

Proof. From our assumption on η and Lemma 3 we have:

η ≤ 1

2β
≤
ℓznt (wt)

||gzt||2
.

Rearranging gives:

1 ≤
ℓznt (wt)

η||gzt||2
.

Plugging into the the definition of γt, gives the desired result.

Lemma 13. We assume that Ω = Rd, for every z ∈ Z, ℓz(w) is β and satisfies

the RSI condition with constant µ. Let w∗ be a solution of f(w). We assume

∀z ∈ Z, ℓznt (w∗) = 0. Then, if we apply BORAT with η ≤ η̂ = min{ 1
4β
, 1
4µ
, µ
β2} and

we take the step resulting from the ESGD subproblem for all t we have:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2.

Proof. This proof loosely follows work by Vaswani et al. (2019). We start by plugging

the parameter update into the expression for the euclidean distance from the next
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iterate to the optimal point.

||wt+1 −w∗||2 ≤ ||ΠΩ(wt − ηg′zt)−w
∗||2, (A.105)

≤ ||wt − ηg′zt −w
∗||2, (A.106)

= ||wt −w∗||2 + η2||g′zt||
2 − 2η⟨g′zt ,wt −w∗⟩, (A.107)

= ||wt −w∗||2 + η2||g′zt||
2 − 2η⟨g′zt ,w

′
t + ηγtgzt −w∗⟩, (A.108)

= ||wt −w∗||2 + η2||g′zt||
2 − 2η⟨g′zt ,w

′
t + ηgzt −w∗⟩, (Lemma 12)

(A.109)

= ||wt −w∗||2 + η2||g′zt||
2 − 2η⟨g′zt ,w

′
t −w∗⟩ − 2η2⟨g′zt , gzt⟩.

(A.110)

Using the RSI condition:

||wt+1 −w∗||2 ≤ ||wt −w∗||2 + η2||g′zt ||
2 − 2ηµ||w′

t −w∗||2 − 2η2⟨g′zt , gzt⟩.

(A.111)

Using Lemma (9) to upper bound −||w′
t −w∗||2,

= ||wt −w∗||2 + η2||g′zt||
2 − ηµ||w∗ −wt||2 + 2ηµ||wt −w′

t||2 − 2η2⟨g′zt , gzt⟩,

(A.112)

= (1− ηµ)||wt −w∗||2 + η2||g′zt ||
2 + 2ηµ||wt −w′

t||2 − 2η2⟨g′zt , gzt⟩, (A.113)

= (1− ηµ)||wt −w∗||2 + η2||g′zt − gzt ||
2 − η2||gzt||2 + 2ηµ||wt −w′

t||2, (A.114)

= (1− ηµ)||wt −w∗||2 + η2||g′zt − gzt ||
2 − η2||gzt||2 + 2η3µ||gzt ||2, (A.115)

≤ (1− ηµ)||wt −w∗||2 + η2β2||w′
t −wt||2 − η2||gzt ||2 + 2η3µ||gzt ||2, (smoothness)

(A.116)

= (1− ηµ)||wt −w∗||2 + η4β2||gzt||2 − η2||gzt ||2 + 2η3µ||gzt ||2, (A.117)

= (1− ηµ)||wt −w∗||2 + η2
(
η2β2 − 1 + 2ηµ

)
||gzt||2, (A.118)
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A.5. NON-CONVEX RESULTS

Taking expectations with respect to zt:

E[||wt+1 −w∗||2] = E[(1− ηµ)||wt −w∗||2 + η2
(
η2β2 − 1 + 2ηµ

)
||gzt ||2, (A.119)

Noting that wt does not depend on zt, and neither does w∗ due to the interpolation

property:

E[||wt+1 −w∗||2] = (1− ηµ)||wt −w∗||2 + η2
(
η2β2 − 1 + 2ηµ

)
E[||gzt ||2], (A.120)

If we set η ≤ η̂ = min{ 1
2β
, 1
4µ
, µ
β2} then we have η2β2 ≤ 1

4
, 2ηµ ≤ 1

2
,hence (η2β2 − 1 + 2ηµ) ≤

0.

E[||wt+1 −w∗||2] ≤ (1− ηµ)||wt −w∗||2. (A.121)

Hence, if we insert the chosen value for η then we have:

E[||wt+1 −w∗||2] ≤ (1− η̂µ)||wt −w∗||2. (A.122)
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A.5.7 MAX2 Subproblem

Lemma 14. We assume that Ω = Rd, for every z ∈ Z, lz(w) is β smooth and sat-

isfies the RSI condition with constant µ. Let w∗ be a solution of f(w). We assume

∀z ∈ Z, lzt(w∗) = 0. Then, if we apply BORAT with η ≤ η̂ = min{ 1
4β
, 1
4µ
, µ
β2} and

we take the step resulting from the MAX2 subproblem for all t we have:

E[||wt+1 −w∗||2] ≤
(

1− 3

8
η̂µ

)t

||w0 −w∗||2.

Proof. Note we assume γt = 1 as proved in Lemma 12.

||wt+1 −w∗||2 ≤ ||ΠΩ(wt − ηα1tgzt − ηα2tg′zt)−w
∗||2, (A.123)

≤ ||wt − ηα1tgzt − ηα2tg′zt −w
∗||2, (A.124)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt||
2

− 2η⟨α1tgzt + α2tg′zt ,wt −w∗⟩,
(A.125)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt||
2

− 2ηα1t⟨gzt ,wt −w∗⟩ − 2ηα2t⟨g′zt ,wt −w∗⟩,
(A.126)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt||
2 − 2ηα1t⟨gzt ,wt −w∗⟩

− 2ηα2t⟨g′zt ,w
′
t + ηgzt −w∗⟩,

(A.127)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt||
2 − 2ηα1t⟨gzt ,wt −w∗⟩

− 2ηα2t⟨g′zt ,w
′
t −w∗⟩ − 2η2α2t⟨g′zt , gzt⟩,

(A.128)

= ||wt −w∗||2 + η2||α1tgzt + α2tg′zt||
2 − 2η2α2t⟨g′zt , gzt⟩

− 2ηα1t⟨gzt ,wt −w∗⟩ − 2ηα2t⟨g′zt ,w
′
t −w∗⟩.

(A.129)
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We now make use of −⟨gzt ,wt −w∗⟩ ≤ −µ||w∗ −wt||2 (RSI condition),

||wt+1 −w∗||2 ≤ ||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t⟨g′zt , gzt⟩ − 2ηα1tµ||wt −w∗||2 − 2η⟨α2tg′zt ,w
′
t −w∗⟩,

(A.130)

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t⟨g′zt , gzt⟩ − 2ηα2t⟨g′zt ,w
′
t −w∗⟩.

(A.131)

Similarly, using −⟨g′zt ,w
′
t −w∗⟩ ≤ −µ||w∗ −w′

t||2 (RSI condition),

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t⟨g′zt , gzt⟩ − 2ηα2tµ||w′
t −w∗||2.

(A.132)

We now upper bound −||w′
t −w∗||2, using Lemma 9:

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt ||
2

− 2η2α2t⟨g′zt , gzt⟩ − α
2tηµ||wt −w∗||2 + 2α2tηµ||wt −w′

t||2.

(A.133)

This gives the following general form:

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt||
2

− 2η2α2t⟨g′zt , gzt⟩+ 2α2tηµ||wt −w′
t||2.

(A.134)

We now use the inequality ||wt −w′
t|| = η2||gzt || ≤ η2β2||wt −w∗|| to upper bound
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the final term, see SGD proof (Section A.5.5) for derivation of inequality:

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ)||wt −w∗||2 + η2||α1tgzt + α2tg′zt||
2

− 2η2α2t⟨g′zt , gzt⟩+ 2η3β2µα2t||wt −w∗||,
(A.135)

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ+ 2η3α2tβ2µ)||wt −w∗||2

+ η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t⟨g′zt , gzt⟩.

(A.136)

We now simplify the last two terms, starting with the first:

η2||α1tgzt + α2tg′zt ||
2 = η2((α1t)2||gzt ||2 + 2α1tα2t⟨gzt , g′zt⟩+ (α2t)2||g′zt ||

2). (A.137)

Plugging in the expressions for α1t, α2t,γt = 1, grouping like terms and simplifying

gives the following:

η2||α1tgzt + α2tg′zt||
2

=
(lzt(w

′
t)− lzt(wt))

2 + 2η(lzt(w
′
t)− lzt(wt))⟨gzt , g′zt⟩+ η2||gzt ||2||g′zt ||

2

||gzt − g′zt ||2
(A.138)

Plugging in α2t into the remaining term gives the following expressions:

−2η2α2t⟨g′zt , gzt⟩ =
−2η2||gzt ||2⟨g′zt , gzt⟩ − 2η(lzt(w

′
t)− lzt(wt))⟨g′zt , gzt⟩

||gzt − g′zt||2
. (A.139)

Putting these together,

η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t⟨g′zt , gzt⟩

=
(lzt(w

′
t)− lzt(wt))

2 + 2η(lzt(w
′
t)− lzt(wt))⟨gzt , g′zt⟩

||gzt − g′zt ||2

+
η2||gzt ||2||g′zt ||

2 − 2η2||gzt||2⟨g′zt , gzt⟩ − 2η(lzt(w
′
t)− lzt(wt))⟨g′zt , gzt⟩

||gzt − g′zt ||2
.

(A.140)

149



A.5. NON-CONVEX RESULTS

Cancelling terms gives,

η2||α1tgzt + α2tg′zt||
2 − 2η2α2t⟨g′zt , gzt⟩

=
(lzt(w

′
t)− lzt(wt))

2 + η2||gzt||2||g′zt||
2 − 2η2||gzt ||2⟨g′zt , gzt⟩

||gzt − g′zt ||2
.

(A.141)

From α2t ≥ 0 we have η||gzt ||2 ≥ lzt(wt) − lzt(w
′
t) hence we can upper bound

(lzt(w
′
t)− lzt(wt))

2 by η2||g′zt ||
4:

η2||α1tgzt + α2tg′zt ||
2 − 2η2α2t⟨g′zt , gzt⟩

≤
η2||g′zt ||

4 + η2||gzt ||2||g′zt ||
2 − 2η2||gzt ||2⟨g′zt , gzt⟩

||gzt − g′zt||2
≤ η2||gzt ||2.

(A.142)

Again, we use the inequality ||wt −w′
t|| = η2||gzt|| ≤ η2β2||wt −w∗||:

η2||α1tgzt + α2tg′zt||
2 − 2η2α2t⟨g′zt , gzt⟩ ≤ η2||gzt ||2 ≤ η2β2||wt+1 −w∗||2 (A.143)

Hence, we get the following expression:

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ+ 2η3α2tβ2µ)||wt −w∗||2 + η2β2||wt+1 −w∗||2⟩,

(A.144)

||wt+1 −w∗||2 ≤ (1− 2ηα1tµ− α2tηµ+ 2η3α2tβ2µ+ η2β2)||wt −w∗||2, (A.145)

||wt+1 −w∗||2 ≤ (1− ηµ− α1tηµ+ 2η3β2µ− 2η3α1tβ2µ+ η2β2)||wt −w∗||2.

(A.146)

Upper bounding −α1t by 0,

||wt+1 −w∗||2 ≤ (1− ηµ+ 2η3β2µ+ η2β2)||wt −w∗||2. (A.147)

Taking expectations with respect to zt:

E[||wt+1 −w∗||2] ≤ E[(1− ηµ+ 2η3β2µ+ η2β2)||wt −w∗||2]. (A.148)
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Noting that wk does not depend on zt, and neither does w∗ due to the interpolation

property:

E[||wt+1 −w∗||2] ≤ (1− ηµ+ 2η3β2µ+ η2β2)||wt −w∗||2. (A.149)

For this step to be convergent we need the following condition to hold 2η3β2µ +

η2β2 − ηµ ≤ 0. However, for η ≤ η̂ = min{ 1
4β
, 1
4µ
, µ
2β2} we have:

2η3β2µ+ η2β2 − ηµ ≤ 1

8
ηµ+

1

2
ηµ− ηµ ≤ −3

8
ηµ. (A.150)

Hence, we recover the rate:

E[||wt+1 −w∗||2] ≤
(

1− 3

8
η̂µ

)t

||w0 −w∗||2. (A.151)

A.5.8 Worst Case Rate

It is clear by inspection that the worst case rate derived corresponds to the MAX2

subproblem. Hence, in the worst case this step is taken for all t, and thus a trivial

induction gives the result of Theorem 2.
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Appendix: Additional Results for

Chapter 4

B.1 Empirical Run Time

In this appendix we detail the effect of increasing N on the run time of BORAT.

Due to each update requiring N − 1 gradient evaluations BORAT with N ≥ 2

takes significantly longer between updates than other methods. However, BORAT

achieves good empirical convergence rates requiring N − 1 fewer parameter updates

than other methods, as shown in the results section. Hence, we consider the epoch

time and show that BORAT has a similar run time to SGD for each pass through

the data.

Increasing N both increases the run time of Algorithm 1 and BORAT must compute

extra dot products when calculating Q. A naive implementation of Algorithm 1

has a time complexity of O
(∑N

k=1
N !

k!(N−k)!
k3
)

. However, if we exploit the parallel

nature of this algorithm where the sub problems are solved simultaneously, the time

complexity reduces to O (N3) as discussed in Section 4.3.5. Additionally, we need

only run Algorithm 1 once every N − 1 batches so the per epoch time complexity is

O (N2). In practice, Algorithm 3 is only responsible for a small fraction of the run
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time, where its contribution is determined by the relative size of the model and N .

Table B.1 shows the effect of this extra computation on the training epoch time

is not significant and the time complexity with a parallel implementation scales ap-

proximately linearly with N . Moreover, Table B.1 shows for large learning problems,

such as ImageNet the extra run time when increasing N is negligible.

Optimiser SGD BORAT BORAT BORAT BORAT

N 1 2 3 4 5

Time (s) 51.0 55.6 68.2 69.2 74.3

Optimiser BORAT BORAT BORAT BORAT BORAT

N 6 7 8 9 10

Time (s) 77.8 82.8 88.7 94.1 99.5

Table B.1: Average training epoch time for CIFAR-100 data set, shown for varying
N. Time quoted using a batch size of 128, CIFAR-100, CE loss, a Wide ResNet
40-4, and a parallel implementation of BORAT. All Optimiser had access to 3 CPU
cores, and one TITAN Xp GPU.

Optimiser BORAT BORAT BORAT

N 2 3 5

Time (s) 885.50 910.49 934.79

Table B.2: Average BORAT training epoch time for ImageNet data set, shown for
varying N. Time quoted using a batch size of 1024, ImageNet, CE loss, a ResNet18,
and a parallel implantation of BORAT. All optimisers had access to 12 CPU cores,
and 4 TITAN Xp GPUs.
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B.2 Robustness of Adam Optimiser

In Figure B.1 we include results when using Adam for the experiments without label

noise of Section 4.5.2.
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Figure B.1: Adam’s robustness to hyperparameters for the CE and multi-class hinge
losses on the CIFAR-100 and Tiny ImageNet data sets. Colour represents test per-
formance, where darker colours correspond to higher values. When training on the
CIFAR-100 data set with CE loss Adam is robust to its hyperparameters. However,
its peak performance is 5% less than ALI-G or BORAT. On the Tiny ImageNet
data set Adam produces good results for η ≤ 0.1, but again its peak performance lags
roughly 2% behind ALI-G and BORAT. In combination with the multi-class hinge
loss Adam does not produce good results for either data set. BORAT offers better
peak performance than Adam, and similar robustness when using the CE loss. BO-
RAT performs significantly better for the multi-class hinge loss.
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B.3 CIFAR Hyperparameters and Variance

In Table B.3 we detail the hyperparameters and variance for the ALI-G and BO-

RAT results reported in Table 4.3. For other optimisation methods please refer to

Appendix E of Berrada et al. (2020).

Table B.3: CIFAR Hyperparameters (BORAT ALI-G)

Data Set Model Hyperparameters Test Accuracy

N η r Batch Size Mean StD

CIFAR-10

WRN
2 0.1 50 128 95.4 0.13
3 1 100 128 95.4 0.05
5 1 75 128 95.0 0.08

DN
2 0.1 100 64 94.5 0.09
3 1 75 256 94.9 0.13
5 1 75 128 94.9 0.13

CIFAR-100

WRN
2 0.1 50 512 76.1 0.21
3 0.1 50 256 76.0 0.16
5 0.1 50 128 75.8 0.22

DN
2 0.1 75 256 76.2 0.14
3 0.1 75 128 76.5 0.38
5 0.1 75 64 75.7 0.03
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Appendix: Proofs of Theorems in

Chapter 5

C.1 Theoretical Results

Theorem 3 (Worst Case Bound - Smooth and Convex). We assume that for every

z ∈ Z, ℓz is convex and β-smooth. Let w⋆ be a solution of (P) such that ∀z ∈

Z, ℓz(w⋆) ≤ ε. Further assume that η ≤ 1
2β

and λ = 0. Then if we apply ALI-G+

with a maximal learning rate of η to f , we have:

min
t
f(wt)− f⋆ ≤

∥w0 −w⋆∥2

η( T
K

+ 1)
+ ϵ. (5.3)

Proof. This proof is based on Theorem 6 in the appendix of Berrada et al. (2020).

In order to derive this worst case bound we consider the performance of ALI-G+

before the first AOV update when ℓ̃kz = 0,∀z ∈ Z. We start from the definition of

∥wt+1 −w⋆∥:

∥wt+1 −w⋆∥2 ≤ ∥wt − γt∇ℓzt(wt)−w⋆∥2. (C.1)
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Expanding:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2γt∇ℓzt(wt)
⊺(wt −w⋆) + γ2t ∥∇ℓzt(wt)∥2. (C.2)

From convexity we have:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2γt(ℓzt(wt)− ℓzt(w⋆)) + γ2t ∥∇ℓzt(wt)∥2. (C.3)

Before the first AOV update we have ℓ̃kz = 0,∀z ∈ Z and we have as:

γt ≜ max

{
min

{
η,
ℓzt(wt)− ℓ̃kz
∥∇ℓzt∥2

}
, 0

}
, (C.4)

γt = max

{
min

{
η,
ℓzt(wt)− 0

∥∇ℓzt∥2

}
, 0

}
= min

{
η,
ℓzt(wt)

∥∇ℓzt∥2

}
. (C.5)

Hence it is possible to use the upper bound γt ≤ ℓzt (wt)

∥∇ℓzt∥2
in Equation (C.3) by:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2γt(ℓzt(wt)− ℓzt(w⋆)) + γ2t ∥∇ℓzt(wt)∥2, (C.6)

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2γt(ℓzt(wt)− ℓzt(w⋆)) + γtℓzt(wt), (C.7)

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − γt(ℓzt(wt)− ℓzt(w⋆)) + γtℓzt(w⋆). (C.8)

We now turn out attention to upper bounding −γt(ℓzt(wt) − ℓzt(w⋆)) in Equation

(C.8). We do this by considering two cases corresponding to if γt =
ℓzt (wt)

∥∇ℓzt∥2
or γt = η.

Starting with the first case, we have γt ≤ η from Equation (C.5). However, we also

have:

γt =
ℓzt(wt)

∥∇ℓzt∥2
≥ 1

2β
≥ η, (C.9)

where the first inequality is from Lemma 3 and the second comes from our assump-

tion on the step size. As we have γt ≥ η and γt ≤ η we can conclude that γt = η.

157



C.1. THEORETICAL RESULTS

For the second case, we recover γt = η by definition. We propose the upper bound:

−γt(ℓzt(wt)− ℓzt(w⋆)) ≤ −η(ℓzt(wt)− ℓzt(w⋆)). (C.10)

If ℓzt(wt) − ℓzt(w⋆)) ≤ 0 this bound holds by the fact that γt ≤ η. If however

ℓzt(wt)− ℓzt(w⋆)) ≥ 0 this bound holds in equality as γt = η. Plugging (C.10) into

(C.8) gives:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − η(ℓzt(wt)− ℓzt(w⋆)) + γtℓzt(w⋆). (C.11)

We next use upper bound γtℓzt(w⋆) ≤ ηϵ to upper bound (C.11). This upper bound

holds as we know ℓzt(w⋆) ≥ 0 from our assumption on a non-negativity of ℓ and

γt ≥ η. Thus, we arrive at:

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − η(ℓzt(wt)− ℓzt(w⋆)) + ηϵ. (C.12)

By taking the expectation and using a telescopic sum, over the T/K steps before

the first AOV update we obtain:

0 ≤ ∥wT+1 −w⋆∥2 ≤ ∥w0 −w⋆∥2 −
T/K∑
t=0

(η(E[f(wt)]− f⋆) + ηϵ) . (C.13)

Rearranging we finally obtain:

min
t
f(wt)− f⋆ ≤

1

T + 1

T/K∑
t=0

f(wt)− f⋆ ≤
∥w0 −w⋆∥2

η( T
K

+ 1)
+ ϵ. (C.14)
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C.2 Strongly Convex

In this appendix we provide the following bound on the worst case loss for ALI-G+

applied to smooth and strongly convex settings.

Theorem 6 (Worst Case Bound - Smooth and Strongly Convex). We assume that

for every z ∈ Z, ℓz is α-strongly convex and β-smooth. Let w⋆ be a solution of (P)

such that ∀z ∈ Z, ℓz(w⋆) ≤ ϵ. Further, assume that η ≤ 1
2β

and λ = 0. Then, if we

apply ALI-G+ with a maximal learning-rate of η to f , we have:

min
t∈T

f(wt)− f⋆ ≤
β

2
exp

(
1− αηT

2K

)
∥w0 −w⋆∥2 +

βϵ

α
. (C.15)

Proof. This proof is based on Theorem 8 in the appendix of Berrada et al. (2020).

In order to derive this worst case bound we consider the performance of ALI-G+

before the first AOV update when ℓ̃kz = 0,∀z ∈ Z. We start from equation (C.8):

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − η(ℓzt(wt)− ℓzt(w⋆)) + ηϵ (C.16)

Taking the expectation over zt|zt−1, we obtain:

Ezt|zt−1 [∥wt+1 −w⋆∥2] ≤ ∥wt −w⋆∥2 − η(f(wt)− f(w⋆)) + ηϵ. (C.17)

Therefore, using Lemma 4 we can write:

Ezt|zt−1 [∥wt+1 −w⋆∥2] ≤ ∥wt −w⋆∥2 −
αη

2
∥wt −w⋆∥2 + ηϵ, (C.18)

=
(

1− αη

2

)
∥wt −w⋆∥2 + ηϵ. (C.19)
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A simple induction over the first T
K

before the first AOV update gives that:

E[∥w T
K
+1 −w⋆∥2] ≤

(
1− αη

2

) T
K ∥w0 −w⋆∥2 + ηϵ

T/K∑
t=0

(
1− αη

2

)t
, (C.20)

≤
(

1− αη

2

) T
K ∥w0 −w⋆∥2 + ηϵ

∞∑
t=0

(
1− αη

2

)t
, (C.21)

=
(

1− αη

2

) T
K ∥w0 −w⋆∥2 +

ηϵ

1−
(

1− αη

2

) , (C.22)

=
(

1− αη

2

) T
K ∥w0 −w⋆∥2 +

2ϵ

α
. (C.23)

Let w ∈ Rd. Then using Lemma 3.4 of Bubeck (2015), we have:

∀w ∈ Rd, |f(w)− f(w⋆)−∇f(w⋆)
⊺(w −w⋆)| ≤

β

2
∥w −w⋆∥2. (C.24)

Noting that ∇f(w⋆) = 0 and f(w) ≥ f(w⋆) we can write:

∀w ∈ Rd, f(w)− f(w⋆) ≤
β

2
∥w −w⋆∥2. (C.25)

Setting w = w T
K
+1 and taking expectations with respect to zt gives:

min
t∈T

f(wt)− f⋆ ≤ E[f(w T
K
+1)]− f(w⋆) ≤

β

2
E[∥w T

K
+1 −w⋆∥2]. (C.26)

Putting (C.23) and (C.26) together gives the desired result:

min
t∈T

f(wt)− f⋆ ≤
β

2
E[∥wTK+1 −w⋆∥2], (C.27)

≤ β

2

(
1− αη

2

) T
K ∥w0 −w⋆∥2 +

βϵ

α
, (C.28)

≤ β

2
exp

(
1− αηT

2k

)
∥w0 −w⋆∥2 +

βϵ

α
, (C.29)

≤ β

2
exp

(
1− αηT

2K

)
∥w0 −w⋆∥2 +

βϵ

α
. (C.30)
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Appendix D

Appendix: Additional Results for

Chapter 5

D.1 Unsuccessful Approaches

In this appendix we introduce some unsuccessful ideas for Algorithms 3 and 4.

Parameter Updates An idea we experimented with for Algorithm 3 was defining

an augmented loss function ℓ′z as the pointwise maximum of the zth loss function

and its relevant AOV, specifically:

ℓ′z(w) ≜ max
{
ℓzt(wt), ℓ̃

k
z

}
. (D.1)

This augmented loss function would then be used in the following parameter update:

wt+1 = wt − γtEzt∈Bt [∇wℓ′zt(wt)], (D.2)

γt ≜ max

{
min

{
η,

Ezt∈Bt [ℓ
′
zt(w)− ℓ̃kz ]

∥Ezt∈Bt [∇wℓ′zt ]∥2

}
, 0

}
, (D.3)

where Bt is the set of indices zt of the example selected within the batch at time t.

This formulation excluded loss functions ℓz that had reached their AOV both in the
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step size calculation and the descent direction. This had the effect of focusing on

examples that had not yet reached their AOV. While this might sound desirable at

first, in fact it is counterproductive in the non-interpolation setting. In this setting

it is impossible to achieve zero loss on all samples simultaneously. Hence, focusing

on the hardest samples is detrimental when trying to minimise the mean loss.

AOV Updates The AOV increase in lines 9-10 of Algorithm 4 was inspired by

Hazan and Kakade (2022) and we did not try alternate schemes. For the AOV

decrease in lines 6-7 of Algorithm 4 we initially tried backtracking to the previous

AOV that had been reached rather than half way. We found this worked slightly

worse in practice, as it resulted in the AOVs oscillating more.

D.2 Additional Plots

In this section we provide a variety of training curves produced by ALI-G+ in a

number of settings. We start by showing ALI-G+ ’s performance on the SVHN

data set where interpolation holds, see Figure D.1. The next few plots detail runs

of ALI-G+ on the slightly more challenging CIFAR-100 data set. In Figure D.2,

in contrast to 5.4 we show the behaviour of ALI-G+ both with and without data

augmentation. In Figure D.3 we show training curves when K = 10 to highlight

why K = 5 is preferred. Finally, we show the behaviour when using ALI-G+ to

train a ResNet18 (He et al., 2016) on the ImageNet data set in Figure D.4.
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Figure D.1: Curves produced by training a small ResNet on the SVHN data set
(Netzer et al., 2011) with the ALI-G+ optimiser. These results were produced with
η = 1.0, λ = 10−3. No data augmentation was used as is standard for SVHN. The
AOVs were updated every 40 epochs. The maximum step size η is selected for the
first 80 epochs. At epoch 80 the AOVs are increased to a point where the mean step
size decreases. This was followed by a sharp decrease in loss value over the next 20
epochs. This, in turn, results in the mean step size dropping further and becoming
zero for many batches. At epoch 120 the mean AOV value was significantly higher
than the mean loss value ℓz(w̄k) resulting in the majority of AOVs being decreased
in value during the update. The updated AOV values resulted in the maximum step
size being selected again for most batches. This causes the loss to increase sharply.
Finally, at epoch 160 the AOVs are increased again resulting in a similar behaviour
to that at epoch 80.
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Figure D.2: Curves produced by training a small ResNet on the CIFAR-100 data
set (Krizhevsky, 2009) with data augmentation with the ALI-G+ optimiser. These
results were produced with η = 0.1, λ = 10−3. The AOVs are updated every 40
epochs. The maximum step size η is selected for the majority of batches during the
first 120 epochs. For the remaining 140 epochs the step size was tailored to each
batch.
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Figure D.3: Curves produced by training a small ResNet on the CIFAR-100 data
set (Krizhevsky, 2009), again with data augmentation with the ALI-G+ optimiser,
however, we set K = 10. These results were produced with η = 1.0, λ = 10−4. The
AOVs are updated every 20 epochs. The maximum step size η is selected for the
majority of batches during the first 60 epochs. For the last 140 epochs the step size
was tailored to each batch. However, the accuracy does not improve significantly
during the last half of training. Due to the rapid AOV updates the mean AOV
stabilises at a suboptimally high value. This results in a small step size being used
on average, and thus little progress is made for the remainder of the training period.
This results in K = 10 achieving slightly worse accuracy than K = 5.
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Figure D.4: Curves produced by training a ResNet18 on the ImageNet data set (Deng
et al., 2009) with data augmentation with the ALI-G+ optimiser. These results
were produced with η = 1.0, λ = 10−4. The AOVs are updated every 18 epochs.
The maximum step size η is selected for the majority of batches during the first 36
epochs. For the remaining 54 epochs ALI-G+ tailors the step size to each batch.
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D.3 Additional Results

In this appendix we provide results for modified versions of ALI-G+ applied to

many of the image classification tasks detailed in Section 5.4.2 within the body of

the thesis. We state results for three additional values of K and for two version of

ALI-G+ that use a global step size instead of a per sample step size. These step

sizes are detailed below. The global AOV f̃k that aims to approximate f⋆ is updated

using the equations in Algorithm 4 with the the pointwise estimates ℓzt(w̄) replaced

with a global version f̃(w̄). Here we define Bt as the set of indices zt within the

batch at time t.

Global ALI-G+ variant 1 (GALIG1+)

γt ≜ max

{
min

{
η,
|Bt|

∑
zt∈Bt

[f(wt)− f̃k]

∥
∑

zt∈Bt
[∇wℓzt ]∥2

}
, 0

}
. (D.4)

Global ALI-G+ variant 2 (GALIG2+)

γt ≜ max

{
min

{
η,
|Bt|

∑
zt∈Bt

[ℓzt(wt)− f̃k]

∥
∑

zt∈Bt
[∇wℓzt ]∥2

}
, 0

}
. (D.5)

Results Table D.1 details the results of these experiments. ALI-G+ performs best

for K ∈ {5, 10}, with the accuracies falling away as K is increased or decreased out-

side this range. GALIG1+ performs similar to ALI-G+ , which indicates that using

a single global AOV could be sufficient in these settings. This could be a promising

direction for future work that would reduce the memory footprint. GALIG2+ per-

forms slightly worse than both ALI-G+ and GALIG1+. This suggests in the step

size mixing batch-wise and global estimates of the loss should be avoided, however,

further investigation is needed.
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SVHN CIFAR-10 CIFAR-100 Tiny ImageNet

Test Acc (%) Val Acc (%)

Data Aug No No Yes No Yes No Yes

ALI-G(K ≈ 1) 93.7 80.8 86.2 47.5 57.9 35.6 41.8

ALI-G+ (K = 3) 95.4 84.8 86.5 54.6 57.4 36.1 41.4

ALI-G+ (K = 5) 95.5 85.0 87.2 56.1 59.4 39.8 42.6

ALI-G+ (K = 10) 95.0 85.0 86.8 56.6 58.0 39.9 42.3

ALI-G+ (K = 20) 94.8 83.8 85.9 54.5 56.0 38.9 40.8

ALI-G+ (K = 5) 95.5 85.0 87.2 56.1 59.4 39.8 42.6

GALIG1+ (K = 5) 95.5 84.4 87.3 56.2 59.4 40.4 42.6

GALIG2+ (K = 5) 94.8 84.5 86.3 56.0 56.9 35.5 41.3

Table D.1: Accuracies for ALI-G (K ≈ 1) and ALI-G+ with K ∈ {3, 5, 10, 20}
on a selection of standard image classification data sets. ALI-G+ with K = 10
offers comparable results to K = 5, however, when K is increased to K = 20 the
performance becomes noticeably worse. We also show two results for two modified
versions of ALI-G+ with a global step size.
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D.4 Cross-Validation Hyperparameters

Here we specify the exact hyperparameters considered to generate Table 5.1.

Optimiser Step Size Regularisation

SGDStep η0 ∈ {0.1, 0.01} wd ∈ {0, 10−5, 10−4, 10−3}

SGDConst η ∈ {0.1, 0.01} wd ∈ {0, 10−5, 10−4, 10−3}
ALI-G ηmax ∈ {0.1, 0.01} r ∈ {0, 50, 100, 200}
SPS ηmax ∈ {1, 10, 100} ℓ2 ∈ {0, 10−5, 10−4, 10−3}
Adabound η ∈ {0.01, 0.001} wd ∈ {0, 10−5, 10−4, 10−3}
Adam η ∈ {0.01, 0.001} wd ∈ {0, 10−5, 10−4, 10−3}
AdamP η ∈ {0.01, 0.001} wd ∈ {0, 10−5, 10−4, 10−3}
Coin N/A ℓ2 ∈ {0, 10−5, 10−4, 10−3}
SLSArmijo N/A ℓ2 ∈ {0, 10−5, 10−4, 10−3}
SLSGoldstein ηmax ∈ {1, 10} ℓ2 ∈ {0, 10−5, 10−4, 10−3}
SLSPolyak N/A ℓ2 ∈ {0, 10−5, 10−4, 10−3}
PAL ηmax ∈ {1, 10} ℓ2 ∈ {0, 10−5, 10−4, 10−3}
ALI-G+ ηmax ∈ {0.1, 0.01} wd ∈ {0, 10−5, 10−4, 10−3}

Table D.2: Hyperparameters cross-validated in the experiments in Section 5.4.2. All
other hyperparameters were left at the default values as specified by the authors’ im-
plementation (PAL, SLS, SPS, Coin, AdamP , ALI-G, Adabound) or the PyTorch
implementation (SGD,Adam).

167



Appendix E

Appendix: Proofs of Theorems in

Chapter 7

E.1 Deviation of update

Lemma 15. The minimiser of equation (7.1) is given by:

wb
t+1 = Π[−1,1]

(
1

1− 2λtηt
(wb

t − ηt∇ℓzt(wb
t ))

)
,

wr
t+1 = wr

t − ηt∇ℓzt(wt).

Where Π[−1,1] is element-wise projection onto [−1, 1].

Proof. We first restart from equation (7.1):

argmin
w∈Ω

{ 1

2ηt
∥w −wt∥2 + ℓzt(wt) +∇ℓzt(wt)

⊤(w −wt)− λt∥wb∥2
}
.

where Ω ≜ [−1, 1]p ∪ Rd−p. As Ω is convex set we can solve the unconstrained

168
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problem then projecting onto Ω.

∂

∂w

(
1

2ηt
∥w −wt∥2 + ℓzt(wt) +∇ℓzt(wt)

⊤(w −wt)− λt∥wb∥2
)
, (E.1)

=
1

ηt
(w −wt) +∇ℓzt(wt)− 2λtw

b. (E.2)

Setting (E.2) to zero and rearranging gives:

0 =
1

ηt
(w −wt) +∇ℓzt(wt)− 2λtw

b. (E.3)

Next we consider wb and wr separately starting with wr:

0 =
1

ηt
(wr −wr

t ) +∇ℓzt(wr
t ), (E.4)

wr = wr
t − ηt∇ℓzt(wt). (E.5)

Considering wb:

0 =
1

ηt
(wb −wb

t ) +∇ℓzt(wb
t )− 2λtw

b, (E.6)

w − 2ηtλtw
b = wt − ηt∇ℓzt(wt), (E.7)

wb =
1

1− 2λtηt
(wb

t − ηt∇ℓzt(wb
t )). (E.8)

Thus projecting (E.8) to Ω using Π[−1,1] gives the desired result.

E.2 Proof of Theorem 4

Here we provide a proof for Theorem 4, this result follows the proof given in Bai

et al. (2019) and is well known in the proximal algorithms literature.

Theorem 4 (BNEW). We assume that f is β-smooth. Let F∗ ≜ minΩ Fλ(w). We

further assume that ηt = 1
2β
, ∀t and we have access to the batch gradient ∇f and
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λt = λ then if we use BNEW with updates (6.7) and (7.3) for T steps we have:

∥∇Fλ(wTbest
)∥2 ≤ Cβ(Fλ(w0)− F∗)

T
, (7.4)

where C > 0 is a constant and Tbest is defined as Tbest ≜ argmin1≤t≤T ∥wt −wt−1∥.

Proof. At each time step t we solve the following proximal problem:

wt+1 = argmin
w∈Ω

{ 1

2ηt
∥w −wt∥2 + f(wt) +∇f(wt)

⊤(w −wt) + λR(w)
}
. (E.9)

As wt+1 minimises the above objective we get:

Fλ(wt) ≜ f(wt) + λR(wt), (E.10)

≥ 1

2ηt
∥wt+1 −wt∥2 + f(wt+1) +∇f(wt)

⊤(wt+1 −wt) + λR(wt+1).

(E.11)

Now using smoothness of f :

Fλ(wt) ≥
(

1

2ηt
− β

2

)
∥w −wt∥2 + f(wt+1) +∇f(wt)

⊤(wt+1 −wt) + λR(wt+1).

(E.12)

Thus, we have the following recursive relationship:

Fλ(wt) ≥ Fλ(wt+1) +
β

2
∥wt+1 −wt∥2. (E.13)

Telescoping (E.14) for t = 0, ..., T − 1 we get:

Fλ(w0) ≥ Fλ(wT ) +
β

2

T−1∑
t=0

∥wt+1 −wt∥2. (E.14)
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Rearranging:

T−1∑
t=0

∥wt+1 −wt∥2 ≤
2(Fλ(w0)− Fλ(wT ))

β
≤ 2(Fλ(w0)− F∗)

β
. (E.15)

Therefore, we arrive at the proximity guarantee:

min
1≤t≤T

∥wt −wt−1∥ ≤
2(Fλ(w0)− F∗)

βT
. (E.16)

The first-order optimality condition for wt+1 gives:

∇f(wt) +
1

ηt
(w −wt)

2 +∇λtR(wt+1) = 0 (E.17)

Combining with (E.17) and the smoothness of ℓz:

∥∇Fλ(wt+1)∥ = ∥∇f(wt+1) + λR(wt+1)∥ (E.18)

= ∥∇f(wt+1)−∇f(wt)−
1

ηt
(w −wt)

2∥ (E.19)

≤
(

1

η
+ β

)
∥w −wt∥ = 3β∥w −wt∥ (E.20)

Inserting t = Tbest − 1 and applying (E.16), we obtain the desired result.

∥∇Fλ(wTbest
)∥2 ≤ 9β2∥wTbest

−wTbest−1∥2, (E.21)

∥∇Fλ(wTbest
)∥2 ≤ 9β2 argmin

1≤t≤T
∥wt −wt−1∥2 ≤

18β(Fλ(w0)− F∗)

T
. (E.22)
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