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Unravelling the structure of genotype–phenotype (GP) maps is an important
problem in biology. Recently, arguments inspired by algorithmic infor-
mation theory (AIT) and Kolmogorov complexity have been invoked
to uncover simplicity bias in GP maps, an exponentially decaying upper
bound in phenotype probability with the increasing phenotype descriptional
complexity. This means that phenotypes with many genotypes assigned via
the GP map must be simple, while complex phenotypes must have few
genotypes assigned. Here, we use similar arguments to bound the prob-
ability P(x→ y) that phenotype x, upon random genetic mutation,
transitions to phenotype y. The bound is Pðx ! yÞ & 2�a~KðyjxÞ�b, where
~KðyjxÞ is the estimated conditional complexity of y given x, quantifying
how much extra information is required to make y given access to x. This
upper bound is related to the conditional form of algorithmic probability
from AIT. We demonstrate the practical applicability of our derived bound
by predicting phenotype transition probabilities (and other related quan-
tities) in simulations of RNA and protein secondary structures. Our work
contributes to a general mathematical understanding of GP maps and may
facilitate the prediction of transition probabilities directly from examining
phenotype themselves, without utilizing detailed knowledge of the GP map.
1. Introduction
An important challenge within theoretical biology is understanding the struc-
ture of genotype–phenotype (GP) maps, which dictate how gene sequences are
translated into different biological forms, functions and traits, known as pheno-
types. Elucidating GP map structure is essential to a proper understanding of
evolution [1], because, while random mutations occur at the genetic level, the
effects of mutations occur at the level of the phenotype and therefore depend
on the GP map structure.

Several common properties of GP maps have been identified [2,3], such as a
strong bias in terms of how many genotypes are assigned to each phenotype [4–
7] and high degrees of robustness to genetic mutations [8–11]. Significantly, the
GP map structure has been shown to strongly influence the trajectories and out-
comes of evolution: computer simulations of the evolution of RNA secondary
structures (SS) [12,13], protein complexes [6,14], genetic circuits [15], among
others [16] have shown that even in the presence of natural selection the bias
arising from the GP map structure can influence and even dominate outcomes.
More significantly, for naturally occurring RNA shapes [9,12,17–22] and protein
quaternary structures [23], the frequency in nature of different molecular shapes
can be predicted from GP map biases. The way genotypes are associated with
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phenotypes via the GP map is also known to limit and con-
strain evolutionary accessibility of phenotypes [24–26].

Despite the importance of GP maps and the observed
common properties across a variety of example maps, the
theoretical underpinnings for these observations are not
well developed. A recent approach to mathematically study-
ing GP map structure is to use arguments inspired by
algorithmic information theory (AIT) [27–29], a field of compu-
ter science that studies the information content and
complexity of discrete patterns, structures and shapes.
Based on these arguments in [23,30,31], it was shown that
the estimated information content, or Kolmogorov complexity,
of a phenotype shape is closely connected to the probability
that the shape appears on random sampling of genotypes.
Moreover, high-probability phenotype shapes were shown
to be simple, and more complex shapes were exponentially
less probable, leading to the discovery of simplicity bias (SB)
in GP maps. Interestingly, this complexity approach has
enabled predicting the frequency with which biomolecule
shapes appear in databases of natural biomolecules [23,32].
More broadly, many studies have shown that employing
AIT as a theoretical framework combined with estimates of
Kolmogorov complexity can be fruitful in natural sciences.
Example applications include in thermodynamics [33–35],
understanding the regularity of the laws of physics [36],
entropy estimation [37,38], classifying biological structures
[39], evolution theory [40,41], networks [42,43], in addition
to data analysis [44–46] and time series analysis [47,48],
among others [49].

Here, we extend the earlier work on SB in GP maps by
utilizing information complexity arguments to predict pheno-
type transition probabilities: we use AIT as a theoretical
framework to derive probability–complexity relations to
make predictions about the probability P(x→ y) that pheno-
type y appears upon the introduction of a single random
genetic point mutation in a genotype coding for the pheno-
type x. We show that P(x→ y) is fundamentally related to
the conditional complexity of y given x, which measures
how much information is required to produce phenotype y
given access to x. We derive an upper bound equation and
test it computationally on models of RNA and protein
secondary structure, finding good quantitative accuracy.
2. Null models for transition probabilities
2.1. Problem set-up
We will focus on GP maps that have some large (finite)
number Ng of discrete genotype sequences, a large number
Np of possible phenotypes, each of which is designable (i.e.
has at least one genotype). Further, we will assume that
there are many more genotypes than phenotypes, such that
1≪Np≪Ng, which is a common property of well-studied
GP maps [3]. The GP map will be denoted f. The phenotypes
are assumed to be some kind of discrete pattern, sequence or
shape, or at least one that could be discretized. For example, a
protein quaternary structure can be represented as a discrete
graph of nodes [32], and a continuous chemical concen-
tration–time curve can also be discretized in a number of
ways [30]. We assume the map is deterministic, such that
each genotype maps consistently to only one phenotype.

As an example of such a GP map, we can take the RNA
sequence-to-secondary structure map for which a genotype
of length L featuring four nucleotides (A, U, C and G) has
Ng = 4L possible sequences. Also, Np∼ 1.8L [20] so that 1≪
Np≪Ng even for modest L, and the phenotypes can be rep-
resented as discrete sequences, because RNA SS are
commonly given in a dot-bracket form, consisting of a
string of L symbols defining the bonding pattern of the mol-
ecule. In contrast to this RNA example, we are not
considering GP maps with only few phenotypes, such as
whether a patient does or does not have cancer, for which
there are only two possible phenotypes, and ‘has cancer’ is
not a discrete pattern or shape.

We will write P(x) for the probability that phenotype x
appears when uniformly randomly sampling a genotype
out of the full collection of Ng genotypes. P(x) will be called
the global frequency of x. Although the average probability
will be 1/Np, possibly for some phenotypes P(x)≫ 1/Np

due to bias, and also possibly P(x)≪ 1/Np for some pheno-
types. The neutral set (NS) of x is the set of genotypes
that map onto x. If we pick one random genotype g
from the NS of x and make a random single-point muta-
tion such that we have a new genotype g0, we will call the
resulting phenotype y. It is possible that phenotypes x and
y are the same or different because g0 may possibly be in
the NS of x.

If x = y, then we designate the mutation as neutral. We will
define P(x→ y) as the transition probability that a randomly
selected genotype from the NS of x, upon a single random
mutation, yields the phenotype y. Note that we will still use
the word ‘transition’ even if x = y. A phenotype is called
robust to mutations if the probability that y = x is high, i.e.
the phenotype typically remains unchanged after a random
mutation. The high robustness of phenotypes to genetic
mutations is essential to life, and evolution (at least as we
know it) would not be able to proceed without it [8,50].
The origin of high robustness has been seen as something
of a mystery, however [50]. In addition, it has been noticed
in several GP maps that robustness scales with the logarithm
of the global frequency of a phenotype, as opposed to scaling
with the global frequency itself, which would be expected
from a random null model. The cause of this general logarith-
mic scaling is presently not fully explained, although an
abstract model of GP maps has been used to study this prop-
erty [51]. In a future study, we intend to look in detail at
robustness.

The problem of estimating P(x→ y) is the main focus of
this study, and in particular relating this quantity to the
relative information contents of x and y.
2.2. Null models of transition probability
How can we estimate the transition probability P(x→ y)? If
we have access to data recording the frequency of transitions
in simulations, then we could directly estimate P(x→ y) from
those data by counting the number of times x transitioned to
y as a fraction of all transitions starting with x. It may also be
possible to arrive at an estimate of P(x→ y) by examining
details of the map and the particular phenotype x. However,
what we are interested in here is a general method for pre-
dicting P(x→ y), that does not rely on using past frequency
data, or details of the map. Indeed, we are interested in gen-
eral properties of GP maps, which will both help to develop a
theory of GP maps and also be useful for other maps for
which we neither have data nor a clear understanding of
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exactly how the phenotype arises from the genotypes. In a
sense, we are interested in a priori prediction for P(x→ y),
which is based only on the patterns in x and y. At first
sight, this goal may not appear possible because P(x→ y)
will depend on the details of the map. However, we will
argue in this work that even without knowing details of
the map and without recourse to historical frequency data,
non-trivial predictions for the transition probabilities can be
derived. In another sense, we are interested in establishing
a good null model for P(x→ y), which could serve as a start-
ing point for predictions about transitions. In this connection,
we now consider some possible null models and weigh up
their merits.

Perhaps the simplest null model expectation is that the
transition probability is

Pðx ! yÞ ¼ 1
Np

, ð2:1Þ

which corresponds to a maximum entropy estimate, assign-
ing a uniform probability to each possible outcome y.
However, this has a limitation, which is that a common prop-
erty of GP maps is bias (described earlier), and so it seems
reasonable to expect some degree of non-uniformity in
P(x→ y). Further, the high levels of robustness discussed earl-
ier do not accord with this uniform distribution model. From
here onwards, we will assume that the distribution P(x→ y)
over the possible values of y is strongly non-uniform (biased).

Another simple null model for P(x→ y) was proposed in
[13],

Pðx ! yÞ � PðyÞ ð2:2Þ
for y≠ x. This null model prediction is correct if genotypes
are randomly assigned to phenotypes, with no correlations
between genotypes or phenotypes. While the approximation
in equation (2.2) is straightforward and was observed to
be quite accurate on average [13], it also has limitations.
Firstly, as pointed out in [30], many GP maps have fixed
and somewhat simple rule-sets by which genotypes are
assigned to phenotypes (technically, they are O(1) complexity
maps). Hence, these maps do not randomly assign geno-
types, but assign them with a definite structure and
pattern, which is likely to produce some clear patterns in gen-
otype architecture. Secondly, it is intuitively reasonable that
phenotype x will transition to some y, which is similar or
even the same as x. The logic being that one single-point
mutation represents a small change to the genotype, and
consequently, a small change to the phenotype appears to
be a rational null assumption. Of course this assumption
that GP maps are roughly ‘continuous’ in the mathematical
sense of the word does not always hold, because some
(well-chosen) mutations may drastically change the pheno-
type, but nonetheless the assumption has intuitive appeal
and may typically hold. Greenbury et al. [50] have also
suggested that transitions are more likely to be similar pheno-
types (with the caveat that it must be possible for enough
genotypes to be sampled), arguing via genetic correlations
in GP maps. Hence, equation (2.2) has limitations as a
null model.

To improve on equation (2.2), we would like to incorpor-
ate the ‘similar phenotypes’ notion in a formal way, which
will lead to a new null model that we propose. To do this,
we first need to survey some pertinent theoretical
background.
3. Algorithmic information theory
3.1. Kolmogorov complexity
Developed within theoretical computer science, algorithmic
information theory [27–29] (AIT) connects computation, com-
putability theory and information theory. The central
quantity of AIT is Kolmogorov complexity, K(x), which
measures the complexity of an individual object x as the
amount of information required to describe or generate x.
More formally, the Kolmogorov complexity KU(x) of a
string x with respect to a universal Turing machine (UTM)
[52] U, is defined [27–29] as follows:

KUðxÞ ¼ min
p
fjpj :UðpÞ ¼ xg, ð3:1Þ

where p is a binary program for a prefix (optimal) UTM U
and |p| indicates the length of the (halting) program p in
bits. Due to the invariance theorem [49] for any two optimal
UTMs U and V, KU(x) =KV(x) +O(1) so that the complexity of
x is independent of the machine, up to additive constants.
Hence, we conventionally drop the subscript U in KU(x)
and speak of ‘the’ Kolmogorov complexity K(x). Despite
being a fairly natural quantity, K(x) is uncomputable, mean-
ing that there cannot exist a general algorithm that for any
arbitrary string returns the value of K(x). Informally, K(x)
can be defined as the length of a shortest program that pro-
duces x, or simply as the size in bits of the compressed
version of x. If x contains repeating patterns like x =
1010101010101010, then it is easy to compress, and hence,
K(x) will be small. On the other hand, a randomly generated
bit string of length n is highly unlikely to contain any signifi-
cant patterns and hence can only be described via specifying
each bit separately without any compression, so that
K(x)≈ n bits. K(x) is also known as descriptional complexity,
algorithmic complexity and program-size complexity, each of
which highlights the idea that K(x) measures the amount of
information required to describe or generate x precisely and
unambiguously.

An important quantity for our present investigation is the
conditional complexity, K(y|x), defined as follows:

KðyjxÞ ¼ min
p
fjpj :Uðx, pÞ ¼ yg, ð3:2Þ

i.e. the minimum length of a program p such that a UTM U
generates string y, given x and p as an input. Less formally,
K(y|x) quantifies how many bits of information are required
to generate y, given that we have access to x.

More details and technicalities can be found in standard
AIT references [49,53–55] and a book aimed at natural
scientists [56].

3.2. Algorithmic probability
In AIT, Levin’s [57] coding theorem establishes a fundamen-
tal connection between K(x) and probability predictions.
Building on Solomonoff’s discovery of algorithmic probability
[27,58], Levin’s coding theorem [57] states that

PðxÞ ¼ 2�KðxÞþOð1Þ, ð3:3Þ
where P(x) is the probability that (prefix optimal) UTM U
generates output string x on being fed random bits as a pro-
gram. Thus, high-complexity outputs have exponentially low
probability, and simple outputs must have high probability.
P(x) is also known as the algorithmic probability of x.
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The conditional coding theorem [59] states that the prob-
ability P(y|x) of generating string y with UTM U given
access to string x as side information is expressed as follows:

PðyjxÞ ¼ 2�KðyjxÞþOð1Þ: ð3:4Þ
Notice that outputs with high probability here must have low
conditional complexity K(y|x). To have K(y|x) low means
that either y is simple itself, or it is similar to x. To see this,
consider that if y is simple, then K(y) is low, then so too is
K(y|x), hence P(y|x) is high. Also, if y is similar to x—e.g.
they share common subsequences—then K(y|x) will be low,
and P(y|x) will be high.

3.3. Simplicity bias
Equation (3.3) as well as many other AIT results cannot be
straightforwardly applied to typical natural systems of inter-
est in engineering and sciences due to the fact that (i)
Kolmogorov complexity is uncomputable and so cannot be
calculated exactly; (ii) the theory is asymptotic, valid only
up to O(1) terms; (iii) the theory is largely based on UTMs,
which are seldom present in nature; and (iv) the coding the-
orem assumes infinite purely uniform random programs,
which do not exist in nature.

Despite these points, several lines of reasoning motivate
using AIT to make predictions while being aware of the limit-
ations of this practice. We call this kind of theoretical work
‘AIT-inspired’ arguments. See electronic supplementary
information III (A and B) for more discussion on this.

Adopting the methodology of AIT-inspired arguments,
Dingle et al. [30] studied coding theorem-like behaviour and
algorithmic probability for (computable) real-world input–
output maps. This led to their observation of SB, governed
by the following equation:

PðxÞ � 2�a~KðxÞ�b, ð3:5Þ
where P(x) is the (computable) probability of observing
output x on random choice of inputs, and ~KðxÞ is the approxi-
mate Kolmogorov complexity of the output x. In words, SB
means complex outputs from input–output maps have
lower probabilities, and high probability outputs are simpler.
The constants a > 0 and b can be fit with little sampling and
often even predicted without recourse to sampling [30].

Examples of systems exhibiting SB are wide ranging and
include molecular shapes such as protein structures and RNA
[23], outputs from finite-state machines [31], as well as
models of financial market time series and ordinary differen-
tial equation (ODE) systems [30], among others. A full
understanding of exactly which systems will, and will not,
show SB is still lacking, but the phenomenon is expected to
appear in a wide class of input–output maps, under fairly
general conditions. See electronic supplementary material
III (C) for more on this.
4. Simplicity bias in transitions
4.1. Simplicity bias: conditional form
Just as for the original coding theorem, the conditional
coding theorem in equation (3.4) cannot be directly applied
to practical real-world systems, such as making estimates
for phenotype transition probabilities. So we derive (elec-
tronic supplementary material III (D and E)) a conditional
form of the SB equation equation (3.5), which we sub-
sequently apply to phenotype transition probabilities: The
conditional form is

Pðx ! yÞ � 2�Kðyjx,fÞþOð1Þ: ð4:1Þ

4.2. Complexity of the genotype–phenotype map
The complexity of the GP map f is an important quantity. If
the map f is allowed to have a high-complexity value, then
f could be chosen such that P(x→ y) takes arbitrary values,
and hence, it will be very hard to predict transition probabil-
ities. Fortunately, many GP maps are not random, but in fact
have simple (low-complexity) fixed rule-sets for determining
how genotypes are assigned to phenotypes [30]. See elec-
tronic supplementary material III (F) for more details.

If we restrict our attention to GP maps for which f is of
fixed complexity, i.e. K( f ) =O(1), then this means that K(y|
x, f )≈K(y|x) so that equation (4.1) becomes

Pðx ! yÞ � 2�KðyjxÞþOð1Þ, ð4:2Þ
and we see that this upper bound depends only on the
phenotypes x and y. So the complexity of the map f is an
important quantity which either does or does not allow
predictions to be made just using conditional complexities.

4.3. Approximation of the upper bound
Because Kolmogorov complexity is uncomputable, in
practice, we use approximations, such as real-world com-
pression algorithms [49] (see also electronic supplementary
material III (B) for more on this). Following the approxi-
mation and scaling arguments of [30], we can write an
approximate form of equation (4.2),

Pðx ! yÞ & 2�a~KðyjxÞ�b, ð4:3Þ
which is a weaker form of the full AIT conditional coding
theorem [59] given in equation (3.4). The term ~KðyjxÞ is an
approximation of the conditional Kolmogorov complexity
K(y|x), which we will calculate according to the Lempel–
Ziv [60] complexity estimate used earlier [30,31] and also
scale the complexity values so that 0 & ~KðyjxÞ & log2ðNpÞ as
described in the methods in electronic supplementary
material I (A). To estimate the conditional complexity
~KðyjxÞ, we employ the approximation (as used earlier [61])
that

~KðyjxÞ � ~KðxyÞ � ~KðxÞ, ð4:4Þ
where ~KðxyÞ is the compressed length of the concatenation of
strings x and y. For example, if x ¼ ABC and y ¼ XY, then
xy ¼ ABCXY. Note that for true prefix Kolmogorov complexity,
the relation K(y|x)≈K(x, y)−K(x) only holds to within logar-
ithmic terms [49], but that is close enough for our purposes.
Note that the terms K(x, y) and K(xy) are quantitatively
very close, especially if the lengths of x and y are the same.
Hence, we make the approximation that they are equal.

The constant a may depend on the map, but not on the
phenotype x. If the complexity ~KðyjxÞ is scaled properly (elec-
tronic supplementary material I (A)), then a = 1 is the default
prediction. Otherwise, a might have to be fit to the data. The
main requirement for scaling properly is having a reasonably
accurate estimate of the number Ny(x) of phenotypes y such
that P(x→ y) > 0, i.e. the number of accessible phenotypes
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via a single-point mutation from x. If Ny(x) is known a priori
or can be estimated a priori, then Ny(x) can be used for a priori
prediction of P(x→ y). Otherwise, if random genotype
sampling is employed, then simply counting the number of
different y phenotypes observed in sampling is one way to
estimate Ny(x). Naturally, this counting method will be
more accurate for larger samples and may produce very
low underestimates of Ny(x) for small sample sizes.

The constant b has default value b = 0 [30], but can also be
found by fitting to the data if necessary. Looking at the
examples of SB presented in the literature to date, it appears
that b = 0 often works very well.

It follows that in practice, provided some reasonable esti-
mate of the number of accessible phenotypes Ny(x) is known
and hence complexities are scaled well, then equation (4.3)
reduces further to the practically applicable relation

Pðx ! yÞ & 2�~KðyjxÞ ð4:5Þ
allowing transition probabilities to be made just based on
phenotype conditional complexities.
0220694
4.4. The bound is close with high probability
On the basis of arguments in [31], we expect the upper bound
equation (4.3) (and also equation (4.5)) to be tight for x, y
pairs, which are generated by random genotypes. That is,
for a phenotype x generated by a random genotype, and y
subsequently arising from a random mutation, we expect
Pðx ! yÞ � 2�a~KðyjxÞ�b with high probability, as opposed to
the right-hand side being only a loose upper bound.

On the other hand, the ubiquity of low-complexity, low-
probability outputs [31,62] suggests that for many y we
may have Pðx ! yÞ � 2�a~KðyjxÞ�b. Such phenotypes y are
those that have low conditional complexity, yet at the same
time appear with low probability due to map-specific con-
straints and biases. See [62] for an in-depth discussion of
this low-complexity, low-probability phenomenon.
4.5. Size of the genotype alphabet and number of
mutations

For the bound of equation (4.3) to have stronger predictive
value on point mutations, we suggest that the size of the
genotype alphabet α should be small. This is not a very oner-
ous condition and is in fact quite naturally satisfied. Further,
the number of mutations should be approximately 1. See elec-
tronic supplementary material III (G) for more on these
conditions.
4.6. When is P( y) a good predictor of P(x→ y)?
From AIT, we know that almost all pairs of phenotypes x and
y share almost no information, in other words, K(x, y)≈
K(x) +K(y), so that

KðyjxÞ � KðyÞ: ð4:6Þ
From this, we can infer that for almost all pairs of phenotypes
x and y, the conditional complexity K(y|x) in equation (4.1)
can be replaced with just K(y), and so the equation becomes

Pðx ! yÞ & 2�KðyÞ ð4:7Þ
for almost all y.
The preceding argument suggests that for most outputs y,
the phenotype x may be largely irrelevant in estimating the
probabilities P(x→ y). However, this statement comes with
the caveat that nearly all the probability mass is likely to be
associated with only a small fraction of the possible outputs,
and those for which K(y|x) is low. See electronic supplemen-
tary material III (H) for more discussion and details.
4.7. Predicting which of P(x→ yi) or P(x→ yj) is
higher

Another quantity that may be predicted using the preceding
theory is the ratio of probabilities for transitioning from one
phenotype to different alternative phenotypes. In this section,
we describe a method for such predictions, which we test
numerically below.

Call yi the resulting phenotype after a single-point
mutation to a randomly chosen genotype in the NS of x.
Call yj the resulting phenotype after a single-point mutation
to another independently chosen random genotype, also
in the NS of x. We can use the preceding theory to pre-
dict which of the two phenotypes yi and yj has a higher
probability directly from complexity estimates. This is inter-
esting because it is often valuable to know whether P(x→
yi) > P(x→ yj) or P(x→ yi) < P(x→ yj), rather than trying to
guess the exact values of P(x→ yi) and P(x→ yj). Fortunately,
constants a and b are not required for predicting this via
equation (4.3) because only the relative values of ~KðyijxÞ
and ~KðyjjxÞ determine whether 2�a~KðyijxÞ�b or 2�a~KðyjjxÞ�b is
larger. So even if we could not estimate a or b accurately,
we could still make a prediction about which phenotype
is more likely to arise through a point mutation of x. See
electronic supplementary material I (B) for more details.
4.8. Predicting P(x→ yi)/P(x→ yj) ratios
Beyond predicting which has higher probability, we can
also try to predict the value of the ratio of probabilities of
transitioning from one phenotype to different alternative
phenotypes. The ratio is also related to how confident we
are in predicting which of the probabilities P(x→ yi) and
P(x→ yj) is higher: a higher ratio means more confidence in
the prediction.

Because both yi and yj are randomly generated, we expect
both P(x→ yi) and P(x→ yj) to be close to the bound of
equation (4.3), with high probability [30,31]. Therefore we
can use an approximate equality assumption to predict the
ratio as follows:

Pðx!yiÞ
Pðx!yjÞ � 2�a~Kðyi jxÞ�b

2�a~Kðyj jxÞ�b ¼ 2�a~KðyijxÞ=2�a~KðyjjxÞ

) log10
Pðx!yiÞ
Pðx!yjÞ � a log10ð2Þð~KðyjjxÞ � ~KðyijxÞÞ

9=
;, ð4:8Þ

where b is irrelevant, so that even if b is not known, the pre-
diction is unaffected. Recalling from earlier that we set a = 1
yields log10ð2Þð~KðyjjxÞ � ~KðyijxÞÞ as the predictor for the
log10 ratio of the probabilities. If the scaling is not done
correctly, then a≠ 1, and therefore, the predictor will not be
as accurate, but instead off by a constant factor. In this case,
we still have a relative measure of how confident we
are about the prediction, where larger values of log10ð2Þ
ð~KðyjjxÞ � ~KðyijxÞÞ are associated with higher-confidence
predictions.
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4.9. Distribution of conditional complexities
Equation (4.3) states that higher-probability phenotypes must
have low conditional complexity, so in this sense, we have
derived a ‘conditional simplicity bias’. A related but different
question is, upon choosing a random genotype in the NS of x,
and introducing a random mutation, what conditional com-
plexity value is most likely? More generally, what kind of
distribution should we expect for K(y|x)? This is not a trivial
question, because on the one hand, the upper bound on tran-
sition probabilities decays exponentially with increasing K(y|
x), which would suggest that lower complexities are more
likely. On the other hand, from AIT, we expect the number
of patterns with higher complexity to grow exponentially
with increasing complexity and hence increase with K(y|x),
which would suggest that higher complexities are more
likely. However, how the actual number of conditional com-
plexities grows for a specific GP map system may not reflect
the AIT expectation exactly.

In [23] (see also [48]), it was argued that to a first approxi-
mation, these two exponential trends should cancel each
other out, leading to a ‘flat’ complexity distribution. On the
basis of these arguments, we suggest that perhaps a flat distri-
bution will also be seen for K(y|x). Predicting the distribution
of complexities is somewhat difficult due to the fact that for a
‘flat’ distribution the two exponential trends must precisely
cancel out, while exponential trends can easily magnify small
errors in approximation. The distribution of complexities
should be investigated in the future work.
5. Empirical phenotype transition probabilities
5.1. Main predictions
Before analysing some example GP maps, we recap the main
predictions and equations discussed in this work:

(a) High transition probabilities P(x→ y) will be associated
with phenotypes which either are similar to x or are
very simple.

(b) Transition probabilities will conform to the upper bound
Pðx ! yÞ & 2�a~KðyjxÞ�b as shown in equation (4.3), with
a = 1 and b = 0 as default expectations.

(c) Some phenotypes will have probabilities close to the
upper bound, while many may be low-complexity, low-
probability outputs far below the bound.

(d) For most phenotypes y, K(y|x)≈K(y) and especially if
K(x) is low, but K(y|x)≪ K(y) for some y.

(e) We can predict which of the two phenotypes is more
likely to arise just by comparing their conditional com-
plexities, betting on the simpler one having higher
probability.

(f ) We can predict the actual ratio of these two probabilities.

In the following sections, we computationally test the
applicability of these predictions to RNA and protein SS.

5.2. Computational experiment: RNA secondary
structure

RNAs are important and versatile biomolecules that act as
information carriers, catalysts and structural components,
among other roles. Similarly to DNA, RNA is composed of a
sequence of nucleotides, which can contain four possible
nucleobases, A, U, C and G. RNA molecules typically fold
up into well-defined SS, which denote bonding patterns in
the molecule. The SS shape is determined by the underlying
sequence, but at the same time, the sequence-to-SS map is
highly redundant with many different sequences adopting
the same SS. RNA SS has been very well studied in biophysics
and computational biology because it is a biologically relevant
system, but at the same time, fast and accurate computational
algorithms exist for predicting SS from sequences. Here, we
use the popular Vienna RNA [63] package for predicting SS,
which utilizes a thermodynamics-based algorithm.

To test our predictions, we randomly generated an RNA
sequence of length L = 40 nucleotides and computationally
predicted its SS .(((...)))..((((.((..((....)).

))))))...., which we will denote by x. We chose L = 40
because computational efficiency requires a comparatively
short sequence, but on the other hand, complexity–probability
connections aremore pronounced for longer RNA [30]. To esti-
mate P(x→ y), we need to generate a large sample of
sequences within the neutral space of x, that is, different
sequences that each have x as their SS. To generate the
sequences, we used the site-scanning method of [64]. After-
wards, we introduced a single random point mutation for
each neutral sequence and recorded the resulting SS. More
details are given in the methods described in electronic
supplementary material I (C).

Figure 1a shows the highest-probability SS for each con-
ditional complexity value found in the dataset generated in
this way, as well as the estimated probability of transitioning
from the starting phenotype x to all of these alternative pheno-
types. In figure 1b, we see that, as expected, there is strong bias
in transition probabilities with a decay in the upper bound to
P(x→ y). The black line is a fit to the data (a = 1.1 and b = 0)
added to highlight the upper bound. Figure 1b also shows
the predicted upper bound (red line) based on a = 1 and b =
0; this prediction is impressive, given that it is based on just
the output complexities themselves. Note that there are several
low-probability structures for which our measure ~KðxjyÞ gives
zero, even though they are slightly different to the reference
structure. This is most likely caused by two effects: firstly, by
the lack of very fine resolution in our approximate complexity
measure, and secondly, by our neglecting the O(1) terms.
Figure 1c presents the same data as figure 1b, except that the
horizontal axis is ~KðyÞ instead of ~KðyjxÞ, and it is apparent
that ~KðyÞ does not provide a good predictor of the probabil-
ities. This demonstrates that the conditional complexities are
needed, not just the complexity ~KðyÞ. Figure 1d is a scatter
plot of ~KðyÞ vs ~KðyjxÞ and, as expected, there is a linear (but
noisy) correlation between these two quantities (Pearson r =
0.64, p-value < 10−6). It is also interesting to see that, as
expected, a small number of phenotypes have conditional
complexities ~KðyjxÞ much lower than the unconditional com-
plexity ~KðyÞ and those tend to be the higher-probability
outputs (as can be seen from the colouring of the datapoints
by log probability).

Turning to the prediction of which of two phenotypes has
higher probability, we find that with probability-weighted
sampling, the accuracy is a striking 86%, and with uniform
sampling, the rate is still impressive at 79%. (Recall that
probability-weighted sampling refers to when genotypes
are uniformly randomly sampled, and hence phenotypes
appear with frequencies according to their probabilities.
Uniform sampling refers to when each phenotype is sampled
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Figure 1. RNA secondary structure transition probabilities for a sequence of length L = 40 nucleotides. The starting phenotype is
x ¼ :ððð:::ÞÞÞ::ðððð:ðð::ðð::::ÞÞ:ÞÞÞÞÞÞ:::: and transitions result from choosing random genotypes in the NS of x, and introducing a single random mutation
to each genotype. (a) Table illustrating the highest-probability SS for each conditional complexity value. The starting phenotype x is marked with an asterisk (*), and
P(x→ y) is just the robustness since x = y. (b) Transition probabilities P(x→ y) decrease exponentially with increasing conditional complexity ~KðyjxÞ, upper bound
of equation (4.3) depicted in black. The highest-probability SS is the same phenotype as x. The predicted upper bound (red) and fitted bound (black) are close.
(c) The unconditional complexity ~KðyÞ does not predict the transition probabilities well. (d ) ~KðyjxÞ � ~KðyÞ for most y, leading to a positive linear correlation
between values, compared with equation (4.6). (e) Ratios of probabilities correlate strongly with differences in conditional complexity, partially according with
equation (4.8). ( f ) The histogram of conditional complexity values shows a roughly flat distribution (on a log scale), but with some slight bias towards simplicity.
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with equal probability.) Extending this, figure 1e depicts not
just predictions of which is higher, but of the ratios them-
selves. Although the fit does not match the x = y prediction
line, there is nonetheless a strong correlation (Pearson r =
0.91, p-value < 10−6) between the ratios of the probabilities
and the differences in complexities. This means that although
the slope is not very well predicted, the expected close con-
nection between the complexity values and the probabilities
holds. Recall that the inaccuracy in the slope predictions for
figure 1b,e results primarily from a lack of precision in esti-
mating the value of a, which depends on knowing the
number of possible phenotypes y such that P(x→ y) > 0.
The fact that the actual slope is flatter than the predicted
one is presumably due to the following: the value of
log10ð2Þð~KðyjjxÞ � ~KðyijxÞÞ will be large when yj is (con-
ditionally) complex and yi is simple. Therefore, yj is
unlikely to be far from the upper bound, while very simple
phenotypes can be very far from the upper bound, compared
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with the low-complexity, low-probability phenomenon
[31,62]. Hence, the value of P(x→ yi)/P(x→ yj) is likely to
be an underestimate, rather than an overestimate, which
will tend to make the slope flatter.

Finally, figure 1f presents a histogram of conditional com-
plexities, showing that their distribution is roughly flat on a
log scale as tentatively predicted, but it also exhibits some
mild bias towards lower-complexity phenotypes.

In electronic supplementary material II, we numerically
study the impact of the complexity of the starting phenotype
x, showing that the mean value in the difference between
~KðyjxÞ and ~KðyÞ is small for simple x as expected and
grows for more complex x. Further, in electronic supplemen-
tary material IV, we provide an additional example RNA plot,
depicting results similar to those shown in figure 1.

5.3. Computational experiment: protein secondary
structure

Proteins are biomolecules that form the fundamental building
blocks of organisms. A protein is composed of one or more
macromolecular chains, that in living organisms, it typically
contains 20 types of amino acid residues. Similar, to RNA,
a protein will fold into a particular spatial structure, which
is determined by the specific amino acid sequence. There is
redundancy in that many different sequences can have the
same fold [65]. The overall three-dimensional arrangement
of a protein’s polypeptide chain in space is known as its ter-
tiary structure, while protein SS refers to the local
conformation of the polypeptide backbone. SS is a key to
protein folding [66], and the genotype-to-phenotype map
between primary and secondary structure has not received
much attention in the literature to date. At the level of
detail, we are concerned with determining that a protein’s
SS is equivalent to specifying whether each amino acid resi-
due in the chain is involved in a coil (C), sheet (E) or helix
(H ) structure. Hence, the SS of a protein of length L is also
a sequence of length L, but with only three possible letters
(C, E, H ) at each site.

Predicting the full three-dimensional structure of a
protein was until recently an open problem, but it is now
feasible via machine learning algorithms such as AlphaFold
[67]. However, it remains very computationally taxing and
potentially unreliable for sequences not related to the natural
sequences used to train the underlying machine learning
algorithm. In contrast, the machine learning-based Porter 5
algorithm provides accurate and relatively fast predictions
of protein SS [68]. Predicting the structure of mutants remains
challenging both for algorithms such as AlphaFold [69] and
for SS ones like Porter 5. Here, we make the implicit assump-
tion that Porter 5 captures the large-scale properties of the
mapping between protein primary and secondary structure
sufficiently accurately that our computational study grants
insight into the system. Such insight is particularly valuable
considering that it is impractical to survey a similar number
of mutants experimentally.

Like with the RNA example, choosing the length L of the
protein under study is a balance between computational cost
and accuracy: if longer proteins are used, then the number of
possible SS grows exponentially, making it hard to get accu-
rate estimates of probabilities, as the latter require the same
SS to appear multiple times. On the other hand, very short
proteins are less biologically relevant, and the complexity
measures and theory are expected to work worse for them
than for longer sequences. Here, we balance these consider-
ations by studying a complementarity-determining region
(CDR) with L = 20, specifically CDRH3 from the heavy
chain of a human monoclonal SARS-CoV antibody (Protein
Data Bank (PDB) [70] ID: 6WS6 [71]). Antibody complementar-
ity-determining (hypervariable) regions are critical in the
recognition of antigens and extreme sequence variation in
them allows antibodies to bind to a nearly limitless range of
antigens. The particular antibody under the study potently
neutralizes the SARS-CoV-2 virus [72]. The CDRH3 region is
especially important for antigen recognition [73,74], and its
conformation is not restricted to a small set of canonical struc-
tures, unlike those of the other CDRs [73–75]. Note also that
because Porter 5 is a machine learning-based algorithm, it is
only expected to be accurate for sequences similar to natural
sequences on which it was trained. Hence, the need to use a
naturally occurring protein, rather than a completely random
sequence, for which Porter 5 may yield inaccurate SS predic-
tions. The SS predicted by Porter 5 for the chosen CDRH3 is
x ¼ EEECCCCCCCCCCCCCCCCC, and this SS was highly accurate
(85%) when compared with experimentally derived SS,
EEECCCCCCCCCCCCCCEEE. We used site scanning [64] to gen-
erate a large number of different sequences within the neutral
space of x. We then generated all mutant sequences reachable
via a point mutation in DNA for a subset of the sample of
neutral genotypes and used Porter 5 to predict their SS (more
details in electronic supplementary material I (D)).

Figure 2a shows the most frequent SS for each conditional
complexity value found in the dataset generated via site scan-
ning, as well as the estimated probability of transitioning
from the starting phenotype x to all of these alternative
ones. In figure 2b, we see a strong bias in transition probabil-
ities with a linear decay in the upper bound to P(x→ y), as
predicted. The black line is a fit to the data (a = 1.6 and
b =−2), added to highlight the upper bound. Figure 2b also
shows the predicted upper bound based on a = 1 and b = 0
(red line); this prediction is useful, but not as accurate as
for RNA L = 40. Figure 2c presents the same data as shown
in figure 2a, except that ~KðyÞ is on the horizontal axis instead
of ~KðyjxÞ. Interestingly, ~KðyÞ is quite similar to ~KðyjxÞ, which
is probably due to the fact that the original starting pheno-
type x is very simple (electronic supplementary material II).
The scatter plot of ~KðyÞ vs ~KðyjxÞ in figure 2d shows that, as
expected, there is a linear correlation between these two
quantities (Pearson r = 0.87, p-value < 10−6). It is interesting
that the correlation is stronger than for the RNA example,
and this again can be rationalized by the fact that x is very
simple. There do not appear to be any phenotypes for
which ~KðyjxÞ is much smaller than ~KðyÞ. With probability-
weighted sampling, the accuracy of predicting which of
two phenotypes has higher probability is very high at 79%,
and with uniform sampling is 77%. Figure 2e shows predic-
tions for the ratio of the probabilities for transitioning to
different phenotypes versus the difference between their
estimated complexity in log scale. The latter displays a
strong correlation (Pearson r = 0.93, p-value < 10−6). Finally,
figure 2f presents a histogram of conditional complexities,
showing a stronger bias towards lower-complexity pheno-
types than the data for RNA. In electronic supplementary
material IV, an additional electronic supplementary
figure shows accurate predictions for another protein SS
example.
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6. Discussion
We have studied the problem of predicting the probability of
transition between phenotypes x and y, P(x→ y), from the
perspective of algorithmic information theory (AIT), and
specifically algorithmic probability estimates. We derived
an upper bound on P(x→ y), which depends on the con-
ditional complexity of phenotype y given x. The derivations
were motivated by the observation that the assignment of
genotypes to phenotypes is highly structured, and the expec-
tation that the constraints of information theory should
therefore have predictive value in genotype-to-phenotype
maps. Upon testing our various predictions on RNA and
protein secondary structure examples, we found good quan-
titative agreement between the theory and the simulations.

The benefit of developing this theoretical approach is that it
allows predictions to bemade about transition probabilities for
GP maps in which only phenotypes are observed and little or
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no knowledge about themap is available. This approach is also
relevant to uncovering general common properties of
GP maps, which are important for the advancement of the
currently underdeveloped field of theoretical biology [76].

In this study, we restricted our attention to one aspect of
the structure of the GP, without including evolutionary
dynamic effects resulting from mutation rates, strength of
selection, population size or others that would be relevant
in biology. Therefore, we leave these to the future work. It
is interesting, however, that studies of natural RNA shapes
[21,22] and the shapes of protein complexes [23] have
shown that GP map biases alone can be very good predictors
of natural biological shape frequencies (see also [41,77–79] for
more on different types of biases and evolutionary out-
comes). Therefore, it may be that the transition probability
biases discussed here, resulting from conditional complexity
constraints, are strong enough that their stamp is still obser-
vable even in natural data. We suggest that an interesting
follow-on study to ours would be to test this with natural
bioinformatic databases.

In this study, we have tested our transition probability pre-
dictions on two biologically important GPmaps, namely, RNA
and protein sequence-to-structure maps. However, in these GP
maps, the connection between genotypes and phenotypes is
quite direct and fairly simple. Furthermore, for computational
reasons, we studied only short RNA and proteins. In biology,
many GP maps have a less direct connection between geno-
types and phenotypes, and it remains a possibility that our
probability predictions do not work well for such complicated
maps. We leave the exploration of the limits of applicability of
our theory for future work. Having said this, it is noteworthy
that other researchers have empirically observed a tendency
for genetic mutations to favour simpler morphologies, specifi-
cally in teeth [80], embryo [81] and leaf shapes [82]. We believe
that our results help rationalize these observations within a
general theoretical framework. In addition, these empirical
observations made in the context of complicated and realistic
biological maps may suggest that our theory can be applied
in more complex GP maps.

Another area of potential applicability of our transition
probability predictions is in genetic algorithms for optimiz-
ation. Indeed, Hu et al. [83], as well as others [84,85], have
studied optimization problems and shown that some target
phenotypes are harder to find than others, not only because
of having a low global frequency but also due to local muta-
tional connections. In the future work, it would be
interesting to assess if thesemutational connections are related
to conditional complexity, as our theory would suggest.

Robustness to genetic mutations is an important property
for organisms [8], but a general explanation for the high levels
of robustness observed in GP maps has been lacking [50]. Our
information theory perspective here relates to this question
because we have seen that transitions to phenotypes which
are similar to the starting phenotype tend to have high prob-
ability, and of course, a phenotype is most similar to itself.
We intend to explore this in detail in a forthcoming study.
Other authors have used information theory for non-
UTMs to derive some results which are related to the ones
we derived here. For example, Calude et al. [86] developed
bounds for finite-state machines (the simplest computing
devices), and moreover, Merhav and Cohen [87] have derived
similar probability bounds to ours directly in terms of
Lempel–Ziv complexity. It would be interesting to see if
these calculations for non-UTMs could be extended to GP
maps. In electronic supplementary material III (A), we
discuss in more detail the use of AIT arguments in science.

While the upper bound from equation (4.3) appears to
work well in the simulations presented here, a main weak-
ness in our predictions is that many phenotypes that have
low conditional complexities ~KðyjxÞ also have low probabil-
ities. Because these phenotypes fall far below the upper
bound, their precise probabilities are not well predicted by
the theory. These low-complexity, low-probability patterns
have been described as having low absolute information con-
tent, but due to map-specific biases, they are ‘hard’ for the
map to make and hence have low probability [31]. The ori-
gins and nature of these types of patterns have been
recently studied [62], but a full understanding of them and
knowledge regarding how to improve probability predictions
of these have not yet been achieved. Despite the challenge
of low-complexity, low-probability patterns, we were still
able to make high-accuracy upper bounds on phenotype
probabilities as well as high-accuracy (approx. 80%) predic-
tions about which of two phenotypes is more likely, just
using complexity values.

The quantitatively accurate predictions we describe here
motivate further investigation of the use of AIT-inspired
predictions in biology, evolution and other natural sciences.
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