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This thesis contains two chapters. They can be read independently and

they are concerned with quite distinct aspects of model theory. Nevertheless,

these two chapters are connected at a fundamental level via stability theory in

Hilbert spaces and the use of model theory at the level of individual formulas

to find meaningful structure inside analytical and combinatorial objects. This

brief introduction aims to clarify the connections between the two chapters

and to highlight the fundamental motivations behind each project. Detailed

introductions to each project are given at the start of each chapter.

The first chapter uses stability theory in Hilbert spaces to analyse the fine

structure of piecewise interpretable Hilbert spaces. These are Hilbert spaces

which are direct limits of imaginary sorts of continuous logic structures. They

arise in model theory in a variety of situations where they can code different

kinds of information, such as Galois theoretic, representation theoretic, or

measure theoretic information. There is some prior work in the literature (most

notably [Tsa12], [Hru12] and [Iba21]) which seeks to understand interactions

between Hilbert spaces and arbitrary model theoretic structures, but the work

contained in this thesis is the first systematic study of these Hilbert spaces in

a general setting.

In this thesis, we take the point of view that piecewise interpretable Hilbert

spaces are interesting objects of model theory in their own right and that it is

meaningful and fruitful to find general structure theorems for piecewise inter-

pretable Hilbert spaces. This philosophy can be compared to the deep study

of definable groups which has driven many aspects of research in model theory.

We will see that our general approach leads to new results in representation

theory and in the study of absolute Galois groups and definable measures, and

we will find surprising interactions of piecewise interpretable Hilbert spaces

with various aspects of model theory, including the NFCP, one-basedness and

strong minimality.

The second chapter in this thesis is concerned with a specific theory, ACFA,

and seeks to use the rich model theory of ACFA to derive new results in

combinatorics and algebraic geometry. This chapter builds on the work of

[Tao12] which established a Szemerédi-style regularity lemma for definable

graphs in pseudofinite fields. Tao asked if this result can be extended to

hypergraphs, and we answer this question positively.

Tao’s original result is best viewed as an application of stability in Hilbert

spaces. Indeed, Tao’s theorem relies crucially on the definability of the count-

ing measure in pseudofinite fields, a result due to [CvdDM92]. Stability in

Hilbert spaces implies that the formulas µx(φ(x, a) ∧ ψ(x, b)) in pseudofinite

fields are stable. Hence these formulas carry the usual stationarity properties of

stable formulas, and this implies that the generic value of µx(φ(x, a)∧ψ(x, b))

is controled by the type of a and the type of b. We call this the ‘stationarity

theorem’ and this is the fundamental technical fact which Tao uses to derive
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his regularity lemma. This proof of the stationarity theorem, which is different

from Tao’s, is originally due to Hrushovski and to [PS13].

Since stability in Hilbert spaces is a fundamentally binary phenomenon, a

different approach is required to derive a regularity lemma for hypergraphs.

For this reason, we will carry out a geometric analysis of the definable mea-

sure of [CvdDM92] and we will show that the geometric point of view leads

to the stochastic independence theorem and the general stationarity theorem

in ACFA. The stationarity theorem in ACFA says that the value of the mea-

sure µx(φ(x, a, b)∧ψ(y, a, c)∧χ(x, b, c)) is determined by tp(a, b), tp(a, c) and

tp(b, c), under some reasonable conditions. We will also gain some useful prob-

abilistic information about definable sets in ACFA. The algebraic hypergraph

regularity lemma follows in a straightforward manner by using results of Gow-

ers. The stationarity theorem in ACFA in its current form is the first result

of its kind in model theory.

From a rough conceptual point of view, the stationarity theorem in ACFA

draws on amalgamation in algebraically closed fields and model completeness

of ACFA to find probabilistic independence between definable sets. Therefore,

in our study of hypergraphs in ACFA, the setting of Hilbert spaces is replaced

by the much stronger setting of algebraically closed fields, but stability at the

level of individual formulas is still the main driver of our results.

Therefore, both chapters in this thesis stem from the realisation that sta-

bility in Hilbert spaces leads to fruitful applications of model theory to a wide

variety of topics in mathematics. In the first chapter, the aim was to find a gen-

eral framework which unifies all instances of Hilbert space stability in model

theory. In the second chapter, the aim was to move beyond the black-box ap-

plication of the stationarity theorem in Tao’s regularity lemma to understand

the geometric content of Tao’s result and to generalise it to hypergraphs.

While the two projects in this thesis started with a common idea and moved

in opposite directions, one might hope that the two points of view studied in

this thesis can eventually be joined again.

On the one hand, because of its reliance on geometry, it is not yet clear if

it is possible to find a general framework in which the proof of the algebraic

hypergraph regularity lemma takes place. On the other hand, the work on

piecewise interpretable Hilbert spaces raises the very open-ended question of

whether other analytical objects can be found to govern interesting model

theoretic phenomena in a similar way. This is an exciting direction for future

research.
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Chapter 1

Piecewise Interpretable Hilbert

Spaces

The material in this chapter is joint work with Ehud Hrushovski and will be

published as such. Section 1.3 is entirely my own work and all other sections

contain contributions from both authors.

In this chapter, we define piecewise interpretable Hilbert spaces and study

some of their properties. These are Hilbert spaces which arise as direct limits

of imaginary sorts of a first-order continuous logic theory T . While we employ

continuous logic, the case where T itself is a discrete first order logic theory

is already of interest, and the introduction may be read with such theories

in mind. We will use tools of stability theory to study the structure of such

Hilbert spaces, obtaining information about the underlying theory. The sta-

bility emanates from the Hilbert space inner product formulas themselves, so

no stability assumptions on the theory T are required.

Definable measures, which themselves play a central role in recent model-

theoretic literature, provide one rich source of examples. If µ is such a measure,

the Hilbert space L2(µ) is piecewise interpretable in T . The stability-theoretic

viewpoint already gives useful information here; notably it was used previously

to prove an independence, or 3-amalgamation theorem for definable measures

(see [Hru15]; a more basic version was the main engine of [Hru12], Theorem

2.22).

A different class of piecewise interpretable Hilbert spaces arises via the

absolute Galois group G of a field K, with T = Th(K,Kalg). G is essentially a

projective limit of definable groups in T . This was discovered by [CvdDM80].

Here no definable measure need be present, but the Hilbert space L2(G,Haar)

is piecewise interpretable in T .

Any piecewise interpretable Hilbert space gives rise to a functor from the

category of models of a theory T to the category of Hilbert spaces. In par-

ticular, we obtain a homomorphism from the automorphism group G of any

model to the unitary group of a Hilbert space, i.e. a unitary reprsentation of
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G. Conversely, a basic lemma of [Tsa12] implies in the ω-categorical case that

all unitary representations of the automorphism group of the countable model

arise in this way, giving a third and very interesting connection to a deep field.

Our initial inspiration was the classification theorem for unitary repre-

sentations of automorphism groups of ω-categorical structures from [Tsa12].

Changing the viewpoint to that of piecewise interpretable Hilbert spaces, it

becomes natural to ask whether they admit a structure theorem under more

general hypotheses than ω-categoricity; and if so, what form the statement

would take. The answers we found were, respectively, the notions of scattered-

ness and asymptotic freedom.

Both scatteredness and asymptotic freedom concern a complete type p

within a piecewise interpretable Hilbert space H. Scatteredness is defined in

1.3.5; we mention for now a special case (referred to as ‘strict interpretabil-

ity’ in 1.3.17): whenever there are only finitely many values achieved by the

inner product between elements of p, p is scattered. This subclass already in-

cludes a rich class of examples: these include the ω-categorical case of [Tsa12],

the Hilbert spaces arising from definable measures over pseudo-finite fields

( [CvdDM92]) or over measurable classes ([MS08]), and the Galois-theoretic

examples mentioned above.

p is asymptotically free if for any a ∈ p, and for any b ∈ p that is not

algebraic over a, the elements a, b are orthogonal as vectors in the Hilbert

space. In general, asymptotic freedom means that the Hilbert space structure

is defined using only information within the algebraic closure (bounded closure

in the continuous logic case) of an element of p. In fact, the interpretation of

the subspace generated by p factors through a disintegrated, strongly minimal

reduct of T with p as its universe.

We prove a number of structure theorems that analyse scattered repre-

sentations in terms of asymptotically free ones. Our core result is Theorem

1.3.14:

Let H be a piecewise interpretable Hilbert space in T . Let Hp be

a piecewise
∧

-interpretable subspace of H generated by a scattered

type-definable set p. Then Hp is the orthogonal sum of piecewise
∧

-

interpretable subspaces (Hα)α<κ such that for all α < κ, Hα is gener-

ated by an asymptotically free complete type.

In particular, Theorem 1.3.14 fully recovers Tsankov’s structure theorem in

the classical logic ω-categorical case.

Even with the above mentioned notions at hand however, the proof is not a

direct generalisation from the ω-categorical case. It proceeds instead via a local

stability analysis. The interaction of the stable but highly non-discrete Hilbert

space formulas, with the type provided by the underlying theory T turns out
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to imply not only rank properties but also a certain local modularity of forking

that forms the key to the later analysis. A general discussion of these rank

properties can be found in Section 1.7.

Using a theorem of Howe and Moore, we show that for any algebraic group

G over Q, any irreducible representation of G(Qp) or G(R) can essentially be

obtained as a piecewise interpretable Hilbert space generated by an asymptoti-

cally free type (see Section 1.6.3 for details). As the connection is made directly

to the conclusion of our theorem, we do not obtain any new implications for

the irreducible representations of these classical groups; but this does show

that asymptotic freedom includes both settings for the unitary representation

theory of oligomorphic groups as well as algebraic groups.

A significant chapter of abstract model theory concerns interpretable groups,

usually referred to as definable groups. First studied for their own sake, es-

pecially in the stable context, the study of groups interpreted in a theory T

was found to return significant structural information on T . Our treatment of

Hilbert spaces as objects of the definable world is partly inspired by this anal-

ogy. We hope they may prove to illuminate other aspects of the theory, and

we view our results as an indication of the possibility of such a development.

1.1 Structure of the chapter

In Section 1.2, we define and prove some general model theoretic facts about

piecewise interpretable Hilbert spaces. We give examples of piecewise inter-

pretable Hilbert spaces in Section 1.2.2.

In Section 1.3 we begin a study of the fine structure of piecewise inter-

pretable Hilbert spaces under the assumption of scatterdness, defined in Def-

inition 1.3.5. Asymptotic freedom is defined in Definition 1.3.13. Our main

structure theorem is Theorem 1.3.14. In Section 1.3.2, we study the case where

T is a classical logic theory and H is determined by classical logic formulas, in

which case we say H is strictly interpretable. We will extend Theorem 1.3.14

to this context in Corollary 1.3.21. In Section 1.3.3 we give some concrete

examples of the decomposition promised by Theorem 1.3.14.

In Section 1.4, we show that the L2-spaces associated to definable measures

are strictly interpretable. We discuss the asymptotically free decomposition

of the L2-space associated to the random graph, and we prove the strong

germ property for pseudofinite fields and ω-categorical Macpherson-Steinhorn

measurable structures.

In Section 1.5 we introduce a new construction in classical logic and a new

source of piecewise interpretable Hilbert spaces. Let M be a classical logic L-

structure and K ⊆ M a definably closed subset. We show that M interprets

the projective system of finite quotients of Gal(K) in the language LP with

an additional predicate P for K. This generalises the classical construction of
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[CvdDM80] to a wide variety of settings. This construction yields interpreta-

tions of L2(Gal(K), Haar) and of various subspaces of interest. We will see

that there are delicate interpretability issues surrounding these Hilbert spaces,

which makes them all the more interesting.

In Section 1.6 we study the connection to unitary group representations.

We show that representations generated by asymptotically free complete types

are induced representations and we prove a Mackey-style irreducibility crite-

rion for these representations. In Section 1.6.2 we discuss representations of

automorphism groups of ω-categorical structures. In Section 1.6.3 we adapt

the approach of Theorem 1.3.14 for arbitrary group representations with an

orbit whose weak closure is locally compact. We show thanks to the theorem of

Howe-Moore that interpretable Hilbert spaces with asymptotically free types

capture the unitary representations of p-adic Lie groups.

In this chapter, we use continuous logic for metric spaces but we will not

be reliant on any high-level results of continuous logic. In the appendix to

this chapter, we have included an exposition of continuous logic in the style

of [HI02]. A similar approach was recently used in [GP21]. We list there the

basic notions which we will use in this paper. These are mostly based on

[BYBHU08] but we lay down explicit definitions consistent with our choice of

syntax.

The entire chapter has been written in such a way that all arguments can

easily be translated into the formualism of [CK66] or [BYBHU08] if the reader

wishes to do so. Outside of the basic notions presented in the appendix, we

will develop all the continuous logic theory we need as we go along.

1.2 Introduction to Piecewise Interpretable Hilbert

Spaces

In this section, we give a general exposition of piecewise interpretable Hilbert

spaces. We use the GNS construction to show that piecewise interpretable

Hilbert spaces are defined at the level of the theory T . In Section 1.2.2 we give

some key examples of piecewise interpretable Hilbert spaces and in Section

1.2.3 we give an alternative treatment of piecewise interpretable Hilbert spaces

which allows us to deduce an important proposition about forking independence

in Section 1.2.4.

1.2.1 Basic definitions

In this section, M is a continuous logic structure in an arbitrary language. In

this thesis, definable always means ∅-definable.
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Definition 1.2.1. A piecewise interpretable Hilbert space H(M) in M is a

direct limit of imaginary sorts (Mj)j∈J of M such that H(M) is a Hilbert space

and the inner product is definable between all the pieces Mj. More explicitly,

for all i, j ∈ J , writing hi, hj for the direct limit maps from Mi and Mj to

H(M), the map Mi ×Mj → R, (x, y) 7→ 〈hix, hjy〉 is definable.

In the above definition, J is a directed partial order. When discussing

direct limits of sorts (Mj)j∈J of M , we always assume that for any i ≤ j in

J , the transition maps Mi →Mj are definable. We do not require them to be

injective. We say that each sort Mi is a piece of H(M) and for any i, j ∈ J , we

say that the definable map fij : Mi ×Mj → R given by fij(x, y) = 〈hix, hjy〉
is an inner product map.

Definition 1.2.1 does not explicitly require that the sum and scalar multipli-

cation operations on H(M) be definable between the pieces (Mj)J . However,

we show in Lemma 1.2.10 that the Hilbert space operations are always defin-

able in an appropriate sense.

Suppose H(M) is piecewise interpretable in M and suppose that H(M) is

the direct limit of the sorts (Mj)j∈J . For i, j ∈ J write fij : Mi ×Mj → R for

the inner product maps. Let T be a continuous logic theory, not necessarily

complete, such that M |= T , the transition maps Mi → Mj and the inner

product maps fij are definable in T . Suppose also that T proves that the

maps fij factor through the transition maps of the partial order (Mj)J and

that for all j ∈ J , m ≥ 1 and λ1, . . . , λm ∈ R,

T ` ∀x1 . . . ∀xm
∑
n,p≤m

λnλpfjj(xn, xp) ≥ 0

where the variables xj range in the sort of the pieceMi. For everyN |= T , write

Nj for the sort in N corresponding to Mj. Since all data is definable, the direct

limit (Nj)j∈J with the same inner product maps is a piecewise interpretable

Hilbert space H(N) in N .

Therefore, H(M) gives rise to a piecewise interpretable Hilbert space H in

T . We will be careful to distinguish a piecewise interpretable H in T and its

interpretation H(M) in a model M of T . Many properties of H(M) transfer

to H and vice versa.

A useful way of defining piecewise interpretable Hilbert spaces is given by

the GNS theorem (named after Gelfand, Naimark and Segal, see Appendix C

in [BdlHV08]), which we recall below.

Definition 1.2.2. Let X be a set. A function f : X × X → R is said to be

positive-semidefinite if f is symmetric and for all n ≥ 1, for all x1, . . . , xn ∈ X
and for all λ1, . . . , λn ∈ R, we have

∑
i,j λiλjf(xi, xj) ≥ 0.
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Theorem 1.2.3 (GNS Theorem). Let X be a set and let f : X ×X → R be

positive-semidefinite. Then there is a Hilbert space H and a map F : X → H

such that F (X) has dense span in H and for all x, y ∈ X, 〈F (x), F (y)〉 =

f(x, y).

F and H are unique in the sense that if F ′ and H ′ satisfy the same state-

ment, then there is a surjective unitary map G : H → H ′ such that F ′ = G◦F .

We will adapt the GNS theorem to our context:

Proposition 1.2.4. Suppose we are given a Hilbert space H, a collection of

imaginary sorts (Mi)i∈I of M and functions Fi : Mi → H for all i ∈ I such

that for all i, j ∈ I, the map Mi ×Mj → R, (x, y) 7→ 〈Fix, Fjy〉 is definable.

Then there is a piecewise interpretable Hilbert space H(M) in M such that

1. the sorts (Mi)I are pieces of H(M)

2. writing hi : Mi → H(M) for the direct limit maps,
⋃
hi(Mi) has dense

span in H(M)

3. for any i, j ∈ I and x ∈ Mi, y ∈ Mj, we have 〈hix, hjy〉H(M) =

〈Fix, Fjy〉H .

Proof. To make notation lighter, we write F for all functions Fi, i ∈ I. It will

always be clear from the variable which map Fi we are using. By passing to a

closed subspace of H, we can assume without loss of generality that
⋃
F (Mi)

has dense span in H. Let x ∈ H. There is an increasing function η : N → N
and a uniformly Cauchy sequence (

∑η(n+1)−1
i=η(n) λni Fx

n
i ) which converges to x

such that xni ∈
⋃
jMj. We can assume that η(n) is large enough so that

|λni | ≤ η(n) for all i ≤ n. We will decompose H according to the growth rate

of η.

Fix η : N → N strictly increasing and fix an arbitrary countable sequence

(in) in I. We define an imaginary sort Mη
(in) as follows. Mη

(in) will be the metric

completion of the countable Cartesian product

∏
n≥0

( η(n+1)−1∏
k=η(n)

[−η(n), η(n)]×Mik

)
under the metric δ defined below. We write elements (xn) ∈ Mη

(in) as tuples

(λη(n), xη(n), . . . , λη(n+1)−1, xη(n+1)−1). For all n, define

F (xn) =

η(n+1)−1∑
i=η(n)

λiFxi.
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We define inductively maps gk : Mη
(in) → H. g0((xn)) is just F (x0). Given gk,

define gk+1((xn)) = F (xk+1) if ‖gk((xn))−F (xk+1)‖ ≤ 2−n. Otherwise, define1

gk+1((xn)) = gk((xn)) +
2−n

‖F (xk+1)− gk((xn))‖
(F (xk+1)− gk((xn)))

Then (gk((xn)))k is a uniformly Cauchy sequence in H. It is straightforward

to check that for all k, the map ((xn), (yn)) 7→ 〈gk((xn)), gk((yn))〉 is definable.

We obtain a definable map

β : ((xn), (yn)) 7→ lim
k
〈gk((xn)), gk((yn))〉.

β is positive-semidefinite and hence β induces a pseudo-metric δ. We quotient

Mη
(in) by this pseudo-metric and take the metric completion, so that Mη

(in) is

identified with a subset of H.

We now define the direct limit structure. Fix an arbitrary ordering ≤I
of I. Let J be the set of pairs (η, (in)) such that η : N → N is strictly

increasing and (in) is a sequence in I such that for all n, (iη(n), . . . , iη(n+1)−1)

is increasing with respect to the order ≤I . We could have chosen such an

(in) when we constructed Mη
(in) above. We define a partial ordering on J as

follows: we say that (η, (in)) ≤ (µ, (jn)) if and only if for all n, η(n+1)−η(n) ≤
µ(n+ 1)− µ(n) and (iη(n), . . . , iη(n+1)−1) is a subtuple of (jµ(n), . . . , jµ(n+1)−1).

We have definable maps Mη
(in) → Mµ

(jn) for (η, (in)) ≤ (µ, (jn)) by taking the

obvious inclusions and by using the scalar 0 to pad the image of Mη
(in) in Mµ

(jn).

H(M) is defined as the direct limit of the sorts Mη
(in).

We now clarify some technical issues around the construction of Proposi-

tion 1.2.4. We define isomorphisms of piecewise interpretable Hilbert spaces

and show uniqueness of the piecewise Hilbert space of Proposition 1.2.4 with

respect to this notion.

Definition 1.2.5. Let H(M), H ′(M) be piecewise interpretable Hilbert spaces

in M . Suppose H(M) is the direct limit of (Mj)j∈J and H ′(M) is the direct

limit of (Mj′)J ′. Write hj : Mj → H(M) and h′j : Mj′ → H ′(M) for the direct

limit maps.

We say that a map F : H(M) → H ′(M) is an embedding of piecewise

interpretable Hilbert spaces if F is a unitary map and for all j ∈ J and j′ ∈ J ′
and all ε ≥ 0, the set {(x, y) ∈ Mj × M ′

j′ | ‖F (hjx) − h′j′y‖ ≤ ε} is type-

definable.

If F is also surjective, we say that F is an isomorphism of piecewise inter-

pretable Hilbert spaces.

Lemma 1.2.6. Let H(M), H ′(M) be piecewise interpretable Hilbert spaces in

M . Let (Mi)i∈I and (Mi′)i′∈I′ be pieces of H(M) and H ′(M) respectively which

1 This is analogous to Definition 3.6 in [BYU10]
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generate H(M) and H ′(M). Write hi : Mi → H(M) and h′i′ : Mi′ → H ′(M)

for the direct limit maps.

A unitary map F : H(M) → H ′(M) is an embedding of interpretable

Hilbert spaces if and only if for all i ∈ I and i′ ∈ I ′ the map Mi ×Mi′ →
R, (x, y) 7→ 〈F (hix), h′i′y〉 is definable.

Proof. Suppose that F is an embedding of piecewise interpretable Hilbert

spaces. Fix i ∈ I, i′ ∈ I ′ and D a closed bounded subset of R. For every

ε > 0, let Dε be the closed set {x ∈ R | ∃y ∈ D, |y − x| ≤ ε}. Let B be an

upper bound on {‖h′i′y‖ | y ∈Mi′}.
By compactness, for every ε > 0 we can find i′ε ∈ I ′ such that for every

x ∈Mi, there is x′ ∈Mi′ε such that ‖h′i′εx
′−F (hix)‖ < ε/B. The set {(x, y) ∈

Mi ×Mi′ | 〈F (hix), h′i′y〉 ∈ D} is equal to the intersection over ε > 0 of the

sets

{(x, y) ∈Mi×Mi′ | ∃x′ ∈Miε , ‖F (hix)−h′i′εx
′‖ ≤ ε/B and 〈h′i′εx

′, hi′y〉 ∈ Dε}.

Hence this set is type-definable.

Conversely, suppose that H(M) and H ′(M) respectively are the direct

limits of the sorts (Mj)J and (Mj′)J ′ . We write (hj) and (h′j′) for the direct

limit maps. Fix j ∈ J , j′ ∈ J ′. For any x ∈ Mj, the element F (hjx) is

uniquely determined by the collection of maps Mi′ → R, y 7→ 〈F (hjx), h′i′y〉,
for i′ ∈ I ′.

Moreover, by a standard compactness argument, for arbitrary ε > 0 there

is nε ≥ 1 such that for any x ∈Mj, hjx is within distance ε of a vector of the

form
∑nε

k=1 λkhikxik where ik ∈ I for all k ≤ nε, xik ∈ Mik and |λk| ≤ nε. By

considering small enough δ and quantifying over elements
∑nδ

k=1 λkhikxik , we

find that {(x, y) ∈ Mj ×Mj′ | ‖F (hjx) − h′j′y‖ ≤ ε} is type-definable if the

maps 〈F (hix), h′i′y〉 are definable.

The following sharpening of Proposition 1.2.4 follows easily:

Lemma 1.2.7. Let M be a continuous logic structure. As in Proposition 1.2.4,

suppose we are given a Hilbert space H, a collection of distinct imaginary sorts

(Mi)i∈I of M and maps Fi : Mi → H such that for all i, j ∈ I, the map

Mi ×Mj → R, (x, y) 7→ 〈Fix, Fjy〉 is definable.

Then there is a piecewise interpretable Hilbert space H(M) which is unique

up to isomorphism such that the sorts (Mi)I are pieces of H(M),
⋃
hi(Mi) has

dense span in H(M), and for x ∈Mi, y ∈Mj, 〈hix, hjy〉H(M) = 〈Fix, Fjy〉H .

Proof. Let H(M), H ′(M) be two piecewise interpretable Hilbert spaces satis-

fying the existence claim. Since the inner product maps on the pieces Mi are

identical, the uniqueness statement of the GNS theorem applies and we find

an isomorphism of Hilbert spaces F : H(M) → H ′(M). Lemma 1.2.6 applies

directly so F is an isomorphism of interpretable Hilbert spaces.
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We are only interested in discussing piecewise interpretable Hilbert spaces

in M up to isomorphism. Therefore, in order to fix a piecewise interpretable

Hilbert space H(M), it will be enough to specify a pair (H, (hi)i∈I) where H

is a Hilbert space and the maps hi : Mi → H are as in Proposition 1.2.4 and

the span of
⋃
hi(Mi) is dense in H.

Equivalently, a piecewise interpretable Hilbert space H(M) can be de-

scribed up to isomorphism by fixing sorts (Mi)I of M and taking for every

pair i, j ∈ I a definable map fij : Mi ×Mj → R such that the concatenation

of all maps (fij)I is positive-semidefinite on (
⋃
IMi)

2. These various presen-

tations correspond to the following equivalence of categories:

Lemma 1.2.8. Let M |= T . The categories A,B, C defined below are all

equivalent:

Let A be the category of piecewise interpretable Hilbert spaces in M with

embeddings of interpretable Hilbert spaces.

Let B be the category of pairs (H, (hi)I) where H is a Hilbert space and for

every i ∈ I, hi : Mi → H is a map on an imaginary sort of M such that

1. the set
⋃
I hi(Mi) has dense span in H

2. for all i1, i2 ∈ I, the map Mi1 ×Mi2 → R, (x, y) 7→ 〈hi1x, hi2y〉 is defin-

able.

The morphisms between objects (H, (hi)I) and (H ′, (hi′)I′) of B are unitary

maps F : H → H ′ such that for all i ∈ I, i′ ∈ I ′ the map Mi × Mi′ →
R, (x, y) 7→ 〈F (hix), hi′y〉 is definable.

Let C be the category of pairs ((Mi)I , (fij)i,j∈I) where (Mi)I is a set of

imaginary sorts of M and the fij : Mi ×Mj → R are definable functions such

that their concatenation f :
⋃
IMi ×

⋃
IMi → R is positive semidefinite. The

morphisms between objects ((Mi)I , (fij)) and ((Mi′)I′ , fi′j′) of C are piecewise

definable functions G :
⋃
k∈I∪I′Mk ×

⋃
k∈I∪I′Mk → R such that

1. G is positive semidefinite and G extends each function fij where i, j ∈ I
or i, j ∈ I ′

2. writing HI , HI∪I′ for the Hilbert spaces induced by
⋃
IMi,

⋃
k∈I∪I′Mk

respectively as in the GNS theorem, the resulting Hilbert space embedding

F : HI′ → HI∪I′ induced from G is surjective 2

Composition of morphisms in C is induced by the GNS theorem3.

2 The GNS theorem gives Hilbert spaces HI , HI′ and HI∪I′ and maps a :
⋃

I Mi → HI ,

b :
⋃

I′ Mi′ → HI′ , c :
⋃

k∈I∪I′ Mk → HI∪I′ and Hilbert space embeddings φ : HI → HI∪I′

and φ′ : HI′ → HI∪I′ such that the corresponding diagram commutes. So we have G(x, y) =

〈φ ◦ a(x), φ′ ◦ b(y)〉 when x ∈
⋃

I Mi and y ∈
⋃

I′ Mi′

3 It is possible to give a definition of the morphisms of C and their composition which

does not rely explicitly on the GNS theorem by using the Gram-Schmidt orthogonalisation

process and Bessel’s inequality. The details are left to the reader.
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Recall that we did not require direct limits of sorts of M to have injective

direct limit maps. We now show that this does not present any significant

disadvantage.

Lemma 1.2.9. Let H(M) be a piecewise interpretable Hilbert space in M .

Then H(M) is isomorphic to a piecewise interpretable Hilbert space H ′(M)

which is a direct limit of imaginary sorts (Mj′)J ′ with isometric direct limit

maps.

Proof. Suppose that H(M) is the direct limit of the sorts (Mj) with inner

product maps (fij). Write hij : Mi →Mj for the transition maps between the

sorts Mi,Mj when i ≤ j and hj : Mj → H(M) for the direct limit maps. For

every j ∈ J , let M ′
j be the imaginary sort of canonical parameters of the inner

product map fjj, where we view fjj(x, y) as a function in y with a parameter

x. For i ≤ j ∈ J , define the transition map h′ij : M ′
i → M ′

j as the map which

takes the canonical parameter for the map fii(a, .) to the canonical parameter

for the map fjj(hija, .). Observe h′ij is well-defined because fii(a, .) = fii(b, .) if

and only if hia = hib. It is clear that the direct limit H ′(M) of (M ′
j)J satisfies

the lemma.

As a direct application of the construction in Proposition 1.2.4 and Lemma

1.2.9, we have:

Lemma 1.2.10. Let H(M) be a piecewise interpretable Hilbert space in M .

Then H(M) is isomorphic to a piecewise interpretable Hilbert space H ′(M)

in M which is a direct limit of (Mj′)j′∈J ′ with isometric direct limit maps h′j′
such that the Hilbert space operations on H ′(M) are piecewise bounded4. This

means that

1. for every i, j ∈ J ′, there is k ∈ J ′ such that i, j ≤ k and h′i(Mi) +

h′j(Mj) ⊆ h′k(Mk) and the map Mi ×Mj → Mk, (x, y) 7→ (h′k)
−1(x + y)

is definable

2. for every i ∈ J ′ and n ≥ 0, there is k such that for x ∈ Mi and

λ ∈ [−n, n], λh′ix ∈ h′iMk and the map [−n, n] ×Mi → Mk, (λ, x) 7→
(h′i)

−1(λh′ix) is definable.

Proof. Apply the construction of Proposition 1.2.4 to all pieces (Mj)J of H(M)

with the direct limit maps Mj → H(M) to obtain H1(M) isomorphic to H(M).

Observe that the construction of Proposition 1.2.4 implies that the operations

on H1(M) are piecewise bounded. Now apply Lemma 1.2.9 to obtain H ′(M)

with isometric direct limit maps.

Finally we show that an isomorphism of interpretable Hilbert spaces in an

ω-saturated structure induces an isomorphism at the level of the theory T .

4 Thanks to Arturo Rodŕıguez Fanlo for this terminology
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Lemma 1.2.11. Let T be a complete theory and let H, H′ be two piecewise

interpretable Hilbert spaces in T . Suppose that for some ω-saturated M |= T ,

H(M) and H ′(M) are isomorphic as interpretable Hilbert spaces. Then for

every N |= T , H(N) and H ′(N) are isomorphic as piecewise interpretable

Hilbert spaces.

Proof. Suppose that H(M) and H ′(M) are the direct limits of (Mj)J and

(Mj′)J ′ respectively. We write hj and h′j′ for the direct limit maps Mj →
H(M), Mj′ → H ′(M) respectively. Write FM : H(M) → H ′(M) for the

isomorphism of interpretable Hilbert spaces. Fix N |= T , j ∈ J , and take

a ∈ Nj. Find x ∈ Mj with tp(x) = tp(a) and fix j′ ∈ J ′ such that FMhjx ∈
h′j′Mj′ .

FMhjx is uniquely determined by the value λ = 〈FMhjx, FMhjx〉 and the

x-definable function fx : Mj′ → R, y 7→ 〈FMhjx, h′j′y〉. By elementarity, for

every n, there is bn ∈ Nj′ such |〈h′j′bn, h′j′bn〉 − λ| < 2−n and for all y ∈ Nj′

|fa(y)− 〈h′j′bn, h′j′y〉| < 2−n. Then (h′j′bn) is Cauchy and there is b ∈ Nj′ such

that h′j′b is the limit of (h′j′bn). Define FNhja = h′j′b. It is straightforward to

check that FN is well-defined, definable, and is an isomorphism of piecewise

interpretable Hilbert spaces.

When the direct limit maps are isometries, we identify the pieces Mj with

subsets of H(M). By a type-definable subset p of H(M) we mean a type-

definable subset of some piece Mj of H(M) with an isometric direct limit map

Mj → H(M). We stress that a type-definable subset p of H(M) is contained in

a single piece of H(M). This will allow us to quantify over the piece containing

p and to use compactness arguments.

A type-definable subset of H(M) is not to be confused with a piecewise∧
-interpretable subspace of H(M), which we define as follows:

Definition 1.2.12. A piecewise
∧

-interpretable subspace V (M) of H(M) is

a subspace V (M) such that if H(M) is the direct limit of the sorts (Mj)j∈J
with direct limit maps hj : Mj → H(M), then for all j ∈ J the set h−1

j (V (M))

is type-definable in Mj.

If p is a type-definable subset of some piece Mj, we write Hp(M) for the

piecewise
∧

-interpretable subspace of H(M) consisting of the closed span of

the set hj(p) in H(M).

If H is the piecewise interpretable Hilbert space in T corresponding to

H(M), we write Hp for the piecewise
∧

-interpretable Hilbert space in T cor-

responding to Hp(M).

We have chosen to define piecewise interpretable Hilbert spaces in such a

way that pieces are always imaginary sorts of T . As remarked above, this

allows us to quantify over the pieces of H(M). However, as we will see in

Section 1.6.2, it is often natural to consider piecewise interpretable Hilbert
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spaces with pieces which are distance-definable sets. We recall some notions

from [BYBHU08] and we introduce a general construction which shows that

there is no loss of generality in only considering piecewise interpretable Hilbert

spaces whose pieces are sorts of M .

Definition 1.2.13 ([BYBHU08] 9.16). Let T be a complete continuous logic

theory. Let M be an ω1-saturated model of T .

Let r be a type-definable set. We say that r is distance-definable if the

function d(x, r) = inf{d(x, y) | y |= r} is definable in M , where x is in the

sort of r.

Distance-definability is the continuous logic equivalent of ‘definability’ in

classical logic (as distinguished from ‘type-definability’). 9.18 in [BYBHU08]

shows that distance-definability of p is not model-dependent and if r 6= ∅ in

M , then r 6= ∅ in any model of T .

Definition 1.2.14. Let T be an arbitrary complete continuous logic theory.

Let r be a non-empty distance-definable set contained in a sort S of T .

Define an expansion T r of T as follows: we add a sort Xr and a map

fr : Xr → S. T r extends T and says that fr is an isometry with dense image in

r, i.e. for every 0 < ε, if d(x, r) < ε then there is z ∈ Xr with d(x, fr(z)) ≤ ε.

For every M |= T , we write M r for the extension of M to a model of

T r. Since non-empty distance-definable sets are realised in every model, this

extension exists. This extension is clearly unique. It is straightforward to

check that condition (4) of Lemma 1.8.14 is satisfied by T inside T r, so T is

stably embedded in T r. If one wishes to work with a piecewise interpretable

Hilbert space H(M) such that r is a piece of H(M), we can move to the

theory T r and work with the sort Xr instead. This shows that there is no loss

of generality in assuming that piecewise interpretable Hilbert spaces always

have entire sorts as pieces.

Convention: In this thesis, we will only consider ‘piecewise interpretable

Hilbert spaces’ and ‘piecewise
∧

-interpretable subspaces’, so we will now refer

to them simply as ‘interpretable’ or ‘
∧

-interpretable’.

1.2.2 Examples

We give some elementary examples which illustrate a variety of interpretable

Hilbert spaces. See Sections 1.4, 1.5 and 1.6 for rich sources of examples which

are of wider relevance to model theory and representation theory.

1. In classical logic, let T∞ be the theory of an infinite set. Writing S for

the main sort of T , we define the inner product map f : S2 → R by f(x, x) = 1

and f(x, y) = 0 if x 6= y. This gives an interpretable Hilbert space H such

that for any M |= T∞, M is an orthonormal set in H(M) with dense span.
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Define also the inner product maps g(x, x) = 2 and g(x, y) = 1 if x 6= y.

Define also h(x, x) = 4 and h(x, y) = 3 if x 6= y. These also give interpretable

Hilbert spacesH′ andH′′ respectively. Observe thatH′ andH′′ are isomorphic,

but they are not isomorphic to H. One way of proving this is to note that for

any M |= T , H ′(M) and H ′′(M) have an invariant vector under the action

of Aut(M), but this is not true of H(M). This will be discussed further in

Section 1.6.

2. Let T = Th(Z,≤). Define f(x, x) = 2, f(x, y) = 1 if x, y are consecutive,

and f(x, y) = 0 otherwise. f is positive definite and defines an interpretable

Hilbert space.

For a more complicated example with the same flavour, let V = `2(Z) and

for n ∈ Z let vn = (2−|k+n|)k∈Z. The sequence (vn)Z generates `2(Z). Define

the map h : Z → V, n 7→ vn. Then for x, y ∈ Z, 〈hx, hy〉 depends only on the

distance between x and y, so the inner product is definable on Z in Th(Z,≤).

Then we are in the situation of Proposition 1.2.4 so h induces an interpretation

of `2(Z) in (Z,≤).

For yet another example, let S be an arc of the circle S1. Z acts on L2
C(S)

via f 7→ znf . Let V be the subspace of L2
C(S) generated by the orbit of 1

under Z. Then Proposition 1.2.4 shows that V is interpretable in Z.

3. Given two interpretable Hilbert spaces H and H′, we can form their

sum H +H′ as follows. Say H and H′ are the direct limits of (Si)i∈I , (Sj)j∈J
with direct limit maps hi : Si → H and hj : Sj → H′ respectively. For any

M |= T , let H be the orthogonal sum of H(M) and H ′(M). Then the system

of maps hi : Mi → H and hj : Mj → H is as in Proposition 1.2.4 and hence

they define an interpretable Hilbert space H+H′ in T . It is clear that for all

N |= T , (H +H ′)(N) is the orthogonal sum of H(N) and H ′(N).

We can also define the orthogonal sum of infinitely many interpretable

Hilbert spaces in the same way. In Section 1.3, we will see that it is sometimes

possible to recognise an interpretable Hilbert space in T as the orthogonal sum

of a family of interpretable Hilbert spaces with interesting properties.

4. Suppose that H and H′ are interpretable in T . Then their tensor H⊗H′
is interpretable in T . For any M |= T , write H(M) and H ′(M) as the direct

limits of (Mj)j∈J and (Mj′)j′∈J ′ respectively. For any j ∈ J and j′ ∈ J ′, define

the map Fj,j′ : Mj ×M ′
j → H(M) ⊗ H ′(M) by Fj,j′(x, y) = hjx ⊗ h′j′y. The

image of the maps (Fj,j′) have dense span in H(M) ⊗ H ′(M) and for any

(j1, j
′
1) and (j2, j

′
2),

〈Fj1,j′1(x1, y1), Fj2,j′2(x2, y2)〉 = 〈hj1x1, hj2x2〉H(M)〈hj′1x
′
1, hj′2x

′
2〉H′(M).

This is a definable map Mj1 × Mj′1
× Mj2 × Mj′2

→ R so Proposition 1.2.4

applies.
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1.2.3 Prolonging piecewise interpretable Hilbert spaces

Let H be an interpretable Hilbert space in T . In this section, we fix a family

of pieces (Si)i∈I of H with direct limit maps hi and inner product maps fij
(i, j ∈ I) such that

⋃
hi(Si) has dense span inH. I is not necessarily a directed

partial order.

We have seen that in practice H is often characterised by such a collection

of pieces. In contrast, the full direct limit structure of H can be complicated

to describe. Therefore, we present here a construction which allows us to work

with interpretable Hilbert spaces in a setting which is closer to the classical

presentation of Hilbert spaces in continuous logic.

Under this construction, the balls B(0, n) in H(M) become subsets of

Hilbert space balls which we add to the theory T as new sorts. These subsets

are not definable, but this construction helps simplify the discussion of inter-

pretable Hilbert spaces and easily yields the important results about model-

theoretic independence in interpretable Hilbert spaces in Section 1.2.4.

Suppose that T is a theory in the language L. We define an extension TH

of the theory T in a language LH as follows. We add to L all the sorts and

functions which are used in the presentation of Hilbert spaces in continuous

logic, as in Appendix 1.8.3, and TH says that these new sorts form an infinite

dimensional Hilbert space. For each i ∈ I, we also add to our language a

function symbol hi from Si to one of the Hilbert space balls with radius greater

than supx
√
fii(x, x). For i, j ∈ I, TH contains the additional axioms

∀x ∈ Si,∀y ∈ Sj, fij(x, y) = 〈hi(x), hj(y)〉

where 〈., .〉 is the inner product on the ball which hi maps into. We also

add axioms saying that the orthogonal complement of
⋃
hi(Mi) is infinite

dimensional. We will refer to the maps (hi) as the interpretation maps in TH.

Any model of TH has the form (M,H) where M |= T and where H is

an infinite dimensional Hilbert space containing H(M) as a subspace in the

obvious way. It follows that any model (M,H) of TH is uniquely determined

by its T -part and the dimension of the orthogonal complement of H(M) in H.

One deduces that TH is a complete theory by applying standard saturation

arguments. We now show that moving from M |= T to the LH-structure

(M,H) does not add any extra structure to M .

Proposition 1.2.15. T is stably embedded in TH.

If H is the direct limit of the sorts (Sj)j∈J , if the sorts Sj are real sorts of T

and if the direct limit map on each Sj is injective, then for any (M,H) |= TH

and C ⊆ (M,H), if f is a C-definable function between sorts of T in LH, then

f is dclLH(C) ∩M-definable in L.

Hence, without assuming that H is the direct limit of real sorts of T , T is

fully embedded in TH in the sense that for any (M,H) |= TH and any function

f between sorts of T definable in LH over (M,H) is definable in L over M .
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Proof. First let (M,H) |= TH be κ-saturated with |(M,H)| = κ where κ ≥ ω1.

We show that (4) from Lemma 1.8.14 holds. Let α be an automorphism of

M . By the GNS-theorem, α induces an automorphism of H(M). Define

β : (M,H)→ (M,H) extending α as follows: on H(M), β is the Hilbert space

isomorphism induced by α, and on H(M)⊥, β is the identity. Then β respects

all the basic relations in LH so β is an isomorphism and T is stably embedded

in TH.

Now assume that the pieces of H belong to T and that the direct limit

maps are injective. Let (M,H) be any model of TH. Let C ⊆ (M,H) and

let f be a C-definable function into R on a sort of T . We can assume that

f(x) = g(x,C) where g is 0-definable and C is a finite tuple of (M,H). We

can also write the tuple C as a pair ab where a ⊆ M and b ⊆ H. Finally, we

can assume that b = b0b1 where b0 ⊆ H(M) and b1 ⊆ H(M)⊥, by expressing

elements of b are sums of elements of b0 and b1 and by noting that b0b1 and b

are inter-definable.

Let (N,H ′) be any elementary extension of (M,H). As above, we can

construct an automorphism of (N,H ′) by taking any automorphism of N and

extending it by any unitary automorphism of H(N)⊥. It follows that tp(b1/M)

is completely determined by the values of the inner product between elements

of b1 and by the partial type which says b1 ⊆ H(M)⊥. In particular tp(b1/M)

is the unique extension to M of tp(b1). It follows that f is definable over ab0.

Since we have assumed that the sorts (Sj) are part of T and that the direct

limit maps are injective, each element of b0 is inter-definable with an element

of M . Hence we have proved that f is definable over dclLH(C) ∩M in LH.

In order to show that f is definable over dclLH(C) ∩M in L, it is enough

to note that SL(C ′) ∼= SL
H

(C ′) via the restriction map for any C ′ ⊆M , where

SL(C ′) and SL
H

(C ′) are type-spaces in the sort of f over C ′ in L and LH
respectively. This is seen by noting that in a sufficiently saturated extension

N of M , if a, b ∈ M are conjugate over C ′, then they are conjugate in any

(N,H) |= TH.

Now let f be a C-definable function between any two sorts X and X ′ of

T . We need to show that its graph is dclLH(C)∩M -definable in L. Our result

for functions X ×X ′ → R shows that SLX×X′(dclLH(C) ∩M) ∼= SL
H

X×X′(C) so

f is indeed dclLH(C) ∩M -definable in L.

Finally, if we do not assume that H is the direct limit of real sorts of T ,

then the final part of the proposition follows by choosing parameters in M

containing all necessary imaginaries in their definable closure.

1.2.4 Forking independence in interpretable Hilbert spaces

In this section, T is a complete continuous logic theory.
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This section aims to prove Proposition 1.2.17 which will be essential in the

remainder of this chapter. Proposition 1.2.17 says that we can use stability

of the inner product maps and stable embeddedness of T in T ′ to obtain full

forking independence in the sense of Lemma 1.8.17.

We begin with a general lemma. Throughout this chapter, ‘forking’ is

always meant with respect to stable definable functions (see the appendix for

basic definitions).

Lemma 1.2.16. Let L0 be a language and L an extension of L0, possibly with

new sorts. Let T be a complete L-theory and T0 the reduct of T to L0. Suppose

that T0 has weak elimination of imaginaries.

Let (M,N) |= T where M |= T0 and N denotes the new sorts in L added

to L0. Take A ⊆ B ⊆ (M,N) such that A = bddL(A). Let p be a type over

B in a fragment of L0-formulas which does not fork over A in the sense of T .

Then p does not fork over A ∩M in the theory T0.

Proof. Let q be a non-forking extension of p to M in L0. We know that q is

L-definable over A. The usual proof of the theorem which says that stable

partial types over models are definable tells us that q is L0-definable over M .

Let f(x, y) be a stable L0-definable function.

Let α be a canonical parameter of dqf(y), viewed as an L0-M -definable

function, so that α is an imaginary element of M . Working in (M,N)eq, since q

is L-definable over A, α is in the L-definable closure of A. By weak elimination

of imaginaries in T0, α is in the L0-definable closure of some C ⊆ bddL0(α),

so dqf(y) is C-definable in L0. Since adding imaginaries does not affect the

definable or bounded closure, in (M,N) we have C ⊆ bddL(A) ∩M = A ∩M
and q is L0-definable over A ∩M .

If H(M) is intepretable in M and is the direct limit of the sorts (Mj)j∈J
where the direct limit maps are injective and Mj is a real sort of M , and if

A ⊆M is definably closed, we write PA for the orthogonal projection onto the

subspace of H(M) given by A∩H(M). The following proposition follows from

full embeddedness of T in TH and the charactersiation of forking in Hilbert

spaces:

Proposition 1.2.17. Take M |= T . Suppose that H(M) is the direct limit of

the sorts (Mj)j∈J and that the direct limit maps are injective. Suppose that the

sorts Mj belong to M , so that elements of H(M) are identified with elements

of M .

Let A be a subset of H(M) and let B ⊆ C ⊆M be bdd-closed. If A |̂
B
C

in the sense of T with respect to the inner product maps between the pieces

(Mj), then for all a ∈ A, PC∩H(M)a = PB∩H(M)a.

Proof. Suppose that A |̂
B
C with respect to the inner product maps. Take

(M,H) |= TH where the TH construction is applied to all pieces (Mj). Let
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B′ = bddLH(B) and C ′ = bddLH(C). By full embeddedness of M in (M,H),

B′ ∩M = B. Suppose that v ∈ H ∩ B′. Then v ∈ H(M) and we can find

x ∈ M such that v = hjx. Since the interpretation maps are assumed to be

injective, x ∈ dclLH(B). Hence B′ = dclLH(B), and similarly for C ′.

Write h(A) for the result of mapping A in H by the appropriate interpre-

tation maps hj. By considering definable bijections, we find that h(A) |̂
B′
C ′

with respect to the maps 〈x, y〉 where x and y range in the balls of H. Hilbert

spaces have weak elimination of imaginaries so Lemma 1.2.16 applies and we

have h(A) |̂
B′∩H C

′ ∩H in the theory of Hilbert spaces.

Note that B′ ∩ H = B′ ∩ H(M) and similarly for C ′. Now the lemma

follows by the characterisation of forking independence in Hilbert spaces (see

Lemma 1.8.17).

1.3 Structure Theorems for Scattered Inter-

pretable Hilbert Spaces

In this section, we give our structure theorems for interpretable Hilbert spaces.

These reduce the notion of scatteredness to the stronger notion of asymptotic

freedom; see the definitions below. The main structure theorem is 1.3.14. In

section 1.3.2 we show how the decomposition of Theorem 1.3.14 can be almost

recovered when working in classical logic with the weak NFCP. This is Corol-

lary 1.3.21. In Section 1.3.3 we give concrete examples of the decomposition

promised by 1.3.14 and 1.3.21.

Fix a continuous logic theory T and take H an interpretable Hilbert space

in T . In this section, we will freely move to imaginary sorts of T , so we assume

that the direct limit maps on pieces of H are isometries, and for any M |= T ,

we identify pieces of H(M) with subsets of H(M).

When M |= T and A ⊆ H(M), we write PA for the orthogonal projection

onto the closed subspace of H(M) generated by A.

Definition 1.3.1. Let M |= T and let p be a type-definable set in H(M). We

define P(p) ⊆ H(M) to be the closure of the set of realisations of p in the weak

topology.

The notation ‘P(p)’ stands for the partial order which we will define below.

In the next lemma, we characterise the set P(p) from a Hilbert space point of

view.

Lemma 1.3.2. Let M |= T and let p be a type-definable set in H(M).

When M is ω-saturated, P(p) is equal to the set of weak limit points of p

in H(M).

When M is ω1-saturated, P(p) is equal to the set {Pbdd(A)(b) | b |= p,

A ⊆M} and is closed under the maps Pbdd(A) for arbitrary A ⊆M .
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For any M |= T , P(p) is closed under the maps Pbdd(A) for A ⊆M .

Proof. Recall that the weak topology on H(M) has a basis of open sets of

the form
⋂n
i=1{v ∈ H(M) | 〈v, vi〉 ∈ Ui} where vi ∈ H(M) and Ui is an open

interval in R.

Suppose M is ω-saturated and take w in P(p). Find a0 |= p such that

〈a0, w〉 = 〈w,w〉. Given a0, . . . , an, find an+1 |= p such that 〈an+1, w〉 = 〈aj, w〉
and for all j ≤ n 〈an+1, aj〉 = 〈w, aj〉. By Lemma 1.8.18, (an) ⇀ w so P(p) is

the set of weak limit points of p.

Now suppose M is ω1-saturated. With w ∈ P(p) and (ai) as constructed

above, write A = bdd(w). Since the inner product maps are stable, we can use

classical stability theory to find b |= p realising the eventual type of (ai) over A

with respect to the inner product maps. Then w = PAb and P(p) is contained

in {Pbdd(A)b | b |= p,A ⊆ M}. For the converse inclusion, if w = Pbdd(A)b,

we can assume that A is separable and we can take a Morley sequence (bn) in

tp(b/bdd(A)). Proposition 1.2.17 shows that (bn) is a Morley sequence in the

sense of Hilbert spaces. By Lemma 1.8.19, bn ⇀ w and hence w ∈ P(p).

Finally, take any M |= T , A ⊆ M with bdd(A) = A and w ∈ P(p). We

can assume that A is separable. Since P(p) is type-definable, we can move

to an elementary extension and we can assume that M is ω1-saturated. Let

(an) be a sequence in p such that (an) converges weakly to w. Consider the

following partial type in x over A:

{|〈x, v〉 − 〈w, v〉| ≤ ε | ε > 0, v ∈ bdd(A) ∩H}

This is finitely satisfiable in (an), so by saturation we can find a realisation b

in p. It follows that PAb = PAw. By our previous result, we deduce PAw ∈
P(p).

The next lemma shows that P(p) is a type-definable set of H. In Section

1.7.1, it is shown that P(p) can also be constructed as a type-definable set in

an imaginary sort of T coding canonical bases for 〈x, y〉-types consistent with

p.

Lemma 1.3.3. Let p be a type-definable set in H and let M |= T be ω-

saturated. Then P(p) is a type-definable set in a piece of H.

Proof. Lemma 1.3.2 shows that P(p) is the set of weak limit points of Hilbert

space indiscernible sequences in p. If (an) is a sequence in p which is Hilbert

space indiscernible and (an) converges weakly to b ∈ H(M), then it is easy to

show that (
∑n

k=1 ak/n) converges to b in the norm topology. Note that the

inner product is bounded on p×p, so we can control the rate of convergence of

(
∑n

k=1 ak/n) uniformly for all indiscernible sequences (an) in p by considering

subsequences of the form (
∑η(n)

k=1 ak/η(n)), where η is an increasing function
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N → N. It is then possible to use the construction of Proposition 1.2.4 to

construct a piece of H(M) containing P(p).5

Definition 1.3.4. Let M |= T be ω1-saturated and let p be a type-definable

set in H(M). We define the partial order ≤ on P(p) as follows: we say that

v ≤ w in P(p) is there is a finite sequence of bdd-closed subsets A1, . . . , An of

M such that v = PAn . . . PA1w.

The partial order on P(p) is especially interesting under the assumption of

scatteredness, which is one of the fundamental notions of this chapter.

Definition 1.3.5. Let M |= T be ω1-saturated and let p be a type-definable set

in H(M). We say that p is scattered if P(p) is locally compact in the norm

topology.

While scatteredness is the most general assumption we will work with,

the following stronger condition is of special interest in many model-theoretic

situations:

Definition 1.3.6. Let p, q be type-definable sets in H. We say that the inner

product map on p× q is strictly definable if it takes only finitely many values

on p× q.

Strict definability of the inner product map is often easier to verify than

scatteredness. For example, if the type-definable sets p, q are pieces of H, then

strict definability of the inner product on p× q is not model dependent.

Lemma 1.3.7. Let p be a partial type in H. If the inner product map f is

strictly definable on p× p then in any M |= T , P(p) is a discrete metric space

in H(M) and hence p is scattered.

Proof. Let v, w ∈ P(p). We showed in Lemma 1.3.2 that P(p) is the set of

weak limit points of p so there are sequences (an) and (bn) in p such that

an ⇀ v and bn ⇀ w. Then 〈v, w〉 = limn limm〈an, bm〉. By stability of the

inner product and strict definability, 〈an, am〉 must be eventually constant.

Therefore 〈v, w〉 is one of the finitely many values already achieved by the

inner product on p × p. It follows that P(p) is a discrete set and hence it is

locally compact.

Finally, we note that saying that p is scattered is strictly weaker than

saying that the set of realisations of p is locally compact in H(M), for M |= T

ω1-saturated. Consider the following example. Let T be a two sorted structure

(S1, S2) where the sort S1 is an infinite set with the discrete metric and S2 is

the surface of the unit ball in an infinite dimensional Hilbert space. We add

5 this piece may not have been present in the original direct limit of H(M), but in this

section we freely add imaginary sorts to our structure.
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to T the inner product map on S2 and a function f : S1 → S2. T says that f

has dense image in S2 and that every fibre of f is infinite. Define the positive-

definite map b(x, y) on S1 × S1 by b(x, x) = 2 and b(x, y) = 〈f(x), f(y)〉. Let

H be the interpretable Hilbert space generated by S1 with inner product map

b..

Then for any ω1-saturated M |= T , S1 is a discrete set in H(M) but P(S1)

contains S2 and hence S1 is not scattered.

1.3.1 Decomposition into
∧

-interpretable subspaces

Until the end of Section 1.3.1, we make the following assumptions and nota-

tional conventions. We fix an ω1-saturated M |= T and we fix a type-definable

set p in H. We assume that p is scattered. Recall that we write Hp(M) for

the
∧

-interpretable subspace of H(M) generated by the set p (see Definition

1.2.12).

The next theorem is the basic fact which shows that it is interesting to look

at P(p) as a partial order. It also shows that types over bdd-closed subsets of

M contained in p are one-based in a restricted sense. See Section 1.7.2 for a

detailed discussion.

Theorem 1.3.8. Let A, B be small subsets of M such that A = bdd(A)

and B = bdd(B). Then A ∩ Hp(M) and B ∩ Hp(M) are orthogonal over

A∩B∩Hp(M). Equivalently, for any v ∈ A∩Hp(M), we have PBv = PA∩Bv.

Equivalently, for any v ∈ Hp(M),

PBPAv = PAPBv = PA∩Bv

Proof. It is enough to check the statement for arbitrary v |= p. Define x0 =

PAv, yn = PBxn and xn+1 = PAyn. It is well-known that the sequences (xn)

and (yn) converge to w = PA∩Bv ∈ P(p) in the norm topology. See Theorem

13.7 in [VN50] for more details.

Suppose for a contradiction that xn and yn are distinct from w for all n.

Then yn /∈ A and xn /∈ B. By Lemma 1.3.2, for every n we can find infinite

sequences (xkn)k and (ykn)k such that (xkn)k is a sequence in tp(xn/B) converging

weakly to yn and similarly for (ykn)k. Then for any ε > 0 there is n ≥ 0 such

that the sequence (xkn)k is within distance ε of w. Since we are assuming that

P(p) is locally compact, this is a contradiction and (xn), (yn) are eventually

constant equal to w.

Take n ≥ 1 such that yn ∈ A ∩ B. We now show that xn ∈ A ∩ B. Write
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xn = yn + α where α ⊥ B and yn−1 = xn + β where β ⊥ A. We have

〈α, yn−1〉 = 0

= 〈α, yn + α + β〉
= 〈α, α〉+ 〈α, yn〉+ 〈α, β〉
= 〈α, α〉+ 〈α, β〉
= 〈α, α〉+ 〈xn − yn, β〉
= 〈α, α〉 since xn − yn ∈ A.

So α = 0, xn = yn and xn ∈ A∩B. We use a similar calculation to show that

yn−1 ∈ A ∩ B when xn ∈ A ∩ B, with n ≥ 1. This proves by induction that

y0 ∈ A. Hence PBPAv = PA∩Bv and the theorem is proved.

Lemma 1.3.9. For every v ∈ P(p), {w ∈ P(p) | w ≤ v} is uniformly type-

definable over v. Therefore, this set is compact in the norm topology.

Proof. Recall from Lemma 1.3.3 that P(p) is a type-definable set in H(M).

Take v ∈ P(p). By Theorem 1.3.8, {w ∈ P(p) | w ≤ v} = {Pbdd(A)v |
A ⊆ M}. As in Lemma 1.3.2, {Pbdd(A)v | A ⊆ M} is the set of weak limit

points of Hilbert space indiscernible sequences in tp(v) which begin at v. It is

straightforward to check that this is a uniformly type-definable set over v.

By Theorem 1.3.8, {w ∈ P(p) | w ≤ v} is contained in bdd(v) in the

language LH. By type-definability, this set is compact in the norm topology.

Lemma 1.3.10. P(p) is well-founded with respect to the partial order from

Definition 1.3.1.

Proof. Suppose (vn) is an infinite decreasing sequence in P(p). By Theorem

1.3.8, we can write vn = PVnv0 where Vn is a bdd-closed subspace of H(M) and

Vn+1 ⊆ Vn. Since {w ∈ P(p) | w < v0} is metrically compact, the sequence

(vn) is convergent and it follows that it converges to z := PV v0 with V =
⋂
n Vn.

Then z < vn for all n and vn /∈ bdd(z). For every ε > 0 we can find n such that

‖vn − z‖ < ε and we can take an infinite indiscernible sequence in tp(vn/z)

which must lie in P(p), by Lemma 1.3.3. Hence P(p) is not locally compact

around z and this contradicts scatteredness of p. Therefore any decreasing

sequence in P(p) is eventually constant.

We use Lemma 1.3.10 to decompose Hp(M). Fix an enumeration (qα)α<κ
of the complete types in P(p) with the property that for any a, b ∈ P(p), if

b < a in P(p) then tp(b) comes before tp(a) in the sequence (qα). Such an

enumeration exists by Lemmas 1.3.3 and 1.3.10. For any α < κ, let Vα be the

subspace of H(M) generated by the realisations of
⋃
β<α qβ (set V0 = {0}).

For every α, find a complete type q̃α in H such that for some (any) x |= qα,

there is y |= q̃α such that y = PV ⊥α x.
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Lemma 1.3.11. For every α, the relation PV ⊥α x = y is type-definable on

qα × q̃α.

Proof. Fix x |= qα and write d ≥ 0 for the distance between x and Vα. Since qα
is a complete type and Vα is generated by a union of

∧
-interpretable Hilbert

spaces, d does not depend on x. Moreover, PVαx is the unique element v ∈ Vα
such that ‖x− v‖ = d. Note also that PV ⊥α x = x− PVαx

For every ε > 0, there is nε ≥ 0 such that for every i ≤ nε we can find a

type qαi , xi ∈ qαi and λi ∈ [−nε, nε] satisfying ‖
∑

i≤nε λixi − x‖ ≤ d + ε. nε,

the types qαi and the scalars λi do not depend on x. Write φε(x, y) for the

type-definable set

∃x1, . . . xnε

( ∧
i≤nε

qαi(xi) ∧ ‖
∑

λixi − x‖ ≤ d+ ε ∧ ‖x−
∑

λixi − y‖ ≤ ε
)

The relation PV ⊥α x = y is defined on qα× q̃α by the intersection of all φε(x, y).

It is easy to prove by induction that for every α ≤ κ the Hilbert space

generated by
⋃
β<α q̃β is equal to Vα. Therefore, Hp(M) is the orthogonal sum

of the spaces generated by each q̃α. Finally, the types q̃α have the following

important property:

Lemma 1.3.12. For every α < κ, for every x, y ∈ q̃α, we have 〈x, y〉 = 0 or

y ∈ bdd(x).

Proof. Suppose x, y ∈ q̃α and y /∈ bdd(x). Let (yn) be an infinite indiscernible

sequence in tp(y/bdd(x)). For all n, find zn in qα such that yn = PV ⊥α zn. For

all n, we have

〈yn, x〉 = 〈PV ⊥α zn, x〉 = 〈zn, x〉 = 〈w, x〉.

where w is the weak limit of the sequence (zn). By the choice of the enumer-

ation (qα), we know that w ∈ Vα so 〈w, x〉 = 0 and the lemma follows.

Definition 1.3.13. For q a type-definable set in H, we say that q is asymp-

totically free if for any M |= T , x |= q in M and ε ≥ 0, the set {y |= q |
|〈x, y〉| ≥ ε} is compact.

Equivalently, when M |= T is ω-saturated, for any x, y |= q, either 〈x, y〉 =

0 or x ∈ bdd(y).

Note that an asymptotically free type-definable set q is always scattered,

since P(q) = q∪{0}. We collect our results so far and repeat the assumptions

we are working with:

Theorem 1.3.14. Let H be an interpretable Hilbert space in T . Let Hp be

a
∧

-interpretable subspace of H generated by a scattered type-definable set p.

Then Hp is the orthogonal sum of
∧

-interpretable Hilbert spaces (Hα)α<κ such

that for all α < κ, Hα is generated by an asymptotically free complete type.
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Proof. For M |= T ω1-saturated, we constructed the asymptotically free types

(q̃α)α<κ such that Hp(M) is the orthogonal sum of the spaces Hα(M) generated

by the asymptotically free complete type q̃α. We only need to show that this

decomposition is not model-dependent.

Let N |= T be an arbitrary model. We can assume N ≺ M . If p is not

realised in N , the theorem holds vacuously. Suppose a |= p in N .

Working in M , let b be an element contained in a type q̃α such that

〈a, b〉 6= 0. If b /∈ bdd(a), then we find an infinite indiscernible sequence

(bn) in tp(b/bdd(a)). Since q̃α is asymptotically free, (bn) is an infinite orthog-

onal sequence in H(M) with 〈a, bn〉 6= 0, and this is a contradiction. Therefore

b ∈ bdd(a) and hence b ∈ N .

Working again in M , we can find a bdd-independent family (bn) in types

q̃αn such that 〈a, bn〉 6= 0 and a is in the closed span of
⋃

(bdd(bn) ∩ q̃αn).

Since each bn is in N , each set bdd(bn)∩ q̃αn is contained in N and the spaces

(Hα(N))α<κ generate Hp(N).

The following corollary shows that Theorem 1.3.14 is not restricted to the∧
-interpretable subspace Hp generated by a single type-definable set.

Corollary 1.3.15. Suppose that H contains
∧

-interpretable subspaces (Hi)I
such that each Hi is generated by a scattered type-definable set. Then the

subspace of H generated by all Hi can be expressed as the orthogonal sum of∧
-interpretable subspaces (Hj)j∈J such that for all j ∈ J , Hj is generated by

an asymptotically free complete type qj.

Proof. Take M |= T ω1-saturated as before. Let q be a complete type of T with

an asymptotically free interpretation map h into H. Let V be a subspace of

H(M) generated by an arbitrary collection of
∧

-definable sets. As in Lemma

1.3.11, the projection PV ⊥ is definable on q and we can find a type q̃ inH which

is the image of q under PV ⊥ . It is enough to check that q̃ is asymptotically

free.

Take a, b |= q̃ with a /∈ bdd(b) and suppose a = PV ⊥x where x |= q. Then

〈a, b〉 = 〈x, b〉 and x /∈ bdd(b). Take (xn) an infinite indiscernible sequence

in tp(x/b). Then (xn) is an infinite orthogonal sequence in H(M) and hence

〈x, b〉 = 0.

Therefore the subspace of H(M) generated by all Hi(M) is the orthog-

onal sum of
∧

-interpretable subspaces Hj(M) generated by asymptotically

free complete types. The same proof as in Theorem 1.3.14 shows that this

decomposition is not model dependent.

1.3.2 Strictly interpretable Hilbert spaces

In Section 1.3.2, we fix an interpretable Hilbert space H in T . In the following

results, there are no unstated assumptions on T or H.
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In this section, we investigate interpretable Hilbert spaces generated by

strictly definable inner product maps. The next proposition shows that we

can find an asymptotically free generating set for such an interpretable Hilbert

space on which the inner product is still strictly definable.

Proposition 1.3.16. Let p be a type-definable set in H. If the inner prod-

uct map is strictly definable on p × p, then there is an asymptotically free

type-definable set q generating Hp such that the inner product map is strictly

definable on q × q.
Moreover, if p is a finite union of complete types, then q is a finite union

of complete types.

Proof. Take M |= T ω1-saturated. We have seen in Lemma 1.3.7 that P(p)

is a discrete type-definable set. It follows from Lemma 1.3.9 that for any

v ∈ P(p), the set {w ∈ P(p) | w ≤ v} is finite and uniformly definable over

v. Additionally if p is a finite union of complete types, then P(p) is a finite

union of complete types.

For every v ∈ P(p) write π(v) for the finite set {w ∈ P(p) | w < v}. Write

V (v) for the subspace of H(M) spanned by π(v). Let q be the type-definable

set in H of elements of the form PV (v)⊥v for v ∈ P(p). Since PV (v)⊥v is a linear

combination of {v} ∪ π(v) and the coefficients in this linear combination only

depend on the values of the inner product between elements in this set, the

inner product on q × q is strictly definable. We only have to show that q is

asymptotically free.

Fix x, y ∈ q and find v ∈ P(p) such that x = PV (v)⊥v. To simplify notation,

write V = V (v) and Y = bdd(y). We will prove that if x /∈ Y then PY x =

0. Since PY x = PY v − PY PV v, it is enough to prove that PY PV v = PY v.

We show that ‖PY PV v − PY v‖2 = 0. Expanding the left hand side gives

〈PY PV v, PY PV v〉+ 〈PY v, PY v〉 − 2〈PY v, PY PV v〉. Now we have:

〈PY v, PY PV v〉 = 〈PV PY v, v〉 = 〈PY v, v〉 = 〈PY v, PY v〉

and similarly

〈PY PV v, PY PV v〉 = 〈PV PY PV v, v〉 = 〈PY PV v, v〉 = 〈v, PV PY v〉 = 〈v, PY v〉
= 〈PY v, PY v〉

The proposition follows for M . To see that q generates Hp independently

of a choice of model, we observe that the realisations of q are contained in

bdd(p).

We now focus on the case where T is a classical discrete logic theory and H
is generated by classical sorts of T with strictly definable inner product maps.

We investigate to what extent the decomposition of Theorem 1.3.14 can be

recovered inside the classical logic sorts of T .
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Definition 1.3.17. Let T be a classical logic theory. If H is an interpretable

Hilbert space in T generated by classical imaginary sorts of T with strictly

definable inner product maps, we say that H is a strictly interpretable Hilbert

space in T .

In Proposition 1.3.16, even if T is a classical logic theory and p is a defin-

able set in a classical sort of T , the asymptotically free set q with its strictly

definable inner product map is not always a definable set. We show that this

can be obtained with additional assumptions on T .

Definition 1.3.18. In a classical logic theory T , a formula φ(x, y) (possibly

with parameters) has the finite cover property (the FCP) if for all n ≥ 1

there are a1, . . . , an such that
∧
i≤n φ(x, ai) is inconsistent but for every l ≤ n,∧

i 6=l φ(x, ai) is consistent. If φ does not have the FCP, we say φ has the NFCP.

We say that T has the weak NFCP if all stable formulas of T have the

NFCP.

We will use the following easy lemma about NFCP formulas, which is a

weak version of Theorem II.4.6 in [She78]:

Lemma 1.3.19. Let T be a classical logic theory and let M |= T be ω-

saturated. Let φ(x, y) be a formula with the NFCP over A ⊆ M . There is

n ∈ N such that, for all n ≤ α < ω, any sequence (ai)i<α such that |= φ(ai, aj)

for all i 6= j can be extended to a sequence (ai)i<ω with the same property.

Proof. Take n as given by the definition of NFCP for φ(x, y). Given (ai)i<α,

the partial type {φ(x, ai) | i < α} is n-consistent, so it is consistent. Take aα
a realisation of this partial type.

The next lemma can be seen as a strengthening of Lemma 1.3.3 to the

present context.

Lemma 1.3.20. Suppose that T is a classical logic theory with the weak NFCP

and H is strictly interpretable in T . Let S be a piece of H which is a classical

sort of T with a strictly definable inner product map.

For any M |= T , P(S) is a definable set in a piece of H which is a classical

sort of T with strictly definable inner product map.

Proof. Throughout this proof, we write x for tuples of variables and x for

single variables. We write R for the finite set of values achieved by the inner

product on S × S. Let M be an arbitrary model of T .

Recall from elementary stability theory that there is a number N such

that for any sequence (xn) in S and y ∈ S, there is a unique λ in R such that

|{i ∈ N | 〈xi, y〉 6= λ}| < N/2. Let S ′ be the imaginary sort SN/E where E is

the equivalence relation defined by

∀z ∈ S, Medi≤N〈xi, z〉 = Medi≤N〈yi, z〉
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and where Medi≤N〈xi, z〉 is the median of the set of values {〈xi, z〉 | i ≤ N}.
Let S+ be the type-definable subset of S ′ consisting of elements z such that

there is a sequence (xn) in S, possibly constant, such that (xn) is Hilbert space

indiscernible and for all k0 < . . . < kN , the E-class of (xk0 , . . . , xkN ) equals z.

Claim 1.3.20.1. S+ is a definable subset of S ′

Proof of claim. For any λ ∈ R, write Fλ(x, y) for the formula on SN × SN

which says

1. x, y and E-equivalent

2. For all i, j ≤ N , 〈xi, yj〉 = λ

3. For all i 6= j ≤ N , 〈xi, xj〉 = 〈yi, yj〉 = λ

4. For all i, j ≤ N , 〈xi, xi〉 = 〈yj, yj〉.

Fλ is an equivalence relation so Fλ is stable . By the weak NFCP there is

a number nλ such that for all k ≥ nλ and y1, . . . , yk, if {Fλ(x, yi) | i ≤ k} is

nλ-consistent then it is consistent. Take m > nλ for all λ ∈ R.

Let S0(x) be the definable set in SN

∃y1, . . . , ym
∨
λ∈R

( ∧
i≤m

Fλ(x, yi) ∧
∧
i 6=j

Fλ(yi, yj)
)

and let S1 be S0/E. We check that S1 is in fact equal to S+. S1 contains S+

because any indiscernible sequence (xn) witnessing the definition of S+ can be

broken down into m N -tuples which witness the definition of S1. Conversely,

suppose a |= S0, take b1, . . . , bm as given by the definition of S0 and fix λ such

that these satisfy ∧
i≤n0

Fλ(a, bi) ∧
∧
i 6=j

Fλ(bi, bj).

By Lemma 1.3.19, we can construct an sequence of tuples (bn) which satisfy

Fλ(bi, bj) ∧ Fλ(a, bi) for i 6= j. Concatenate the tuples bi to form a sequence

(ck) in S. By construction, (ck) is Hilbert space indiscernible. It follows easily

that (ck) witnesses the definition of S+.

Take z ∈ S+ and let (xn) be a sequence in S as in the definition of S+

for z. Let v be the weak limit of (xn). Note that v ∈ P(S). Then for all

y ∈ S, 〈v, y〉 = lim〈xn, y〉 = Medi≤N〈xi, y〉 and this last value only depends

on z. Therefore v only depends on z and we can define the definable map

h : S+ → P(S) which maps z to v. Note that h is injective.

An application of the weak NFCP similar to the one in the claim shows

that in any M |= T , P(S) is the set of weak limit points of S. It follows that

h : S+ → P(S) is bijective. Since S+ is definable, we can extend h to S ′ by

mapping the complement of S+ to 0. The lemma follows.
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Combining Lemma 1.3.20 and Proposition 1.3.16, we obtain the following

corollary:

Corollary 1.3.21. Let T be a classical logic theory with the weak NFCP. If

H is a strictly interpretable Hilbert space in T ,then H is generated by classical

imaginary asymptotically free sorts of T with strictly definable interpretation

maps.

Corollary 1.3.21 does not give the same kind of information as Theorem

1.3.14 because it does not decompose the strictly interpretable H into orthog-

onal subspaces generated by strictly interpretable asymptotically free types.

It is an open question if Corollary 1.3.21 can be improved in this direction.

It is certainly possible to improve Corollary 1.3.21 when T is an ω-categorical

classical logic theory. In this case, inner product maps on classical sorts of T

are always strictly definable, since type spaces are finite. Lemma 1.3.20 ap-

plies and we find that the sets P(p) are definable sets in classical sorts of T .

Moreover, the decomposition procedure of Theorem 1.3.14 produces definable

sets in classical imaginary sorts of T , on which the inner product maps are

necessarily strictly definable. Therefore we have the corollary:

Corollary 1.3.22. Let T be an ω-categorical classical logic theory and let

H be a strictly interpretable Hilbert space in T . Then H is isomorphic to an

orthogonal sum of interpretable Hilbert spaces each generated by asymptotically

free complete types in classical imaginary sorts of T .

We will see in Section 1.6.2 that Corollary 1.3.22 is equivalent to the classifi-

cation theorem of Tsankov for unitary representations of oligomorphic groups.

1.3.3 Some elementary examples and counterexamples

The asymptotically free type-definable sets of Theorem 1.3.14 or Corollary

1.3.21 live in imaginary sorts of T which may be difficult to identify in practice.

Nevertheless, in many special cases it is possible to give a presentation of

H which satisfies our various decomposition theorems without having to go

through the proofs of these results.

1. Let T be the theory of an infinite set X and let H1 be the interpretable

Hilbert space generated by X with inner product map f(x, y) = 0 for x 6= y

and f(x, x) = 1. Then H1 already satisfies the conclusion of Corollary 1.3.22.

Let Hn be the interpretable Hilbert space generated by Xn with inner

product map f(x, y) = k if x, y share k entries, ignoring order. Then we can

take the integer N from Lemma 1.3.20 to be equal to 2n + 1 so the factors

from Corollary 1.3.22 are given by a quotients of XN . Going through the

decomposition procedure of Theorem 1.3.14 leads to the easy observation that

Hn is the orthogonal sum of n copies of H1.
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Let H′1 be the interpretable Hilbert space generated by X with inner prod-

uct map f(x, y) = 1 if x 6= y and f(x, x) = 2. Going through the decompo-

sition procedure of Theorem 1.3.14 again leads to the easy observation that

H′1 is the orthogonal sum of a copy of H1 and a one-dimensional interpretable

Hilbert space.

2. For n ≥ 2, let Tn be the theory of the set of unordered n-tuples over

an infinite set X. For k ≤ n, Tn has predicates Pk(x, y) to say that x and y

have exactly k elements in common. Let H be the interpretable Hilbert space

generated by the main sort S with inner product map f defined by f(x, y) = k

if and only if Pk(x, y). Then the structure of H is similar to the structure of

Hn from the previous example, but imaginary sorts of T are needed to give

the decomposition into orthogonal subspaces generated by asymptotically free

definable sets.

3. Let T = Th(Z,≤). All three interpretable Hilbert spaces considered in

Section 1.2.2, Example 2 already satisfy Theorem 1.3.14, as they are generated

by an asymptotically free complete type.

4. We show the failure of Corollary 1.3.21 when some stable formula of

T has the FCP. Let T be the classical logic theory of an equivalence relation

E on a sort S such that, for each n, E has exactly one equivalence class of

cardinality n. Define the positive definite function f by f(x, x) = 2 for all

x, f(x, y) = 1 if x 6= y and xEy and f(x, y) = 0 if ¬xEy. Write H for the

interpretable Hilbert space in T generated by S with inner product map f .

Let M |= T be ω1-saturated.

The set P(S) consists of the set S together with 0 and the weak limit point

of each infinite E-class. In the notation of Lemma 1.3.20, N = 2 and S ′ = S2

quotiented out by the equivalence relation E ′ on pairs (x, y) with classes x = y,

x 6= y ∧ xEy, and ¬xEy. S+ is the type-definable subset of S ′ containing all

E ′-classes except those represented by pairs (x, y) such that x 6= y ∧ xEy and

such that the E-class of x is finite. S+ is not definable.

Observe that there is no way of extending h to a definable set D containing

S+ in such a way that the inner product map on D is strictly definable. Since

there are no other natural candidates for generating sets, this suggests that

the conclusion of Corollary 1.3.21 is false in this case. Furthermore, we have

the following classical result:

Lemma 1.3.23 ([She78], II 4.4). Let T be an arbitrary classical logic theory. If

T does not have the weak NFCP, then there is a definable equivalence relation

E((x, z), (y, z′)) such that for all n ≥ 1 there is a tuple cn such that the formula

E((x, cn), (y, cn)) is an equivalence relation with more than n but only finitely

many equivalence classes.

Therefore, any theory without the weak NFCP has an interpretable Hilbert

space with the same properties as H constructed above.

34



1.4 Definable Measures and L2-spaces

In this section, we discuss interpretable Hilbert spaces in classical logic theories

T generated by a definable measure µ. Examples include pseudofinite fields

and MS-measurable theories. We show that L2(µ) is interpretable in T and

we prove the strong germ property for L2(µ) for pseudofinite fields and ω-

categorical measurable structures.

Suppose T is a classical logic theory with elimination of imaginaries and

with a Keisler measure µ on a sort X of T . This means that for all M |= T , µ

is a finitely additive probability measure on the Boolean algebra Defx(M) of

M -definable subsets in the variable x, where x ranges in X. We view Defx(M)

as an algebra of subsets of the type space Sx(M). Suppose in addition that µ

is definable, in the sense that for any formula φ(x, y) and any λ ≥ 0, the set

of a in M such that µ(φ(x, a)) = λ is a definable set. One important example

is the theory T of pseudofinite fields with the counting measure µ. µ was

first shown to be definable in [CvdDM92]. MS-measurable classes introduced

in [MS08] generalise the case of pseudofinite fields and offer a rich source of

examples.

Given M |= T , the measure µ on the algebra Defx(M) extends to a

countably additive probability measure on the σ-algebra Dx(M) generated

by Defx(M). We view Dx(M) as a σ-algebra over the type space Sx(M) but

when M is ω1-saturated we can also view Dx(M) as a σ-algebra of definable

subsets of X itself. Write L2(X(M), µ) for the space of square-integrable func-

tions on Sx(M) with respect to D and µ. L2(X(M), µ) is densely generated

by functions of the form 1φ(x,a).

For any formula φ(x, y), let Sφ be an imaginary sort of T which is a Carte-

sian product of sorts of T corresponding to the tuple y. If φ(x, y) and ψ(x, y)

are different formulas, we take the sorts Sφ and Sψ to be distinct, although

they are copies of each other.

For M |= T and for any formula φ(x, y), define the map hφ : Sφ →
L2(X(M), µ) by hφ(a) = 1φ(x,a). By definability of the measure, we are in

the setting of Proposition 1.2.4 and the system of maps (hφ) gives an inter-

pretable Hilbert space H. H satisfies the following easy proposition:

Proposition 1.4.1. Let H be as defined above. For any N |= T , there is

a Hilbert space isomorphism F : H(N) → L2(X(N), µ) such that for every

formula φ(x, y), the map F ◦ hφ : Sφ → L2(X(N), µ) takes the element a ∈ Sφ
to the vector 1φ(x,a).

By Proposition 1.4.1, it is natural to say that the functor L2(X,µ) is in-

terpretable in T . By definability of the measure µ, L2(X,µ) is strictly in-

terpretable, in the sense of Definition 1.3.17. Therefore the decomposition

Theorem 1.3.14 applies and we know that L2(X,µ) is an orthogonal sum of∧
-interpretable subspaces generated by asymptotically free complete types.
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While it is not yet clear if it is possible to give a systematic presentation of

L2(X,µ) which satisfies Theorem 1.3.14, we can give an explicit example when

T is the theory of the random graph. Write X for the main sort of T and let

µ be the unique definable measure on X such that for any distinct parameters

a1, . . . , an and b1, . . . , bk,

µ
(∧

R(x, ai) ∧
∧
¬R(x, bj)

)
= 1/2n+k

(see [Alb94] for a classification of the definable measures on the random graph).

For every n ≥ 1, let Xn be the imaginary sort of n-element subsets of X. For

M |= T , define the maps hn : Xn → L2(X(M), µ) by

hn(α) = (−1)|{y∈α|R(x,y)}|

and write Hn for the interpretable subspace of L2(X,µ) generated by each

sort Xn with the map hn. A direct computation shows that the Hilbert spaces

Hn are pairwise orthogonal and that each Xn is an orthogonal set in Hn.

Let H0 be the one-dimensional subspace of L2(X,µ) spanned by the constant

function 1. Let a1, . . . , ak and b1, . . . , bn be in X and pairwise distinct. It is

straightfoward to check by induction on k + n that the indicator function of

the set
∧
i≤k R(x, ai) ∧

∧
j≤n ¬R(x, bj) is in the orthogonal sum of the spaces

Hm for 0 ≤ m ≤ n+ k L2(X,µ). Therefore L2(X,µ) is the orthogonal sum of

the spaces Hn, n ≥ 0.

A goal which is more modest than finding explicit asymptotically free de-

compositions of the interpretable Hilbert spaces L2(X,µ) is to identify the

bdd-closed subspaces of L2(X,µ). We saw that these play an important role

in the proof of Theorem 1.3.14 and we saw that Theorem 1.3.8 proves modular-

ity for the lattice of these subspaces. We show that in some interesting cases,

the bdd-closed subspaces of L2(X,µ) are the subspaces we would expect.

Recall that T is a classical logic theory with a strictly definable measure

µ on the sort X. We write acl(0) for the algebraic closure of the emptyset,

in the sense of classical logic. This is not to be confused with bdd(0), which

requires us to view T as a continuous logic theory and can be identified with

certain hyperimaginaries of T .

Definition 1.4.2. Let T and L2(X,µ) be as above. For M |= T , write V0 for

the subspace of L2(X(M), µ) generated by vectors 1φ where φ is a definable

subset of X over acl(0).

We say that T has the strong germ property if for some (any) M |= T ,

V0 = bdd(0) in H(M).

Let M |= T . Note that V0 and bdd(0) are subspaces of L2(X(M), µ) of

measurable functions with respect to certain σ-algebras and that we always

have V0 ≤ bdd(0). Therefore, the strong germ property is a certain form of
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elimination of hyperimaginaries, since it asserts that the vectors of bdd(0) are

in the dense span of acl(0).

If φ(x, a) is a definable subset of X, Pbdd(0)1φ(x,a) and PV01φ(x,a) are the

Radon-Nikodym derivatives of 1φ(x,a) with respect to the appropriate σ-algebras.

While we do not pursue this further, the next lemma asserts a form of proba-

bilistic independence with respect to a certain disintegration of µ along bdd(0).

See [Hru15] for a discussion.

Lemma 1.4.3. Let T and L2(X,µ) be as above. Let φ(x, y) and ψ(x, z) be

formulas of T where x ranges in X. Let M |= T and suppose a, b ∈ M are

independent over bdd(0) with respect to the inner product formulas of L2(X,µ).

Then Pbdd(0)1φ(x,a)∧ψ(x,b) = (Pbdd(0)1φ(x,a))(Pbdd(0)1ψ(x,b)) almost everywhere,

viewed as functions on the probability space (S(M), µ).

Proof. Let g ∈ L2(X(M), µ) be a function S(M)→ R which is in bdd(0). To

make notation lighter, we write H0 = bdd(0) ∩H(M). It is enough to show

〈PH01φ(x,a)∧ψ(x,b), g〉 = 〈(PH01φ(x,a))(PH01ψ(x,b)), g〉.

Note that 〈PH01φ(x,a)∧ψ(x,b), g〉 = 〈1φ(x,a)∧ψ(x,b), g〉 = 〈1φ(x,a), g1ψ(x,b)〉. Since

g1ψ(x,b) ∈ bdd(b) and bdd(a), bdd(b) are independent over bdd(0), we have

〈1φ(x,a), g1ψ(x,b)〉 = 〈PH01φ(x,a), gPH01ψ(x,b)〉
= 〈(PH01φ(x,a))(PH01ψ(x,b)), g〉.

The argument for the next proposition is adapted from the independence

theorem for probability logic of [Hru15]. We assume that T carries a definable

measure on all definable sets and we assume that the measure satisfies Fubini

(see Definition 3.1 in [EM08]). The main case where these assumptions hold

is when T is an MS-measurable structure.

Proposition 1.4.4. Let T and L2(X,µ) be as above, with µ satisfying Fubini.

Let M |= T and suppose that for any formula φ(x, a) ⊆ X with φ(x, y) ⊆
X × Y , the following holds: there is a positive-measure acl(0)-definable set

Y ′ ⊆ Y containing a such that

1. for every acl(0)-definable set Z ⊆ X, for all a′ ∈ Y ′, µ(φ(x, a′)∧Z(x)) =

µ(φ(x, a) ∧ Z(x))

2. for every acl(0)-definable Z ⊆ X and any two pairs (a1, a2), (a′1, a
′
2) in

(Y ′)2 with a1 independent from a2 over acl(0) with respect to the stable

definable function µx(φ(x, y1) ∧ φ(x, y2) ∧ Z(x)) and similarly for a′1, a
′
2,

we have

µ(φ(x, a1) ∧ φ(x, a2) ∧ Z(x)) = µ(φ(x, a′1) ∧ φ(x, a′2) ∧ Z(x)).
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Then T has the strong germ property.

Proof. We can work inside an ω1-saturated model M . Write V0 for the sub-

space of L2(X(M), µ) generated by acl(0) definable sets and H0 = bdd(0), so

that V0 ≤ H0. In this proof, we also write φ(x, a) instead of the indicator

function 1φ(x,a).

We show that PV0(PH0φ(x, a))2 = (PV0φ(x, a))2. Given this identity, we

will have

‖PH0φ(x, a)‖2 =

∫
X

(PH0φ(x, a))2dµ =

∫
X

PV0(PH0φ(x, a))2dµ = ‖PV0φ(x, a)‖2

and the result will follow. It is enough to show that for any acl(0)-definable

set Z(x), we have∫
X

PV0(PH0φ(x, a))2Z(x)dµ(x) =

∫
X

(PV0φ(x, a))2Z(x)dµ(x). (1.1)

Take a′ in M independent from a over bdd(0) realising tp(a/bdd(0)). Note

that PH0φ(x, a) = PH0φ(x, a′). By Lemma 1.4.3, we have∫
X

PV0(PH0 φ(x, a))2Z(x)dµ(x) =

∫
X

(PH0φ(x, a))2Z(x)dµ(x)

=

∫
X

PH0(φ(x, a)φ(x, a′))Z(x)dµ(x)

=

∫
X

φ(x, a)φ(x, a′)Z(x)dµ(x)

=
1

µ(Y ′)2

∫
y∈Y ′

∫
y′∈Y ′

∫
X

φ(x, y)φ(x, y′)Z(x)dµ(y′)dµ(y)dµ(x)

=
1

µ(Y ′)2

∫
X

(∫
Y ′
φ(x, y)dµ(y)

)2

Z(x)dµ(x)

To deduce (1.1), it is enough to show that
∫
Y ′
φ(x, y)dµ(y) = µ(Y ′)PV0(φ(x, a))

on X. Since
∫
Y ′
φ(x, y)dµ(y) = µy(Y

′(y) ∧ φ(x, y)), which is a function in V0,

this follows by the computation:

µ(Y ′)

∫
X

PV0φ(x, a)Z(x)dµ(x) = µ(Y ′)

∫
X

φ(x, a)Z(x)dµ(x)

=

∫
X

(

∫
Y ′
φ(x, y)dµ(y))Z(x)dµ(x)

Remark: The conditions of Proposition 1.4.4 always hold when T is an ω-

categorical MS-measurable structure. The discussion of the definable measure

in ACFA in Chapter 2 of this thesis shows that the conditions of Proposition

1.4.4 also hold in that setting. This follows from Theorem 2.2.21 and the

Stationarity Theorem 2.3.3.
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1.5 Absolute Galois Groups and Associated

Hilbert Spaces

In this section, we study a particular source of interpretable Hilbert spaces: the

L2-spaces associated to the absolute Galois group of a definably closed subset

K of a classical logic structure M .

We start by generalising the classical result of [CvdDM80] about the in-

terpretation of the absolute Galois group of a perfect field inside its algebraic

closure to a quite general first order setting. Assuming elimination of finite

imaginaries, we show that the definable projective system associated to Gal(K)

is canonically interpretable in M in the language of M with an extra predicate

P for K. See Proposition 1.5.6.

We then show that L2(Gal(K)) is interpretable canonically in M in the

language with an extra predicate P for K and we find a canonical asymptoti-

cally free decomposition. Using this asymptotically free decomposition, we also

show that there is a sense in which K can be said to interpret L2(Gal(K))

in the language induced from M , although this interpretation is not canonical.

See Proposition 1.5.11. Finally, we show that for arbitrary k ≥ 1, the space of

Gal(K)-invariant functions on Gal(K)k is canonically interpretable in K in

the language induced from M .

In this section, we work with classical logic. We fix a language L and a

complete L-theory T . We will assume that T admits quantifier elimination.

We assume that T has elimination of finite imaginaries, which is a weakening

of elimination of imaginaries:

Definition 1.5.1. T admits elimination of finite imaginaries if for every finite

product S of sorts of T and any l ≥ 1, there is a definable set C≤l(S) and a

definable relation R ⊆ C≤l(S) × S such that the elements a of C≤l(S) code

the ≤ l-element subsets of S in the following sense: for any n ≤ l and any

x1, . . . , xn ∈ S, there is a unique a ∈ C≤l(S) such that R(a, y) is exactly the

set {x1, . . . , xn}, and every a ∈ C≤l(S) codes such a set.

We consider an enriched language LP where P stands for a collection of

unary predicates (Pi) in distinct sorts of T . Let TP be the LP -theory containing

T which says that P = dcl(P ) (i.e. if S1, . . . , Sn and S ′ are sorts of T and

f : S1× . . .×Sn → S ′ is a definable function, then the image of PS1× . . .×PSn
under f is contained in PS′).

Assume that T admits elimination of finite imaginaries. Then for every

finite product S of sorts of L and l ≥ 1, there is an LP -definable set D≤l(S)

such that for any M |= TP , D≤l(S) is a set of codes for the P (M)-definable

sets contained in S which contain at most l elements. Namely, take D≤l(S) =

C≤l(S) ∧ P .
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Let M |= T and let K ⊆ M . We will say that K is a substructure of M if

K is definably closed in M . With a choice of substructure K, M is naturally

a model of TP with K = P (M). If K is a substructure of M , we will view K

as an L-structure and we will write Th(K) for the complete theory of K in

the language L.

When we make no special reference to T or TP , we will be working in L
and viewing K simply as a subset of M . In particular, when we write dcl and

acl, we mean the definable and algebraic closure in M in the language L.

1.5.1 Interpretation of the inverse system of Gal(K)

In this section, we assume that T has quantifier elimination and elimination

of finite imaginaries. Working with M |= T and K a definably closed sub-

structure, we show that Gal(K) is the inverse limit of an LP -definable system

of finite definable groups. Although this definable inverse system is not coded

in K, we show that K codes the profinite space of Gal(K)-conjugacy classes

of Gal(K)k for arbitrary k ≥ 1.

Let M |= T and let K ⊆ M be a definably closed substructure. Define

Gal(K) to be the group of elementary automorphisms of acl(K) which fix K

pointwise. Note that elements of Gal(K) might not extend to automorphisms

of M . Gal(K) is a profinite group with a basis of open normal subgroups given

by the family Aut(acl(K)/K, φ(x,K)) where φ(x,K) is the set of realisations of

a complete algebraic type overK. The family of groups Aut(φ(x,K)/K) where

φ(x,K) is a complete algebraic type forms a projective system with quotient

maps Aut(φ(x,K)/K)→ Aut(ψ(y,K)/K) when Aut(acl(K)/K, φ(x,K)) is a

normal subgroup of Aut(acl(K)/K, ψ(y,K)). We say that the family of groups

Aut(φ(x,K)/K) is the inverse system of finite quotients of Gal(K).

Remark: This definition of Gal(K) is sensitive to the language L in several

ways; in particular it concerns a quotient of the Shelah-Galois group corre-

sponding to those sorts represented in L. It yields the full Shelah-Galois group,

the automorphism group of algebraic imaginary elements, when T admits full

elimination of imaginaries. As there is no additional reason to assume full

elimination of imaginaries, we will work with the weaker notion of elimination

of finite imaginaries. For example, with T the theory of algebraically closed

valued fields formulated in a single-sorted language L referring to the field

sort, Gal(K) will give the field-theoretic absolute Galois group of a perfect

Henselian subfield K; while in a language L′ with an additional sort for the

residue field, a substructure K can be a Henselian subfield along with a per-

fect field extension of its residue field, and Gal(K) would give their combined

Galois groups.

We want to show that under the assumptions on T mentioned above, M

interprets in TP the inverse system of finite quotients of Gal(K). This will
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generalise the classical result of [CvdDM80] in the case where K is a perfect

field and M = Kalg. A detailed exposition of the construction for perfect fields

can be found in the appendix of [Cha02].

Definition 1.5.2. Let M |= T and let K be a definably closed substructure

of M . A K-definable finite structure c in M is a pair c = (u(c), R(c)) where

u(c) is a finite K-definable set in M of size n ≥ 1 and R(c) is a non-empty

K-definable n-ary relation on u(c) such that every element of R(c) is an enu-

meration of u(c). Here u(c) is a subset of a finite Cartesian product of sorts

of M . We say that u(c) is the universe of c.

We say that c is a complete K-definable finite structure if R(c) is minimal,

in the sense that for any finite K-definable structure c′ with the same universe

as c, if R(c′) ⊆ R(c) then R(c′) = R(c)

For c a complete finite K-definable structure, let Gal(c/K) be the finite

group of elementary automorphisms of u(c) ∪K which fix K.

We say that c is Galois if Gal(c/K) acts sharply transitively on u(c).

If c is a complete finite K-definable structure in M , then there is some

enumeration u1, . . . , un of u(c) such that R(c) is the set of realisations of the

type tp(u1, . . . , un/K). Note that Gal(c/K) acts sharply transitively on R(c).

Therefore, taking a finite K-definable structure d with universe R(c) produces

a Galois K-definable finite structure.

Finally, observe that Gal(K) is the projective limit of the system Gal(d/K)

where d is a Galois K-definable finite structure. Therefore we will focus on

Galois K-definable finite structures in what follows. This is not necessary

from a technical point of view but it makes the analogy with the case of fields

clearer.

We will now code uniformly the Galois structures definable over K as

elements of M . Their Galois groups are also coded uniformly as LP -definable

sets that we will call G(c).

Lemma 1.5.3. For every finite Cartesian product S of sorts of T and n ≥ 1,

there is an LP -definable set Ccomp
n (S) such that for any M |= TP , Ccomp

n (S)

codes the complete n-element K-definable structures contained in S. Ccomp
n (S)

is contained in K.

Moreover, there are LP -definable sets Gn(S) such that for every M |= TP
and c ∈ Ccomp

n (S), there is a K-definable group G(c) ⊆ Gn(S) with a K-

definable action on u(c) such that G(c) = Gal(c/K) as a group of permutations

of u(c).

Therefore there are LP -definable sets Cgal
n (S) such that for any M |= TP ,

Cgal
n (S) ⊆ Ccomp

n (S) codes the Galois K-definable structures of size n in S.

Proof. Suppose u(c) has cardinality n and is in S. Then R(c) is a subset of

Sn containing at most n! elements such that every element in R(c) enumerates
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the same n-element set. There is also an LP -formula asserting that an element

x ∈ D≤n!(S
n) codes a K-definable relation which is minimal in the sense of

Definition 1.5.2. Hence all n-element complete K-definable structures in S are

coded in some definable subset of D≤n!(S
n).

Consider the set of pairs (x, y) ∈ S2n such that there is c ∈ Ccomp
n (S) such

that x, y both belong to R(c). The set of such pairs is 0-definable. Observe

that any such pair (x, y) determines an element of Gal(c/K) and that a defin-

able equivalence relation decides whether two such pairs determine the same

element of Gal(c/K). By elimination of finite imaginaries, we can find a defin-

able set Gn(S) of codes for automorphisms of n-element complete K-definable

structures in S.

By construction of Gn(S), we see that for every c ∈ Ccomp
n (S) there is a

c-definable group G(c) contained in Gn(S) with a c-definable action on u(c),

and G(c) is canonically identified with Gal(c/K) in the obvious way. The

definability of Cgal
n (S) follows.

Note that in Lemma 1.5.3, for M |= TP and K = P (M), the definable sets

Gn(S) are not usually contained in K. See the discussion following Proposition

1.5.6.

We now show that the projective limit structure on the system of groups

(Gal(c/K)) is definable:

Definition 1.5.4. Let M |= T and let K ⊆ M be a definably closed sub-

structure. For c, c′ finite K-definable structures, we write c ≤ c′ if u(c) ⊆
dcl(K, u(c′)).

It is clear that for c ∈ Cgal
n (S) and c′ ∈ Cgal

m (S ′), c ≤ c′ if and only if

Aut(acl(K)/K, c) is a normal subgroup of Aut(acl(K)/K, c′).

Lemma 1.5.5. The relation c ≤ c′ is definable in TP between sets Cgal
n (S) and

Cgal
m (S ′).

Proof. Let M |= TP and take c ∈ Cgal
n (S) and c′ ∈ Cgal

m (S ′). Let a and b

be arbitrary enumerations of u(c) and u(c′). Then tp(ab/K) is algebraic so

we can find d ∈ Cgal
k (Sn × S ′m) such that u(d) consists of the realisations of

tp(ab/K). Then c ≤ c′ if and only if the action of G(d) on u(d) is determined

by its restriction to the coordinates in S ′m. This is a definable property of d.

Finally, we quantify-out d to obtain a definition of c ≤ c′.

The proof of Lemma 1.5.5 shows that for any sets Cgal
n (S) and Cgal

m (S ′),

there is a sort S ′′ and k ≤ nm such that for any c ∈ Cgal
n (S), c′ ∈ Cgal

m (S ′),

there is c′′ ∈ Cgal
k (S ′′) with c ≤ c′′ and c′ ≤ c′′. It follows that

⋃
n,S C

gal
n (S)

forms a directed preorder under ≤. It is a preorder because we may have

c 6= c′, c ≤ c′ and c′ ≤ c for c, c′ in the same set Cgal
n (S) or in distinct sets.
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Moreover, Lemma 1.5.5 shows that if c ∈ Cgal
n (S) and c′ ∈ Cgal

m (S ′) then the

relation c ≤ c′ determines a canonical K-definable surjective homomorphism

G(c′)→ G(c). It is easy to check that if we have c ≤ c′ ≤ c, then the resulting

homomorphism G(c)→ G(c) is the identity. We say that the projection maps

are compatible with the preorder ≤ on
⋃
n,S C

gal
n (S). Hence we have proved

the following proposition:

Proposition 1.5.6. Let M |= T and let K be a definably closed substructure.

The family of groups G(c) indexed by the set⋃
{Cgal

n (S) | n ≥ 2, S finite product of sorts of T}

forms a strict LP -piecewise-definable projective system of finite LP -definable

groups with the directed preorder x ≤ y and the induced definable homomor-

phisms G(y)→ G(x). The inverse limit of this projective system is canonically

isomorphic to Gal(K).

In Proposition 1.5.6, we say that the family G(c) is a piecewise definable

projective system of finite definable groups because the underlying preorder is

given by a family of definable sets. We stress that this projective system is

indexed by a preorder. We say that the definable projective system is strict

because the group homomorphisms G(y)→ G(x) for x ≤ y are surjective.

Observe that the LP -piecewise-definable projective system is only sensitive

to the part of M which contains acl(K). Therefore, we can define a language

L∗P which contains only the quantifier-free definable relations of L which occur

between elements of acl(K) and define T ∗P to be the theory of the L∗P -structure

acl(K) in the obvious way. The definable projective system of groups of Propo-

sition 1.5.6 is definable in T ∗P . We will not make any further references to L∗P
but every interpretability result about M as an LP -structure in this section

and in section 1.5.2 also holds for acl(K) as an L∗P -structure. This stronger

fact can be seen by applying those results to T ∗P in place of T and to the

L∗P -structure acl(K) in place of M while keeping the same substructure K.

Finally, we remark that Proposition 1.5.6 entails trivially that Gal(K)n is

also the inverse limit of an LP -definable projective system of finite groups in

M , for any n ≥ 1.

Let M |= T and let K be a substructure. Using quantifier-elimination in

T , an inspection of the proofs of Lemmas 1.5.3 and 1.5.5 will show that the

sets Cgal
n (S) and the relation c ≤ c′ are L-definable subsets of K, which we

view as an L-structure. As a result, Th(K) has partial access to the definable

projective system of grouos (G(c)). For example, there are quantifier-free L-

formulas which determine in Th(K) the isomorphism type of the group G(c)

for c ∈ Cgal
n (S).

However, [Dit18] shows in the context of fields that the LP -definable pro-

jective system of groups (G(c)) is usually not interpretable in Th(K). Indeed,
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when c ≤ c′, Th(K) does not code a projection G(c′)→ G(c). This is because

Th(K) does not determine an embedding of the sets u(c) and u(c′) in M . See

[Dit18] for proofs and a detailed discussion.

Nonetheless, for any c ∈ Cgal
n (S) and k ≥ 1, K contains codes for each

orbit on G(c)k under diagonal conjugation by G(c). We say that these are the

G(c)-conjugacy classes of G(c)k. To see this, take φ ∈ Gal(c/K) = G(c) and

g = (g1, . . . , gk) ∈ G(c)k. Then φ(g) is the conjugate (gφ1 , . . . , g
φ
k ). Therefore, φ

fixes the conjugacy class (g1, . . . , gk)
G(c). By elimination of finite imaginaries,

this conjugacy class is coded by an element of K. As in Lemma 1.5.3, we can

construct a definable set Conjkn(S) ⊆ K such that for every c ∈ Cgal
n (S), there

is a finite K-definable set Conjk(c) ⊆ Conjkn(S) coding the G(c)-conjugacy

classes of G(c)k.

If c ∈ Cgal
n (S), c′ ∈ Cgal

m (S ′) and c ≤ c′, then the canonical projection π :

G(c′)→ G(c) induces a definable relation v between Conjk(c) and Conjk(c′)

as follows: we write a v b where a ∈ Conjk(c′) and b ∈ Conjk(c) if a is

contained in π−1(b). This relation is L-definable in Th(K). Hence we have

the proposition:

Proposition 1.5.7. Let M |= T , let K be a definably closed substructure and

let k ≥ 1. Working in Th(K), the family of L-definable finite sets Conjk(c)

indexed by the set
⋃
n,S C

gal
n (S) forms a strict piecewise-definable projective sys-

tem with the directed preorder x ≤ y on
⋃
n,S C

gal
n (S) and the induced relation

v.

The inverse limit of this projective system is canonically isomorphic to the

profinite space of Gal(K)-conjugacy classes of Gal(K)k.

We end this section with a comment about the opposite group to G(c).

Fix M |= T and K a substructure of M . For c ∈ Cgal
n (S), define Gop(c) the

c-definable group of permutations of u(c) which commute with G(c). Since c is

Galois, it is easy to show that Gop(c) is isomorphic to G(c), but not canonically:

for any a ∈ u(c), we have an isomorphism G(c) → Gop(c), g 7→ h−1 where

ga = ha. Only the conjugacy classes of G(c) and Gop(c) are in a canonical

bijection.

Since G(c) is equal to Gal(c/K), Gop(c) is pointwise K-invariant and hence

Gop(c) is contained in K. In fact, we can use the opposite groups to give a

more canonical characterisation of K-definable finite Galois structures. We

can define Cgal
n (S) as the set of elements c in D≤n(S) such that the set coded

by c does not contain any smaller K-definable set and such that the set of

permutations of c which belong to K acts sharply transitively on c. This

approach is more canonical than the approach through Definition 1.5.2 but it

does not allow any strengthening of our results.

This is because the identification of Gop(c) with G(c) is not canonical and

there is no canonical system of projections Gop(c′) → Gop(c) when c ≤ c′. If

there is a K-definable surjection u(c′) → u(c), then it is true that we have a
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K-definable surjective homomorphism Gop(c′)→ Gop(c), but different choices

of surjections u(c′) → u(c) induce incompatible homomorphisms between the

opposite groups. Therefore, although it is possible to work in Th(K) with

an arbitrary finite collections of opposite groups, the family (Gop(c)) does not

form an L-definable projective system in Th(K).

1.5.2 Hilbert spaces associated to Gal(K)

As before, we assume that T eliminates finite imaginaries and has quantifier

elimination and TP is the expansion of T by a predicate which names a defin-

ably closed substructure. In this section we construct the interpretable Hilbert

spaces Hgal, H′gal and Hclass,k for k ≥ 1. We summarise our results about these

interpretable Hilbert spaces in the following theorem. The rest of this section

is devoted to proving Theorem 1.5.8.

Theorem 1.5.8. In the following, we write K for the definably closed sub-

structure of TP named by the predicates P . In (3) and (4), K is considered as

the universe of an L-structure.

1. L2(Gal(K),Haar) is strictly interpretable in TP .

2. L2(Gal(K),Haar) is the orthogonal sum of a family of finite-dimensional

Hilbert spaces determined by a piecewise-interpretable family of asymp-

totically free LP -definable sets.

3. For every k ≥ 1, L2(Gal(K)k,Haar)Gal(K), the space of class functions of

Gal(K)k, is strictly interpretable in the substructure K in the language

L.

4. L2(Gal(K)k,Haar)Gal(K) is the orthogonal sum of a family of finite-

dimensional Hilbert spaces determined by a piecewise-interpretable family

of asymptotically free L-definable sets in K.

We will writeHgal = L2(Gal(K),Haar) andHclass,k = L2(Gal(K)k,Haar)Gal(K),

as this will make notation less ambiguous.

There is also a stricly interpretable Hilbert space H′gal in L such that for any

M |= T and any definably closed substructure K ⊆ M , H ′gal(K) is a Hilbert

space interpretable in K which is abstractly isomorphic to L2(Gal(K),Haar)

in a way that respects the orthogonal decomposition given in (2) above.

Proof. (1) is proved in Proposition 1.5.9. (2) is proved in Lemma 1.5.10. (3)

is proved in Proposition 1.5.13 and (4) is proved in the discussion following

1.5.13. H′gal is discussed in Proposition 1.5.11.

We always consider Gal(K) as a measure space with the Haar measure, so

we suppress the reference to the Haar measure in what follows.
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We use the notation that we set up in Section 1.5.1. Take M |= T with a

definably closed substructure K and take g ∈ G(c) ⊆ Gn(S) in M . Then we

have seen that G(c) = Gal(K)/F ix(u(c)) and g is canonically identified with

a coset of Fix(u(c)) in Gal(K). In order to simplify notation, we will also

write g for this coset.

Proposition 1.5.9. There is a strictly interpretable Hilbert space Hgal in TP
generated by the definable sets (Gn(S)) where n ≥ 2 and S ranges over finite

Cartesian products of sorts of T such that for any M |= TP , Hgal(M) can be

canonically identified with L2(Gal(K)) in the following sense:

Writing hS,n : Gn(S) → Hgal(M) for the direct limit maps, there is a

Hilbert space isomorphism F : Hgal(M) → L2(Gal(K)) such that for any

g ∈ G(c) ⊆ Gn(S), F ◦ hS,n(g) = 1g. F is necessarily unique.

Proof. We only need to show that for any choice of Gn(S) and Gm(S ′), the

inner product map Gn(S)×Gm(S ′)→ R, (g, g′) 7→ 〈1g, 1g′〉 is definable, where

g, g′ are identified with cosets in Gal(K) as explained above.

For any g ∈ G(c) and g′ ∈ G(c′), choose any c′′ such that c, c′ ≤ c′′ and

write π : G(c′′)→ G(c), π′ : G(c′′)→ G(c′) for the canonical homomorphisms.

Then quotienting by Fix(c′′) we have

〈1g, 1g′〉 =
|π−1(g) ∩ π′−1(g′)|

|G(c′′)|
.

Since π, π′ are (c, c′, c′′)-definable, the above relation is also (c, c′, c′′)-definable.

Quantifying-out c′′, we find that the inner product maps are LP -definable and

this defines Hgal.

We say that Hgal is the interpretation of L2(Gal(K)) in TP . Compare with

Proposition 1.4.1 in the case of definable measures.

We show how to find a natural asymptotically free decomposition of Hgal.

We have seen that the equivalence relation (c ≤ c′) ∧ (c′ ≤ c) on each Cgal
n (S)

induces an equivalence relation on Gn(S) and we can quotient out the sets

Cgal
n (S) and Gn(S) by these equivalence relations to obtain injective direct

limit maps for Hgal. We continue to write Gn(S) for the resulting imaginary

sorts and we identify Gn(S) with a subset of Hgal.

Fix M |= T and K a definably closed substructure. For every c-definable

groupG(c) ⊆ Gn(S), letH(c) be the finite-dimensional subspace of L2(Gal(K))

generated by functions which are constant on cosets of Fix(u(c)). H(c) can

be canonically identified with L2(G(c)) = L2(Gal(c/K)) with the normalised

counting measure. Let W (c) be the subspace of H(c) generated by the sum of

the spaces H(c′) for c′ in arbitrary sets Cgal
m (S ′) such that c′ < c.

Let G̃n(S) = {PW (c)⊥g | g ∈ G(c), c ∈ Cgal
n (S)}. By an argument similar to

the one given in Proposition 1.3.16, G̃n(S) can be identified with a definable
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set in a classical imaginary sort of TP with a strictly definable inner product

map.

Lemma 1.5.10. Each definable set G̃n(S) above is asymptotically free in Hgal.

Therefore Hgal is the completed orthogonal sum of the finite dimensional spaces

H(c) ∩W (c)⊥.

Proof. It is enough to show that if g, g′ are automorphisms of c, c′ ∈ Cgal
n (S)

such that c, c′ are not inter-definable, then PW (c)⊥g ⊥ PW (c′)⊥g
′. Fix c, c′ ∈

Cgal
n (S) such that c′ 6≥ c. We can find a K-definable finite Galois structure d

such that c, c′ ≤ d and we identify H(c) and H(c′) with subspaces of H(d).

Let G0 = Gal(K)/F ix(u(c))Fix(u(c′)). Then we identify G(d) with the

fibre product G(c)×G0G(c′), where we have quotient maps G(d)→ G(c)→ G0

and G(d)→ G(c′)→ G0. Write N,N ′, N0 EG(d) for the kernels of the maps

G(d)→ G(c), G(c′), G0 respectively.

Let v ∈ H(c) ∩ W (c)⊥ and v′ ∈ H(c′), viewed as functions G(d) → R.

We will show that v ⊥ v′. v is a function which is constant on N -cosets

in G(d) and such that the sum of the values of v over any N0-coset is 0.

v′ is a function which is constant on N ′-cosets in G(d). For any N0-coset

C ⊆ G(d), it is enough to show 〈v1C , v′1C〉 = 0. There are subsets A ⊆ G(c)

and B ⊆ G(c′) such that C is identified with A × B via the isomorphism

G(d)→ G(c)×G0 G(c′). Therefore, we have

〈v1C , v
′1C〉 =

∑
g∈A

∑
g′∈B

v(g)v′(g′) = (
∑
g∈A

v(g))(
∑
g′∈B

v′(g′)) = 0

Remarks: 1. We have expressed Hgal as a strictly interpretable Hilbert space

generated by asymptotically definable sets. This matches the description of

Corollary 1.3.21, although it is not clear whether the weak NFCP occurs in

the present context.

2. Although each set G̃n(S) is asymptotically free, we cannot guarantee

that these sets are pairwise orthogonal because of possible identifications be-

tween Cgal
n (S) and Cgal

n (S ′). Observe also that different complete types in

Gn(S) are not pairwise orthogonal.

3. The asymptotically free decomposition constructed above only depends

on Gal(K) being the inverse limit of a piecewise-definable projective system

of finite groups. Therefore, the same approach gives an asymptotically free

decomposition of L2(Gal(K)k) for any k ≥ 1.

For M |= T and K a definably closed substructure, it is unlikely that K

as an L-structure interprets L2(Gal(K)) in the same sense as in Proposition

1.5.9. However we can use Lemma 1.5.10 to show that K interprets a Hilbert

space which is abstractly isomorphic to L2(Gal(K)) in a way that respects the

orthogonal decomposition of Lemma 1.5.10.
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Indeed, with the same notation as before, L2(Gal(K)) is the orthogonal

sum of the finite-dimensional Hilbert spaces H(c) ∩W (c)⊥. Moreover, there

are quantifier-free L-formulas contained in each Cgal
n (S) which determine the

dimension of H(c) ∩ W (c)⊥ for c ∈ Cgal
n (S). Write dim(x) = k for these

formulas (where k ≤ n).

For every set Cgal
n (S) ⊆ K and k ≤ n, let Di

k(xi) (1 ≤ i ≤ n) be disjoint

copies of the set dim(x) = k. For every c satisfying dim(c) = k, choose an

orthonormal basis v1(c), . . . , vk(c) of H(c) ∩ W (c)⊥ and define maps hS,k,i :

Di
k → L2(Gal(K)) by hS,k,i(ci) = vi(c) for i ≤ k, where ci is the copy of c

in Di
k(xi). For k < i ≤ n, define hS,k,i(ci) = 0. The maps (hS,k,i) define

an interpretable Hilbert space HS,n isomorphic to the orthogonal sum of the

spaces H(c) ∩W (c)⊥ as c ranges over Cgal
n (S).

Working now across different sets Cgal
n (S) and Cgal

n (S ′), if c and c′ are inter-

definable so that H(c) = H(c′), we can choose the same orthonormal bases

v1(c) = v1(c′), . . . , vk(c) = vk(c
′) for H(c) ∩W (c)⊥ = H(c′) ∩W (c′)⊥. Writing

(Di
k(xi)) and (D̃j

k(yj)) for the copies of dim(x) = k in Cgal
n (S) and Cgal

n (S ′)

respectively, we set hS,k,i(ci) = hS′,k,i(c
′
i). The resulting inner product maps

Di
k × D̃

j
k → R are definable. Note that c, c′ are inter-definable if and only if

c ≤ c′ and c′ ≤ c and this relation is definable in Th(K). Therefore, the inner

product maps are defined independently of the particular identifications which

take place in K between Cgal
n (S) and Cgal

n (S ′).

Carrying out this construction over all sets Cgal
n (S) and making coherent

choices of bases, we obtain a strictly interpretable Hilbert space H′gal satisfying

the following proposition:

Proposition 1.5.11. For any M |= T and K a definably closed substructure,

there is a Hilbert space isomorphism F : H ′gal(K)→ L2(Gal(K)) satisfying the

following property: for every c ∈ Cgal
n (S), there is a finite dimensional subspace

U(c) of H ′gal(K) such that U(c) ⊆ dcl(c) and F maps U(c) isomorphically to

L2(Gal(c/K)).

U(c) is defined at the level of H′gal, in the sense U(c) is determined by

formulas over c which do not depend on any particular choice of substructure

K of M .

Remarks: 1. The strictly interpretable Hilbert space H′gal defined above

satisfies the conclusion of Corollary 1.3.21 by construction.

2. We can also view H′gal as an interpretable Hilbert space on TP since K

is interpretable in TP . In that case, we point out that Hgal and H′gal are not

isomorphic interpretable Hilbert spaces on TP .

When G is a profinite group with Haar measure µ and k ≥ 1, write L2(Gk)G

for the Hilbert space of class functions on Gk. These are the functions Gk →
R or C which are invariant under conjugation by G. In the following, we

work with class functions on Gk into R but all the results go through without

modification to class functions into C.

48



Lemma 1.5.12. Let G be a profinite group with Haar measure µ. Then

L2(Gk)G is generated as a Hilbert space by functions f : Gk → R for which

there is an open normal NEG and a G-conjugacy class A of Gk/Nk such that

f = 1π−1(A) where π is the quotient map Gk → Gk/Nk.

Proof. Let f be an arbitrary class function on Gk. Then we can find a sim-

ple function h which is arbitrarily close to f in the L2-norm. Let h′(x) =∫
G
h(xg)dg. Then

‖h′ − f‖2 ≤
∫
x∈Gk

∫
g∈G

(f(xg)− h(xg))2dgdx

=

∫
G

∫
Gk

(f(xg)− h(xg))2dxdg

= ‖f − h‖2

It is easy to check that h′ is a simple function. Since h′ is a class function and

a simple function, there is N EG such that h factors through Nk. The lemma

follows.

Now let T be a theory as before, with elimination of finite imaginaries

and quantifier elimination. Recall from Proposition 1.5.7 that there is a L-

piecewise-definable projective system such that for any M |= T with K a

definably closed substructure, the inverse limit of this projective system in K

is canonically identified with the profinite space of Gal(K)-conjugacy classes of

Gal(K)k. This piecewise-definable projective system is given by the collection

of definable sets Conjkn(S).

Proposition 1.5.13. For every k ≥ 1, there is a strictly interpretable Hilbert

space Hclass,k generated by the definable sets (Conjkn(S)) such that for any M |=
T with K a definably closed substructure, writing G = Gal(K), Hclass,k(K) can

be canonically identified with L2(Gk)G in the following sense:

Writing hS,n : Conkn(S) → Hclass,k(K) for the direct limit maps, there is

a Hilbert space isomorphism F : Hclass,k(K) → L2(Gk)G such that for any

a ∈ Conjk(c) ⊆ Conjkn(S), F ◦ hS,n(a) = 1π−1(a) where π : Gk → Gal(c/K)k

is the quotient map.

Proof. By Proposition 1.5.9, the inner product maps Conjkn(S)×Conjkm(S ′)→
R, (a, b) 7→ 〈1π−1(a), 1π′−1(b)〉 are definable. Since quantification only takes place

over P , these maps are L-definable in K. This defines Hclass,k.

We can also view Hclass,k as an interpretable Hilbert space in TP . In that

case, Hclass,k embeds definably into Hgal but not into H′gal.
We show that the asymptotically free decomposition of L2(Gal(K)k) in

M given by Lemma 1.5.10 also provides an asymptotically free decomposition

of Hclass,k. Fix M |= T and K a definably closed substructure. For every

49



c ∈ Cgal
n (S), define Hclass,k(c) the Hilbert space of class functions on G(c)k,

viewed as a subspace of L2(G(c)k) := H(c).

Recall that W (c) is defined as the subspace of H(c) generated by the sum of

the H(c′) where c′ < c. Let U(c) = W (c)∩Hclass,k(c). Since W (c) is invariant

under conjugation, for any v ∈ Hclass,k(c) we have PU(c)⊥(v) = PW (c)⊥(v).

Therefore we can express L2(Gal(K)k)Gal(K) as the orthogonal sum of the

finite dimensional spaces PU(c)⊥(Hclass,k(c)). We obtain a decomposition of

Hclass,k similar to Lemma 1.5.10.

1.6 Unitary Representations

Throughout this chapter so far, we were interested in interpretable Hilbert

spaces. These are defined at the level of the theory rather than individual

models. In this section, we will look at the connection with representation

theory, which requires fixing a group. In our context, this amounts to fixing a

sufficiently homogeneous model.

In Section 1.6.1, we show that the notion of irreducibility for representa-

tions on interpretable Hilbert spaces does not depend on the choice of model,

and in fact is quite local in nature, in the sense that it is witnessed by the

representation of Aut(bdd(a)) for a a finite tuple. See Propositions 1.6.7 and

1.6.9. In Section 1.6.2 we review the special case of ω-categorical structures

and we recover the classification theorem of [Tsa12]. In Section 1.6.3 we adapt

our decomposition theorem 1.3.14 to general unitary group representations with

an orbit whose weak closure is locally compact and we use a theorem of Howe

and Moore to uncover a new source of interpretable Hilbert spaces generated

by asymptotically free types.

1.6.1 Unitary representations of automorphism groups

In this section, we show that the theorems of Section 1.3 shed light on some

of the representation theory of automorphism groups of theories with scat-

tered interpretable Hilbert spaces. In this section, T is an arbitrary complete

continuous logic theory with an interpretable Hilbert space H.

Definition 1.6.1. Let G be a group and H a Hilbert space, real or complex.

A unitary representation σ of G on H is a group action G×H → H such that

for every g ∈ G σ(g) is a unitary map if H is a complex Hilbert space and

σ(g) is an orthogonal map if H is a real Hilbert space.

When G is a topological group, we say that σ is continuous if σ : G×H → H

is continuous. This is equivalent to σ(·, v) being continuous for every v ∈ V .

Convention: In this thesis, we only consider continuous unitary representa-

tions of topological groups, so we just say ‘representation’ instead of ‘contin-

uous unitary representation’.

50



Definition 1.6.2. Let G be a group and let σ, σ′ be two representations of G

on the Hilbert spaces H and H ′ respectively. σ and σ′ are equivalent if there

is a surjective isometry U : H → H ′ such that for all g ∈ G and v ∈ H,

U(σ(g)v) = σ′(g)U(v). We say that U intertwines σ and σ′.

Let M |= T and write G = Aut(M). Then G is a topological group with

the topology of pointwise convergence. G has a basis at the identity consisting

of subsets of the form {g ∈ G | d(gA,A) < ε} where A ranges over finite

subsets of M and ε > 0. When T is a classical logic theory, this is a basis

of subgroups. Note we can add imaginary sorts to M without changing the

topology on G.

SupposeH is an interpretable Hilbert space in T . For any M |= T , Aut(M)

has a canonical unitary representation π on H(M) given by π(g)hx = h(gx)

where h is the direct limit map on a piece of H. By our previous discussion,

π is continuous. The following lemma is an easy definition chase.

Lemma 1.6.3. If H, H′ are isomorphic interpretable Hilbert spaces in T ,

then for any M |= T , the representations of Aut(M) on H(M) and H ′(M)

are equivalent.

We turn to a discussion of irreducibility for canonical representations.

Definition 1.6.4. Let H0 be an
∧

-interpretable subspace of H. We say that

H0 is irreducible if there do not exist complete types q, q′ in H0 such that

q(x) ∪ q′(y) implies 〈x, y〉 = 0.

We will study irreducibility for
∧

-interpretable Hilbert spaces in relation

with the notion of ω-near homogeneity, which occurs naturally in continuous

logic:

Definition 1.6.5 ([BYBHU08] 8.7, 12.11). Let N be a model of T realising all

types. If p, q are complete types of N , we define d(p, q) = inf{d(a, b) | a |= p,

b |= q, a, b ∈ N}.
We say that M |= T is ω-near-homogeneous if for any two finite tuples a

and b in M , for every ε > 0 there exists g ∈ Aut(M) such that d(g(a), b) <

d(tp(a), tp(b)) + ε.

Remark: Recall that we work in continuous logic for metric structures so that

every sort of T comes equiped with a metric. ω-near-homogeneity is defined

with respect to these metrics. As a result, ω-near-homogeneity for an arbitrary

model M is not preserved under adding imaginary sorts to T . Therefore, we

make the following assumption on H:

We assume that the pieces of H are real sorts of T and that the direct

limit maps on each piece of H are isometries.
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With this assumption, if M |= T is ω-near-homogeneous, then the character-

isation of ω-near-homogeneity applies to types in H. We also observe that

if M realises all types of T and is ω-near-homogeneous, then expansions of

M by imaginary sorts remain ω-near-homogeneous. In particular, ω-near-

homogeneity is a robust notion for models of ω-categorical theories.

Lemma 1.6.6. Let H0 be a
∧

-interpretable subspace of H.

1. if H0 is irreducible then for any ω-near-homogeneous M |= T the canon-

ical representation π of Aut(M) on H0(N) is irreducible.

2. if there is some M |= T realising all types of T such that the canon-

ical representation π of Aut(M) on H0(N) is irreducible, then H0 is

irreducible

Proof. (1) Let M |= T be ω-near-homogeneous. Let v, w ∈ H(M) be two

nonzero vectors. Write q1, q2 for their respective types. By irreducibility of H0

and the assumption following Definition 1.6.5, d(q1, q2)2 < ‖v‖2 + ‖w‖2. By

ω-near-homogeneity, we can find g ∈ Aut(M) such that ‖gv−w‖ is arbitrarily

close to d(q1, q2). Then gv and w are not orthogonal and the representation of

Aut(M) on H0(M) is irreducible.

(2) Take M |= T as in the statement. Let p, q be types of H0 and let v, w

be realisations in H0(M). There is g ∈ Aut(M) such that 〈gv, w〉 6= 0 so H0

is irreducible.

Proposition 1.6.7. Let p be a complete type in H. Take M |= T ω-near-

homogeneous and realising all types.

Let a |= p in H(M), let K be the subgroup of Aut(M) fixing bdd(a) setwise

and let A = Hp(M) ∩ bdd(a). If the canonical representation of K on A is

irreducible, then Hp is irreducible.

Proof. Let q, q′ be two types in Hp. Let v, w be realisations of q, q′ in H(M).

Choosing Aut(M)-conjugates of v and w if necessary, we can assume that PAv

and PAw are nonzero. Conjugating v by an element of K, we can assume that

〈PAv, PAw〉 6= 0.

Consider the nonforking extension r of tp(v/A) to bdd(Aw) with respect

to the inner product maps of H. If z realises r in an ω1-saturated elementary

extension N of M , we have 〈z, w〉 = 〈PAv, PAw〉 6= 0. Let r′ = tp(z, w).

By our assumption on M , r′ is realised in M by some pair (z′, w′). By

ω-near-homogeneity, we can assume that w′ is arbitrarily close to w. Now

tp(z′) = tp(v) so we can find g ∈ Aut(M) taking v arbitrarily close to z′. Now

we have 〈gv, w〉 ≈ 〈z′, w′〉 = 〈z, w〉 6= 0.

We will now show how asymptotically free types give rise to induced rep-

resentations. We begin by recalling the notion of induced representation in
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the special case where we induce from an open subgroup. See [BdlHV08] for

more details. Let G be a topological group and take K an open subgroup of

G. Let σ be a representation of K on the Hilbert space V . We suppose that

V is a real Hilbert space (the case of complex Hilbert spaces is similar). Write

RG for the free vector space on G. We define G⊗σ V , the σ-tensor of G and

V , to be the vector space RG ⊗ V quotiented by a suitable subspace so that

gk ⊗σ v = g ⊗ σ(k)v for all g ∈ G and k ∈ K.

We define an inner product on G ⊗σ V as follows. For any g, g′ ∈ G and

v, v′ ∈ V , if gK 6= g′K, then 〈g ⊗σ v, g′ ⊗σ v′〉 = 0. If gK = g′K, then find

k ∈ K such that g′ = gk and define 〈g ⊗σ v, g′ ⊗σ v′〉 = 〈v, σ(k)v′〉. Observe

that if we choose a set of coset representatives for G/K, we can identify G⊗σV
with the orthogonal sum of copies of V indexed by G/K.

We will always work with the Hilbert space completion of G⊗σ V . We also

write G⊗σ V for this completion. We define the induced representation of G

from σ, denoted IndGK(σ), as the unitary representation of G on G⊗σ V given

by g · (g′ ⊗σ v) = gg′ ⊗σ v. Since K is open in G, the induced representation

is continuous.

Proposition 1.6.8. Suppose p is an asymptotically free complete type in H.

For x, y |= p, write x ∼ y if bdd(x) = bdd(y) and write [x] for the equivalence

class of x under ∼.

Let M |= T , write G = Aut(M) and suppose that for some (any) a |= p,

the orbit of a under G is metrically dense in p. Fix a |= p in H(M) and

write K for the open subgroup of elements of G which fix [a] setwise. Then

the canonical representation π of G on Hp(M) is equivalent to IndGK(σ) where

σ is the restriction of π to K on the Hilbert space V spanned by [a].

Proof. Since p is asymptotically free, p is metrically locally compact and hence

there is ε > 0 such that for any x, y |= p, if d(x, y) < ε then [x] = [y]. Therefore

K is open in G. Let A = [a] and write {Ai | i ∈ I} for the orbit of A under

G setwise (we ignore permutations of A). For every i ∈ I pick gi ∈ Aut(M)

which maps A to Ai. Then {gi | i ∈ I} is a list of representatives for the left

cosets of K in Aut(M). Since p is asymptotically free, the sets Ai are pairwise

orthogonal in Hp(M).

Write π for the canonical representation of Aut(M) on Hp(M) and let σ be

the restriction of π to K on V , the vector space spanned by A. Let ι = IndGK(σ)

and write W = G ⊗σ V . We show that ι and π are equivalent. Write also

gi ⊗K V for the subspace of W given by {gi ⊗σ v | v ∈ V }. Take w ∈ W and

write w =
∑
wi where wi ∈ gi ⊗σ V . Let Pi : gi ⊗σ V → V be the Hilbert

space isomorphism taking gi ⊗σ v to v. We define

U(w) =
∑

π(gi)Pi(wi).

Since Ai ⊥ Aj for i 6= j, we have π(gi)Pi(wi) ⊥ π(gj)Pj(wj), so U is well-

defined, and it is easy to check that U is in fact a surjective isometry. U
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intertwines ι and π: take g ∈ G, i ∈ I, v ∈ V . Then, writing ggi = gjk, we

have

U(ι(g)(gi⊗Kv)) = U(gj⊗Kσ(k)v) = π(gj)(σ(k)v) = π(gjk)v = π(g)U(gi⊗Kv).

Remark: Taking a and K as in Proposition 1.6.8, we note that Aut(M/[a])

is a normal subgroup of K contained in the kernel of σ. Write G1 for the

group of automorphisms of the set [a]. Then σ factors through Aut(M/[a])

to a representation of a subgroup of G1. Since [a] is a separable locally com-

pact metric space, the closure of K/Aut(M/[a]) in G1 is locally compact with

respect to the topology of pointwise convergence. We say that the canonical

representation of G is obtained from the representation of K/Aut(M/[a]) by

inflation.

We prove a version of Mackey’s irreducibility criterion for the representa-

tions arising in interpretable Hilbert spaces generated by asymptotically free

types. This strengthens Proposition 4.1 in [Tsa12].

Proposition 1.6.9. Suppose p is an asymptotically free complete type in H.

For x, y |= p, write x ∼ y if bdd(x) = bdd(y) and write [x] for the equivalence

class of x under ∼.

Let M |= T be ω-near-homogeneous and realise all types. Write G =

Aut(M). Fix a |= p in M and write K for the subgroup of elements of G

which fix [a] setwise. Let σ be the restriction of the canonical representation π

of G to K on the Hilbert space V spanned by [a]. Then σ is irreducible if and

only if Hp is irreducible.

Proof. By Proposition 1.6.8 and easy facts about induced representations, if

σ = σ1 ⊕ σ2, then π = IndGK(σ1) ⊕ IndGK(σ2), so Hp is reducible by Lemma

1.6.6.

Conversely, suppose that σ is irreducible. If we move to an ω1-strongly

homogeneous and ω1-saturated elementary extension M ′ of M , then the rep-

resentation of the subgroup of Aut(M ′) which fixes [a] setwise is also irreducible

on V . By Lemma 1.6.6, we can assume that M is ω1-strongly homogeneous.

Recall that in Proposition 1.6.8 we expressed Hp(M) as the orthogonal sum

of subspaces gi ⊗σ V where (gi)i∈I is a set of coset representatives of G/K.

Suppose 0 is an indexing element in I with g0 = e so that V = g0 ⊗σ V .

Suppose that we have a G-invariant subspace Z of Hp(M) Then the or-

thogonal projection PZ commutes with G. Fix a nonzero v ∈ V . We can write

PZv =
∑

j∈J uj where J ⊆ I is countable and uj ∈ gj ⊗σ V is nonzero. Write

u0 for the element of {uj | j ∈ J} which lies in V . Since the uj are pairwise

orthogonal, u0 = 0 would imply that PZv = 0. Switching if necessary to Z⊥,

we can assume that PZv 6= 0.
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Write J0 = {j ∈ J | gja /∈ bdd(a)} and J1 = {j ∈ J | a /∈ bdd(gja)}. Then

J = {0} ∪ J0 ∪ J1. We show that J0 = J1 = ∅. By ω1-strong homogeneity and

saturation of M , we can find a sequence (αn) in Aut(M/bdd(a)) such for any

n 6= m

αn
{

[gja] | j ∈ J0

}
∩ αm

{
[gja] | j ∈ J0

}
= ∅.

Hence for all n 6= m, the sets αn{uj | j ∈ J0} and αm{uj | j ∈ J0} are

orthogonal. For all n and j ∈ J \ J0, we also have αnuj = uj. Therefore

(αnPZ(v)) converges weakly to
∑

j∈J\J0 uj. Since Z is G-invariant, we have∑
j∈J\J0 uj ∈ Z. Since

∑
j∈J\J0 uj is at least as close to v as

∑
j∈J uj, we

conclude that J0 = ∅.
Suppose for a contradiction that we have j1 ∈ J1. Let J2 = {j ∈ J |

gja /∈ bdd(gj1a)}. Note that 0 ∈ J2. By the same argument as above, we

have
∑

j∈J\J2 uj ∈ Z. Therefore
∑

j∈J2 uj =
∑

j∈J uj −
∑

j∈J\J2 uj ∈ Z. Since

j1 /∈ J2,
∑

j∈J2 uj is an element of Z closer to v than PZv and this is a

contradiction. Hence J1 = ∅ and PZv ∈ V .

Therefore, Z ∩ V is a nonempty G-invariant subspace of V . Since σ is

irreducible, we have Z ∩ V = V . By invariance of Z, we have gi ⊗σ V ⊆ Z for

all gi and hence Z = Hp(M). This proves that π is irreducible.

1.6.2 Unitary representations of automorphism groups

of ω-categorical structures

In this section, we recall some results of [Tsa12] and [Iba21] about unitary

representations of automorphisms groups of ω-categorical structures and we

show that Corollary 1.3.22 combined with Proposition 1.6.8 recovers the clas-

sification theorem in [Tsa12].

Recall from [BYBHU08] 12.2 that a complete type p in a continuous logic

theory T is principal if it is distance definable, as in Definition 1.2.13. Recall

also the Ryll-Nardzewski theorem in continuous logic which says that T is

ω-categorical if and only if every complete type is principal (see [BYBHU08]

12.10). Finally, [BYBHU08] 12.11 shows that if M is the separable model of

an ω-categorical theory, then M is ω-near-homogeneous.

Finally, for a general continuous logic theory T , we define the expansion

T princ as in Definition 1.2.14 by adding p as a new sort to T , where p is any

principal type of T .

The following result is Lemma 1.1 in [Iba21] rephrased in the language of

interpretable Hilbert spaces.

Lemma 1.6.10. Let T be an ω-categorical continuous logic theory and let M

be an ω-near-homogeneous model of T . Let σ be a representation of Aut(M)

on a Hilbert space H. Then there is an interpretable Hilbert space H in T princ

such that σ is equivalent to the canonical representation of Aut(M) on H(M).
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If T is a classical logic theory, then the T princ construction is not needed,

since a principal type is a definable set D and we can define the interpretation

map outside of D to be the trivial 0 map. Now the following lemma is a

combination of Lemma 3.1 in [Tsa12] and Lemma 1.1 in [Iba21]:

Lemma 1.6.11. Let T be a classical logic ω-categorical theory and let M be

an ω-homogeneous model of T . Let σ be a unitary representation of Aut(M)

on a Hilbert space H. Then there is a strictly interpretable Hilbert space H
in T such that σ is equivalent to the canonical representation of Aut(M) on

H(M).

Let T be a classical logic ω-categorical theory and let M |= T be ω-

homogeneous. Note that if p is a type in a classical imaginary sort of M ,

then the relation x ∈ acl(y) is symmetric and transitive on p. This is because

acl(x) ∩ p is a finite set with fixed cardinality. Applying Corollary 1.6.11,

Corollary 1.3.22 and Proposition 1.6.8, we deduce directly that every unitary

representation of Aut(M) is an orthogonal sum of representations obtained by

inflation from representations of groups of partial automorphisms of finite sets

of the form acl(a)∩ tp(a), where a is a classical imaginary element of M . This

is precisely the classification theorem 5.2 in [Tsa12].

It remains to be seen if it is possible to build on the techniques developed

in this chapter in order to find a classification of the unitary representations of

continuous logic ω-categorical structures. This is an open question for future

research.

1.6.3 Unitary representations with asymptotically free

orbits

In this section we show that our analysis in Section 1.3 gives information

about all unitary representations containing a cyclic vector such that the weak

closure of its orbit is locally compact. We also show that asymptotic freedom

is a common property of unitary group representations.

First, we introduce a general technique for constructing continuous logic

structures with prescribed automorphism groups.

Definition 1.6.12. Let M be a continuous logic structure in a language L
and let G be a subgroup of Aut(M). We define an expansion MG of M in a

language LG as follows.

For every n ≥ 1, for every finite Cartesian product X of sorts of M and

for every orbit O of G on X, we add function symbols rO : X → [0,∞). MG is

the structure obtained from M by interpreting each function rO as the distance

in X from the metric closure of O.

Note that MG is the maximal G-invariant expansion of M . The following

lemma is straightforward:
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Lemma 1.6.13. Let M be a continuous logic structure, G a subgroup of

Aut(M). Then Aut(MG) is the closure of G in Aut(M) with the topology

of pointwise convergence.

Now let G be an arbitrary group and let H be a Hilbert space with a cyclic

faithful representation σ of G. Let v be a cyclic vector and let X be the closure

of the orbit of v in H. Let M be the continuous logic structure consisting of

X with the inner product map on X induced from H. Observe that the

topology of pointwise convergence is the coarsest topology on G under which

the representation σ is continuous. We will always work with this topology on

G. The following lemma is clear:

Lemma 1.6.14. Take G, σ, X, and M as above. Then MG is an atomic

model (i.e. all types that are realised are principal) and the action of G on MG

is ω-near-homogeneous.

X is a complete type in MG and there is an interpretable Hilbert space

H in Th(MG) generated by X such that the restriction to G of the canonical

representation of Aut(MG) on H(MG) is equivalent to σ.

It is also clear that the structure MG above remains ω-near-homogeneous

under expansion by pieces ofH. Therefore, we add the piees ofH as imaginary

sorts to MG so that the assumption following Definition 1.6.5 holds in this

context.

We are interested in applying Theorem 1.3.14 to the structure MG. In

Section 1.3 we worked with an ω1-saturated structure. This is an obstacle for

a direct application of Theorem 1.3.14 to MG, since it is not clear how to guar-

antee scatteredness in an ω1-saturated elementary extension. Nevertheless, if

the weak closure of X is locally compact, it is still possible to replicate much

of the proof of Theorem 1.3.14, albeit deriving a weaker conclusion.

In the next lemma, we show that there is enough model theory present in

the structure MG to recover the key characterisation of P(X) from Lemma

1.3.2 without saturation assumptions. Lemma 1.6.15 only uses the fact that

MG is an atomic model of its theory.

Lemma 1.6.15. Let G be a group and let σ be a faithful cyclic representation

of G on H. Let v be a cyclic vector and let X be the metric closure of the orbit

of v in H. We work in the associated structure MG as described above.

Take u,w ∈ P(X) and A ⊆ MG such that w = Pbdd(A)u. Then there is a

sequence (un) in tp(u) in H(MG) such that (un) converges weakly to w.

Proof. Take u,w,A such that w = Pbdd(A)(u) and write p = tp(u). Write S

for the piece of H containing p. Since p is realised in MG, p is principal. Let

d(x) be the definable function on S which gives the distance to p.

Suppose that we have found u1, . . . , un in MG satisfying p such that for all

m < n, |〈un, um〉 − 〈w, um〉| ≤ 1/n. Fix ε > 0 small enough, to be determined
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below. By Lemma 1.3.2, w satisfies the formula

∀x1, . . . , xn ∈ S,∃y ∈ S,
(
d(y) ≤ ε ∧

∧
m≤n

|〈y, xm〉 − 〈w, xm〉| ≤ 1/2n
)

Find a realisation y of this formula over the tuple u1, . . . , un previously con-

structed. Then there is un+1 |= p in MG with ‖un+1 − y‖ ≤ ε. Choose ε > 0

small enough so that |〈un+1, um〉 − 〈w, um〉| ≤ 1/(n + 1) for all m ≤ n. In

this way, we construct a sequence (un) in p such that (un) converges weakly

to w.

We deduce the following general proposition:

Proposition 1.6.16. Let G be a group and let σ be a faithful cyclic unitary

representation of G on H. Let v be a cyclic vector and let X be the metric

closure of the orbit of v in H.

Suppose that the weak closure of X in H is locally compact. Then σ is

equivalent to an orthogonal sum of representations (τi) such that each τi has

a cyclic vector vi satisfying the following: if w is a conjugate of vi such that

〈w, vi〉 6= 0, then the orbit of w under the stabilizer of vi is precompact (i.e. it

has compact closure in the metric topology).

Proof. We work in the associated structure MG, as above. Let Q(X) ⊆ P(X)

be the smallest metrically closed subset of H(MG) containing X and which is

closed under the projections Pbdd(A), where A ⊆ MG . Then Q(X) is locally

compact. Note that Q(X) contains X but may be much smaller than P(X).

We view Q(X) as a partial order with the order inherited from P(X).

By Lemma 1.6.15, it is straightforward to adapt the proof of Theorem 1.3.8

to deduce that for any bdd-closed subsets A1, A2 of MG, we have PA1PA2 =

PA2PA1 = PA1∩A2 in H(MG). Similarly, we can adapt the proof of Lemma

1.3.10 to show that Q(X) is a well-founded partial order.

By ω-near-homogeneity, Q(X) is a union of complete types. Let (qα) be

an enumeration of the complete types in Q(X). By well-foundedness, we can

assume that the enumeration (qα) respects the partial order on Q(X).

Let Vα be the closed subspace generated by
⋃
β<α qα. As in Lemma 1.3.11,

we find complete types q̃α such that q̃α = PV ⊥α qα and the relation PV ⊥α x = y is

definable on qα × q̃α (since all types are principal, the distances between the

subspaces Vα do not change if we move to a saturated elementary extension of

MG).

H(MG) is the orthogonal sum of the subspaces generated by each q̃α. We

check that the orbits corresponding to the types q̃α satisfy the proposition. Fix

α and x, y |= q̃α such that the orbit of y under the stabilizer of x is not compact

and suppose that |〈x, y〉| ≥ ε > 0. Then y /∈ bdd(x) and we can find z |= qα
such that y = PV ⊥α z and z /∈ bdd(x). Let u = Pbdd(x)z ∈ Vα. By Lemma 1.6.15,

we can find an infinite sequence (zn) in qα which converges weakly to u. The
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proof of Lemma 1.6.15 shows that we can also have |〈PV ⊥α zn, x〉| > ε/2 for all

n. Since (PV ⊥α zn) converges weakly to PV ⊥α u = 0, this is a contradiction.

In the proof of Proposition 1.6.16, we found a type q in MG such that for

x, y |= q in MG, x ∈ bdd(y) or 〈hx, hy〉 = 0. This does not imply that q is

asymptotically free, since MG is not saturated.

We can define asymptotic freedom in purely group theoretic terms: let σ

be a representation of a group G on H and take v ∈ H. We say that the orbit

of v is asymptotically free if for every α > 0, the set of conjugates w of v such

that |〈w, v〉| ≥ α is precompact.

We have already seen that representations with asymptotically free orbits

capture all representations of oligomorphic groups, representations of auto-

morphism groups of measurable structures on the associated L2-spaces, and

representations of absolute Galois groups on various associated L2-spaces. In

a different setting, if G is a locally compact group and σ is a representation of

G with vanishing matrix coefficients, then every orbit in σ is asymptotically

free. We use the classical result of [HM79] for the following proposition:

Proposition 1.6.17. All continuous unitary irreducible representations of al-

gebraic groups over a local field of characteristic 0 have asymptotically free

orbits.

Proof. Let G be a connected algebraic group over a local field of characteristic

0 with a representation σ on H. Let P ≤ G be the preimage under σ of the

circle group in U(H). Then [HM79] Theorem 6.1 shows that for any v ∈ H,

the map g 7→ |〈σ(g)v, v〉| tends to 0 on G/P . Since the action by P does not

affect compactness, we deduce that the orbit of v is asymptotically free.

If G is not connected, we find a connected normal algebraic subgroup G0

such that G/G0 is finite. Then σ splits as a finite orthogonal sum of irreducible

representations of G0. For any v ∈ H, the G-orbit of v is a finite union of

G0 orbits in the irreducible subrepresentations and hence the G-orbit of v is

asymptotically free.

See [BM00] for an overview of the Howe-Moore result and its extension to

various additional cases.

1.7 Model Theory of Scattered Interpretable

Hilbert Spaces

In this section, we discuss Theorems 1.3.8 and 1.3.14 from a model theoretic

point of view. We establish a rough dictionary between Hilbert space and rep-

resentation theoretic notions, and purely model theoretic notions. We connect

weak closure in Hilbert spaces and canonical bases for Hilbert space types;
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scattered type-definable sets and a local continuous logic version of U-rank ;

commuting orthogonal projections and one-basedness ; and asymptotically free

type-definable sets and strongly minimal sets. These connections are strong

but they are not exact correspondences. We explore the relations between

these different notions and highlight some open questions.

1.7.1 Weak closure and canonical bases

We fix a continuous logic T and H interpretable in T . In this section we

freely move to imaginary sorts of T , so for any M |= T we identify vectors in

H(M) with elements of M .

Let p(x) a type-definable set in H. For M |= T , we will study 〈x, y〉-types

over M consistent with p. These are partial types q of the form {〈x, b〉 =

λ(b) | b ∈ H(M), λ(b) ∈ R}. Note that q is uniquely determined by the

formulas 〈x, b〉 = λ(b) where b ranges in the piece of H(M) containing p, so

q(x) is determined by the single function 〈x, y〉 where y ranges in the same

sort as x.

Let b ∈ P(p) and let (an) be a sequence in p converging weakly to b.

Define pb(x) to be the 〈x, y〉-type over H(M) consistent with p defined by

〈x, c〉 = limn〈an, c〉 = 〈b, c〉.

Lemma 1.7.1. For any M |= T ω1-saturated, P(p) is a set of canonical bases

for 〈x, y〉-types over M consistent with p. In fact, b is a canonical base for pb.

Proof. pb(x) is a 〈x, y〉-type over H(M) consistent with p. Conversely, let q

be any 〈x, y〉-type over H(M) consistent with p. Let M ≺ N and let a be a

realisation of q(x) ∪ p(x) in N . Let c = PH(M)(a). Then for all v ∈ H(M),

〈a, v〉 = 〈c, v〉, so q is definable over c. We only need to check that c ∈ P(p),

so that q = pc.

Let a′ ∈ M be a realisation of p ∪ (q � bdd(c)). Then Pbdd(c)a
′ = c but we

already know that Pbdd(c)a
′ ∈ P(p), so we are done.

Remark: We are making a slightly unconventional use of the term ‘canonical

base’. Canonical bases are usually dcl-closed sets, and nothing in Lemma 1.7.1

ensures that distinct b, b′ ∈ P(p) are not inter-definable. Nevertheless, we will

say that b is ‘the’ canonical base of pb. With this choice of terminology, for

any b 6= b′ ∈ P(p), b and b′ are canonical bases for different types over M even

though they may be inter-definable.

The next lemma follows directly by applying Lemma 1.7.1 with the type-

definable set P(p) instead of p. It gives a model theoretic justification for

working with the set P(p).

Lemma 1.7.2. P(p) has built-in canonical bases for 〈x, y〉-types: for any M |=
T , for any 〈x, y〉-type q(x) over M consistent with P(p), there is a unique
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b ∈ P(p) in M such that q(x) is defined over b by 〈x, v〉 = 〈b, v〉 for every

v ∈ H(M). Therefore q = pb.

We define a partial order which gives a model-theoretic characterisation of

the partial order ≤P on P(p).

Definition 1.7.3. Define the relation L1(x, y) on P(p)×P(p) in M by saying

that L1(b, c) if and only if pb extends pc � bdd(c). Define the relation ≤1 on

P(p)× P(p) as the transitive closure of L1.

For any c ∈ P(p), since 〈x, y〉 is a stable relation, pc is the unique nonforking

extension of pc � bdd(c) to M . Therefore, L1(b, c) and b 6= c if and only if pb

is a forking extension of pc � bdd(c).

Lemma 1.7.4. For any b, c ∈ P(p), L1(b, c) if and only if there exists a small

bdd-closed A ⊆ M such that c = PAb. Hence the partial order ≤1 is anti-

isomorphic to ≤P .

Proof. For any small bdd-closed A, c = PAb if and only if c = Pbdd(c)b if and

only if pb extends pc � bdd(c).

Next we show that the partial order ≤P can be seen as a natural partial

order between 〈x, y〉-types themselves.

Definition 1.7.5. Define the relation L2 on 〈x, y〉-types over bdd-closed sub-

sets of M consistent with P(p) as follows: if r1 is over B and r2 is over C,

then L2(r1, r2) if and only if (r1 � M) � C = r2, where r1 � M is the unique

nonforking extension of r1 to M . Define the relation ≤2 between types as the

transitive closure of L2.

For the next lemma, recall that types r1, r2 over B,C respectively are said

to be parallel if the nonforking extensions r1 �M and r2 �M are equal.

Lemma 1.7.6. Let B,C be bdd-closed subsets of M . Let r1, r2 be 〈x, y〉-types

over B,C respectively consistent with p with canonical parameters b, c in P(p).

Then L2(r1, r2) if and only if L1(b, c).

Hence ≤2 induces a partial order on parallelism classes of 〈x, y〉-types over

small bdd-closed subsets of M consistent with p. This partial order is anti-

isomorphic to ≤P .

Proof. If A ⊆M is a bdd-closed subset and r is a 〈x, y〉-type over A consistent

with p, then r has a canonical base b ∈ A and Lemma 1.7.2 shows that

r = pb � A.

Therefore L2(r1, r2) if and only if pb � C = r2 if and only if for all v ∈ C,

〈b, v〉 = 〈c, v〉 if and only if PCb = c. By Lemma 1.7.4, this is equivalent to

L1(b, c).

r1, r2 are parallel if and only if r1 �M = r2 �M if and only if pb = pc if and

only if b = c, by Lemma 1.7.2. Hence ≤2 induces a partial order on parallelism

classes and these parallelism classes are in an obvious bijection with P(p).
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1.7.2 Ranks in scattered Hilbert spaces

We show that the conclusion of Theorem 1.3.8 is equivalent to a local form of

one-basedness.

Definition 1.7.7. For small bdd-closed A ⊆ H(M), a 〈x, y〉-type q(x) over A

is one-based if for any realisation a of q in M , q is definable over A∩ bdd(a).

Lemma 1.7.8. 〈x, y〉-types over bdd-closed subsets of M consistent with p are

one-based if and only for all bdd-closed A,B ⊆M , PAPB = PA∩B.

Proof. By Lemma 1.7.2, we can replace p by P(p) in the statement of the

lemma.

Suppose first that 〈x, y〉-types consistent with p are one-based and take

B,C ⊆M bdd-closed. Let a |= p and let b ∈ P(p) be the canonical base of the

〈x, y〉-type of a over B. Then PCPBa = PCb, which is the canonical parameter

of the 〈x, y〉-type of b over C. By one-basedness PCb ∈ C ∩ bdd(b) ⊆ B ∩ C.

Therefore PCPBa ∈ B ∩ C. By the same computation as in the proof of

Theorem 1.3.8, we have PBa ∈ B ∩ C and hence PCPBa = PB∩C on Hp(M).

Conversely, let q be a 〈x, y〉-type over a bdd-closed A ⊆M consistent with

p. Let a be a realisation of q∪p in M . Let b = PAa be the canonical parameter

of q. Then b = PAPbdd(a)a ∈ A ∩ bdd(a).

In Section 1.3, one-basedness is the key technical observation which makes

it possible to prove that if p is scattered, then (P(p),≤P) is well-founded. We

now turn to a general discussion of P(p) as a partial order.

Definition 1.7.9. If (Q,≤Q) is an arbitrary partial order, we define the foun-

dation rank FQ(x) of x ∈ Q as follows:

1. FQ(x) ≥ 0 for all x

2. FQ(x) ≥ λ for limit ordinal λ if F (x) ≥ α for all α < λ

3. FQ(x) ≥ α + 1 if there is y <Q x such that FQ(y) ≥ α

We say that FQ(x) = ∞ if FQ(x) ≥ α for every ordinal α and FQ(x) = α if

FQ(x) ≥ α and FQ(x) 6≥ α + 1.

We write FQ(Q) = sup{FQ(x) | x ∈ Q}.

Proposition 1.7.10. Let FP be the foundation rank of (P(p),≤P). If for

every x |= p we have FP(hx) < ∞, then 〈x, y〉-types consistent with p are

one-based.

Proof. This is similar to the argument behind Theorem 1.3.8. For any bdd-

closed A,B ⊆ M , for any a |= p, the sequence of alternating projections

PAPB . . . PAPBa must eventually be constant, since FP is ordinal-valued. The

argument of Theorem 1.3.8 shows that we must then have PAPB = PA∩B so

〈x, y〉-types are one-based.
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In light of the anti-isomorphism between ≤P and the partial orders ≤1 and

≤2, it is natural to define a local continuous logic version of U -rank which

captures forking inside the Hilbert space. We call this the V -rank:

Definition 1.7.11. For any bdd-closed subset A of M and q a 〈x, y〉-type over

A in H, define the relation V (q) ≥ α for α an ordinal as follows:

1. V (q) ≥ 0 for all q

2. V (q) ≥ λ for limit ordinal λ if for every α < λ, V (q) ≥ α

3. V (q) ≥ α + 1 if there is some B ⊇ A and q′ over B extending q such

that V (q′) ≥ α and q′ forks over A with respect to the function 〈x, y〉.

If V (q) ≥ α for all α, we say V (q) = ∞. We say V (q) = α if V (q) ≥ α and

V (q) 6≥ α + 1.

For a ∈ H(M), write V (a/A) for the V -rank of the 〈x, y〉-type of a over A.

Lemma 1.7.12. Let A be a small bdd-closed subspace of H(M) and let q be

a 〈x, y〉-type over A consistent with p. Let b be the canonical parameter of q

in P(p). Then V (q) is equal to the foundation rank of b in (P(p),≤1).

Proof. Note that b ∈ A. We have already pointed out that for any c ∈ P(p),

L1(b, c) and b 6= c if and only if pb is a forking extension of pc � bdd(c). The

lemma follows easily.

When p is a piece of H and the inner product is strictly definable, the

V -rank coincides with the Shelah ω-local rank defined in [She78]. We recall

the definition here:

Definition 1.7.13 ([She78], II.1.1). In an arbitrary theory T , let ∆(x, y) be

a set of formulas and p(x) a type-definable set, possibly with parameters. For

α an ordinal, we define R∆(p) ≥ α as follows:

1. R∆(p) ≥ 0 if p is consistent

2. For λ a limit ordinal R∆(p) ≥ λ if R∆(p) ≥ α for all β < α

3. R∆(p) ≥ α + 1 if for every finite p′ ⊆ p and every n < ω there are

∆-types (qm(x))m<n such that:

(a) for m 6= m′ < n, qm(x) ∪ qm′(x) is inconsistent

(b) R∆(p′ ∪ qm) ≥ α for all m.

We write R∆(p) = α if R∆(p) ≥ α and R∆(p) 6≥ α + 1.
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Proposition 1.7.14. Suppose S is a piece of H such that the inner product

takes only finitely many values on S. Let ∆ be the finite set of formulas

〈x, y〉 = λ where x, y range in S. Then for every a ∈ P(S) and A ⊆ M

bdd-closed, V (a/A) = R∆(a/A) < ω.

Proof. This is proved entirely by using results of [She78]. We sketch the proof

here for convenience. Let q be a 〈x, y〉-type over A consistent with p. Define

the rank R∗∆(p) in the same way as in Definition 1.7.13 except that we say

R∗∆(q) ≥ α+ 1 if there are ∆-types (qi)i<ω which are pairwise inconsistent and

R∗∆(q ∪ qi) ≥ α for all i.

Now all references are from [She78]. In general for ∆ a finite set of stable

formulas, we can assume that ∆ is a single stable formula by II.2.1. By II.2.7,

R∆(q) < ω. We see from definitions that R∗∆(q) ≤ R∆(q). By II.2.9, the prop-

erty R∆(q) ≥ n is type-definable. It then follows by a compactness argument

that R∗∆(q) ≥ R∆(q). Therefore R∆(q) = R∗∆(q).

Now it follows directly from the definition of R∗∆ that if R∆(q) = n+1, there

is a ∆-type q′ over some B ⊇ A such that R∆(p ∪ q) = n. Furthermore, II.1.2

and III.4.1 show that q′ does not fork over A if and only if R∆(q′) = R∆(q).

The proposition follows.

We are interested in understanding the relations between scatteredness,

one-basedness, the FP-rank, and the V -rank. We say in Lemma 1.3.10 that if

p is scattered, then (P(p),≤P) is well-founded so the FP-rank is ordinal valued.

It is an open question whether the FP-rank can achieve infinite values when

p is scattered. We record some partial results which explore the connections

between these different notions.

Proposition 1.7.15. If p is scattered then for every x ∈ P(p), V (x) < ∞.

Equivalently, if p is scattered, there is no infinite ≤P-increasing sequence in

P(p).

Proof. Suppose that p is scattered and that (an) is an infinite increasing se-

quence in P(p). Then an = Pbdd(an)an+1 for all n and by one-basedness,

bdd(an) ⊆ bdd(an+1) for all n. Write Vn for the subspace bdd(an) and Wn

for the orthogonal complement of Vn in Vn+1. Then for all n, an+1 = an + wn
where wn ∈ Wn is orthogonal to an. Hence an = a0 +

∑n−1
i=0 wi.

Since every an is in the type-definable set P(p), ‖an‖ is bounded above and

the sequence (‖an‖) is convergent. Now ‖an‖2 = ‖a0‖2 +
∑n−1

k=0 ‖wk‖2 since the

vectors (wk) and a0 are pairwise orthogonal. For n ≥ m,

‖an − am‖2 = ‖
n−1∑
k=m

wn‖2 =
n−1∑
k=m

‖wn‖2 = ‖an‖2 − ‖am‖2

so (an) is Cauchy and hence convergent to some a ∈ P(p) such that an ≤P a
for all n. Let ε > 0 and take n such that ‖a−an‖ < ε. There is an indiscernible
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sequence (bk) in tp(a/bdd(an)) starting at a and converging weakly to an. For

all k, ‖bk−a‖2 = 2‖a‖2−2〈bk, a〉 = 2‖a‖2−2〈an, a〉. Choosing ε small enough,

we find that (bk) is arbitrarily close to a and hence P(p) is not scattered, a

contradiction.

Proposition 1.7.16. If p is a complete type and is not locally compact, then

FP(a) ≥ ω for any a |= p.

Proof. Take a |= p in M . Note that a 6= 0 and {b ∈ P(p) | b < a} is

nonempty. Suppose that we have b0 <P . . . <P bn <P a in P(p). Suppose

that ‖a − bn‖ = ε. Since p is not locally compact around a, we can find an

infinite indiscernible sequence (ak) with a0 = a such that ‖ak − aj‖ = δ < ε

for all k 6= j, for arbitrarily small δ. Write c for the weak limit of (ak). Then

‖a − c‖ < ‖a − bn‖ so c 6= bn. Since bn = Pbdd(bn)a and c = Pbdd(c)a, we see

that c /∈ bdd(bn). Moreover, ‖Pbdd(bn)c− bn‖ ≤ ‖c− a‖ = δ, so we can assume

that Pbdd(bn)c /∈ bdd(bn−1) by taking δ small enough.

Taking into account all distances ‖bn+1− bn‖, choosing δ small enough and

writing cn+1 = c, ci = Pbdd(bi)ci+1, we have c0 <P . . . <P cn+1 <P a. This

proves that FP(a) ≥ ω.

Proposition 1.7.17. There are examples of theories T with interpretable

Hilbert spaces H and type-definable sets p satisfying any of the following:

1. (P(p),≤P) has foundation rank ω but (P(p),≤1) is not well-founded

2. (P(p),≤1) has foundation rank ω, (P(p),≤P) is not well-founded, every

type in P(p) is locally compact and 〈x, y〉-types consistent with p are

one-based

3. 〈x, y〉-types consistent with p are one-based but (P(p),≤P) and (P(p),≤1)

are not well-founded.

Proof. (1) Let T be the classical logic theory of a collection of equivalence

relations En on a set X such that E0(x, y) is the trivial equivalence relation

x = x and En+1 refines each En-class into infinitely many infinite En+1-classes.

Let M |= T and for every n ≥ 0 let (αnk)k<κ be an enumeration of the En-

classes of M . Let H be the free Hilbert space on the set
⋃
k,n≥0 α

n
k , so that

{αnk | k, n ≥ 0} is an orthonormal basis of H.

Define h : X → H by h(x) =
∑

n≥0 α
n
k(x)/2

n where αnk(x) is the En-class of

x. Then h gives rise to an interpretation of H in M . Let p be the quotient of

X by the equivalence relation h(x) = h(y). We view p as a subset of h. Then

P(p) = p ∪ {
∑

n≤m α
n
k(x)/2

n | x ∈ X,m ≥ 0}.
(2) Let T be the classical logic theory of a collection of equivalence relations

En on a set X such that E0(x, y) is the trivial equivalence relation x = y and
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each En+1-class is an infinite union of En-classes. Let M |= T and for every

n ≥ 0 let (αnk)k<κ be an enumeration of the En-classes of M . Let H be the

free Hilbert space on the set
⋃
k,n≥0 α

n
k .

Define h : X → H by h(x) =
∑

n≥0 α
n
k(x)/2

n where αnk(x) is the En-class

of x. Note that h is injective and that the set h(X) is discrete in H, since

x 6= y implies ‖x− y‖ ≥ 1. We also have P(X) = {0} ∪ {
∑

n≥m α
n
k(x)/2

n | x ∈
X,m ≥ 0}. P(X) is locally compact everywhere except around 0.

(3) Let T be the classical logic theory of an infinite set X. Let H be the

interpretable Hilbert space such that X is an orthonormal basis of H. Let

M |= T be ω1-saturated as a continuous logic theory. Let (en) be an infinite

sequence in X and let p be the complete type of the vector
∑

n≥0 en/2
n. Then

P(p) = {
∑

n∈J en/2
n | J ⊆ N} but H is one-based because X is scattered.

1.7.3 Asymptotically free types are strongly minimal

We now show how asymptotically free types give strongly minimal local reducts

of T .

Definition 1.7.18. We say that a continuous logic theory T with a sort X

is strongly minimal if for every M |= T , every M-definable function f(x) in

one variable into R has a unique generic value α on X, meaning that for any

β 6= α, the set {f(x) = β} is compact.

The above definition agrees with [Han20].

Lemma 1.7.19. Suppose T is strongly minimal. Then for any M |= T , bdd

is a pregeometry.

Proof. We check the exchange property, i.e. for A ⊆ M and a, b ∈ M , if

a ∈ bdd(Ab) and a /∈ bdd(A), then b ∈ bdd(Aa).

Take a, b as above. Recall that a complete type q over Ab is uniquely

determined by the values f(q) where f is any Ab-definable function into R. By

strong minimality, there is an Ab-definable function f with generic value α such

that the value f(a) is not generic. By a standard approximation argument,

we can find an A-definable function g(x, y) such that g(a, b) is not the generic

value of g(x, b).

Observe that there is some αy such that for any c /∈ bdd(A), αy is the

generic value of g(c, y). There is a corresponding value αx for g(x, c). Taking

c, d bdd-independent over A, we have g(c, d) = αx = αy. Therefore g(a, b) is

not the generic value of g(a, y) and b ∈ bdd(Aa).

Definition 1.7.20. Let T be strongly minimal. We say that T is disintegrated

if the pregeometry is trivial on T , in the sense that for any M |= T and

A,B ⊆M , bdd(A ∪B) = bdd(A) ∪ bdd(B)
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Now let T be a continuous logic theory with an interpretable Hilbert space

H. Let p be a complete asymptotically free type of H. We add the inner

product map as a function symbol to the language. Let M |= T be ω1-

saturated and let Tp be the theory of the set of realisations of p in M in the

language with the inner product as its only function symbol.

Proposition 1.7.21. Tp is a strongly minimal disintegrated continuous logic

theory.

Proof. Write X for the set of realisations of p in M viewed as a model of

Tp. We consider the equivalence relation ∼ on X defined to be the transitive

closure of the relation 〈x, y〉 6= 0. For x ∈ X, write [x] for the ∼-class of x.

Since X is a complete type in M , any two ∼-classes are isomorphic and the

isomorphism type of these classes does not depend on the choice of model M .

Let (xi)i∈I be a set of representatives of ∼-classes in X. Then any bijec-

tion I → I can be extended to an X-automorphism which respects the inner

product. Hence in the theory Tp, for A ⊆ X, bdd(A) =
⋃
a∈A[a] and any two

x, y /∈ bdd(A) are conjugate by an X-automorphism. It follows directly that

Tp is strongly minimal and disintegrated.

1.8 Appendix to Chapter 1: Continuous logic

In any version of continuous logic, one has the notion of a type-definable set.

The collection of type-definable sets is closed under positive Boolean combi-

nations and under projections. As in the discrete logic case, the projection

(∃x)p(x, y) of a partial type p(x, y) is the partial type q(y) such that, in a

sufficiently saturated model, q(b) holds iff there exists a with p(a, b). We can

thus freely write formulas or sentences involving positive first order operations.

These describe partial types in any formulation of continuous logic, regardless

of a specific calculus.

With this in mind, we give a presentation of continuous logic based on the

approach of [HI02]. A similar approach was recently used in [GP21]. This

approach uses the syntax of classical logic and uses classical results of model

theory to deduce corresponding results in continuous logic. This formalism

is completely equivalent to the approach of [BYBHU08] and this chapter was

written in a way to make it easy to translate any argument into the formalism

of [BYBHU08] if one wishes to do so.

In 1.8.1, we define syntax and type-spaces and we discuss briefly the rela-

tion to [HI02]. In 1.8.2, we recall some model theoretic notions which are used

in this thesis. Section 1.8.2 is mainly based on [BYBHU08]. In 1.8.3, we recall

some classical facts about the model theory of Hilbert spaces.

67



1.8.1 Continuous logic and type-spaces

In this section we introduce the basic concepts of continuous logic. Since we

take classical discrete logic as our starting point, we will use the qualifiers

‘classical logic...’ and ‘continuous logic...’ to highlight the differences between

the two logics. We do not use this terminology anywhere else.

In continuous logic, we will work with positive formulas (and their nega-

tions):

Definition 1.8.1. Let L be an arbitrary language for classical first-order logic.

We say that an L-formula φ(x) is positive if φ(x) is logically equivalent to a

formula which uses only the logical connectives ∧ and ∨ and the usual quanti-

fiers ∀ and ∃.

Note that if φ and ψ are positive L-formulas, then (¬φ → ψ) is positive.

In general, positive formulas can have very weak expressive power but we

will always work in certain languages and theories where they have strong

expressive power. The restrictions we impose on L are the following.

We always fix a multi-sorted language L with sorts (Si)i∈I and (In)n≥1. We

refer to the sorts (Si) as the metric sorts and to the sorts In as the value sorts.

L has an equality relation on every value sort but not on any metric sort.

Each sort In will be identified with the interval [−n, n], so we add functions

inm : In → Im for n ≤ m which will play the role of inclusion functions. The

value sorts are also equipped with the following structure of the real numbers:

functions +,−,×,max between the appropriate value sorts and predicates =

and ≤ (note that we choose ≤ and not <, for reasons which become clear

below). In each value sort In we also add a constant symbol for each rational

number in [−n, n]. Each metric sort is equipped with a function di : Si×Si →
In for some n. L may contain more function symbols but no other relation

symbols.

Whenever we fix L, we also fix a minimal L-theory TL. This is a collection

of L-sentences TL = T0 ∪ TR satisfying the following conditions:

1. TR says that the value sorts satisfy the full first-order theory of the real

numbers (where In is identified with [−n, n])

2. T0 says that every di is a pseudometric on Si and that di is bounded by

some rational ci.

3. T0 says that every function symbol f in L is a uniformly continuous

function from a finite product of metric sorts to a metric sort in the

following way: for every rational ε > 0 there is a rational δ > 0 such

that TL contains the positive sentence

∀x, y(d(x, y) < δ → di(f(x), f(y)) ≤ ε)
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where x, y are finite tuples of variables appropriate for f and d is the

max-metric on the sorts corresponding to the tuple x and di is the metric

on the sort of f(x).

When working with L, we only ever consider models of TL.

Definition 1.8.2. A continuous logic L-structure M is an L-structure in the

usual sense of classical first order logic such that M |= TL, the value sorts of

M are the standard real numbers, and each metric sort of M is a complete

metric space.

A useful way of constructing continuous logic L-structures is to quotient

sufficiently saturated classical L-structures: given any model M of TL, we

define M̃ to be the structure obtained by quotienting every sort of M by the∧
-definable equivalence relation E(x, y) which says that x and y are within

distance ≤ 1/n for every n ≥ 0. It is easy to check that for every function

symbol f ∈ L, the interpretation fM of f in M induces a uniformly continuous

function f M̃ on M̃ . Therefore M̃ is a classical L-structure and M̃ |= TL which

respects the uniform continuity conditions of TL.

Therefore, if M |= TL then M̃ |= TL. If M is ω1-saturated, then the value

sorts of M̃ are the standard real numbers and each sort of M̃ is a complete

metric space. Therefore M̃ is a continuous logic L-structure. We say that M̃

is the standardisation of M .

The key property of positive formulas is the following: if φ(x) is any positive

formula and M |= φ(a) where a ∈ M and M is a classical L-structure, then

M̃ |= φ(ã) where ã is the equivalence class of a in M̃ .

For a continuous logic language L, a positive formula φ(x) in L, and a

rational ε > 0, we define the ε-approximation of φ(x), written φε(x), as the

formula obtained from φ by weakening all the bounds mentioned in φ by ε.

This construction is adapted from Section 5 in [HI02]. Explicitly, φε is defined

up to logical equivalence inductively as follows:

1. if φ(x) is of the form f(x) = r where r is a rational and f(x) is an

L-term, then φε(x) is |f(x)− r| ≤ ε

2. if φ(x) is of the form f(x) ≤ r, then φε(x) is f(x) ≤ r + ε

3. if φ(x) = ψ(x) ∧ χ(x), then φε(x) = ψε(x) ∧ χε(x), and similarly if

φ(x) = ψ(x) ∨ χ(x)

4. if φ(x) = (∃y)ψ(x, y), then φε(x) = (∃y)ψε(x, y), and similarly if φ(x) =

(∀y)ψ(x, y).

Note that in any M |= TL, we always have φ(M) ⊆ φε(M) for any ε > 0.

In continuous logic, we are usually interested in knowing if a formula φ(x)

is approximately satisfied by a point a in M . This means that for all ε > 0,
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M |= φε(a), where |= is meant in the usual sense of classical logic. The

difference between satisfaction and approximate satisfaction is the same as

the difference between saying (∃y)f(a, y) = 0 and infy |f(a, y)| = 0. [HI02]

take the route of defining a new relation of approximate satisfaction inside a

continuous logic structure (see section 5 in [HI02]). In this thesis, we prefer

to keep the usual notion of satisfaction but we work with approximations of

formulas.

In Section 5 of [HI02], the authors define the weak negation neg(φ)(x) of a

positive L-formula φ(x) as follows:

1. if φ(x) is of the form f(x) = r, then neg(φ)(x) is |f(x)− r| ≥ 0

2. if φ(x) is of the form f(x) ≤ r, then neg(φ) is f(x) ≥ r

3. if φ(x) = ψ(x) ∧ χ(x) then neg(φ)(x) = neg(ψ)(x) ∨ neg(χ)(x), and

similarly if φ(x) = ψ(x) ∨ χ(x).

4. if φ(x) = (∃y)ψ(x, y), then neg(φ) = (∀y)neg(ψ)(x, y), and similarly if

φ(x) = (∀y)ψ(x, y).

Note that neg(φ) is a positive formula and in any model of TL, ¬φ ⊆
neg(φ). It is easy to check that for any continuous logic structure M and

a ∈ M , for any positive formula, for all ε > 0, either M |= φε(a) or M |=
neg(φε(a)) and that for ε < δ, φε and neg(φδ) are inconsistent. This shows

that continuous logic languages have strong expressive power.

Definition 1.8.3. Let T be a consistent collection of L-sentences. We say

that T is a continuous logic L-theory if T ⊇ TL and for every φ ∈ T , either

φ ∈ TL or there is some positive sentence ψ and ε > 0 such that φ = ψε

We say that T is a complete continuous logic L-theory if for every positive

L-sentence φ, for every ε > 0, T contains either φε or neg(φε).

When M is a continuous logic L-structure, we write Th(M) = {φε | M |=
φ, ε > 0}

Therefore, a complete continuous logic theory T is not maximal consistent

with respect to positive sentences. Nevertheless, if M |= T is a continuous logic

structure and N is a nonprincipal ultrapower of M , then the set of positive

sentences true in Ñ is maximal consistent and does not depend on M .

Let M,N be continuous logic structures. We say that N is an elementary

extension of M (and we write M ≺ N) if M is a substructure of N in the usual

sense and for any tuple a in M and any positive formula φ(x), if M |= φ(a)

then N |= φ(a). Note that Th(M) = Th(N) although more positive formulas

and sentences may be true in N than in M .

Definition 1.8.4. Let T be a continuous logic theory. A continuous logic type-

definable set p(x) is a collection of positive formulas consistent with T such

that for every φ(x) ∈ p(x) there is some positive ψ(x) and ε > 0 and φ = ψε.
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A continuous logic complete type p(x) is a continuous logic type-definable

set such that for any positive formula φ(x) and ε > 0, p contains either φε or

neg(φε).

When M |= T is a continuous logic structure, a ∈M and A ⊆M , we write

tp(a/A) for the continuous logic type of a over A. This is the set of formulas

φε(x) such that φ(x) is a positive formula over A satisfied by a.

We write Sx(T ) for the space of continuous logic complete types in x.

Equivalently, we could define a continuous logic type p(x) as a continuous

logic type-definable set such that there is a maximal consistent set q(x) of

positive L-formulas with p = {φε | φ ∈ q}.
Saturation is defined as expected for continuous logic structures, with re-

spect to continuous logic types. Note that the existence of saturated continu-

ous logic structures follows from the existence of saturated models in classical

first order logic: if M |= T is κ-saturated in the usual sense of classical logic,

it is easy to show that the standardisation M̃ is κ-saturated as a continuous

logic structure. Homogeneous continuous logic structures are constructed in

the same way.

We know from classical logic that Sx(T ) is a compact topological space.

A basis of closed sets of Sx(T ) is given by the formulas contained in the

continuous logic types of T . Moreover, our discussion of the weak negation

neg(φ) shows that Sx(T ) is Hausdorff.

For the purpose of this appendix, write Spos(T ) for the set of maximal

consistent types of positive formulas. For every p(x) ∈ Spos(T ), define p̃ =

{φε | φ ∈ p} ∈ Sx(T ). When M |= T is an ω1-saturated continuous logic

structure, every tuple a ∈ M realises some p ∈ Spos(T ). Therefore, Spos(T )

and Sx(T ) are homeomorphic topological spaces via the map p 7→ p̃.

In this thesis, we often work in ω1-saturated continuous logic structures.

In this context, continuous logic is equivalent to working with the fragment

of positive formulas in classical logic, as is clear from the definitions we have

laid down. Arguments about the type space Sx(T ) can be streamlined by

discussing the space Spos(T ) and working with arbitrary positive formulas.

Whenever deducing results about non-saturated continuous logic structures,

we are careful to introduce approximations of formulas to transfer the results

appropriately.

In the remainder of this appendix, we work in continuous logic, so we

say ‘structure’ instead of ‘continuous logic structure’, ‘theory’ instead

of ‘continuous logic theory’, ‘type’ instead of ‘continuous logic type’,

etc.
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1.8.2 Standard facts and definitions in continuous logic

Many basic results in classical logic go through to continuous logic unchanged.

We record some definitions and results which are used in this thesis. In this

section, T always denotes a complete continuous logic theory.

Bounded and definable closure

Definition 1.8.5. Let M |= T and take A ⊆ M . We say that a tuple b ∈ M
is in the bounded closure of A if for every elementary extension N of M , there

is no infinite indiscernible sequence realising tp(b/A) in N . We write bdd(A)

for the bounded closure of A in M .

We say that a tuple c ∈ M is in the definable closure of A if for every

elementary extension N of M , c is the only realisation of tp(c/A) in N . We

write dcl(A) for the definable closure of A in M .

See 10.7 and 10.8 in [BYBHU08] for standard results about definable and

bounded closure. Note in particular that if M ≺ N and A ⊆ M then bdd(A)

is the same set in M and in N , and similarly for dcl(A).

Definable functions

Definition 1.8.6. Let M be a κ-saturated model of T and take A ⊆ M of

size < κ. Let X and Y be finite Cartesian products of sorts of T and let p

be a type-definable subset of X over A. We say that a function f : p → Y is

definable over A if the set {(x, f(x)) | x ∈ p} is type-definable over A.

When M contains A but isn’t sufficiently saturated, we say that f is defin-

able over A if there is a sufficiently saturated elementary extension N of M

and a definable function on N which restricts to f .

When f : p→ Y is definable over A, we often identify f with its graph in

the type space Sxy(A). f is definable on p over A if and only if the function

p×Y → R, (x, y) 7→ d(f(x), y) is definable on p overA. See 9.24 in [BYBHU08].

In the special case where Y is the value sort of T corresponding to the

interval [−n, n], the definable functions p→ Y over A are exactly the contin-

uous functions Sx(A)∩p→ [−n, n]. This is because the type-space of a Y can

always be identified with the interval of real numbers [−n, n].

Since type-spaces are compact Hausdorff topological spaces, any complete

type q in Sx(A) is uniquely determined by the values f(q) where f ranges

over the A-definable functions X → R. Urysohn’s lemma also entails that any

definable f : p → R extends to a continuous function Sx(A) → R so the local

definition of f on p is not usually relevant. This is a significant difference with

general definable functions p→ Y .

A useful technical fact is that any A-definable f : X → R is the uniform

limit of a sequence of A-definable functions (fn) on X such that for all n,
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there is a finite tuple an in A and a function gn(x, y) definable by a term

in the language L such that fn(x) = gn(x, an). To see this, note that such

gn(x, an) form a lattice of functions on Sx(A) which separate points. Therefore

the Stone-Weierstrass theorem applies. One consequence of this is that any

A-definable f : X → R is definable over a countable subset of A.

When working with definable functions, we will often write down formulas

which contain symbols for these functions, e.g M |= f(a) = 0. This is a slight

abuse of notation, especially when the functions are only defined on a type-

definable set p. These expressions are meant as shorthand for type-definable

sets in L.

As a final comment on definable functions, let M |= T , A ⊆ N , let p be a

type-definable set over A, and let f : p → Y be A-definable, where Y is any

finite product of sorts of T . We have seen that f is defined at the level of

the type-space or equivalently at the level of an elementary extension of M .

Nevertheless, if p(M) 6= ∅ then f : p(M)→ Y (M) is a total function. This is

because f(a) ∈ dcl(Aa) for all a ∈M and we have seen that dcl(Aa) does not

depend on M .

Canonical parameters and imaginaries

In this thesis, we make a slightly non-standard use of the notion of canonical

parameter.

Definition 1.8.7. Let M |= T , let A ⊆M and let f : X → Y be A-definable.

We say that a single element c ∈M is a canonical parameter for f if for any

elementary extension N of M , any automorphism of N preserves f if and only

if it fixes c.

This definition is slightly non-standard for the reason that we do not allow

tuples of elements as canonical parameters. This is because canonical param-

eters consisting of exactly one element play an important role in our study of

interpretable Hilbert spaces. We obtain canonical parameters by adding imag-

inary sorts whenever we need them. Imaginary sorts in continuous logic are a

special case of hyperimaginary sorts in classical logic. See [BYU10] Section 5

for a clear comparison.

Definition 1.8.8. An imaginary sort S of T is a Cartesian product of at

most countably many sorts (Sn) of T endowed with a pseudo-metric d such

that there is an increasing sequence (nk) in N and definable pseudo-metrics dk
on
∏nk

i=0 Si such that the pseudo-metrics (dk) converge uniformly to d on S.

This means that for any ε > 0, there is K ≥ 0 such that for all k ≥ K, in

any M |= T , for any (an), (bn) ∈
∏

n≥0 Sn,

|d((an), (bn))− dk((an)n≤nk , (bn)n≤nk)| < ε.
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If S is an imaginary sort of M with metric d, expressed as the product of

the sorts (Mn), we can add the sort S to the language with the metric d and

projection maps πn : S → Mn. This construction is carried out in detail in

[BYU10].

We use imaginary sorts in two ways. Firstly, we can use an imaginary sort

to add a countable Cartesian product of metric spaces to the language: if dn is

a metric on Mn with diameter 1 and S is the product of the sorts (Mn), then

we can define d(x, y) =
∑
dn(xn, yn)/2n.

Secondly, we can use imaginary sorts to add canonical parameters for ar-

bitrary definable functions. If f is a definable function over a countable set

A ⊆M , we have seen that we can express f as the uniform limit of functions

gn(x, an) where an ⊆ A is finite and g is a term in the language. For every

n, let Sn be the product of the sorts corresponding to the tuple an and let

dn be the definable pseudometric dn(y, z) = supx d
′(gn(x, y), gn(x, z)) where d′

is the metric on the sort of x. The notion of forced limit in [BYU10] shows

how to ensure that the metrics dn are uniformly convergent. Let S be the

Cartesian product of the sorts Sn and let d be the limit of the pseudo-metrics

dn. Quotienting out Sn and S to obtain metric spaces, S is an imaginary sort

of canonical parameters for f . See [BYU10] for details.

Stability and definable types

Definition 1.8.9. Let M |= T . Take A ⊆ M and let f : X × Y → R be an

A-definable function where X and Y are finite Cartesian products of sorts of

M and f takes values in R. We say f is unstable if there is some elementary

extension N of M , indiscernible sequences (an), (bn) in N and ε > 0 such that

|f(an, bm) − f(am, bn)| ≥ ε for all n 6= m. We say f is stable if f is not

unstable.

Definition 1.8.10. Let M |= T and let A,B ⊆ M . Let p ∈ Sx(A) and let

f(x, y) be an A-definable function into R. We say that p is definable over B

with respect to f if there is a B-definable function g(y) such that for any tuple

a in A in the sort of y, p(x) entails that f(x, a) = g(a). In that case we write

g(y) = dpf(y).

In this thesis we work with local stable independence. First developed in

[She78] and [Pil86] for classical logic, local stable independence for continuous

logic has roots in [She75] and was studied in [BYU10]. We only recall the main

definition:

Definition 1.8.11. Let M |= T , let C ⊆ B ⊆ M and p(x) ∈ S(B). Let ∆

be a set of stable functions definable over A. We say that p(x) does not fork

over C with respect to ∆ if we can add imaginary sorts to M and extend p to

bdd(B) so that p is definable over bdd(C) with respect to ∆.
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Let A ⊆M . We write A |̂ ∆

C
B if tp(A/BC) does not ∆-fork over C.

When ∆ is the set of all stable functions, we simply say that p does not

fork over C and we write A |̂
C
B.

We refer the reader to [Pil86] and [BYU10] for an exposition of the theory

of stable independence. We will also make use of Morley sequences in the

context of local stability.

Definition 1.8.12. Let M |= T and let ∆ be a set of stable formulas. We say

that a sequence (an) in M is a Morley sequence over A with respect to ∆ if

for all n we have an+1 |̂ ∆

A
a0 . . . an and tp(an/bdd(A)) = tp(a0/bdd(A)).

Continuous logic and classical logic

Continuous logic is a direct generalisation of classical logic, and there is a

canonical way of taking a classical logic theory T and viewing it as a continuous

logic theory T cont. The construction of T cont is as follows.

Every sort of T is now viewed as a metric space with the discrete metric

with diameter 1. We remove the equality symbol from the sorts of T . Observe

that there is no loss of information in doing this, since x = y is equivalent

to d(x, y) ≤ 1/2 and x 6= y is equivalent to d(x, y) ≥ 1/2, both of which

are approximations of positive formulas. We add the usual value sorts to

T . Function symbols in the language of T are unchanged. For each relation

symbol R in the language of T , we substitute a function symbol fR which we

view as the indicator function of R in the corresponding continuous logic sort.

It is then clear how to axiomatise a continuous logic theory T cont so that there

is an exact correspondence between models of T and models of T cont.

When we construct a theory T cont from a classical logic theory T , we can

distinguish two kinds of imaginary sorts in T cont. Firstly we have the classical

imaginary sorts of T cont which come from the imaginary sorts of T defined

in the usual way (see [TZ12]). Secondly we have the continuous logic imag-

inary sorts of T cont which are imaginary sorts obtained by the constructions

sketched in 1.8.8. These correspond to certain hyperimaginary sorts of T . Un-

less specified otherwise, ‘imaginary sort’ and ‘imaginary element’ always refer

to imaginaries in continuous logic, as defined in 1.8.8.

Stable embeddedness

We show that the classical notion of stable embeddedness adapts easily from

classical logic to continuous logic. An account of stable embeddedness in the

context of classical logic can be found in the appendix of [CH99a]. Here we

take T to be a complete continuous logic theory.

Definition 1.8.13. Let D be a collection of type-definable sets of T . We say

that
⋃
D is stably embedded in T if for any κ-saturated M |= T with |M | = κ,
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any M-definable function from a finite Cartesian products of sets in D to R is

definable over
⋃
D(M).

In the above definition, saturation is not essential, but it is convenient

to include it. Saturation can be eliminated by considering imaginaries as in

[CH99a]. We will replicate that argument in Proposition 1.2.15 in a more

restricted setting so we only consider saturated structures for now.

Lemma 1.8.14. Let D be a collection of distance-definable sets in T (see

Definition 1.2.13). The following are equivalent:

1.
⋃
D is stably embedded in T .

2. For any κ-saturated M |= T with |M | = κ > |L|, for every finite tuple

a ∈ M , tp(a/
⋃
D(M)) is definable over a subset of

⋃
D(M) of size at

most |L|.

3. For any κ-saturated M |= T with |M | = κ > |L|, for every finite tuple

a ∈ M , there is a subset C of
⋃
D(M) of size at most |L| such that

tp(a/C) extends uniquely to
⋃
D(M).

4. For any κ-saturated M |= T with |M | = κ > |L|, every automorphism

of
⋃
D(M) extends to an automorphism of M .

Proof. To make notation lighter we can assume that D is closed under finite

Cartesian products. We fix M |= T κ-saturated with |M | = κ.

(1)⇒ (2) Let a ∈ M . Let f(x, y) be a definable function into R with y in

the sort of D ∈ D and x in the sort of a. By (1) there is a
⋃
D(M)-definable

function g(y) such that g(y) = f(a, y) on D. g defines tp(a/D(M)) for f .

Moreover, g is definable over a countable A ⊆ D(M), so tp(a/
⋃
D(M)) is

definable over a subset B of
⋃
D(M) with |B| ≤ |L|.

(2) ⇒ (1): Let f(x) be an M -definable function into R where x is a finite

tuple in the sort of D ∈ D. We can assume that f(x) = g(x, b) where b is a

finite tuple in M and g is 0-definable. q = tp(b/
⋃
D(M)) is definable over

some small C ⊆ D(M) so we have a C-definable function dqg(x) = f(x).

(2)⇒ (3): Let p(x) = tp(a/
⋃
D(M)), a ∈M . Suppose that p is definable

over C ⊆
⋃
D(M). Let f(x) be a

⋃
D(M)-definable function into R. We

show that the restriction of p(x) to C determines the value of f(x). We can

assume that f(x) = g(x, b) where b is a finite tuple in
⋃
D(M) and g(x, y) is

0-definable.

By (2), p is definable over C with respect to g and we write dpg(y) for its

definition. Write d(y,D) for the definable function which gives the distance to

D. An easy compactness argument shows that for every ε > 0 there is δ > 0

such that p(x) contains the positive formula over C:

∀y(d(y,D) < δ → |g(x, y)− dp(g(y))| ≤ ε)
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Therefore p � C has a unique extension to
⋃
D(M).

(3) ⇒ (2): Let a ∈ M , write p(x) = tp(a/
⋃
D(M)) and let f(x, y) be a

definable function with y in the sort of D ∈ D and x a tuple in the sort of

a. By (3), there is C ⊆
⋃
D(M) such that p(x) is the unique extension of

p � C to
⋃
D(M). Let N be an elementary extension of M . Suppose there are

c, c′ ∈ N both realising p � C and b ∈ D(N) such that |f(c, b) − f(c′, b)| ≥ δ

for some δ > 0. Then

N |= ∃x, x′, y
(
(p � C)(x) ∧ (p � C)(x′) ∧D(y) ∧ |f(x, y)− f(x′, y)| ≥ δ

)
The above is a type-definable set. Since M ≺ N and M is saturated over C,

M satisfies the same type-definable set. This contradicts (3) and this proves

that p has a unique extension to
⋃
D(N). Hence for any M ≺ N , p(x) is

C-invariant in N . It follows that p(x) is C-definable.

(3) ⇒ (4) : Let σ be an automorphism of
⋃
D(M) and suppose that we

have extended it to an automorphism σ :
⋃
D(M) ∪A→

⋃
D(M) ∪B where

|A| < κ. Let a ∈M . There is C ⊆
⋃
D(M) with |C| < κ such that tp(a/A,C)

extends uniquely to A∪
⋃
D(M). By saturation, we can find b ∈M such that

σ extends to an automorphism
⋃
D(M) ∪ Aa →

⋃
D(M) ∪ Bb. The result

follows by a back-and-forth argument.

(4) ⇒ (3): Suppose (3) fails for M |= T , where M is κ-saturated with

cardinality κ. Fix a ∈M which witnesses the failure of (3). Let (ai)i<κ be an

enumeration of the realisations of tp(a) in M . Suppose we have constructed

an isomorphism σ : C → σ(C) where C is a subset of
⋃
D(M) such that for

some α < κ and all i < α, the maps σ : aC → aiσ(C) are not isomorphisms.

Suppose that σ1 : aC → aασ(C) is an isomorphism. By the failure of

(3) there is a′ in M and b ∈
⋃
D(M) such that tp(a/C) = tp(a′/C) and

tp(a/bC) 6= tp(a′/bC). Then we can find b′ such that σ1 : a′bC → aαb
′σ(C) is

an isomorphism. Then we extend σ by putting σ(b) = b′. Note that now we

cannot extend σ to a by sending a to aα. By enumerating
⋃
D(M), we can

also make sure that after κ iterations of this procedure σ is defined on all of⋃
D(M). This contradicts (4).

1.8.3 Hilbert spaces in continuous logic

We recall here basic facts about the model theory of Hilbert spaces which

we use in this chapter. We refer the reader to [BYBHU08] for a more com-

plete summary. We work with Hilbert spaces over R, but all results can be

transposed to complex Hilbert spaces without modification.

On one presentation of the model theory of Hilbert spaces, the language

of Hilbert spaces in continuous logic consists of countably many metric sorts,

which stand for balls with radius n around 0. We add appropriate inclusion
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maps between the metric sorts. The language consists of the usual vector space

structure over R and a function 〈·, ·〉 on each metric sort into an appropriate

value sort which stands for the inner product. The axiomatisation of the

theory of infinite dimensional Hilbert spaces THilb is as expected. We usually

do not disinguish between a Hilbert space and a model of THilb.

THilb is complete, has quantifier-elimination, is stable, and is totally cate-

gorical. The theory of Hilbert spaces does not have elimination of imaginaries,

but it has weak elimination of imaginaries:

Lemma 1.8.15 ([BYB04] 1.2). Let M |= THilb. Let α be a canonical parame-

ter for an M-definable function f in an arbitrary imaginary sort of THilb. Then

there is a closed subspace H of M such that each point of H is in bdd(α) and

α is definable over H.

Definition 1.8.16. If H is a Hilbert space and V ≤ H is a closed subspace,

write PV for the orthogonal projection onto V .

We will make much use of the characterisation of forking independence in

Hilbert spaces. See [BYBHU08] for a proof:

Lemma 1.8.17. Let M |= THilb. Let A,B,C ⊆ M with B ⊆ C. Then

bdd(B) is the closed subspace of M generated by B and A |̂
B
C if and only

if for all a ∈ A, Pbdd(C)(a) = Pbdd(B)(a).

Finally, we recall some elementary facts about the weak topology in Hilbert

spaces which we use in our proofs. If H is a Hilbert space, recall that the weak

topology has a sub-basis consisting of the sets

{v ∈ H | 〈v, w〉 ∈ U,w ∈ H,U ⊆ R open}.

Recall also that the unit ball is compact in the weak topology and that every

bounded sequence in H has a weakly convergent subsequence.

Lemma 1.8.18. Let M |= THilb and A ⊆ M and v ∈ M . Let (vn) be an

indiscernible sequence in tp(v/A) in M . Then there is an orthogonal sequence

(wn) in M and w ∈M such that for all n, vn = wn +w, wn ⊥ A and wn ⊥ w.

It follows that (vn) converges weakly to w (we write vn ⇀ w).

Moreover, w is the unique element of M such that 〈w,w〉 = 〈v1, v0〉 =

〈w, vn〉 for all n.

Lemma 1.8.19. Let M |= THilb. Let (vn) be a Morley sequence over A ⊆M .

Then (vn) converges weakly to PbddA(v0).

Proof. It is enough to check that limn〈vn, vm〉 = 〈Pbdd(A)(v0), vm〉 for all m.

For n > m we have 〈vn, vm〉 = 〈Pbdd(Av0...vm)(vn), vm〉 = 〈Pbdd(A)(vn), vm〉 =

〈Pbdd(A)(v0), vm〉.
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Chapter 2

An Algebraic Hypergraph

Regularity Lemma

The material in this chapter builds on prior work by Elad Levi and will be

published as joint work. Levi proved a first algebraic hypergraph regularity

lemma in the context of Galois-rigid pseudofinite fields. This result is discussed

in Section 2.4.3. The implementation of the étale point of view in this chapter

is based on ideas of Hrushovski.

In this chapter, we prove a strong hypergraph regularity lemma for defin-

able sets in finite fields. We offer three main contributions which build on the

algebraic regularity lemma of [Tao12]. Firstly, we extend the algebraic regu-

larity lemma to arbitrary definable hypergraphs, of any arity, thus answering

a question of Tao. Secondly, we extend the algebraic regularity lemma be-

yond the context of finite fields by proving our results in the difference fields

Kq = (F alg
q , xq) for definable sets of finite total dimension in the language of

rings with a difference operator σ. Thirdly, we offer a new point of view on

algebraic regularity, relating combinatorial Szemerédi-style regularity for de-

finable sets to algebraic and geometric properties of associated varieties and

function fields. Therefore our hypergraph partitions have a natural geometric

interpretation.

The algebraic regularity lemma of [Tao12] says that a strong version of

Szemerédi regularity holds for definable sets φ(x, y) (with parameters) when

interpreted in finite fields Fq. Suppose that φ(x, y) is contained in the definable

set X×Y . The algebraic regularity lemma says that there is some N ≥ 1 and

definable sets X1, . . . , Xn and Y1, . . . , Ym partitioning X and Y respectively

with n,m ≤ N such that for all i ≤ n and j ≤ m, the graph φ(x, y) ∧Xi(x) ∧
Yj(y) is q−1/4-regular in the field Fq. This means that for sufficiently large

prime powers q, taking parameters in Fq, if φ∩Xi×Yj 6= ∅ in Fq, then for any

A ⊆ Xi and B ⊆ Yj,

| |φ(x, y) ∩ A×B|
|φ(x, y) ∩Xi × Yj|

− |A×B|
|Xi × Yj|

| = O(q−1/4).
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O(·) and N depend only on the formula φ and not on the parameters.

The algebraic regularity lemma for graphs strengthens the classical Sze-

merédi regularity lemma in two ways. Firstly, there is a fixed N such that the

error bounds on regularity vanish against a partition of the graph into at most

N2 subgraphs, as q →∞. As a result, the sizes of the sets Xi and Yj are of the

same order as |X| and |Y | as q → ∞. Secondly, regularity is obtained for all

pairs (Xi, Yj), whereas the classical graph regularity lemma only guarantees

regularity for most pairs, in an appropriate sense. The Szemerédi regularity

lemma first appeared in [Sze78] and the reader is referred to [Gow06] for a

general discussion.

The algebraic regularity lemma of [Tao12] has attracted considerable atten-

tion from model theorists and it is now well-understood that the main engine

behind this result is the stability of the formulas µ(φ(x, a) ∧ ψ(x, b)) = λ,

where µ is the counting measure in the variable x, which was first shown to

be definable in [CvdDM92]. See [PS13] for a model theoretic discussion of

the algebraic regularity lemma for graphs and its extension to MS-measurable

structures.

However, generalising Tao’s algebraic regularity lemma to definable hyper-

graphs requires new ideas. In this thesis, we take a fundamentally geometric

approach to this problem and we use the model theory of ACFA to derive

an algebraic hypergraph regularity lemma which strengthens the classical hy-

pergraph regularity lemma of [Gow07] and [RS04] in the same ways as Tao’s

algebraic regularity lemma strengthens Szemerédi’s.

There are some interesting technical twists to our results, but given a

definable hypergraph φ(x1, . . . , xn) ⊆ X1 × . . . × Xn in finite fields (or in

the difference fields Kq, as discussed below), we find some N ≥ 0 depending

only on φ and a partition Wu of each set
∏

i∈uXi where u ⊆ {1, . . . , n} and

|u| = n− 1 such that |Wu| ≤ N for every u and such that restricting φ to any

family (Wu)|u|=n−1 with Wu ∈ Wu gives a q−2−n−1
-regular hypergraph in the

sense of [Gow07]. See Theorem 2.4.13 for a precise statement.

The choice to work with difference equations and ACFA rather than pseud-

ofinite fields is a natural and useful one. Recall that ACFA is the model com-

pletion of the theory of algebraically closed inversive difference fields in the

language of rings with a difference operator σ. ACFA extends naturally the

theory of pseudofinite fields in the sense that for any K |= ACFA, the fixed

field σ(x) = x of K is a model of the theory of pseudofinite fields and is stably

embedded inside K. The fundamental results of [Hru22] also show that ACFA

is the asymptotic theory of the structures Kq = (F alg
q , xq) in the same way that

the theory of pseudofinite fields is the asymptotic theory of the finite fields Fq.

In ACFA, there is a form of quantifier-elimination which is more natural

than the quantifier-elimination of pseudofinite fields: every definable set con-

tained in a variety of finite total dimension is equivalent to the image of a
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projection π : X → Y where X and Y are difference varieties of finite total

dimension and X is a finite cover of Y . We refer to such definable sets as

Galois formulas. Galois formulas specialise to finite sets in the structures Kq

and it is easy to deduce a natural characterisation of the counting measure

on Galois formulas using the results of [Hru22]. This unlocks an algebraic

characterisation of combinatorial regularity.

We note that it is possible to recover the same kind of quantifier-elimination

as in ACFA in the more modest context of pseudofinite fields by enriching the

language of rings slightly. If F is a pseudofinite field viewed as a structure in

the language of rings, we can add a sort Fn for every Galois extension of F of

degree n and on each Fn we add a difference operator σn which we interpret

as a generator of Gal(Fn/F ). See [Joh19] for an example of this approach.

Under this approach and in this restricted context, all results in this chapter

could be recast using the classical Lang-Weil estimates and the discussion of

the counting measure found in the Appendix of [Hru02].

However, instead of working with the expansion of pseudofinite fields de-

scribed above, it is more natural to work with full models of ACFA. Hrushovski’s

twisted Lang-Weil estimates directly extend the classical Lang-Weil estimates

to this setting, so the technical transition is seamless. Moreover, shifting the

focus to difference equations gives access to many new definable sets which

do not come from pseudofinite fields. For example, algebraic dynamics, which

is concerned with the study of equations of the form σ(x) = f(x) where f

is rational, produces many new definable sets of great interest. Finite simple

groups of Lie type also fall under this umbrella.

In fact, much of the proof of our algebraic hypergraph regularity lemma

happens in a setting which is close to the category of algebraic dynamics de-

fined in [CH08]. If φ is a Galois formula corresponding to the finite projection

of irreducible difference varieties X → Y over a difference field A, then we

associate to φ a finite Galois extension L/A(a)σ where A(a)σ is the difference

function field of Y and L is the pure field associated to the finite cover Y

over A(a)σ. Our fundamental object of study is the pair (A(a)σ, L), where

L has no specified difference structure. We think of φ as asking a question

about extensions of σ from A(a)σ to L. In this setting, we find that combi-

natorial regularity for definable hypergraphs is equivalent to certain algebraic

properties of the pair (A(a)σ, L).

We find it useful to discuss systems of varieties rather than definable hy-

pergraphs. We say that Ω is a system of varieties on the finite set V over

the difference field A if Ω is a functor from the powerset P (V ) to difference

varieties of finite total dimension such that for every u ⊆ V , Ω(u) is a finite

cover of the fibre product
∏

(Ω(v), v ∈ P (u)−). See section 2.2.2 for the precise

definitions and notation. When Ω is a system of varieties, we are interested in

the definable sets ρuΩ(u) obtained by projecting the variety Ω(u) down onto
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the fibre product Ω(u)− =
∏

(Ω(v), v ∈ P (u)−). The definable sets ρuΩ(u) are

Galois formulas, by definition.

Systems of varieties relate to hypergraphs as follows. An n-partite n-

uniform hypergraph G can be viewed as a functor G on the powerset of

{1, . . . , n} together with sets X1, . . . , Xn such that for every subset u, G(u) ⊆∏
i∈uXi and G(u) is contained in the fibre product of the sets {G(v) | v ( u}.

Here the fibre product is defined with respect to the system of projections∏
i∈uXi →

∏
i∈vXi for v ⊆ u. To say that G(u) is contained in the fibre prod-

uct of the sets {G(v) | v ( u} is equivalent to saying that G(u) is contained

in the set {(xi)i∈u ∈
∏

i∈uXi | (xi)i∈v ∈ G(v), v ( u}. Equivalently, G(u)

is contained in the set of cliques of the n-partite (n− 1)-uniform hypergraph

(G(v))v(u. Under this point of view, it is clear how to translate any statement

about a definable hypergraph into a statement about a system of varieties.

However, systems of varieties offer finer control over definable sets, as they

allow us to move between the various finite Galois covers inside the system,

whereas a definable hypergraph G only gives access to a single Galois cover.

As is common in the model theory of pseudofinite fields or ACFA, the correct

point of view on definable sets is an étale point of view. We will not make any

technical use of the term ‘étale’, but we will use it to underline the philosophy

and the context of our results. Therefore, a system of varieties is really the

étale analog of a definable hypergraph.

There is a natural correspondence between systems of varieties and systems

of difference fields, obtained by taking the difference function fields associated

to the varieties in a system of varieties Ω. See section 2.2.1 for precise defi-

nitions. If S is a system of difference fields associated to Ω, we will say that

Ω is regular if for all u ⊆ V , S(u) is linearly disjoint from the composite of

fields (S(v)alg)v∈P (u)− over the the composite (S(v))v∈P (u)− . This algebraic no-

tion of regularity will be seen to be essentially equivalent to the combinatorial

one for hypergraphs, see Propositions 2.2.16, 2.2.20 and 2.3.6. Our choice of

terminology results from a happy coincidence, since our algebraic notion of

regularity can be seen as a generalisation of the usual notion of regularity for

field extensions.

We formulate two hypergraph regularity lemmas, one in the étale setting

and one in the “classical” setting. See Theorems 2.4.10 and 2.4.13 respectively.

The étale setting provides definable partitions and good error bounds, whereas

the classical setting provides the “expected” partitions but these are not de-

finable, and the error bounds become weaker. It is an open question whether

it is possible to find a “classical” algebraic hypergraph regularity lemma where

the partitions are definable sets. See the end of Section 2.4.3 for a discussion.

Our proof of the algebraic regularity lemma relies on the fundamental result

of Gowers which establishes the near-equivalence between edge-uniformity and

quasirandomness. Our terminology is in line with [Gow06] but either edge-
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uniformity or quasirandomness are often referred to simply as combinatorial

regularity in the literature. These notions are defined in Definitions 2.3.5, 2.4.2

and 2.4.4. Because of our shift to the étale point of view, we also introduce the

notion of étale-edge-uniformity, see Definitions 2.2.19 and 2.4.4. Lemma 2.4.7

shows that edge-uniformity and étale-edge-uniformity are equivalent, but the

distinction is useful.

The second ingredient of our proof of the algebraic regularity lemma is

the Stochastic Independence Theorem 2.3.2. We will see that quasirandom-

ness follows easily from the Stochastic Independence Theorem. This theorem

says that certain definable sets contained in regular systems behave like in-

dependent random variables. From quasirandomness, it is straightforward to

recover étale-edge-uniformity by the Gowers equivalence, and one can then de-

duce edge-uniformity by taking sections. This is carried out in Section 2.4.3.

From the Stochastic Independence Theorem, we also deduce the Stationar-

ity Theorem 2.3.3. A stationarity theorem was the main tool in Tao’s proof of

the algebraic regularity lemma but the argument for our algebraic regularity

lemma does not rely on the stationarity theorem. Nevertheless, it is a theorem

of wider interest.

Recall that Tao’s algebraic regularity lemma relied on the fact that the

measure of a formula φ(x, a)∧ψ(x, b) is controlled by the type of a and the type

of b. As a result, we can construct definable partitions Y1, . . . , Yn, Z1, . . . , Zk
such that for any i ≤ n and j ≤ k, µ(φ(x, a) ∧ ψ(x, b)) is generically constant

for a ∈ Yi and b ∈ Zj. It was shown in [PS13] that this result follows from

the fact that the formula µx(φ(x, y) ∧ ψ(x, z)) is stable, so that the partitions

(Yi), (Zj) can be seen to exist by a general stability-theoretic argument. For

this reason, we call this a “stationarity theorem”.

Our stationarity theorem is somewhat stronger than the one in [Tao12],

even restricted to the intersection of two definable sets. Given φ(x, y) and

ψ(x, z), we find partitions X1, . . . , Xm, Y1, . . . , Yn and Z1, . . . , Zp such that

for any (i, j, k), the definable sets φ(x, a) and ψ(x, b) behave like independent

random variables on the probability space Xi, with measure governed by the

sets Yj and Zk containing a and b respectively. Moreover, the random variables

φ(x, a) and ψ(x, b) are found to be independent in the probabilistic sense from

definable sets χ(x) contained in Xi(x). As a corollary, if µ(φ(x, a)∧Xi(x)) > 0

and µ(ψ(x, b) ∧ Xi(x)) > 0, then µ(φ(x, a) ∧ ψ(x, b) ∧ Xi(x)) > 0. Therefore

our stationarity theorem is an amalgamation theorem.

In the case of three sets φ(x, y, z), ψ(x, y, t) and χ(x, z, t), our stationarity

theorem says that after applying some suitable base changes to the domain,

we find compatible partitions of the triples X × Y × Z, X × Z × T and

X×Y ×T into irreducible varieties such that for a generic triple a, b, c, the sets

φ(x, a, b), ψ(x, a, c) and χ(x, b, c) behave like independent random variables on

any domain in the partition. In particular, the measure µ(φ(x, a, b)∧ψ(x, a, c)∧
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χ(x, b, c)) is uniquely determined by tp(a, b), tp(a, c) and tp(b, c), and this is

a direct generalisation of Tao’s original result.

As far as we know, this is the first higher-order stationarity theorem of

any form for a definable measure. We hope this theorem will be of interest for

future applications.

We conclude this introduction by highlighting some related work concern-

ing Szemerédi regularity in model theory. Model theory has been largely suc-

cessful in finding settings where the classical Szemerédi graph and hypergraph

regularity lemmas can be strengthened. [CS16] shows that the classical hy-

pergraph regularity lemmas can be strengthened for definable hypergraphs in

NIP structures. See also [CT20] for an extension of those results to functions

and for a proof of a strong regularity lemma when the edge-relation is NIP2.

Our results lie at the opposite end of the model theoretic spectrum, since we

work here in a simple unstable theory.

The recent results of [TW21] study hypergraph regularity in finite fields

without any definability assumptions on the edge-relations but under some

new combinatorial restrictions. These conditions aim to generalise stability

in the case of graphs to the setting of hypergraphs. It is not yet clear if our

approach for treating definable hypergraphs can be connected to this combi-

natorial project.

Definable graphs in finite fields coming from difference varieties of finite

total dimension have already been considered in [DT17]. In that work, the

authors adapt Tao’s approach to Szemerédi regularity to the definable measure

in ACFA over definable sets of finite total dimension, and they also consider

graphons. This measure was first shown to be definable in [RT06], drawing on

the twisted Lang-Weil estimates of [Hru22]1. [DT17] also adapt the results of

Tao on polynomial expansion to setting of varieties of finite total dimension. In

our work, we use a new approach to derive the algebraic graph and hypergraph

regularity lemmas.

Finally, the results of [Tom06] establish probabilistic independence results

for definable sets in pseudofinite fields. This can be seen as a weak version of

our stationarity theorem. The approach for that theorem in [Tom06] is quite

different from the approach we take here and it is not clear if it yields easily

the general Stochastic Independence Theorem which we need for our algebraic

hypergraph regularity lemma.

The chapter is structured as follows. In the first section, we revisit classical

results about quantifier-elimination in ACFA and we give a new characterisa-

tion of the definable measure for definable sets of finite total dimension.

In the second section, we introduce systems of difference fields and varieties.

1The manuscript we reference dates from 2022 but the twisted Lang-Weil estimates were

first proved by Hrushovski in the early 2000s.
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We define the notion of definable étale-edge-uniformity and prove a natural

hypergraph regularity lemma at the level of the theory ACFA. See Theorem

2.2.21.

In the third section, we prove the stochastic independence theorem and the

stationarity theorem. We define quasirandomness at the level of ACFA, and

we show that regular systems of varieties are quasirandom.

In the fourth section, we apply the twisted Lang-Weil estimates to deduce

the algebraic hypergraph regularity lemmas. We prove the classical equivalence

of Gowers in the étale setting and we show how to decompose étale systems into

disjoint sections to recover classical regular decompositions of hypergraphs.

Our main results are Theorems 2.4.10 and 2.4.13.

2.1 The Definable Measure in ACFA

We study the definable measure on definable sets in ACFA of finite total

dimension. The existence of this measure is implicit in [Hru22] and a detailed

presentation can be found in [RT06]. In that paper, the authors show that it is

possible to use the same kind of quantifier-elimination as is used in [CvdDM92]

to construct the definable measure. We will need more fine-grained information

about this definable measure so we find it easier to repeat the presentation from

the beginning.

2.1.1 Some background and notation

We use the language of rings with a difference operator σ. A difference field

is a field K where σ is an endomorphism. We say K is inversive if σ is an

automorphism of K. In this thesis, we are careful to distinguish the notions of

field, difference field, and inversive difference fields. If A is a subset of K, then

Aσ will denote the smallest difference field containing A and Ainv will denote

the smallest inversive difference field containing A.

Let A ≤ K be a difference field. A difference variety in K over A is the

solution set of a finite set of difference equations in σ over A. Note that

difference varieties can use positive powers of σ but not negative powers.

Convention: We will usually discuss difference varieties, so “variety” will

refer to difference varieties. We will be careful to say “algebraic variety” if we

want to refer to the algebraic setting.

As in the algebraic setting, if X is a variety over A, we say that X is

irreducible if X cannot be expressed as a finite union of proper subvarieties.

Note that we do not assume varieties to be irreducible. When A is an al-

gebraically closed inversive difference field and X is irreducible over A, then
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X is absolutely irreducible, meaning that for every extension B of A, X re-

mains irreducible over B. See [Coh65] or [Lev08] for detailed presentations of

difference algebra.

If X is an irreducible variety over a difference field A ≤ K, then we can

define the difference function field over A associated to X in the usual way.

We denote it A(X)σ. Define the transformal dimension of X over A to be the

maximal cardinality of a set S ⊆ A(X)σ such that the elements σi(x) where x ∈
S and i ≥ 0 are algebraically independent over A. When X has transformal

dimension 0, we define the total dimension of X to be the transcendence

degree of A(X)σ over A. We write dim(X) for the total dimension of X over

A. See section 4.1 of [Hru22] for a more complete account of various notions

of dimension in difference algebra.

Recall that ACFA is the model completion of the theory of inversive differ-

ence fields. See [CH99b] for an explicit axiomatisation. ACFA is not complete

but all completions of ACFA are obtained by specifying the field characteris-

tic and the action of σ on the algebraic closure of the prime field. Recall also

that for any K |= ACFA the fixed field σ(x) = x is a model of the theory

of pseudofinite fields. The reader is referred to the first few pages of [CH99b]

for the basic model theory of ACFA. In this chapter we will revisit quantifier

elimination down to existential formulas.

The fundamental theorem of [Hru22] says that ACFA is the asymptotic

theory of the difference fields Kq, where q is a prime power, Kq is the algebraic

closure of the field with q elements and σ is interpreted as x 7→ xq. We will

rely heavily on the twisted Lang-Weil estimates of [Hru22]. In Section 2.1.3 we

will use some algebraic corollaries of the main theorem of [Hru22], and we will

use the full strength of this theorem in Section 2.4 when we discuss asymptotic

counting estimates.

2.1.2 Galois formulas

We review the quantifier-elimination in ACFA. Let A be a difference field. A

finite Galois extension L of A will be said to be invariant if σ extends to some

endomorphism of L. The join of all invariant finite Galois extensions of A will

be called the effective algebraic closure of A and we write Ae for this field.

Combining Corollary 1.5 and (2.8) in [CH99b] yields the following description

of types in ACFA:

Lemma 2.1.1 ([CH99b]). Let K |= ACFA, let A ≤ K be an inversive differ-

ence field and let a, b be tuples in K. Let A(a)inv and A(b)inv be the inversive

closure of the fields A(a) and A(b) respectively. Then tp(a/A) = tp(b/A) if and

only if there is a difference field isomorphism between (A(a)inv)e → (A(b)inv)e

fixing A and sending a to b.
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We will deduce a restricted form of quantifier-elimination for A-definable

sets contained in A-definable varieties of finite total dimension. We will rely

heavily on the next definition for the rest of this chapter.

Definition 2.1.2. Let A be a difference field. We say that a formula φ(x)

over A is a Galois formula if there are A-definable varieties of finite total

dimension V2(x) and V1(x, y) where y is a tuple of variables, and a finite

family of polynomials P over A(x)σ such that, in any algebraically closed field

K containing A

1. the set of realisations of φ is equal to the projection V1(x, y)→ V2(x)

2. for every generic (a, b) ∈ V1, the difference field A(a, b)σ is the splitting

field of P over A(a)σ and is a finite invariant extension of A(a)σ.

We do not set an explicit syntax for Galois formulas, but it is clear how to

do this if one so wishes. We will assume that we have decided on some explicit

syntax for Galois formulas, and we will assume that the family of polynomials

P in Definition 2.1.2 is always explicitly given.

When φ is a Galois formula over A and P , V1, V2 are as in the definition

and a is a generic point of V2, we will say that the splitting field L of P over

A(a)σ is the field extension associated to φ. This terminology applies even if

we are in a field K where a does not belong to the set φ. Note that in such a

situation, L is always a finite invariant extension of A(a)σ.

We will often work with the perfect hull A(a)insepσ , in which case the Galois

extension associated to φ is the splitting field of P over A(a)insepσ .

Lemma 2.1.3. Let K |= ACFA and A ≤ K an inversive subfield. Let φ(x)

be a definable set over A contained in a variety of finite total dimension. In

K, φ is equivalent to a Galois formula over A.

Proof. We use the following claim:

Claim 2.1.3.1. Suppose a ∈ K lies in a variety over A of finite total dimen-

sion. Then (A(a)insepσ )e is inversive.

Proof of Claim. It is enough to prove that σ−1(a) is in (A(a)insepσ )e. Since the

extension of A(a)insepσ by σ−1(a) is clearly invariant, it is enough to show that

σ−1(a) is algebraic over A(a)σ. Since a is algebraic over σ(a), . . . , σn(a) for n

sufficiently large and A is inversive, the claim follows.

Observe that, up to logical equivalence, Galois formulas are preserved under

disjunctions. By the claim and Lemma 2.1.1, it is enough to show that for a, b ∈
K contained in A-definable varieties of finite total dimension, (A(a)insepσ )e ∼=A

A(b)insepσ )e if and only if a and b satisfy the same Galois formulas over A.

This is clear. See Proposition 3.7 in [Joh19] for a similar proof in a similar

context.
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When φ is a Galois formula over A, we define the total dimension of φ

over A, or dim(φ), as the total dimension of the variety V1 such that φ is the

projection V1 → V2. We also write clA(φ) for the smallest difference variety

over A containing φ.

2.1.3 The definable measure in ACFA on definable sets

of finite total dimension

Let K |= ACFA and let A ≤ K be a difference field such that K is |A|+-

saturated. The notions of transformal and total dimension clearly extend to

quantifier-free definable sets over A. For n ≥ 0, write qfDefn(A) for the

quantifier-free A-definable sets with total dimension ≤ n. Write DF n
A for the

family of finitely generated difference field extensions of A of transcendence

degree≤ n. Write IDF n
A for the family of finitely generated inversive difference

field extensions of A of transcendence degree ≤ n. There are obvious 1-1-

correspondences between DF n
A, IDF n

A, and irreducible difference varieties of

dimension n over A.

We will see that the transformal function fields provide the correct setting

to describe the measure on sets of transformal dimension 0. We begin by

using the main theorem of [Hru22] to define the measure on quantifier-free

sets of transformal dimension 0. We reserve the asymptotic component of this

theorem for Section 2.4, in Theorem 2.4.1.

Theorem 2.1.4 ([Hru22]). let K |= ACFA. For every n, there is a definable

measure µn : qfDefn(K)→ Q≥0 such that

1. µn(X) = 0 if X has total dimension < n

2. For every n, µn(
∧n
i=1 σ(xi) = xi) = 1

3. Fubini holds for the system of measures (µn): if f : Y → X is a definable

surjective map between varieties such that for sufficiently generic a ∈ X,

µn(f−1(a)) = γ > 0 and such that µk(X) = λ > 0, then µn+k(Y ) = γλ.

Fixing K |= ACFA and A ≤ K, we see that µn on qfDefn(A) corresponds

uniquely to a function µn : DF n
A → Q≥0 and to a function IDF n

A → Q≥0.

Indeed, even though an element L in IDF n
A is usually not finitely generated

as a difference field over A, it is equal to the inversive hull of some L ∈ DF n
A

which is uniquely determined up to transformally inseparable extensions.

For L an arbitrary inversive difference field, write Ltr for the field L with

the automorphism σtr = σ−1. Then tr is a map IDF n
A → IDF n

Atr . If L ∈ DF n
A

and L′ ∈ DF n
Atr , we say that L and L′ are inversion-dual if Linv ∼=A ((L′)inv)tr,

where Linv is the inversive hull of L.

We have additional information about the measure µn:

88



Proposition 2.1.5 ([Hru22]). Let K |= ACFA and take (µn) the definable

measures from Theorem 2.1.4.

1. For all n, µn is invariant under base change in the following sense: let

A ≤ A′ be algebraically closed inversive difference fields, let L ∈ DF n
A

and let L′ be the field of fractions of L⊗AA′. Then µn(L/A) = µn(L′/A′).

2. For all n, and for all difference fields A,A′ ≤ K, if A ≤ A′ ≤ Ainv, then

µn(L/A) = µn(L′/A′) when L ∈ DF n
A, L′ ∈ DF n

A′, and L′ ≤ (Linsep)inv,

where Linsep is the perfect hull of L.

3. Let n ≥ 0, let A ≤ K be algebraically closed and inversive and let L ∈
DF n

A and L′ ∈ DF n
Atr with L,L′ inversion dual. Then

µn(L/A) =
[L′ : σ(L′)]

[L : σ(L)]insep
.

We deduce the following important lemma:

Lemma 2.1.6. Let K |= ACFA and let A ≤ K be algebraically closed and

inversive. Let n ≥ 1 and let L,M be difference fields with M/L a finite field

extension. Then

1. if L ∈ DF n
A, then M ∈ DF n

A and [L : σ(L)] = [M : σ(M)] and [L :

σ(L)]insep = [M : σ(M)]insep

2. if L ∈ IDF n
A, then M ∈ IDF n

A and there exist L0,M0 ∈ DF n
A with

M0/L0 a finite field extension such that Linv0 = L and M inv
0 = M0L = M

3. if M,L ∈ DF n
A, there exists M ′, L′ ∈ DF n

Atr with M ′/L′ a finite field

extension such that M ′ is inversion-dual to M and L′ is inversion-dual

to L.

4. if M,L ∈ DF n
A, µn(M/A) = µn(L/A).

Proof. (1) If L ∈ DF n
A, it is clear that M ∈ DF n

A. Moreover, L/σ(L) and

M/σ(M) are finite field extensions. Then we have [M : σ(M)][σ(M) : σ(L)] =

[M : σ(L)] = [M : L][L : σ(L)] and [σ(M) : σ(L)] = [M : L] so [M : σ(M)] =

[L : σ(L)]. Since the same holds for the separable degree, the statement

follows.

(2) If L ∈ IDF n
A then [M : L] = [M : σ(L)] = [M : σ(M)][σ(M) : σ(L)]

and we deduce that [M : σ(M)] = 1, so M ∈ IDF n
A.

Let S be a finite set of generators of M over L. For every a ∈ S there is

polynomial ha over L such that σ(a) = h(a). Let F0 be a finite set of generators

of L over A as an inversive difference field which includes the coefficients of each

ha and of the minimal polynomial of each a ∈ S over L. Define L0 = A(F0)σ
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and M0 = L0(S)σ. Then M0/L0 is a finite extension of fields in DF n
A. Moreover

M0L is inversive so M = M0L and hence M = M inv
0 .

(3) By (2), MLinv = M inv and we can apply (2) to (M inv)tr/(Linv)tr in

IDF n
Atr .

(4) By (1), [L : σ(L)]insep = [M : σ(M)]insep. By (3) we can find M ′/L′ ∈
DF n

Atr with M,M ′ and L,L′ inversion-dual. By (1), [L′ : σ(L′)] = [M ′ :

σ(M ′)]. By Proposition 2.1.5(3), we have µn(M/A) = µn(L/A).

By [RT06], we know that the measures µn from Theorem 2.1.4 extend to

definable measures on all definable sets of total dimension n and that these

measures have the same properties as in Theorem 2.1.4. Note however that

this is straightforward to prove directly from Lemma 2.1.3, expressing such

definable sets as projections, breaking them up into irreducible components,

and counting the degrees of the projections. Henceforth, µn will refer to the

definable measures on definable sets of dimension n.

2.1.4 A new characterisation of the definable measure

in ACFA

In this section, we give a new characterisation of the definable measures µn. In

fact we could follow this approach from scratch to define the measures µn. As

we already have the results of [RT06] or the approach sketched in the previous

section, we will only aim to give an alternative characterisation of the µn.

If φ is a definable set in K |= ACFA and A ≤ K, recall that clA(φ) is the

smallest variety over A containing φ.

Definition 2.1.7. Let A be an inversive difference field. Let φ be a Galois

formula over A and suppose that clA(φ) is absolutely irreducible. Let a be a

generic point of clA(φ) and let L be the field extension of A(a)insepσ associated

to φ. We view L as a field with no difference structure.

Define N(φ) to be the number of extensions of σ from A(a)insepσ to an

endomorphism τ of L such that φ(a) is satisfied in the difference field (L, τ).

Define ν(φ) = N(φ)

[L:A(a)insepσ ]
.

Fix φ and a generic point a of clA(φ) as in the above definition. Choose a

partition (c, b) of the tuple a such that L is a regular extension of A(b)insepσ .

Write B = (A(b)σ)alg. Define M(φ(x, b)) to be the number of extensions of

σ from B(a)σ to an endomorphism τ of the composite BL such that φ(a) is

satisfied in the structure (BL, τ).

Lemma 2.1.8. Take φ, a = (c, b) and L as above and suppose that L is a

regular extension of A(b)insepσ . Then N(φ) = M(φ(x, b)).

Proof. As before, let B = (A(b)σ)alg. Let Σ1 and Σ2 respectively be the sets

of extensions of σ from A(a)insepσ to L and from B(a)σ to BL such that φ(a)
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is satisfied in the corresponding structures. We check that restriction to L

induces a bijection Σ2 → Σ1.

Note that σ extends uniquely from B(a)σ to B(a)insepσ . Since any τ ∈ Σ2

must be an endomorphism of L, it is clear that restriction induces an injection

Σ2 → Σ1. Conversely, for τ ∈ Σ1, use the fact that L is a regular extension

of A(b)σ to extend σ to an endomorphism τ of BL compatible with σ on B.

Then φ(a) is true in (BL, τ) because φ is an existential formula.

Let K |= ACFA and let A be a small inversive subfield. Let φ be a Galois

formula over A and let a = (c, b) , B and L be as above. Observe that even if

φ(a) is false in K, φ(x, b) is satisfiable. Indeed, using model completeness and

the description of types in Lemma 2.1.1, we can construct a difference field

containing B and realising φ(x, b) and we can embed this field over B in K.

Informally, the next proposition says that with a, B and L as above, the

extensions of σ from B(a)σ to L are all equally likely to arise inside a model

K of ACFA and this determines the probability that φ(a) is true, when the

measure is normalised by clA(φ). We write clA(φ) for the smallest difference

variety over A containing φ.

Proposition 2.1.9. Let K |= ACFA and let A ≤ K be an inversive subfield.

Let φ be a Galois formula over A such that clA(φ) is absolutely irreducible over

A. Let a ∈ clA(φ) be generic over A and let L be the splitting field associated

to φ over A(a)insepσ . Let a = (c, b) be a partition of a and suppose that L

is a regular extension of A(b)insepσ . Write B = (A(b)σ)alg and suppose that

clB(φ(x, b)) has total dimension d. Then

µd(φ(x, b)) = ν(φ)µd(clB(φ(x, b))).

Proof. This proof is similar to the proof of Proposition 11.1 in [Hru02]. We

only consider the definable measure in dimension d so we write µ = µd. Write

B = (A(b)σ)alg. By Lemma 2.1.8, it is enough to show that

µ(φ(x, b)) = ν ′(φ(x, b))µ(clB(φ(x, b)))

where

ν ′(φ(x, b)) =
M(φ(x, b))

[BL : B(a)insepσ ]
=

M(φ(x, b))

[L : A(a)insepσ ]
.

Suppose that φ(x, y) is the projection of varieties π : Y → X. Write

X(b), Y (b) respectively for the subvarieties of X, Y consisting of points which

project onto b by restricting to the appropriate coordinates. Therefore, φ(x, b)

is the image of the projection π : Y (b) → X(b). We can assume that

X(b) = clB(φ(x, b)). In order to calculate M(φ(x, b)), we can consider each

irreducible component of Y (b) over B separately, since these correspond to

different extensions of σ from B(a)σ to BL. Therefore we assume that Y (b) is
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irreducible over B. Then the projection π : Y (b)→ X(b) has constant degree

η.

Let Σ be the set of extensions τ of σ from B(a)σ to BL such that φ(a) is

true in (BL, τ). Write G = Gal(BL/B(a)insepσ ). Note that G acts on Σ by

both left and right translation and hence by conjugation. Fix an element τ0

of Σ and let H = CG(τ0) = {g ∈ G | τ0g = gτ0}.

Claim 2.1.9.1. η = |H|.

Proof of claim. We work in (BL, τ0) and we show that H acts sharply tran-

sitively on the pullback of a to Y (b). Let y1, y2 ∈ π−1(a). Since Y (b) is

irreducible over B, there is g ∈ G such that g(y1) = y2. Since BL is Galois

over B(a)insepσ and y1, y2 both generate BL over B(a)insepσ , g is unique.

We check that g ∈ H. Since L is τ0-invariant, we have τ0(y1) = P (y1) for

some polynomial map P over A(a)insepσ . Since Y (b) is irreducible, we also have

τ0(y2) = P (y2). Now we conclude τ0(g(y1)) = P (y2) = g(P (y1)) = g(τ0(y1)) so

g ∈ H.

Claim 2.1.9.2. |Σ| = [G : H].

Proof of claim. If τ1, τ2 ∈ Σ, by irreducibility of Y (b) we have (BL, τ1) ∼=B(a)σ

(BL, τ2). Hence there is g ∈ G with gτ1 = τ2g. Therefore τ1 and τ2 are

G-conjugate and the number of such conjugates is [G : H].

By the first claim and by Fubini, we have

µ(φ(x, b)) =
µ(Y (b))

|H|
.

By irreducibility of Y (b) and X(b) and by Lemma 2.1.6(4) we also have

µ(Y (b)) = µ(X(b)). By the second claim, we deduce

µ(φ(x, b)) =
1

|H|
µ(X(b)) =

|Σ|
|G|

µ(X(b)) = ν ′(φ(x, b))µ(X(b))

In Proposition 2.1.9, the assumption that L is a regular extension ofA(b)insepσ

is essential. We will usually need to change the domain of definition of φ in

order to put ourselves in the situation where L is regular over A(b)insepσ . Since

L is regular over a finite extension of A(b)insepσ , this can be achieved by chang-

ing the domain of φ and lifting the whole definable set to a cover, so that φ

ranges over tuples of the form (x, y, y′) and y′ codes Galois information.

Moreover, we will be interested in applying Proposition 2.1.9 to many dif-

ferent partitions of the tuple a at the same time. This motivates the notion of

systems of difference fields and difference varieties in the next section.
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2.2 Regular Systems and Definable Edge-uniformity

In this section, we often work inside an arbitrary algebraically closed inversive

difference field K. We introduce systems of difference fields and of varieties,

and we isolate the fundamental notion of a regular system. This is a purely

algebraic or geometric notion, but we will see that it corresponds to a certain

form of combinatorial regularity in the sense of Szemeredi when K is a model

of ACFA.

2.2.1 Regular systems of perfect difference fields

In the following definition, we record some notation which we will use often:

Definition 2.2.1. V usually denotes a finite set. P (V ) is the powerset of V

and P (V )− = P (V ) \ {V }. For k ≤ |V |, Pk(V ) = {u ∈ P (V ) | |u| ≤ k}. For

u ⊆ V and 0 ≤ k ≤ |u|, P (V, u, k) = {v ⊆ V | |v ∩ u| ≤ k}.
If I is a collection of subsets of V closed under taking subsets, we say that

I is downward closed. If in addition
⋃
I = V , we say that I is a simplicial

complex on V .

If I is downward closed and u ⊆ V , define Iu = {v ∩ u | v ∈ I}. If I is a

collection of subsets of V , write ∂I = {v | ∃u ∈ I, v ⊆ u}.

We fix an algebraically closed inversive difference field K. K is not usually

assumed to be a model of ACFA and we will be careful to indicate when we

need this assumption.

In this thesis, we write composites of fields as products: if (Ki : i ∈ I) is

a collection of fields contained in a field K,
∏

i∈I Ki denotes the composite of

this family. We never write down Cartesian products of fields so this notation

is not ambiguous.

If A,B,C ⊆ K, we say that A is independent from B over C if ((AC)inv)alg

is linearly disjoint from ((BC)inv)alg over (Cinv)alg and we write A |̂
C
B.

When (Bi)I is a family of subsets of K and A ⊆ K, we say that the family (Bi)I
is independent over A if for all disjoint I1, I2 ⊆ I,

∏
i∈I1 ABi is independent

from
∏

i∈I2 ABi over A.

When K |= ACFA, this notion of independence coincides with model

theoretic independence. It is useful to recall from [CH99b] that ACFA has

existence of amalgamation for all orders. This is the Generalised Independence

Theorem. We will not use this theorem directly because we will work at the

more detailed level of systems of difference fields.

Definition 2.2.2. Let V be a finite set and let A ≤ K be a perfect inversive

difference field. Let S be a functor from P (V ) to finitely generated perfect

difference field extensions of A of finite total dimension contained in K, where

the arrows between elements of P (V ) and between the difference field extensions

of A are inclusions.
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We say that S is a system of difference fields on V over A if S satisfies

the following conditions:

1. S(∅) = A

2. The family {S{i} | i ∈ V } is independent over A.

3. For u ⊆ V with |u| ≥ 2, S(u) is a finite invariant Galois extension of∏
v∈P (u)− S(v).

Let I be a simplicial complex on V . We say that S is an I-system if for

all u /∈ I, S(u) =
∏

v∈P (u)− S(v).

If S is an I-system on V over A, we will often want to restrict S to smaller

simplicial complexes. Let J ⊆ I be downward closed, but not necessarily a

simplicial complex. Then we write S � J for the J-system on
⋃
J over A

defined by (S � J)(u) =
∏

Ju
S(v) for any u ⊆

⋃
J .

Definition 2.2.3. Let A ≤ K be a perfect inversive difference field and let S be

a system of difference fields on P (V ) over A in K. Let K ′ be an algebraically

closed inversive difference field containing K, let A′ be a perfect inversive

difference field containing A and let S ′ be a system of difference fields on

P (V ) over A′ in K ′.

Let I be a downward-closed collection of subsets of V . We say that S ′ is

an I-refinement of S over A if

1. A′ is a finitely generated extension of A

2. for every u ∈ I, S ′(u) is a finite invariant Galois extension of S(u)

3. for every u /∈ I, S ′(u) = S(u)
∏

v∈Iu S
′(v).

Remarks: (1) We usually move freely between K and K ′ when taking refine-

ments, even if we do not explicitly reference the fields. In fact, we often omit

the ambient field K, taking it to be fixed in our background assumptions.

(2) Let I be a simplicial complex on V and J ⊆ I a downward closed

subset. Let S be an I-system on V over A′ and let S ′ be a J-refinement of S
over A. Then S ′ is an I-system on P (V ) over A′.

The next definition is fundamental in our work.

Definition 2.2.4. Let S be a system of perfect difference fields on V over A.

We say that S is regular if for every nonempty u ⊆ V , S(u) is linearly disjoint

from
∏

v∈P (u)− S(v)alg over
∏

v∈P (u)− S(v).
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Remark: The notion of a P (V )−-system S of difference fields over A is closely

related to the notion of an amalgamation functor over A. See [Hru06] for a

general discussion of amalgamation functors. S is not exactly the solution of an

amalgamation functor on P (V )− because the fields S(v) are not algebraically

closed, but it is the result of truncating the solution (S(v)alg)v∈P (V )− down to

various subfields.

We will show that systems of difference fields can always be refined to

regular systems. We use the following technical lemma:

Lemma 2.2.5. Let S be a system of difference fields on V over an algebraically

closed difference field A contained in K. Suppose A is existentially closed in

K. Let I be a family of subsets of V and let u ⊆ V . Then S(V )e
∏

v∈I S(v)alg

is linearly disjoint from S(u)alg over S(u)e
∏

v∈Iu S(v)alg.

Proof. We first prove the lemma under the assumption that the base A is

ω1-saturated. We will remove this assumption at the end of the proof.

We can assume that S is an {{i} | i ∈ V }-system. For every i ∈ V , let ai be

a finite tuple such that S(i) = A(ai)
insep
σ and write av = (ai)i∈v for any v ⊆ V .

Take d ∈ S(V )e
∏

I S(v)alg∩S(u)alg. There is a finitely generated algebraically

closed difference field B contained in A such that B(au)σ is linearly disjoint

from A over B and such that d ∈ B(aV )eσ
∏

I B(av)
alg
σ ∩B(au)

alg
σ .

By ω1-saturation and existential closure of A, we can find a′V \u ∈ A such

that the difference fields B(aV \u)σ and B(a′V \u)σ are isomorphic over B. Since

B(a′V \u)) ⊆ A, B(a′V \u)σ is linearly disjoint from B(au)σ over B. Hence the

difference fields B(aV )σ and B(au, a
′
V \u)σ are isomorphic over B(au)σ.

As a pure field, B(aV )eσ depends only on the difference field isomorphism

type of B(aV )σ. Hence the isomorphism B(aV )σ → B(au, a
′
V \u)σ extends

to an isomorphism of pure fields B(aV )algσ → B(au, a
′
V \u)

alg
σ over B(au)

alg
σ

which restricts to an isomorphism B(aV )eσ → B(au, a
′
V \u)

e
σ over B(au)

e
σ. Since

d ∈ B(au)
alg
σ , the isomorphism constructed above fixes d and we deduce

that d ∈ B(au, a
′
V \u)

e
σ

∏
I B(av∩u, a

′
v\u)

alg
σ . Since a′V \u ⊆ A, we have d ∈

S(u)e
∏

Iu
S(v)alg as desired.

Now suppose that A is not ω1-saturated. Consider the structure K with an

additional predicate for A. Let K∗ be an ω1-saturated elementary extension

and let A∗ be the ω1-saturated algebraically closed difference field extending

A. Then the independence properties of the tuples aV are preserved by moving

to K∗ and A∗ is also existentially closed in K∗, so we can apply the lemma to

the system S∗ defined by lifting the base to A∗.

Take d ∈ S(V )e
∏

I S(v)alg ∩ S(u)alg. Then d ∈ K ∩ S∗(u)e
∏

Iu
S∗(v)alg.

By elementarity, we internalise all parameters into the base A and we recover

the desired result.

The next proposition will provide the regular partitions in our hypergraph

regularity results.
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Proposition 2.2.6. Let S be an I-system of difference fields on V over A.

Then S has a ∂I-refinement S ′ over some finitely generated extension A′ of A

which is regular.

Proof. Moving to field extensions if necessary, we can assume that A is alge-

braically closed, inversive, and existentially closed in K. The field A′ in the

statement is then recovered by choosing finitely many parameters in A over

which S ′ is defined. We use the following claim:

Claim 2.2.6.1. S(V )e ∩
∏

v∈P (V )− S(v)alg =
∏

v∈P (V )− S(v)e.

Proof of claim. We show that for every downward-closed collection J of sub-

sets of V , we have S(V )e ∩
∏

J S(v)alg =
∏

J S(v)e. We proceed by induction

on |J |. The case |J | = 1 is an instance of Lemma 2.2.5.

Let J = J ′ ∪ {w} where P (w)− ⊆ J ′ and suppose the claim holds for

J ′. Then we know that S(V )e is linearly disjoint from S(w)e
∏

J ′ S(v)alg over∏
J S(v)e. By the Towers property, it is enough to show that S(V )e

∏
J ′ S(v)alg

is linearly disjoint from
∏

J S(v)alg over S(w)e
∏

J ′ S(v)alg.

By Lemma 2.2.5, S(V )e
∏

J ′ S(v)alg is linearly disjoint from S(w)alg over

S(w)e
∏

P (w)− S(v)alg. By the Towers property, S(V )e
∏

J ′ S(v)alg is linearly

disjoint from S(w)alg
∏

J ′ S(v)alg =
∏

J S(v)alg over S(w)e
∏

J ′ S(v)alg, as de-

sired.

Now let (un) be an enumeration of I such that for all n, un is a maximal

element of {um | m ≥ n}. Fix k ≥ 0 and assume we have constructed a

∂I-refinement S ′ of S such that for all n < k, S ′(un) ∩
∏

P (un)− S(v)alg =∏
P (un)− S ′(v).

If S ′(uk) ∩
∏

P (uk)− S(v)alg 6=
∏

P (uk)− S ′(v), then by applying the claim to

S ′ � P (uk), we construct finite extensions S ′′(v) ⊆ S ′(v)e for every v ∈ P (uk)
−

such that

S ′(uk) ∩
∏

P (uk)−

S(v)alg ⊆
∏

P (uk)−

S ′′(v).

By making coherent choices of field extensions, we can assume that the exten-

sions S ′′(v) define a P (uk)
−-refinement of S ′.

S ′′(uk) is clearly linearly disjoint from
∏

P (uk)− S(v)alg over
∏

P (uk)− S ′′(v).

For n < k, S ′′ � P (un) is a P (un)−-refinement of S ′ � P (un), so S ′′(u) is also

linearly disjoint from
∏

P (un)− S(v)alg over
∏

P (un)− S ′′(v). The proposition

follows inductively.

We will now prove some properties of regular systems which will be useful in

the rest of this chapter. The key technical fact behind these results is Lemma

2.2.7. Its proof is close to the argument which underpins the Generalised

Independence Theorem in ACFA (see [CH99b]).
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Lemma 2.2.7. Let S be an I-system of perfect difference fields on V over A.

Fix u ⊆ V and take J any collection of subsets of V . Then S(V )
∏

v∈J∪Iu S(v)alg

is linearly disjoint from S(u)alg over S(u)
∏

v∈Ju∪Iu S(v)alg.

Proof. Let (ai) be a finite collection of elements of S(u)alg and suppose that

(ai) is linearly dependent over S(V )
∏

J∪Iu S(v)alg as witnessed by elements

(bi). We can find

1. a tuple c ⊆
∏

Iu
S(v)alg

2. tuples dv where dv ⊆ S(v)alg for v ∈ J

3. tuples ev where ev ⊆ S(v) for v ∈ I

4. rational maps fi(x, y, z) for all i

such that bi = fi(c, (dv)J , (ev)I) for all i.

For every v ∈ J choose tuples αv ⊆ S(v ∩ u) and βv ⊆ S(v \ u) such

that dv is algebraic over A(αv, βv). Similarly, for every v ∈ I, choose tuples

α′v ⊆ S(u ∩ v) and β′v ⊆ S(u \ v) such that ev is algebraic over A(α′v, β
′
v).

Then (ai) satisfies some formula

φ((xi), c, (αv), (α
′
v), (βv), (β

′
v))

which says that (ai) is linearly dependent over S(V )
∏

J∪Iu S(v)alg. This for-

mula is in the language of fields. By elementary stability theory, we find tuples

(δv) and (δ′v) in Aalg such that (ai) satisfies φ((xi), c, (αv), (α
′
v), (δv), (δ

′
v)) and

this entails that (ai) is linearly dependent over S(u)
∏

Ju∪Iu S(v)alg

We now prove some useful properties of regular systems. We fix a system

S of difference fields on V over A.

Lemma 2.2.8. Suppose S is regular. For all u ⊆ V , S(u) is linearly disjoint

from
∏

v∈P (V,u,|u|−1) S(v)alg over
∏

v∈P (u)− S(v).

Proof. Let S ′ = S � P|u|−1(V ). By Lemma 2.2.7, S(u)
∏

P (u)− S(v)alg is linearly

disjoint from
∏

P (V,u,|u|−1) S(v)alg over S ′(u)
∏

P (u)− S(v)alg =
∏

P (u)− S(v)alg.

The lemma follows from the definition of regularity and the Towers property.

Lemma 2.2.9. Suppose S is regular. Let I be a collection of subsets of V .

Then S(V ) is linearly disjoint from
∏

v∈I S(v)alg over
∏

v∈I S(v).

Proof. We proceed by induction to show that for any downward-closed col-

lection J of subsets of V ,
∏

J∪I S(v) is linearly disjoint from
∏

I S(v)alg over∏
I S(v). The case J = ∅ is trivial, so we assume the claim holds for some J ′

where J = J ′ ∪ {u} and P (u)− ⊆ J ′.
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By the Towers property, it is enough to show that S(u)
∏

J ′∪I S(v) is lin-

early disjoint from
∏

J ′ S(v)
∏

I S(v)alg over
∏

J ′∪I S(v). By Lemma 2.2.8,

S(u) is linearly disjoint from
∏

P (V,u,|u|−1) S(v)alg over
∏

P (u)− S(v) and the

result follows by the Towers property.

Lemma 2.2.10. Suppose S is regular. Let u ⊆ V and let I be a collection of

subsets of V . Then S(u) is linearly disjoint from
∏

v∈I S(v)alg over
∏

v∈Iu S(v).

Proof. We can assume that I is a simplicial complex of V and that u /∈ I. Let

S ′ be the restriction of S to I, so that S ′(V ) =
∏

I S(v) and S ′(u) =
∏

Iu
S(v).

Applying Lemma 2.2.7, S(u)
∏

Iu
S(v)alg is linearly disjoint from

∏
I S(v)alg

over
∏

Iu
S(v)alg.

By Lemma 2.2.9, S(u) is linearly disjoint from
∏

Iu
S(v)alg over

∏
Iu
S(v)

and the result follows by the Towers property.

2.2.2 Regular systems of varieties

We introduce systems of varieties. These are closely related to systems of

difference fields and in fact all the key theorems about systems of varieties

could be formulated in terms of systems of difference fields. However systems

of varieties are more natural from a combinatorial point of view.

In what follows, we will work with projections between varieties. If X, Y

are difference varieties in affine space, we say that a map π : X → Y is a

projection if X ⊆ Km, Y ⊆ Kn and π restricts X to certain coordinates in

affine space. We say that π is dominant if for every top-dimensional component

Z of Y , there is a top-dimensional component Z ′ of X such that π sends Z ′

to Z and π(Z ′) is not contained in a subvariety of Z. 2

Let V be a finite set and let A be a perfect inversive difference field. Let Ω

be a contravariant functor from P (V ) to difference varieties over A of finite

total dimension with dominant projections Ω(u) → Ω(v) when v ⊆ u. We

always assume that Ω(∅) = 0, viewed as a variety in K0, and that Ω(u) has

positive total dimension over A when u 6= ∅.
For any downward closed collection I of subsets of V , write

∏
(Ω(v), v ∈ I)

for the fibre product of the family (Ω(v))v∈I . This is a difference variety with

dominant projections to each Ω(v) such that for any v ⊆ v′ ∈ I, the projection∏
(Ω(v), v ∈ I)→ Ω(v′)→ Ω(v) equals the projection

∏
(Ω(v), v ∈ I)→ Ω(v).

This variety has the usual universal property of fibre products.

2 We use projections because there are a few places in this chapter where it is useful

to refer to the implicit syntactical structure of Galois formulas. By default, we take Galois

formulas to be the result of projecting one variety onto another. Another advantage of

working with projections is that it is easy to see when commutative diagrams arise. This

will be essential in our arguments. However all our results generalise easily to systems of

varieties with general morphisms of difference varieties instead of projections.
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Definition 2.2.11. Let Ω be a functor on P (V ) as above. We say that Ω is

a system of varieties on V over A if for all u ⊆ V with |u| ≥ 2,

1. there is a finite family of polynomials Pu over A(x)σ such that points of

Ω(u) can be expressed as pairs (a, b) with a ∈
∏

(Ω(v), v ∈ P (u)−) and

A(a, b)σ is the splitting field of Pu over A(a)σ

2. the projection Ω(u) →
∏

(Ω(v), v ∈ P (u)−) is dominant. Equivalently,

dim(Ω(u)) = dim(
∏

(Ω(v), v ∈ P (u)−)).

When I ⊆ P (V ) is a simplicial complex, we say that Ω is an I-system of

difference varieties if for all u /∈ I, Ω(u) =
∏

(Ω(v), v ∈ P (u)−) (equivalently,

Pu is empty).

We say that Ω is irreducible if Ω(V ) is absolutely irreducible over A.

Remarks: (1) If Ω is irreducible, then for all u with |u| ≥ 2, every projection

from Ω(u) to the fibre product
∏

(Ω(v), v ∈ P (u)−) has generically constant

multiplicity. This will be useful for decomposing systems of varieties into

disjoint sections in Section 2.4.

(2) The connection between Galois formulas and systems of varieties is

clear: any Galois formula φ arises as the image of a projection Ω(u) →∏
(Ω(v), v ∈ P (u)−) in some appropriate system of varieties Ω. Hence sys-

tems of varieties are a useful framework for studying definable hypergraphs.

(3) We remarked after Definition 2.2.4 that the concept of a P (V )−-system

of difference fields should be viewed as analogous to the solution of an amal-

gamation problem. Accordingly, a P (V )−-system of varieties can be viewed

as being analogous to the amalgamation problem itself.

We will rely heavily on the notation introduced in the next definition.

Definition 2.2.12. Let Ω be a system of varieties on V over A.

1. For every u ⊆ V with |u| ≥ 2, we write Ω(u)− for the fibre product∏
(Ω(v), v ∈ P (u)−).

2. For every u ⊆ V , write ρuΩ(u) for the projection of Ω(u) onto Ω(u)−.

We define analogously S(u)− =
∏

v∈P (u)− S(v) when S is a system of dif-

ference fields on V over A.

Definition 2.2.13. Let Ω be a system of varieties on V over A. Let A′ be a

perfect inversive difference field containing A and Ω′ a system of varieties on

V over A′.

We say that Ω′ is a refinement of Ω if for every u ⊆ V there is a finite

dominant projection Ω′(u) → Ω(u) and for u ⊆ v, the projections Ω′(u) →
Ω(u)→ Ω(v) and Ω′(u)→ Ω′(v)→ Ω(v) commute.
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Let I be a collection of subsets of V . We say that Ω′ is an I-refinement of

Ω if Ω′ is a refinement and for every u /∈ I, Ω′(u) is the fibre product of the

varieties Ω(u), (Ω′(v))v∈Iu.

We say that Ω′ is a surjective refinement of Ω if the projection Ω′(V ) →
Ω(V ) is generically surjective.

Remark: Taking an extension of A if necessary, every system of varieties over

A admits a partition into irreducible systems. If Ω′ is a surjective refinement

of Ω over the extension A′, the partition of Ω′ into irreducible components will

give us a notion of étale-partition of Ω.

Definition 2.2.14. Let Ω be a system of varieties on V over A. Let a be a

generic point of Ω(V ) and write au for the image of a under the projection

Ω(V ) → Ω(u). We define the system of difference fields associated to a to be

the system S(u) = A(au)
insep
σ .

We also say that the system S above is a system of difference fields associ-

ated to Ω. When Ω is irreducible, systems of difference fields associated to Ω

are unique up to isomorphism.

We say that Ω is a regular system of varieties if Ω is irreducible and the

system of difference fields associated to Ω is regular.

Proposition 2.2.15. Let Ω be an I-system of varieties on V over A. Then

there is a surjective ∂I-refinement Ω′ of Ω over an extension A′ of A such that

each irreducible component of Ω′ is regular.

Proof. We can assume that Ω is irreducible over A. Let a be a generic point

of Ω(V ) over A and let S be the associated system of difference fields on V

over A. Write au for the projection of a to Ω(u).

Let S ′ be a regular ∂I-refinement of S over a finitely generated extension

A′ of A, as given by Proposition 2.2.6. For every u ∈ ∂I, let Pu be a family

of polynomials over S(u) such that S ′(u) is the splitting field of Pu over S(u).

We can assume that Pu ⊆ Pv when u ⊆ v and we can take Pu to be over

A′(au)σ.

We can define a system Ω′ over A′ refining Ω such that the projection

Ω′(V )→ Ω(V ) is generically surjective and for every u ∈ ∂I, Ω′(u) is a variety

of points of the form (c, d) where c ∈ Ω(u) and A′(c, d)σ is the splitting field

of the polynomials Pu over A′(c)σ.

Every irreducible component of Ω′ is regular: for any generic point b of

Ω′(V ), even though the system of difference fields associated to b may not be

isomorphic to S ′ as a system of difference fields, it is isomorphic to S ′ in the

sense of pure fields, since the field extensions are just the splitting fields of the

families Pv. This guarantees regularity of the system associated to b.

Example: We give a basic example of a P (V )-system Ω with a regular P (V )−-

refinement. Working over the prime field of K and taking V = {0, 1}, let Ω(0)
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and Ω(1) be copies of the fixed field. Let Ω(V ) be the variety of points of the

form (x, y, z, t) where x ∈ Ω(0), y ∈ Ω(1), z is a square root of y with σ(z) = z

and t is a square root of x + z with σ(t) = t. Take Ω′(0) = Ω(0), Ω′(1) the

variety of points of the form (y, z) where z is a square root of y with σ(z) = z,

and take Ω′(V ) = Ω(V ). Then Ω′ is a regular P (V )−-refinement of Ω. Note

that the projection Ω′(V )→ Ω(V ) is surjective (in fact it is the identity) and

the the projection Ω′(1) → Ω(1) is only dominant. This is consistent with

Definition 2.2.13.

While the definition of regularity for systems of difference fields and vari-

eties is natural and easy to state, we note that it is slightly stronger than what

will be needed in the rest of this paper. We make this precise in Proposition

2.2.16. First, we recall some classical notions of difference algebra. If K is a

difference field, recall that a difference field extension L/K is monadic if for

any difference field extension M/K, there is at most one difference homomor-

phism L → M over K. Equivalently, if L/K is Galois, then L/K is monadic

if and only if {g ∈ Gal(L/K) | gσ = σg on L} = {e}.
Recall also that if L/K is a finite Galois extension and is monadic, then

L/K is compatible with every difference field extension of K, meaning that for

any M/K, there is N/K and difference homomorphisms L→ N and M → N

over K. It follows that if L/K is a finite Galois extension and is monadic, then

σ is the unique extension of σ � K to L. See [Coh65] or [Lev08] for details.

Let φ be a Galois formula over an inversive difference field A correspond-

ing to a projection of irreducible varieties X → Y . Let a be a generic point

of Y and L the Galois extension of A(a)insepσ associated to φ. By inspecting

the Galois information present in the proof of Proposition 2.1.9, we see that

if L/A(a)insepσ gives a monadic extension, then the projection X → Y has

multiplicity 1 and hence µ(φ) = µ(Y ). Therefore, from the geometric or com-

binatorial point of view, φ is trivial and information related to monadic field

extensions can be ignored. However, in Definitions 2.2.4 and 2.2.14 we have

defined regularity with respect to the effective algebraic closure of difference

fields, which means that our notion of regularity is stronger than what we need

in this paper. The next proposition makes this precise.

Proposition 2.2.16. Let Ω be an irreducible system of varieties on V over

A. The following are equivalent:

1. for any system S of difference fields associated to Ω, for every u ⊆ V ,

S(u) ∩
∏

P (u)− S(v)alg is a monadic extension of S(u)−

2. for any u ⊆ V , let Ω′ be an irreducible P (u)−-refinement of Ω � P (u)−.

Let Ω+(u) be the fibre product of Ω(u) and Ω′(u) over Ω(u)−. Then

dim(Ω+(u)) = dim(Ω(u)).

Proof. (1) ⇒ (2): We check (2) for u = V . Let Ω′ and Ω+ be as in the

statement. Let S be a system of difference fields associated to Ω and S ′ a
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system of difference fields associated to Ω′. Write S ′′ for the restriction of

S ′ to a system associated to Ω � P (V )−. By irreducibility of Ω, there is a

difference field isomorphism f : S ′′(V ) → S(V )−. We can extend f to a field

homomorphism f : S ′(V )→ S(V )alg. Then f(S ′(V )) ⊆
∏
S(v)alg so f(S ′(V ))

is linearly disjoint from S(V ) over f(S ′(V ))∩S(V ) and f(S ′(V ))∩S(V )/S(V )−

is a monadic extension.

By universal compatibility of monadic extensions and taking a Galois con-

jugate of f if necessary, we can assume that f is a difference field homomor-

phism on f−1(f(S ′(V ))∩S(V )). Then by linear disjointness, we can construct

a difference operator τ on S(V )alg such that τ = σ on S(V ) and τ = f ◦σ◦f−1

on f(S ′(V )). Now (S(V )f(S ′(V )), τ) is a difference field associated to Ω+(V )

and hence dim(Ω+(V )) = dim(Ω(V )) = dim(Ω′(V )).

(2) ⇒ (1): Suppose (1) fails. Let S be a system of difference fields as-

sociated to Ω and assume that L := S(V ) ∩
∏

P (V )− S(v)alg is not monadic

over S(V )−. By properties of monadic extensions, there is an extension τ of

σ � S(V )− to L such that (L, τ) is not isomorphic to (L, σ).

We can find an irreducible P (V )−-refinement Ω′ of Ω � P (V )− such that

for any system S ′ associated to Ω′, writing S ′′ for the subfield of S ′(V ) corre-

sponding to a generic point of Ω(V )−, S ′(V )/S ′′(V ) contains a subextension

L′/S ′′(V ) isomorphic to (L, τ)/S(V )−. It is clear that the fibre product of Ω′

and Ω has dimension smaller than dim(Ω′) = dim(Ω), as S ′(V ) and S(V ) are

incompatible.

Remarks: (1) In the remainder of this paper, we will be interested in geo-

metric and combinatorial properties of systems of varieties, so property (2) in

Proposition 2.2.16 will be sufficient in all applications of regularity. However,

we believe that the notion of regularity given in Definition 2.2.4 and 2.2.14 is

more natural, so we will refer to that one for simplicity.

(2) Take Ω,Ω′,Ω(u)−,Ω+(u) as in Proposition 2.2.16(2) and suppose K |=
ACFA. Writing d = dim(Ω(u)−), we find that Ω is regular if and only if

µd(Ω(u)) = µd(Ω
+(u)) for every u ⊆ V . This property is essentially the notion

of definable étale-edge-uniformity which we will study in the next section.

We prove some technical lemmas about regular systems of varieties. The

next two lemmas show that systems of difference varieties behave as expected

with respect to the definable measure. We fix V a finite set and I an abstract

simplicial complex on V .

Lemma 2.2.17. Suppose that K |= ACFA and let A ≤ K be perfect and

inversive. Let Ω be a regular I-system of varieties on V over A where V /∈ I.

For i ∈ V , write di = dim(Ω(i)).

Then
∏

(Ω(v), v ∈ P (V )−) is irreducible, so that Ω(V ) =
∏

(Ω(v), v ∈
P (V )−). Ω(V ) has dimension d =

∑
i∈V di, and µd(Ω(V )) =

∏
i∈V µdi(Ω(i)).
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Proof. We argue inductively on |I|, the base case being I = {{i} | i ∈ V },
which is trivial. Write I = I ′∪{u} where u is a maximal element of I, so that

P (u)− ⊆ I ′. Let Ω′ = Ω � I ′. Then Ω′ is a regular system. We assume that

the lemma holds for Ω′ and Ω � P (u)−.

We argue that X :=
∏

(Ω(v), v ∈ P (V )−) is irreducible, which will entail

that Ω(V ) = X. Let x0, x1 be generic points of X in K. We need to show that

A(x0)σ is isomorphic to A(x1)σ over A as a difference field. Write x′0, x
′
1 for the

projections of x0, x1 to Ω′(V ). Let S0,S1,S ′0,S ′1 be the systems of difference

fields associated to x0, x1, x
′
0, x
′
1 respectively.

By induction hypothesis,
∏

P (u)− S0(v) is isomorphic to
∏

P (u)− S1(v) over

A, and so are S ′0(V ) and S ′1(V ). Ω(u) is irreducible so it is enough to show

that S0(u) is linearly disjoint from S ′0(V ) over
∏

P (u)− S0(v). By Lemma

2.2.9, S0(u) is linearly disjoint from
∏

P (u)− S0(v)alg over
∏

P (u)− S0(v). There-

fore it is enough to show that S0(u)
∏

P (u)− S0(v)alg is linearly disjoint from

S ′0(V )
∏

P (u)− S0(v)alg. This is a direct application of Lemma 2.2.7.

Hence Ω(V ) = X. The statements about dim(Ω(V )) and µd(Ω(V )) follow

inductively by direct applications of Lemma 2.1.6(4).

Lemma 2.2.18. Suppose that K |= ACFA and let A ≤ K be perfect and

inversive. Let Ω be a regular I-system of varieties on V over A. Fix u ⊆ V

and for any b ∈ Ω(u) write Ω(V, b) for the pullback of b to Ω(V ). Then for any

generic b ∈ Ω(u), Ω(V, b) is an irreducible variety over (A(b)σ)alg of dimension

d = dim(Ω(V \ u)) and µd(Ω(V, b)) = µd(Ω(V \ u)).

Proof. First we show that Ω(V, b) has dimension d. Let a be a generic point

of Ω(V ) and let S be the associated system of perfect difference fields. By

Lemma 2.2.9, S(V ) is linearly disjoint from S(u)alg over S(u). Since Ω(u) is

irreducible, S(u) is isomorphic to A(b)insepσ over A.

We define a new automorphism τ of S(V )alg as follows. On S(V ), τ is equal

to σ. Let f : S(u)alg → A(b)algσ be an isomorphism of pure fields extending the

difference fied isomorphism S(u)→ A(b)insepσ . Then define τ on S(u)alg to be

f−1 ◦ σ ◦ f . Now extend τ arbitrarily to an automorphism of S(V )alg.

As S(V ) has finite total dimension over A, S(V )alg is inversive. By model

completeness, we can find an embedding of (S(V )alg, τ) in our model K of

ACFA. By the description of types of Lemma 2.1.1, we know that the copy of

b in S(V )alg satisfies the same complete type as b over A. It follows that we

can embed (S(V )alg, τ) in K over (A(b)σ)alg and hence Ω(V, b) has dimension

d.

Now let a1, a2 be generic points of Ω(V, b) and let S1,S2 be the correspond-

ing systems of difference fields. Note that S1(u) = S2(u) = (A(b)σ)insep. Write

B = (A(b)σ)alg. To show that Ω(V, b) is irreducible over B, it is enough to

show that B(a1)σ ∼=B B(a2)σ. By regularity, Si(V ) is linearly disjoint from

B over Si(u) for i = 1, 2. By irreducibility, we have S1(V ) ∼=S1(u) S2(V ). It
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follows that we can construct a difference field isomorphism B(a1)σ → B(a2)σ
over B so Ω(V, b) is irreducible.

The statement about µd follows from the dimension of Ω(V, b) being d,

Ω(V, b) being irreducible, and Lemma 2.1.6(4).

2.2.3 Definable étale-edge-uniformity and a first hyper-

graph regularity lemma

In this section, we work inside a model K of ACFA and we fix A ≤ K a finitely

generated perfect inversive difference subfield. V is a finite set.

In this section, we return to the study of Galois formulas and we show

that our lemmas about regular systems of difference fields already prove an

interesting form of hypergraph regularity: given a definable hypergraph φ with

edges indexed by the simplicial complex P (V )−, we find an étale partition of

the domain of φ such that each induced sub-hypergraph is edge-uniform with

respect to definable P (V )−-refinements of φ. We make our terminology precise

in the following definition.

Definition 2.2.19. Let Ω be a system of varieties on V over A. For every

u ⊆ V , write du = dim(Ω(u)) and write φu = ρuΩ(u) for the projection of

Ω(u) to Ω(u)−.

We say that Ω is definably étale-edge-uniform if for every u ⊆ V with

|u| ≥ 2, the following holds: let Ω′ be a P (u)−-refinement of Ω � P (u)− and

write π for the projection Ω′(u)→ Ω(u)−. Then

µdu(φu ∧ π(Ω′(u)))

µdu(φu)
=
µdu(π(Ω′(u)))

µdu(Ω(u)−)
.

Remarks: (1) With the notation above, we emphasise that Ω′(u) is the fi-

bre product
∏

(Ω′(v), v ∈ P (u)−) and that π(Ω′(u)) is contained in Ω(u)−.

Therefore Ω′(u) lives inside the boundary of Ω(u), modulo moving to an étale

cover.

(2) If Ω is an I-system of varieties, then it is enough to check the property

of definition 2.2.19 for u ∈ I.

The following proposition is an elaboration of the comment following Propo-

sition 2.2.16.

Proposition 2.2.20. Let Ω be a system of varieties on V over A. Then Ω

is definably étale-edge-uniform if and only if the irreducible components of Ω

satisfy either of the equivalent conditions in Proposition 2.2.16. In particular,

if Ω is regular, then Ω is definably étale-edge-uniform.

Proof. We can assume that Ω is irreducible. Suppose that Ω satisfies (1) in

Proposition 2.2.16. Let φ = ρV Ω(V ) and let Ω′ be a P (V )−-refinement of
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Ω � P (V )−. Write π for the projection Ω′ → Ω. We need to check that

µdV (φ ∧ π(Ω′(V )))

µdV (φ)
=
µdV (π(Ω′(V )))

µdV (Ω(V )−)
.

Let a be a generic point of Ω(V ), let S be the associated system of difference

fields. Let L′ be the Galois extension of S(V )− associated to Ω′(V ). In the

notation of Proposition 2.1.9, we only need to check that

N(φ ∧ π(Ω′(V ))) = N(φ)N(π(Ω′(V ))).

Since S(V )∩L′/S(V )− is monadic, N(φ) is equal to the number of extensions

τ of σ from S(V ) ∩ L′ to S(V ) such that φ is satisfied in (L′, τ). Similar

equalities hold for N(π(Ω′(V )) and N(φ ∧ π(Ω′(V ))). Now L′ and S(V ) are

linearly disjoint over S(V )∩L′, so the result follows by counting extensions of

σ in the obvious way.

Conversely, suppose there is a P (V )−-refinement Ω′ of Ω � P (V )− such that

(2) of Proposition 2.2.16 fails. Then φ ∩ π(Ω′(V )) is the projection to Ω(V )−

of the fibre product of Ω′(V ) and Ω(V ) over Ω(V )−. Since µdV (Ω′(V )×Ω(V )−

Ω(V )) = 0, it is clear that definable étale-edge-uniformity fails.

We state a first hypergraph regularity lemma at the level of ACFA, in

terms of systems of varieties and definable edge-uniformity. We repeat all our

notation and background assumptions.

Theorem 2.2.21. Let V be a finite set and I a simplicial complex on V . Let

A be an inversive difference field and let Ω be an I-system of varieties on V

over A.

Then there is a surjective ∂I-refinement Ω′ of Ω over a finitely generated

extension A′ of A such that each irreducible component of Ω′ is definably étale-

edge-uniform.

Proof. We obtain Ω′ by Proposition 2.2.15. Definable étale-edge-uniformity is

given by Proposition 2.2.20.

2.3 The Stochastic Independence Theorem, the

Stationarity Theorem, and Quasirandom-

ness

2.3.1 The Stochastic Independence Theorem

We fix K |= ACFA and A ≤ K a perfect inversive subfield. V is a finite set.

The next definition sets up some useful notation for moving between étale

covers.
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Definition 2.3.1. Let Ω be a system of difference varieties on V over A. Let

φ be a definable set contained in Ω(u) for some u ⊆ V .

1. If v ⊆ u and b ∈ Ω(v), then we write φ(Ω(u), b) for the set of elements

x ∈ φ which map to b under the projection Ω(u)→ Ω(v).

2. When u ⊆ w ⊆ V , we write φ(Ω(w)) for the pullback of φ under the

projection Ω(w)→ Ω(u).

3. When Ω′ is a refinement of Ω, we also write φ(Ω′(u)) for the pullback of

φ to Ω′(u) by the projection Ω′ → Ω.

In the next theorem, an antichain J on V is a collection of subsets of V

of size at least 2 such that for any two u 6= v ∈ J , u does not contain v. We

ask that elements of J have size at least 2 because it makes the statement of

Theorem 2.3.2 easier and there will be results later on which break down if we

allow for antichains with singletons.

Theorem 2.3.2 (The Stochastic Independence Theorem). Let J be an an-

tichain of V with
⋃
J = V . Let I be the simplicial complex on V generated by

J and let Ω be a regular I-system of varieties on V over A. For u ∈ J , write

φu = ρuΩ(u).

Let Ω0 = Ω � ∂J . For every u ⊆ V , write du = dim(Ω0(u)) and Pu =

µdu/(µdu(Ω0(u))), so that Pu is a probability measure on Ω(u). Then

PV (
∧
u∈J

φu(Ω0(V ))) =
∏
u∈J

Pu(φu). (2.1)

Proof. Let S be a system of difference fields on V over A associated to Ω and

let S0 = S � ∂J . For u ∈ J , we will view S(u) as a pure field extending

S0(u) (in fact we could start with S0 and consider abstract field extensions

isomorphism to S). For every u ∈ J , let τu be an arbitrary extension of σ

from S0(u) to S(u) such that φu is satisfied in the structure (S(u), τu).

Claim 2.3.2.1. The difference operators τu have a common extension τ to

S(V ) and (S(V ), τ) |=
∧
u∈J φu(Ω0(V ))

Proof of claim. By regularity and Lemma 2.2.10, we know that S(u) is linearly

disjoint from
∏

I S(v)alg over S0(u). Therefore, we extend each τu to the field

S(u)
∏

I S(v)alg so that τu �
∏

I S(v)alg = σ.

Fix an enumeration (uk) of J and suppose we have found a common exten-

sion τ of τu0 , . . . , τuk to
∏k

i=0 S(ui)
∏

v∈I S(v)alg. By Lemma 2.2.10, S(uk+1) is

linearly disjoint from
∏k

i=0 S(ui)
alg
∏

v∈I S(v)alg over S0(uk+1). By the Tow-

ers property, S(uk+1)
∏

I S(v)alg is linearly disjoint from
∏k

i=0 S(ui)
∏

I S(v)alg

over
∏

I S(v)alg. Moreover, τ and τk+1 are both equal to σ on
∏

I S(v)alg. This

proves that we can find a common extension of the τu to
∏

J S(v)
∏

I S(v)alg,

and this field contains S(V ).
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∧
φu(Ω0(V )) is equal to the projection of Ω(V ) to Ω0(V ). By Lemma

2.2.17, Ω(V ) has dimension dV , so
∧
φu(Ω0(V )) has dimension dV . By Propo-

sition 2.1.9 and in the notation of Definition 2.1.7, it is enough to prove

ν(
∧
J

φu(Ω0(V )) =
∏
J

ν(φu).

The claim proves that N(
∧
u∈J φu) =

∏
u∈J N(φu), since our choices of

τu were arbitrary. Therefore, we only need to prove that [S(V ) : S0(V )] =∏
J [S(v) : S0(v)]. We have already seen that S(u) is linearly disjoint from

B :=
∏

I S(v)alg over S0(u) for every u ∈ J and that for every k ≥ 0, S(uk+1)B

is linearly disjoint from
∏k

i=0 S(ui)B over B, where (uk) is an enumeration of

J as in the proof of the claim. Therefore, working by induction:

[
k+1∏
i=0

S(ui)B : B] = [
k+1∏
i=0

S(ui)B :
k∏
i=0

S(ui)B][
k∏
i=0

S(ui)B : B]

= [S(uk+1)B : B]
k∏
i=0

[S(ui)B : B] =
k+1∏
i=0

[S(ui) : S0(ui)]

Therefore [
∏

u∈J S(u)B : B] =
∏

u∈J [S(u) : S0(u)]. Now∏
u∈J

[S(u) : S0(u)] = [
∏
u∈J

S(u)B : B] ≤ [S(V ) : S0(V )] ≤
∏
u∈J

[S(u) : S0(u)]

so we deduce [S(V ) : S0(V )] =
∏

u∈J [S(u) : S0(u)].

Remarks: (1) The statement of the stochastic independence theorem may

appear technical at first but we stress that any collection of definable sets

(φu)u∈J with variables suitably indexed by V can always be lifted to a ∂J-

system Ω0 so that the setting of the stochastic independence theorem holds.

(2) The stochastic independence theorem can be seen as an analogue of

the counting lemma usually associated to the Szemerédi counting lemma. See

[Gow06] 3.4 or 4.4 for example.

We now prove the stationarity theorem. This is a higher-order and a quan-

titative version of the stationarity theorem used in [Tao12]. We show that this

theorem follows from the Stochastic Independence Theorem and from addi-

tional facts about regular systems of varieties.

We will not use this theorem in our proof of the algebraic hypergraph

regularity lemmas to follow. However, it is striking that it always holds in

regular systems and the theorem is of wider interest for model theory and

algebraic geometry.

Corollary 2.3.3 (The Stationarity Theorem). Let J be an antichain of V

with
⋃
J = V . Let I be the simplicial complex on V generated by ∂J and let Ω

be a regular I-system of varieties on V over A. For u ∈ J write φu = ρuΩ(u).
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Let Ω0 = Ω � ∂J . For every u ⊆ V , write du = dim(Ω0(u)) and Pu =

µdu/(µdu(Ω0(u))).

Fix any nonempty u ⊆ V and a generic point au in Ω0(u). For any v ⊆ u,

write av for the projection of au to Ω0(v). Then we have

PV \u(
∧
v∈J

φv(Ω0(V ), au)) =
∏
v∈J

Pv\u(φv(Ω0(v), au∩v)). (2.2)

Proof. Fix au generic in Ω0(u). Write J ′ = {v ∈ J | v ⊆ u}. We can assume

that for any v ∈ J ′, av satisfies φv (otherwise both sides of (2.2) are 0). In this

case, (2.2) becomes

PV \u(
∧
J\J ′

φv(Ω0(V ), au)) =
∏
J\J ′

Pv\u(φv(Ω0(v), au∩v))).

For every v ∈ J\J ′ and generic b ∈ Ω0(u∩v), the measure of φv(Ω0(u∩v), b)

is constant. This follows from Proposition 2.1.9 and regularity. Therefore, we

can apply Fubini to get

µv(φv(Ω0(V )) =

∫
b∈Ω0(v∩u)

µv\u(φv(Ω(V, b))dµv∩u

= µu∩v(Ω0(u ∩ v))µv\u(φv(Ω0(v), au∩v)).

By Lemma 2.2.17, µV (Ω0(V )) = µu(Ω0(u))µV \u(Ω0(V \ u)). Therefore

Pv(φv(Ω0(v))) =
µu∩v(Ω0(u ∩ v))µv\u(Ω0(v \ u))

µv(Ω0(v))
Pv\u(φv(Ω0(v), av∩u))

= Pv\u(φv(Ω0(v), au∩v)).

Similarly, for generic b ∈ Ω0(u), µV \u(
∧
v∈J\J ′ φv(Ω0(V ), b)) is constant.

Therefore, for generic b ∈
∧
v∈J ′ φv(Ω0(u)), µV \u(

∧
J φv(Ω0(V ), b)) is constant

and we deduce by Fubini

µV (
∧
v∈J

φv(Ω0(V ))) = µu(
∧
v∈J ′

φv(Ω0(u)))µV \u(
∧
v∈J

φv(Ω0(V ), au))

By Lemma 2.2.17, we have

PV (
∧
J

φv(Ω0(V ))) = Pu(
∧
J ′

φv(Ω0(u)))PV \u(
∧
J\J ′

φv(Ω0(V ), au)).

By the stochastic independence theorem applied to Φ, we conclude:

PV \u(
∧
J\J ′

φv(Ω0(V ), au)) =
∏
J\J ′

Pv(φv(Ω0(v)))

=
∏
J\J ′

Pv\u(φv(Ω0(v), au∩v)).
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2.3.2 Quasirandomness

As before K is a model of ACFA and A ≤ K is a perfect inversive subfield. V

is a finite set.

In this section, we show that quasirandomness in the sense of [Gow06]

follows easily from the stochastic independence theorem.

Let Ω be a system of varieties on V over A. Definition 2.3.4 introduces the

doubling of Ω, written D(Ω). In the case where Ω is the Cartesian product∏
i∈V Ω(i), D(Ω) is obtained by taking copies Ω(i, 0) and Ω(i, 1) of each Ω(i).

D(Ω) is the hypergraph on V × {0, 1} consisting of those tuples (xi,j)i∈V,j=0,1

such that for every choice function ι : V → {0, 1}, the tuple (xi,ι(i)) is in

Ω(V ). When Ω is a system of varieties, D(Ω) takes the form of a fibre product

construction. Definition 2.3.4 also defines D(Ω, u), the doubling of Ω outside

a designated subset u of V . This will be useful in the next section.

In Definition 2.3.4, if u is a set, we write 2u for the set of functions u→ [2]

where [2] = {0, 1}.

Definition 2.3.4. Let Ω be an I-system of varieties on V over A.

1. Let u ⊆ V and ι ∈ 2u. We identify the pair (u, ι) with the subset of

V × [2] given by {(i, ι(i)) | i ∈ u}.

2. Define D(I), the doubling of I, to be the collection of subsets of V × [2]

of the form (u, ι) where u ∈ I and ι ∈ 2u. We view I as a partial order

with the obvious inclusions. Note that D(I) is a simplicial complex on

V × [2].

3. For every (u, ι) ∈ D(I), define Ω(u, ι) to be a copy of the variety Ω(u).

When (v, ι′) ⊆ (u, ι), we have a natural projection Ω(u, ι)→ Ω(v, ι′)

4. Define D(Ω), the doubling of Ω, to be the D(I)-system of varieties on

V × [2] taking (u, ι) to Ω(u, ι).

5. To make notation lighter, we usually write D(Ω) for the variety in D(Ω)

associated to V × [2] (instead of writing D(Ω)(V × [2])).

Remark: Let Ω be a regular I-system of varieties on V over A. Lemma 2.2.17

generalises easily to prove that D(Ω) is irreducible and hence D(Ω) is regular.

If φ is a definable set contained in Ω(u) and ι ∈ 2u, write φ(Ω(u, ι)) for the

definable set contained in Ω(u, ι) obtained by carrying over φ to Ω(u, ι). As a

set in K, φ(Ω(u, ι)) is equal to φ(Ω(u)) but it is useful to distinguish them in

notation. If we were to rephrase this in terms of formulas with free variables,

φ(Ω(u, ι)) would be the result of substituting the free variables of Ω(u, ι) for

the free variables of Ω(u) in φ.
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We make here some comments which clarify the technical background of

Definition 2.3.5. In that definition, we consider a system of varieties Ω with

dim(Ω(V )) = d, the definable set φ = ρV Ω(V ) and the function f on Ω(V )−

defined by 1φ − µd(φ)
µd(Ω(V )−)

1Ω(V )− . f is definable, in the sense that it can be

viewed as a function from a type space over K in the appropriate variables to

the interval [−1, 1] which is continuous with respect to the logic topology. Since

the measure µd extends to a Borel measure on the types over K contained in

Ω(V )−, we can integrate f on Ω(V )−. When K is ω1-saturated, it is possible to

move away from the type space and integrate f directly over the set Ω(V )− in

K, with respect to the σ-algebra of K-definable sets. In any case, the identity∫
D(Ω(V )−)

fdµd = 0 expresses an identity which does not depend on any model.

When f is a definable function on Ω(V )− and ι ∈ 2V , we will write f ι

for the result of carrying f over to Ω(V, ι)−. Thus, for f defined above, f ι =

1φ(V,ι)− µd(φ)
µd(Ω(V )−)

1Ω(V,ι)− . We also write f ι for the result of pullback back from

Ω(V, ι) to D(Ω) when the context is clear. Therefore we can make sense of the

integral
∫
D(Ω)

∏
ι∈2V f

ιdµ2d.

Definition 2.3.5 follows Definition 6.3 in [Gow06].

Definition 2.3.5. Let Ω be a system of varieties on V over A. We say that

Ω is quasirandom if the following holds:

For every u ⊆ V with |u| ≥ 2, write du = dim(Ω(u)), let φu = ρuΩ(u) and

define the function fu : Ω(u)− → [−1, 1] by fu = 1φu −
µdu (φu)

µdu (Ω(u)−
1Ω(u)−. Then∫

D(Ω�P (u)−)

∏
ι∈2u

f ιudµ2du = 0.

The following proposition is essential for the next section, but it follows

easily from the stochastic independence theorem.

Proposition 2.3.6. Let Ω be a regular system of varieties on V over A. Then

Ω is quasirandom.

Proof. We check quasirandomness at level V . Suppose dim(Ω(V )) = d. Write

Pd = µd/(µd(Ω(V )) and P2d = µ2d/(µd(Ω(V ))2. Let φ = ρV Ω(V ).

Let f = 1φ − µd(φ)
µd(Ω(V )−)

1Ω(V )− on Ω(V )−. By the stochastic independence

theorem, the set of functions {f ι | ι ∈ 2V } on D(Ω � P (V )−) is independent

in the probabilistic sense. Therefore∫
D(Ω�P (V )−)

∏
ι∈2V

f ιdP2d =
∏
ι∈2V

∫
Ω(V,ι)−

f ιdPd = 0.

In Section 2.4.2, we will see that if Ω is quasirandom, then Ω is definably

étale-edge-uniform, and hence Ω is regular. This proof goes via the fundamen-

tal equivalence of Gowers discussed in the next section. It would be interesting

to find a proof of this result at the algebraic level.
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2.4 A Combinatorial Approach to Algebraic

Hypergraph Regularity

In this section, we leave models of ACFA behind and we apply our theorems

to derive combinatorial results concerning finite definable sets in the difference

fields Kq where q is a power of a prime p, Kq is the algebraic closure of the

field containing p elements and the difference operator on Kq is the q-th power

x 7→ xq.

2.4.1 Combinatorial notions and asymptotics

We fix A a perfect inversive finitely generated difference field. V is a finite

set.

We recall the notion of Frobenius specialisation from [Hru22], section 12.

Suppose that we have some finite definable data D defined over a finitely

generated perfect inversive difference field A (e.g. D is a variety, a definable

set, or a system of varieties). We will say that some property P holds of D

for almost all q to mean the following: there is a sufficiently large finitely

generated difference domain R in A such that D is defined over R and for any

sufficiently large prime power q and for any difference ring homomorphism

h : R → Kq, P holds of Dh in Kq, where Dh is the definable data in Kq

obtained by applying h to the parameters in D and interpreting σ as the q-th

power.

Equivalently, if D is some data definable over a difference domain R, we say

P holds of D for almost all q if there is c ∈ R such that for any sufficiently large

prime power q and any homomorphism h : R→ Kq with h(c) 6= 0, P holds of

Dh in Kq. See [Hru22] for an in-depth discussion of Frobenius specialisations.

In an effort to make notation lighter, we always consider data D over an

inversive difference field A and we suppress the reference to the difference

domain R and to the homomorphism h when discussing specialisations. It will

always be clear from context whether we are working with D over A or if we

are working with specialisations.

The fundamental theorem about Frobenius specialisations is the twisted

Lang-Weil estimates due to Hrushovski:

Theorem 2.4.1 ([Hru22]3). Let X be a variety over A and suppose that X

has finite total dimension d. Then for almost all q, specialising X to Kq, we

have

|X(Kq)− µd(X)qd| = O(qd−1/2).

where O(·) depends only on the degree of X.

3While the manuscript we reference is dated from 2022, the twisted Lang-Weil estimates

were discovered by Hrushovski in the early 2000s.
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Theorem 2.4.1 extends to Galois formulas over A in the obvious way. Since

ACFA is the asymptotic theory of the difference fields Kq, Theorem 2.4.1 gives

asymptotics for all definable sets of finite total dimension.

We now extend the notions of quasirandomness and edge-uniformity intro-

duced in the previous section so that we can apply them inside the structures

Kq.

Definition 2.4.2. let Ω be a system of varieties on V over A. For every

u ⊆ V with |u| ≥ 2, write φu = ρuΩ(u) and let εu be a function N → [0,∞).

Write ε = (εu)|u|≥2.

We say that Ω is ε-quasirandom if for almost all q and all u ⊆ V with

|u| ≥ 2, specialising Ω to Kq and writing fu = 1φu −
|φu|
|Ω(u)−|1Ω(u)−, we have∑

D(Ω�P (u)−)

∏
ι∈2u

f ιu = O(εu(q))|Ω(u)−|2

where O(·) only depends on the degrees of the varieties in Ω.

In the next definition, we introduce chains which are a purely combinatorial

notion, since they exist in finite sets inside Kq and we are not interested in

identifying them as definable sets. This terminology comes from [Gow06].

Definition 2.4.3. Let Ω be a system of varieties on V over A. Specialise Ω

to some Kq.

1. A chain W = (W (v))v∈P (V ) in Ω is a collection of sets such that for all

v ⊆ V , W (v) ⊆ Ω(v) and for any v ⊆ u, W (v) contains the image of

W (u) under the projection Ω(u)→ Ω(v).

2. Let W be a chain in Ω. Let I be a simplicial complex on V . We say that

W is an I-chain if for all u /∈ I, W (u) is the fibre product of the sets

(W (v))v∈P (u)−.

3. Let W be a chain in Ω. For every u ⊆ V , write W (u)− for the fibre

product
∏

(W (v), v ∈ P (u)−) and ρuW (u) for the projection W (u) →
W (u)−.

4. Let I be a simplicial complex on V . An I-chain decomposition of Ω is

a collection (Wv)v∈I such that each Wv is a partition of Ω(v) and for

every u ∈ I and every X ∈ Wu, there is a P (u)−-chain W such that

X ⊆ W (u) and for every v ∈ P (u)−, W (v) ∈ Wv.

We say that an I-chain W is contained in the I-chain decomposition

(Wv)v∈I if for all v ∈ I, W (v) ∈ Wv.
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The next definition makes precise the notion of ε-edge-uniformity. We also

define ε-étale edge-uniformity in order to relate ε-edge-uniformity to definable

edge-uniformity, but we will soon see that ε-étale edge-uniformity is equivalent

to ε-edge-uniformity. The notion of definable ε-étale-edge-uniformity will be

used only in Corollary 2.4.5.

Definition 2.4.4. Let Ω be a system of varieties on V over A. For every

u ⊆ V with |u| ≥ 2, let φu = ρuΩ(u) and let εu be a function N → [0,∞).

Write ε = (εu)|u|≥2.

1. We say that Ω is ε-edge-uniform if for almost all q, specialising Ω and

φ to Kq, for all u ⊆ V with |u| ≥ 2, if W is P (u)−-chain contained in

Ω � P (u)−, then

| |φu ∩W (u)|
|φu|

− |W (u)|
|Ω(u)−|

| = O(εu(q))

where O(·) only depends on the degrees of the varieties in Ω.

2. We say that Ω is definably ε-étale-edge-uniform if for all u ⊆ V with

|u| ≥ 2, for any P (u)−-refinement Ω′ of Ω � P (u)− over a finitely gener-

ated algebraic extension A′ of A with projection π : Ω′(u) → Ω(u)−, for

almost all q, we have

| |φu ∩ π(Ω′(u))|
|φu|

− |π(Ω′(u))|
|Ω(u)−|

| = O(εu(q))

where O(·) only depends on the degrees of the varieties in Ω.

3. We say that Ω is ε-étale-edge-uniform if for all u ⊆ V with |u| ≥ 2, for

any P (u)−-refinement Ω′ of Ω � P (u)− over a finitely generated algebraic

extension A′ of A with projection π : Ω′(u) → Ω(u)−, for almost all q

and for any P (u)−-chain W in Ω′, we have

| |φu ∩ π(W (u))|
|φu|

− |π(W (u))|
|Ω(u)−|

| = O(εu(q))

where O(·) only depends on the degrees of the varieties in Ω.

The following corollary is just a reformulation of Theorem 2.2.21 and a

direct application of Theorem 2.4.1.

Corollary 2.4.5. Let Ω be a system of varieties on V over A. For every

u ⊆ V with |u| ≥ 2, set εu(q) = q−1/2 and let ε = (εu)|u|≥2.

Then there is a surjective P (V )−-refinement Ω′ of Ω over some finitely

generated extension A′ of A with regular components Ω1, . . . ,ΩN such that for

every i, Ωi is definably ε-étale-edge-uniform and ε-quasirandom. N depends

only on the degrees of the varieties in Ω.
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2.4.2 Equivalences between defined notions

We fix A a perfect inversive finitely generated difference field. V is a finite

set.

We show that the notions of ε-edge-uniformity and ε-étale-edge-uniformity

coincide. We state the lemma in the language of systems of varieties but this

is really a purely combinatorial result. We use the following technical lemma:

Lemma 2.4.6. Let I be a simplicial complex on V . Let Ω be a system of

varieties on V over A and let Ω′ be an I- refinement of Ω with projection

π : Ω′ → Ω. For every u ⊆ V , write du = dim(Ω(u)).

Then there is some N such that for almost all q, specialising Ω and Ω′

to Kq, the following holds: there is an I-chain decomposition (Wv)v∈I of Ω′

containing at most N chains such that for every u ∈ I and every set X ∈ Wu,

the map π : X → Ω(u) is injective.

Proof. We construct (Wv)I inductively. The base case where I is the set of

singletons of V is clear. Suppose that I = I ′ ∪ {u} where P (u)− ⊆ I ′ and

(Wv)I′ have been constructed.

Writing W1, . . . ,Wn for the I ′-chains contained in (Wv)I′ , we find that for

every i ≤ n, the projection Wi(u) → Ω(u)− is injective and that the sets

W1(u), . . . ,Wn(u) partition Ω′(u)−. Now take Wu to be the partition of Ω′(u)

obtained by taking sections of each projection ρu : ρ−1
u (Wi(u))→ Wi(u). The

size of W(u) depends only on n and the multiplicity of the projection ρu.

Take X ∈ Wu. To see that π : X → Ω(u) is injective, note that the maps

Ω′(u) → Ω(u) → Ω(u)− and Ω′(u) → Ω′(u)− → Ω(u)− form a commutative

diagram. We know that X → Ω′(u)− → Ω(u)− is injective, so the result

follows.

Lemma 2.4.7. Let Ω be a system of difference varieties on V over A. For

u ⊆ V with |u| ≥ 2, let εu : N → [0,∞) and write ε = (εu). Then Ω is

ε-étale-edge-uniform if and only if Ω is ε-edge-uniform.

Proof. Let φ = ρV Ω(V ) and let Ω′ be a P (V )−-refinement of Ω � P (V )−. Write

π for the projection Ω′ → Ω. It is enough to show that if Ω is ε-edge-uniform,

then, specialising to some Kq, for every P (V )−-chain W in Ω′,

| |φ ∩ π(W (V ))|
|φ|

− |π(W (V ))|
|Ω(V )|

| = O(εV (q)).

Fix W a chain in Ω′. Let (Wu)P (V )− be a chain decomposition of Ω′ given

by Lemma 2.4.6. Let (Wi) be an enumeration of the chains in (Wu)P (V )− .

Define W ′
i = W ∩Wi.

For every i, π(W ′
i (V )) is equal to the fibre product

∏
(π(W ′

i (v)), v ∈
P (V )−), since π is injective on each W ′

i (v). Write Zi(u) = π(W ′
i (u)) so that

each Zi is a P (V )−-chain in Ω. It follows that π(W (V )) = π(
⋃
iW

′
i (V )) =⋃

i Zi(V ). Now ε-edge-uniformity applied to each chain Zi gives the result.
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Remark: Back in definition 2.4.4, we could have defined the notion of defin-

able ε-edge-uniformity in the expected way, but we chose not to discuss this

notion. The reason for this is that Lemma 2.4.7 does not allow us to show that

definable ε-edge-uniformity is equivalent to definable ε-étale-edge-uniformity.

This is because the proof of Lemma 2.4.7 goes via the sections constructed

in Lemma 2.4.6, which are not definable. It would be interesting to know if

Lemma 2.4.7 can be extended to the definable setting.

Combining Proposition 2.2.20 and Proposition 2.3.6, we find that we have

already proved that if φ is definably q−1/2-étale-edge-uniform with respect to Ω

then φ is q−1/2-quasirandom with respect to Ω. Suitably transposed to our set-

ting, this is close to one direction of the fundamental Theorem 4.1 in [Gow06].

Proposition 2.4.8 proves this in full generality, with general error bounds. We

follow the proof of [Gow06]. This result will be needed for Theorem 2.4.13.

Proposition 2.4.8. Let Ω be a system of varieties on V over A. For every

u ⊆ V with |u| ≥ 2, let εu : N → [0,∞). Write ε = (εu)u∈P (V ). If Ω is

ε-étale-edge-uniform then Ω is ε-quasirandom.

Proof. It is enough to check quasirandomness at the top level V . Let φ =

ρV Ω(V ) and write Ω0 = Ω � P (V )− (so that Ω0(V ) = Ω(V )−). We specialise

Ω to some Kq and write f = 1φ − |φ|
|Ω(V )−|1Ω(V )− .

Write ι0, ι1 ∈ 2V for the constant functions equal to 0 and 1 respectively.

Then D(Ω0) is a finite cover of the Cartesian product of Ω0(V, ι0) and Ω0(V, ι1).

For any x ∈ Ω0(V, ι0) and y ∈ Ω0(V, ι1), we write D(Ω0)(xy) for the finite set

of elements z ∈ D(Ω0) which project onto x and onto y. The cardinality of

D(Ω0)(xy) is bounded across q. By the triangle inequality we obtain

|
∑
D(Ω0)

∏
ι∈2V

f ι| ≤
∑

y∈Ω0(V,ι1)

(
|f ι1(y)| · |

∑
x∈Ω0(V,ι0)

f ι0(x)
∑

D(Ω0)(xy)

∏
ι6=ι0,ι1

f ι|
)
. (2.3)

Fix b ∈ Ω0(V, ι1), and for every u ∈ P (V )−, write bu for the projection of b to

Ω(u, ι1 � u). For every u ∈ P (V )−, define the function ιu ∈ 2V by ιu � u = 0

and ιu � uc = 1.

We define a P (V )−-refinement Ωb of Ω0(V, ι0) as follows: for every u ∈
P (V )− and every a ∈ Ω0(u, ι0 � u), the pullback of a to Ωb(u) is the set of

elements c such that there is v ⊆ u with c ∈ Ω0(V, ιv) and the projection of c

to v equals av and the projection of c to vc equals bvc . It is clear how to set up

projections Ωb(u)→ Ωb(v) for v ⊆ u. Write π for the projections Ωb → Ω0.4

Observe that
∑

D(Ω0)(xb)

∏
ι6=ι0,ι1 f

ι is a function of x ∈ Ω0(V, ι0) which takes

finitely many values, according to the number of elements above x in Ωb(V )

4 Note that Ωb is defined over Ab as a system of difference varieties, but we could equally

well define a refinement of Ω over A with multiplicities matching those of Ωb and set up

identification maps with Ωb. This would amount to exactly the same, from a combinatorial

point of view.
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which belong to φι or not. Therefore, there is some N (which does not depend

on q), some scalars λ1, . . . , λN , and some chains W1, . . . ,WN contained in Ωb

such that ∑
D(Ω0)(xb)

∏
ι6=ι0,ι1

f ι =
∑
j≤N

λj1π(Wj(V ))

By ε-étale-edge-uniformity, we have

|
∑

x∈Ω0(V,ι0)

f ι0(x)
∑

D(Ω0)(xb)

∏
ι6=ι0,ι1

f ι| = O(εV (q))|Ω(V )| (2.4)

Combining (2.3) and (2.4), we have

|
∑
D(Ω0)

∏
ι∈2V

f ι| = O(εV (q))|Ω(V )|2.

We now prove the near-converse of Proposition 2.4.8. The proof essen-

tially follows [Gow06] but requires an application of regularity of the system

of varieties.

Proposition 2.4.9. Let Ω be a regular system of difference varieties on V over

A. For every u ⊆ V with |u| ≥ 2, let εu : N → [0,∞) and let ε = (εu)|u|≥2. If

Ω is ε-quasirandom, then Ω is (ε2
−|u|
u )-edge-uniform.

Proof. It is enough to check edge-uniformity at the top level V . We specialise

all data to some Kq. Let φ = ρV Ω(V ) and let W be a P (V )−-chain contained

in Ω � P (V )−. Write Ω0 = Ω � P (V )− so that φ ⊆ Ω0(V ). In the next

expression we write 1W (v) for the indicator function of the set of elements of

Ω0(V ) which project to W (v) under the map Ω0(V )→ Ω(v). Define

∆ = ||φ ∩W (V )| − |φ|
|Ω0(V )|

|W (V )|| = |
∑

Ω0(V )

f
∏

v∈P (V )−

1W (v)|.

We want to show that when |V | = n,

∆2n = O(|Ω0(V )|2n−2)|
∑
D(Ω0)

∏
ι∈2V

f ι|.

We proceed by induction on n. The induction holds for an arbitrary function

f but requires the underlying system to be the specialisation of a regular

system. The base case for the induction is n = 2, which is exactly Theorem

3.1 in [Gow06], since P (2)−-systems are just Cartesian products.

We will use the following notation: for v ⊆ u ⊆ V and x ∈ Ω(v), write

Ω(u)(x) for the pullback of x to Ω(u) by the map Ω(u)→ Ω(v).

116



Let ∗ be an element of V and write V ′ = V \ {∗} and V + = V ′ ∪
{(∗, 0), (∗, 1)}. Let Ω1 be the system of varieties on V + obtained from Ω0

by “doubling ∗”: Ω1((∗, 0)) and Ω1((∗, 1)) are two copies of Ω0(∗) and restrict-

ing Ω1 to V + \{(∗, 0)} or V + \{(∗, 1)} gives isomorphic copies of Ω0(V ) which

project to Ω0(V ′). For v ⊆ V ′, we write v0 = v ∪ {(∗, 0)}, v1 = v ∪ {(∗, 1)}
and v01 = v ∪ {(∗, 0), (∗, 1)}. For i = 0, 1 we write W (vi) for the copy of

W (v ∪ {∗}) inside Ω1(vi).

By Cauchy-Schwartz and then expanding, we have

∆2n =
( ∑
x∈Ω0(V ′)

1W (V ′)(x)
∑

Ω0(V )(x)

f
∏

v∈P (V )−

v 6=V ′

1W (v)

)2n

≤
( ∑
x∈Ω0(V ′)

1W (V ′)(x)
)2n−1( ∑

x∈Ω0(V ′)

( ∑
Ω0(V )(x)

f
∏

v∈P (V )−

v 6=V ′

1W (v)

)2
)2n−1

≤ |Ω0(V ′)|2n−1
( ∑

Ω1(V +)

g
∏

v∈P (V ′)−

1W (v0)1W (v1)

)2n−1

(2.5)

where g is defined to be the product of the two copies of f inside Ω1(V +).

Now we decompose Ω1(V +) along the two copies of Ω0(∗). For any (x, y) ∈
(Ω0(∗))2, write Λxy for the pullback of (x, y) to Ω1(V +). There is a finite

projection Λxy → Ω0(V ′) so |Λxy| = O(|Ω0(V ′)|) where the constant in O does

not depend on x or y.

Λxy is a P (V ′)-system when we define Λxy(u) for u ⊆ V ′ as the pullback of

(x, y) to Ω1(u01). For every v ⊆ V ′, define W (v01) ⊆ Λxy(v) to be the fibre

product of the copies of W (v0) and W (v1).

Let Γxy be the restriction of Λxy to P (V ′)−. Observe that Γxy “forgets”

Ω0(V ′) and hence there is a finite projection Λxy(V
′)→ Γxy(V

′) corresponding

to the projection Ω0(V ′) → Ω0(V ′)−. For a ∈ Γxy(V
′), write Λxy(V

′)(a) for

the pullback of a to Λxy(V
′) and define

hxy(a) =
∑

b∈Λxy(V ′)(a)

g(b).

Fixing (x, y) ∈ Ω{∗} × Ω{∗} we have

∑
b∈Λxy(V ′)

g(b)
∏

v∈P (V ′)−

1W (v0)1W (v1)(b) =
∑

a∈Γxy(V ′)

hxy(a)
∏

v∈P (V ′)−

1W (v01)(a)

(2.6)

Combining (2.5) and (2.6) and applying Jensen’s inequality, we have:

∆2n ≤ |Ω(V ′)|2n−1
( ∑

(x,y)∈(Ω(∗))2

∑
Γxy(V ′)

hxy
∏

v∈P (V ′)−

1W (v01)

)2n−1

≤ |Ω(V ′)|2n−1|Ω(∗)|2n−2
∑

(x,y)∈(Ω(∗))2

( ∑
Γxy(V ′)

hxy
∏

v∈P (V ′)−

1W (v01)

)2n−1

(2.7)
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By induction hypothesis, we have for every sufficiently generic pair x, y in Ω(∗)( ∑
Γxy(V ′)

hxy
∏

v∈P (V ′)−

1W (v01)

)2n−1

= O(|Γxy(V ′)|2
n−1−2)

∑
D(Γxy)

∏
ι∈2V ′

hιxy (2.8)

Claim 2.4.9.1. For (x, y) ∈ (Ω{∗})2,
∑

D(Γxy)

∏
ι∈2V ′ h

ι
xy =

∑
D(Λxy)

∏
ι∈2V ′ g

ι.

Proof of Claim. This proof is essentially a definition chase. For c ∈ D(Γxy)

and ι ∈ 2V
′
, write cι for the projection of c to Γxy(V

′, ι). By definition,∑
c∈D(Γxy)

∏
ι∈2V ′

hιxy(c) =
∑

c∈D(Γxy)

∏
ι∈2V ′

∑
b∈Λxy(V ′,ι)(cι)

gι(b)

where Λxy(V
′, ι) is a copy of Λxy inside D(Λxy). Fix c ∈ D(Γxy). Let Ξ be the

set of choice functions 2V
′ →

⊔
ι∈2V ′ Λxy(V

′, ι)(cι). Expanding, we have∏
ι∈2V ′

hιxy(c) =
∑
ξ∈Ξ

∏
ι∈2V ′

gι(ξ(ι)).

Since D(Λxy) is the fibre product of the varieties Λxy(V
′, ι), any d ∈ D(Λxy)

is uniquely determined by its projections to each Λxy(V
′, ι). Since D(Λxy) is

a D(P (V ′))-system, each set (V ′, ι) ∈ D(P (V ′)) is maximal and hence we can

define a bijection Ξ→ D(Γxy)(c) such that ξ 7→ (dι)ι∈2V ′ . This implies that∏
ι∈2V ′

hιxy(c) =
∑

d∈D(Γxy)(c)

∏
ι∈2V ′

gι(dι).

The claim follows.

By the claim and (2.8), we have(∑
Γxy

hxy
∏

v∈P (V ′)−

1W (v01)

)2n−1

= O(|Λxy(V
′)|2n−1−2)

∑
D(Λxy)

∏
ι∈2V ′

gι. (2.9)

By Lemma 2.2.18, Theorem 2.4.1, and Lemma 2.1.6, |Λxy(V
′)| = O(|Ω(V ′)|)

for sufficiently generic x, y. Therefore, we combine (2.7) and (2.9) to obtain

∆2n ≤ O(|Ω(V )|2n−2)
∑

(x,y)∈Ω(∗)2

∑
D(Λxy)

∏
ι∈2V ′

gι

= O(|Ω(V )|2n−2)
∑
D(Ω)

∏
ι∈2V

f ι.

This completes the induction. Now the lemma follows from ε-quasirandomness.

We deduce the following hypergraph regularity lemma in the étale setting:
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Theorem 2.4.10. Let Ω an irreducible system of difference varieties on V over

A. For every u ⊆ V with |u| ≥ 2, let εu(q) = q−2−|u|−1
and let δu(q) = q−1/2.

Let ε = (εu)|u|≥2 and δ = (δu)|u|≥2.

Then there is a surjective refinement Ω′ of Ω over a finitely generated ex-

tension A′ of A with irreducible components Ω1, . . . ,Ωn such that each Ωi is

δ-quasirandom and ε-edge-uniform. n depends only on the degrees of the vari-

eties in Ω.

Remark: Theorem 2.4.10 gives weaker bounds for edge-uniformity in the

case n = 2 than the original result of [Tao12], which proves q−1/4-edge-

uniformity, rather than q−1/8-edge-uniformity. Tao’s proof of the algebraic

regularity lemma does not seem to generalise easily to the higher dimensional

setting, even with the stationarity theorem. This is why we have taken the

route of quasirandomness, which involves a loss in the error bounds. It would

be interesting to know if our bound can be improved.

2.4.3 A classical algebraic hypergraph regularity lemma

We fix A a perfect inversive finitely generated difference field. V is a finite

set.

In this section, we use chain decompositions of systems of varieties to de-

duce an algebraic hypergraph regularity lemma which does not use the étale

point of view. This algebraic hypergraph regularity lemma retains the main

combinatorial features of Theorem 2.4.10 while eliminating references to re-

finements, but the trade-off is that we lose definability of the hypergraph

partitions. For this reason, the definitions that we have already set up do not

apply in this setting exactly, so we refrain from using any prior notions except

chain decompositions.

We prove two technical lemmas. The first lemma revisits Proposition

2.2.15. In that proposition, we constructed a surjective refinement of Ω with

regular components. However, our definition of surjective refinements only

requires surjectivity at the top level V . Here we need to construct a chain

decomposition of Ω, so we need a slightly different notion.

Lemma 2.4.11. Let Ω be an irreducible system of varieties on V over A.

There is a system of varieties Ω0 on V over A and a surjective P (V )−-

refinement Ω1 of Ω0 over a finitely generated extension A′ of A satisfying the

following:

1. for every u ⊆ V , Ω(u) ⊆ Ω0(u)

2. for every u ⊆ V , the projections π : Ω1(u) → Ω0(u), Ω1(u) → Ω1(u)−

and Ω0(u)→ Ω0(u)− are generically surjective.
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3. for every u ⊆ V and every section S of the projection π : Ω1(u)− →
Ω0(u)−, the projection ρ−1

u (S)→ Ω0(u) is generically surjective

4. every irreducible component of Ω1 is regular

Proof. Let S be a system of difference fields associated to Ω. S is unique up

to isomorphism since Ω is irreducible. For every u ⊆ V , let Pu be a family

of polynomials such that S(u) is the splitting field of Pu over S(u)−. Adding

purely inseparable polynomials to Pu if necessary, we can assume that Pu is

a family of polynomials over A(xu)σ, where xu is the coordinate of a point of

Ω(u).

For |u| = 1, set Ω0(u) = Ω(u). For general u, define Ω0(u) to be the

algebraic cover of Ω0(u)− consisting of points (a, b) where a ∈ Ω0(u)− and

b generates the splitting field of Pu over A(a)σ. Ω0(u) adds only algebraic

information to Ω0(u)− and does not choose between difference field structures

on its generic points. We can assume that Ω(u) is a subvariety of Ω0(u) by

using some appropriate syntactical coding. It is clear that the projections

ρu : Ω0(u)→ Ω0(u)− and Ω0(u)→ Ω0(v) are all surjective.

By Proposition 2.2.6, find a regular P (V )−-refinement S ′ of S. For every

u ⊆ V , let Qu be a family of polynomials such that S ′(u) is the splitting field

of Qu over S(u). Similarly to the construction sketched above, define Ω1(u)

to be a variety projecting onto Ω0(u) such that the generic points of Ω1(u)

generate the roots of Qu over the generic points of Ω0(u) but Ω1(u) does not

impose any difference structure on these roots. As in Proposition 2.2.15, since

the field extensions all lie in the invariant algebraic closure, regularity does not

depend on the difference field structure and every component of Ω1 is regular.

The surjective properties between Ω1 and Ω0 follow by construction.

Our second lemma constructs a chain decomposition of the refinement ob-

tained in Lemma 2.4.11 with useful combinatorial properties. In the follow-

ing, with Ω0 and Ω1 as in Lemma 2.4.11, we assume that the projections

Ω1(u) → Ω0(u), Ω1(u) → Ω1(u)− and Ω0(u) → Ω0(u)− are exactly surjective,

as this amounts to changes in the varieties Ω1(u),Ω0(u) of size O(qdim(Ω(u))−1).

These changes will eventually be absorbed in the error terms.

Lemma 2.4.12. Let Ω be an irreducible system of varieties on V over A

and take Ω ⊆ Ω0 and Ω1 a surjective refinement of Ω0 as in Lemma 2.4.11.

Specialise Ω,Ω0,Ω1 to some Kq.

There is a P (V )-chain decomposition (Wv)v∈P (V ) of Ω with size depending

only on the degrees of the varieties in Ω such that for every v ⊆ V and every

X ∈ Wv, there is a set X∗ ⊆ Ω1(v) such that the following properties are

satisfied:

1. For every u ⊆ V and X ∈ Wu, |X| ≥ λu|Ω(u)| for some scalar λu > 0

which does not depend on q

120



2. For every u ⊆ V , the sets X∗ for X ∈ Wu are all contained in different

irreducible components of Ω1(u) and for every X ∈ Wu, the projection

π : X∗ → X is bijective

3. For every u ⊆ V , if W is a P (u)-chain in (Wv)v∈P (u), the sets W (v)∗

form a P (u)-chain in Ω1 � P (u) (and we write W ∗(v) instead of W (v)∗)

4. For every u ⊆ V , if W is a P (u)-chain in (Wv)v∈P (u), writing Z(u) for

the irreducible component of Ω1(u) containing W ∗(u), we have ρuW
∗(u) =

ρuZ(u) ∩W ∗(u)−

5. For every u ⊆ V and X,X ′ ∈ Wu, the sets ρuX and ρuX
′ are either

equal or disjoint)

Proof. We construct the families (Wv)P (V )− and (W∗v )P (V )− inductively. For

|v| = 1, we choose components Z1(v), . . . , Zp(v) of Ω1(v) such that the sets

π(Zi(v)) partition Ω(v). Let Wv = {π(Zi(v))} and define W∗v to be a set of

sections of the projections π : Zi(v)→ Ω(v).

Suppose (Wv)I and (W∗v )I have been constructed where I is downward

closed and take u ⊆ V such that P (u)− ⊆ I. Let W1, . . . ,Wn be an enumera-

tion of the P (u)−-chains contained in (Wv)P (u)− which intersect ρuΩ(u). Note

that the sets W ∗
i (u) all lie in different irreducible components of Ω1(u)− by

Lemma 2.2.17.

We consider any P (u)−-chain W among the chains W1, . . . ,Wn. Then

π : W ∗(u)→ W (u) is bijective and by property (3) of Lemma 2.4.11, π lifts to

a surjection π : ρ−1
u (W ∗(u))→ ρ−1

u (W (u)). Let Z1(u), . . . , Zk(u) be irreducible

subvarieties of Ω1(u) such that ρ−1
u (W ∗(u)) ∩ π−1(Ω(u)) ⊆

⋃
Zi(u) and each

Zi(u) projects to a subset of Ω(u) under π.

For every i, since Zi(u) is irreducible, both projections ρu : Zi(u)→ Ω1(u)−

and π : Zi(u)→ Ω(u) have constant multiplicity. Moreover, for every fibre F

of ρu : Zi(u)→ Ω1(u)−, the image π(F ) has constant size.

Starting with i = 1, we choose sections X∗1 , . . . , X
∗
m of the projection

Z1(u) ∩ ρ−1
u (W ∗(u))→ W ∗(u)

such that π(
⋃
X∗j ) = π

(
Z1(u) ∩ ρ−1

u (W ∗(u))
)

and the sets π(X∗j ) are pairwise

disjoint. We add the sets X∗j to W∗u and the sets π(X∗j ) to Wu. Property (5)

can be obtained by the same argument.

For i = 2, suppose that some element of Z2(u) ∩ ρ−1
u W ∗(u) projects into

the set π(Z1 ∩ ρ−1
u W ∗(u)). By irreducibility of Z2(u), it follows that

π(Z2(u) ∩ ρ−1
u W ∗(u)) ⊆ π(Z1(u) ∩ ρ−1

u W ∗(u))

so that we can ignore Z2(u) and move on to Z3(u). If this does not happen,

then we can choose sections of Z2(u) as for Z1(u). Property (5) is guaranteed

by the same argument.
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We iterate in this way through all of Z1(u), . . . , Zk(u), thus constructing a

partition Wu of ρ−1
u (W (u)) with the desired properties. We then iterate this

construction through all of W1(u), . . . ,Wn(u) and this defines Wu and W∗u as

desired.

We can now prove an algebraic hypergraph regularity lemma which retains

the strong combinatorial properties of the étale setting. The theorem is stated

for arbitrary systems of varieties, but the main case of interest is for systems

Ω on V where Ω(V )− is the Cartesian product
∏

i∈V Ω(i) and Ω(V ) is a cover

of Ω(V )− giving rise to an arbitrary definable set.

We state the theorem in a slightly redundant way: condition (2) directly

implies condition (1), as the proof will show. Nevertheless, condition (1) is

probably the main import of the theorem.

Theorem 2.4.13. Let Ω an irreducible system of difference varieties on V over

A. Specialise Ω to some Kq and let (Wu)u∈P (V ) be a P (V )-chain decomposition

constructed as in Lemma 2.4.12. Then the following properties hold:

1. For every P (V )−-chain W contained in (Wv)v∈P (V )−, either W (V ) ∩
ρV Ω(V ) is small, i.e.

|W (V ) ∩ ρV Ω(V )| = O(q|V |−1)

or, for every chain W ′ contained in W ,

| |ρV Ω(V ) ∩W ′(V )|
|ρV Ω(V ) ∩W (V )|

− |W
′(V )|

|W (V )|
| = O(q−2−|V |−1

)

2. for every u ⊆ V , for every P (u)-chain W contained in (Wv)v∈P (u), and

for every P (u)−-chain W ′ contained in W � P (u)−,

| |ρuW (u) ∩W ′(u)|
|ρuW (u)|

− |W
′(u)|

|W (u)−|
| = O(q−2−|u|−1

)

3. For every u ⊆ V , for every P (u)-chain W contained in (Wv)v∈P (u),

writing f = 1ρuW (u) − |ρuW (u)|
|W (u)−| 1W (u)− on W (u)−,∑

D(Ω�P (u)−)

∏
ι∈2u

f ι = O(q−2−|u|−1

)|Ω(u)|2

where the functions O(·) depend only on the degrees of the polynomials in Ω.
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Proof. Let Ω0 and Ω1 be as in Lemma 2.4.11. For every X ∈ Wv, we write X∗

and π : X∗ → X as in Lemma 2.4.12.

Take u ⊆ V and W a P (u)-chain in (Wv)P (u). For every v ⊆ u, write Z(v)

for the irreducible subvariety of Ω1(v) containing W ∗(v). Then Z is a regular

system of varieties. Since ρuW
∗(u) = ρuZ(u) ∩ W ∗(u)− and by Theorem

2.4.10, ρuW
∗(u) has the obvious edge-uniformity properties with respect to

chains contained in W ∗ � P (u)−.

Let W ′ be a P (u)−-chain contained in W � P (u)−. Write W ′′(v) for the

preimage of W ′(v) in W ∗(v), for every v ∈ P (u)−, so that W ′(u) = π(W ′′(u)).

Then we have

| |ρuW
∗(u) ∩W ′′(u)|
|ρuW ∗(u)|

− |W
′′(u)|

|W ∗(u)−|
| = O(q−2−|u|−1

)

Moreover, since π restricts to bijections W ∗(u)− → W (u)− and W ∗(u) →
W (u), it follows easily that

| |ρuW (u) ∩W ′(u)|
|ρuW (u)|

− |W
′(u)|

|W (u)−|
| = O(q−2−|u|−1

)

giving property (2). Property (3) follows by a similar argument and an appli-

cation of Theorem 2.4.10.

Finally, by Property (5) of Lemma 2.4.12, ρV (Ω(V )) is the disjoint union of

a family of sets ρVW1(V ), . . . , ρVWn(V ) where the Wi(V ) are elements ofWV .

Applying property (2) to each of the sets ρVWi(V ) gives property (1).

It is an open question whether we can strengthen Theorems 2.4.10 and

2.4.13 to obtain an algebraic hypergraph regularity lemma such that the chain

decomposition of Theorem 2.4.13 comes from definable sets.

The results of [BH12] about the model theory of pseudofinite fields show

that an algebraic hypergraph regularity of this kind is available in many pseud-

ofinite fields. [BH12] shows that for almost all completions T ′ of the theory

T of pseudofinite fields, for K |= T ′, M ≺ K and M ⊆ A ⊆ K, we have

acl(A) = dcl(A). Here, “almost all” is meant with respect to the Haar mea-

sure on the absolute Galois group of Q or Fp. In this setting, the sections of

Lemma 2.4.12 become uniformly definable sets and hence the chain decompo-

sition of 2.4.13 is definable in the classical sense.

An algebraic hypergraph regularity lemma in the setting of [BH12] can be

found in the PhD thesis of Elad Levi. The proof of the algebraic regularity

lemma given in that thesis is rather different from the proof given here. Levi’s

argument used a weak version of the stationarity theorem and the deriva-

tion of the algebraic regularity lemma relied more heavily on combinatorial

arguments. The argument in Levi’s thesis also gave weaker error bounds on

regularity than the ones we obtain here.
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