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Abstract

The human genome spans two metres in length and is packed into a nucleus of no more

than a few microns across. It is now widely accepted that the three-dimensional (3D)

conformation of our DNA is a critical functional property of the genome, influencing

a wide range of cellular processes from transcriptional regulation to cell division. In

parallel with advances in microscopy, the ongoing development of Chromosome Confor-

mation Capture (3C) techniques has enabled researchers to probe the 3D genome with

increasing resolution. In particular, the development of Hi-C has facilitated unbiased

genome-wide interrogation of chromatin structure. The novel and unique problems

posed by chromatin conformation research have inspired a cross-disciplinary effort em-

ploying experimental research, bioinformatics, molecular dynamics and topology, to

name a few. Novel computational methods are under continuous development to make

sense of these methods’ large and complex datasets. Despite this, our understanding

of chromatin organisation remains in its relative infancy.

This work describes the development of two distinct computational workflows for

analysing experimental Hi-C data and performing molecular dynamics simulations and

in silico Hi-C . These workflows integrate established methodologies and custom ap-

proaches with a robust, modular framework to encourage ease of use and future de-

velopment. The first workflow, HiCFlow, represents a comprehensive, end-to-end Hi-C

analysis tool uniquely capable of performing de novo ASHi-C. The workflow is validated

on three key, publicly available human datasets and reveals new insights into genome-

wide allele-specific chromatin conformation. The second workflow, HiCSim, utilises

coarse-grain polymer simulations to interrogate and visualisation simulated chromatin

conformation. HiCSim was validated against human Hi-C data and could reproduce

fundamental properties of chromatin conformation with reasonable accuracy. In ad-

dition, it is among the first of such approaches to be developed as a user-friendly,

configurable workflow that can be employed by non-expert users such as pure experi-

mentalists.

A prevailing philosophy of this work is that computational methods can be powerful,

easy to use, and accessible to a wide range of researchers, irrespective of their particular

specialism. In enabling non-expert users to directly apply cutting-edge bioinformatics

techniques and molecular dynamics simulations to their work, the true benefits of cross-

disciplinary research can be realised.
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Chapter 1

Introduction

In 1869, Friedrich Miescher isolated an obscure molecule, called nuclein, from the pus

of surgical bandages (Miescher F, 1871). In discovering nuclein, now known as De-

oxyribonucleic acid (DNA), Miescher had unknowingly laid the foundations of modern

molecular biology. However, it was not until the mid-20th century, long after Miescher’s

death, that the world understood the true significance of his discovery. Once assumed

to be of minor importance, DNA was ultimately revealed to be the elusive carrier of

genetic information (Avery, Macleod and McCarty, 1944; Hershey and Chase, 1952).

This discovery paved the way for some of the most significant scientific discoveries of

the 20th century. The year 1953 marked the seminal discovery of the double-helical

structure of DNA by Watson, Crick and Franklin (Watson and Crick, 1953; Franklin

and Gosling, 1953). In the 1960s, the Nirenberg experiments “cracked” the genetic

code; this revealed how genetic material was translated into protein (Singer, 1968).

Most recently, at the turn of the 21st century, after a decade of work, the Human

Genome Project published a nearly complete sequence of the human genome (Lander

et al., 2001). However, the story of DNA, and our understanding of it, is far from

complete.

With a total of six billion base pairs (bp), the length of DNA in the human genome

spans two metres and is packaged in a nucleus no more than 10 microns in diameter

(Sun, Shen and Yokota, 2000). Such tight packing is equivalent to folding a 24-mile

string into a tennis ball (Alberts et al., 2002). Perhaps more impressively, our cells

package this DNA in such in a way to prevent any knots or tangles that might pre-

vent proper separation during cell division. Indeed, it is now widely accepted that the

three-dimensional (3D) organisation of our genome plays a fundamental role in gene
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expression and cell regulation (Bonev and Cavalli, 2016). Advances in microscopy and

the development of Chromosome Conformation Capture (3C) techniques have provided

unprecedented insights into the fine-scale structure of our genome. Declining sequenc-

ing costs have faciltated the development of techniques such as Hi-C , which provide

global characterisations of genome structure at ever-increasing resolutions. Early work

has revealed that each chromosome is spatially organised into a chromosomal territory

within the nucleus (Meaburn and Misteli, 2007). Subsequent studies have progressively

uncovered the hierarchical nature of the genome’s organisation. The first Hi-C exper-

iments revealed that the genome could be divided into two compartments (“A” and

“B”); these preferentially self-interact and correlate with open and closed chromatin,

respectively (Lieberman-Aiden et al., 2009). Later work uncovered contiguous, self-

interacting domains bound by specific architectural proteins, such as CCCTC-Binding

Factor (CTCF). These domains have become known as Topological Associated Domains

(TADs); they are ubiquitous and conserved across species, but their function remains

contested. At the lowest levels of genome organisation, chromatin loops between en-

hancers and promoters, bound by tissue-specific transcription factors, modulate gene

regulation.

However, our understanding of genomic organisation remains limited. We still do not

fully understand the functional role of TADs in the co-regulation of genes. Nor do

we understand the role of non-coding genes in regulating 3D organisation. In genomic

imprinting, it has long been assumed that allele-specific differences in chromatin archi-

tecture facilitate epigenetic regulation of mono-allelic expression. While disruption of

imprinting has been directly associated with numerous disorders, including Beckwith-

Wiedemann syndrome, the underlying mechanisms of these diseases remain poorly

understood.

Rapid developments in experimental and computational techniques are heralding a new

era in our understanding of chromatin architecture and dynamics. Reductions in se-

quencing costs and the increasing availability of free, user-friendly software ensure that

these cutting-edge advances are accessible to many research disciplines. Novel inter-

disciplinary approaches, combining experimental biology with molecular simulations,
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promise exciting new developments in the coming years.

1.1 Aims and Scope of Project

In this thesis, I will primarily consider the analysis and interpretation of Hi-C data as a

means to investigate genome-wide chromatin organisation in humans. The key concepts

of Hi-C are illustrated in fig. 1-1 on the facing page. Although experimental Hi-C is

becoming more widely adopted and progressively more accessible, the computational

analysis of such data remains challenging. The rapidly changing landscape of novel

bioinformatics techniques means methods are non-standardised and often inaccessible

to non-expert users. Limited access to user-friendly tools and workflows may hamper

efforts to expand the scope of chromatin conformation research. In particular, despite

growing interest in allele-specific Hi-C , there are no available tools for performing a

complete end-to-end analysis of experimental Hi-C to haplotype resolved diploid Hi-C

maps.

This work will first aim to assess and build upon current approaches concerning the

bioinformatic analysis of Hi-C data. In particular, the methods should include robust

visualisations and comparisons of sparse chromatin conformation data between alleles.

A key outcome will be the development of a robust and user-friendly workflow for the

analysis, post-processing and visualisation of Hi-C and Allele Specific Hi-C (ASHi-C)

data. The workflow should also be able to automate the process of de-novo haplotype

assembly from high-resolution Hi-C data, thus enabling users to rapidly perform ASHi-

C in previously unphased cell lines. The workflow will be applied to various publicly

available Hi-C datasets. This will validate the methodology’s effectiveness and rep-

resent the first genome-wide characterisation of allele-specific architecture in humans.

Allele specific chromatin conformation is already known to play a key role in mediating

genomic imprinting at the H19 /IGF2 locus (see fig. 1-2 on page 20) (Reik and Murrell,

2000; Nativio et al., 2011). Moreover, dysregulation of imprinting is of clinical rele-

vance and has been associated with several disorders, including Beckwith-Wiedemann

and Silver-Russell syndrome (Rovina et al., 2020). However, the exact properties of

allele-specific structure at various imprinted loci and in the genome remain poorly

described.

Despite rapid advancements in chromatin conformation research, experimental method-

ologies such as Hi-C are far from perfect. The practical implications of high sequencing

costs and protocol complexity have limited experimental designs. Highly replicated
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a) b) c)

d)

Figure 1-1: Simplified Hi-C Illustration. a) Nuclei in a population of cells are
cross-linked to covalently link spatially adjacent chromatin. b) Chromatin is digested
to obtain multiple linked fragments. c) Cross-linked fragments are re-ligated to a single
DNA molecule. Ligated fragments are paired-end sequenced such that the read pairs
correspond to a pair of spatial interacting regions. d) Read pairs are independently
mapped back to the genome to identify the loci of interaction. The resulting Hi-C
contact map reflects the interaction frequency, between any pair of genomic loci, within
a population of cells.

19



H19IGF2

H19IGF2

ICR

enhancer

CTCF

methylated

unmethylated

enhancer

Paternal

Maternal

Figure 1-2: The Imprinted H19/IGF2 Locus. Differential methylation, at the
Imprinting Control Region (ICR), constrains promoter-enhancer looping. On the ma-
ternal allele, the unmethylated ICR facilitates binding of the insulator protein, CTCF.
While the enhancer can still promote H19 expression, the CTCF silences IGF2 by
insulating the enhancer from it’s promoter. On the paternal allele, the methylated
ICR prevents CTCF binding. This allows the enhancer to promote IGF2 expression.
Expression of H19 is silenced via methylation of the gene itself. Adapted from: Reik
and Murrell 2000
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studies remain rare, and researchers must often simplify research questions and study

design due to limited resources. For this reason, computational simulations of chro-

matin conformation can provide complementary benefits to experimental work. The

associated financial cost and time required to run computer simulations are often trivial

compared to experimental research. In principle, simulations allow researchers to model

arbitrary experimental designs freely and use the results to inform which experiments

to pursue. Chromatin fibre models generally fall into two categories: “bottom-up” or

“top-down”. Top-down approaches explicitly use chromatin conformation data, such

as Hi-C , to infer the underlying polymer structures. Bottom-up approaches, on the

other hand, build polymer models using the underlying principles, including epige-

netic modifications, that are thought to govern chromatin dynamics (see fig. 1-3 on the

following page). Although these approaches cannot reproduce observed data as accu-

rately, they more closely align with the underlying biological mechanisms. Indeed, the

extent to which a bottom-up model can reproduce observed data can directly inform

which biological mechanisms are involved.

It is widely accepted that interdisciplinary approaches, combining modelling with ex-

perimental research, are crucial to advancing our understanding of chromatin confor-

mation (Moller and de Pablo, 2020). Although physics underpins the foundations of

most computational models, it is ultimately biological theory that determines their

utility. There is a clear need for an accessible and adaptable modelling framework

to encourage collaboration with experimental researchers. I aim to build a tool to

perform “bottom-up” coarse grain polymer simulations of chromatin fibres to address

this. These models will incorporate genetic and epigenetic information to predict ob-

served experimental properties of chromatin conformation. In this way, it is possible

to model chromatin structure in new tissues or perhaps assess the structural impact of

hypothetical mutations or epigenetic modifications.

In summary, the overarching ambition of this work is to build tools that encourage

interdisciplinary collaboration and accessibility within the field of chromatin confor-

mation research. Specifically, comprehensive workflows for conducting Hi-C analysis

will be of use to experimental biologists and modellers who may not have a background

in bioinformatics. Similarly, the accessibility of chromatin polymer simulations will

enable a broader range of domain experts to contribute novel biological insights and so

facilitate model development.
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Figure 1-3: Illustration of a “bottom-up” approach to modelling chromatin
fibre. The DNA polymer is represented as a chain of beads connected with springs.
These interact according to defined force fields and move according to Newtonian
physics. Each bead represents a segment of DNA (e.g. 1kb). The properties of each
bead, which determine how that bead behaves, are determined by underlying epige-
netic or genetic data. For example, a bead overlapping a transcription factor binding
site may be defined to interact with transcription factors within the simulation. The
properties of each bead may be assigned probabilistically across replicate simulations
to model heterogeneity and deal with multiple epigenetic signals at the same positions.
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1.2 Summary of Output

In this thesis, I present two novel computational workflows, HiCFlow and HiCSim,

for the analysis of Hi-C data and the modelling of chromatin fibres using polymer

simulations. In addition, I use a variety of publicly available datasets to charac-

terise genome-wide allele-specific chromatin architecture and interrogate several key

imprinted genome loci.

1.2.1 HiCFlow - A Comprehensive Workflow for Hi-C Analysis

An essential contribution of this thesis is the development HiCFlow - a user-friendly, au-

tomated workflow for the comprehensive analysis of raw Hi-C data to publication-ready

visualisations. HiCFlow is written using Snakemake, a specialist workflow management

system for building complex analysis workflows. It is specifically built to provide an

accessible and user-friendly experience to enable researchers to quickly and easily con-

duct Hi-C analysis. HiCFlow handles all necessary software installation and manages

software environments to prevent user system conflicts. The entire workflow is config-

urable through a user-configuration file and is inherently self-documenting. It can also

be seamlessly scaled to cloud computing or cluster environments.

Many existing Hi-C workflows facilitate the processing of raw data to normalised con-

tact matrices. However, many of the necessary post-processing steps are often left

to the user. Non-expert users may be left with limited options and struggle with

the inconsistent and non-standardised data formats implemented between tools. How-

ever, HiCFlow automatically handles data format conversion and implements a variety

of post-processing options. These include the identification of loops TADs and com-

partments as well as between-sample normalisation and visualisation. HiCFflow also

implements an independent workflow for variant identification and haplotype assembly

using raw Hi-C data. This uniquely enables HiCFlow to perform automated de-novo

ASHi-C, using the underlying Hi-C to infer the correction haplotype. HiCFlow is appli-

cable to a variety of other Hi-C -like methods including region-capture Hi-C , Micro-C,

single-cell Hi-C .
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1.2.2 Characterisation of Allele Specific Chromatin Architecture

To validate HiCFlow and to illustrate its ease of use, I conducted genome-wide ASHi-

C in three human cell lines using publicly available data. These include GM12878

(GM12878), a human lymphoblastoid cell line with a phased haplotype validated via

genetic inheritance. Importantly, HiCFlow was able to successfully reproduce the val-

idated haplotype from raw Hi-C data with a high degree of accuracy. Moreover, both

haplotypes were able to recapitulate known allele-specific interactions at the imprinted

H19 -IGF2 locus.

Following validation, I explore genome-wide properties of allele-specific architecture

in two additional cell lines: Institute for Medical Research-90 (IMR90) and H1 Hu-

man Embryonic Stem Cell Line (H1-hESC). A targeted analysis of a number of key

imprinted loci, including the DLK1 -DIO3, IGF2 -KCNQ1 and SNRPN, revealed dis-

tinct structural properties. Curiously, the allele-specific chromatin architecture of H19 -

IGF2 was found to be invariant across cell lines, regardless of expression. However,

DLK1 -DIO3 and SNRPN revealed dynamic properties driven by differential genomic

compartmentalisation. In addition, an unbiased, genome-wide screen also revealed sub-

stantial allele-specific differences at previously uncharacterised loci. These changes may

be relevant to disease-associated polymorphisms identified in GWAS studies.

1.2.3 HiCSim - Chromatin Fibre Polymer Simulation

The final output of this thesis is a modelling framework to perform “bottom-up” poly-

mer simulations of chromatin fibre. The workflow itself is built with the same principles

as HiCFlow. Specifically, it is implemented using Snakemake and is designed to be user-

friendly and accessible to non-expert users. A coarse-grain “bead-spring” model of a

DNA polymer is utilised (see fig. 1-3 on page 22). Here a “bead” represents a segment

of DNA (e.g. 1kb), and the properties and behaviour of each bead are defined according

to the underlying epigenetic data provided. The model incorporates two mechanisms of

chromatin folding: transcription factor median protein-complex “bridges” and cohesin-

mediated loop extrusion.

Following completion of the simulation, the workflow performs all necessary post-

processing to resolve an in silico Hi-C map. The simulated data can be directly

compared with user-provided experimental data. Comparisons with experimental Hi-

C data in humans illustrate that the model can reproduce key features of chromatin

conformation.
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Chapter 2

Review

2.1 A Short History of DNA

The story of DNA is often told starting from the fundamental discoveries of the 20th

century. The year 1944 saw Avery, MacLeod, and McCarty demonstrate that DNA,

rather than protein, was the vehicle of genetic information. Less than a decade later,

Crick and Watson published their seminal model of the double-helical structure of DNA

(Watson and Crick, 1953). Together with the pioneering work of Rosalind Franklin

(Franklin and Gosling, 1953), their work laid the foundations of modern molecular

biology and are widely heralded as the most significant discoveries of the 20th century.

However, the often forgotten story of DNA has humble beginnings over a century prior

to these great and famous discoveries (Dahm, 2005).

2.1.1 The Isolation of Nuclein

The late 19th century saw discoveries that established many fundamental concepts in

modern genetics. These included the theory of evolution by Darwin and Wallace (Dar-

win and Wallace, 1858), the laws of inheritance by Mendel (Mendel, 1970) and the

discovery that the nucleus harbours the genetic information of the cell (Haeckel, 1866),

to name a few. Remarkably, the discovery of DNA by Friedrich Miescher in 1869 went

largely unacknowledged. Miescher isolated an obscure molecule, called nuclein, from

the pus of surgical bandages (Miescher F, 1871). Nuclein, later known as Deoxyribonu-

cleic acid (DNA), was unlike any protein previously isolated and named as such due to

its presence in the nucleus. Indeed, Miescher himself speculated that DNA might play
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a role in inheritance. However, he thought it implausible that DNA alone could be

responsible for the total diversity observed in nature. Despite his discovery, Miescher

was a poor communicator of his work, and his findings did not achieve the widespread

attention they deserved. Research into DNA continued into the 20th century, mainly

through direct contacts of Miescher (Dahm, 2005). This work culminated with dis-

covering the chemical composition of DNA by Albrecht Kossel. This work would earn

Kossel the Novel Prize in 1910. However, DNA would receive scant further attention

until the mid-20th century (Kossel, 1880).

2.1.2 Griffith’s “Transforming Principle”

Throughout the early 20th century, the search for the elusive molecule and mechanism

of inheritance remained a fundamental goal of genetics. Griffith’s Experiment of 1928

saw the discovery of a “transforming factor” capable of transforming bacterial variants.

Specifically, some unknown component of a heat-killed virulent pneumococcus variant

was found to permanently transform a non-infectious variant into a virulent one (Grif-

fith, 1928). It was widely accepted that proteins comprising 20 amino acids must be the

elusive “transforming factor” that carries genetic information. Most could not conceive

that the five nucleobases of DNA were sufficient to describe the total complexity of all

biological diversity.

2.1.3 DNA as the Molecule of Inheritance

It was not until the Avery/MacLeod/McCarty experiments of 1944 that this widely

held belief was significantly challenged. Avery performed several similar transforma-

tion experiments after treating the heat-killed variant with various digestive enzymes,

including DNase, RNase and protease. He found that only the variant treated with

DNase failed to initiate transformation. Almost 70 years after its discovery, Avery had

finally demonstrated that DNA was the molecule of genetic inheritance. To a few great

minds, the true significance of this discovery was embraced. William Astbury described

it as “one of the most remarkable discoveries of our time” and the finding inspired him

to begin the first steps in elucidating the structure of DNA (Cobb, 2014). However,

the research community did not widely accept the discovery, and it did not cause an

immediate paradigm shift in biology as expected. Avery admitted that trace protein

elements could, in principle, be responsible for the transformation. Even after repeated

experiments reduced protein contamination to 0.2%, within the margin of error of 0.0%,
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the research community did not widely embrace the results. On the surface, the lack of

acceptance may be explained by the dominant, long-held belief that proteins were the

vehicle of inheritance. Some had argued that Avery’s discovery was “before its time”’

and that the research community did not fully understand the implications. Indeed,

geneticists claimed they were interested in genetics and not the chemistry of whichever

macromolecule happened to be the vehicle of inheritance.

“And even when people began to believe it might be DNA, that was not

so fundamentally a new story, because it just meant that genetic specificity

was carried by some goddamn other macromolecule, instead of proteins.”

Max Delbrck (Nobel Prize in Physiology or Medicine, 1969)

This perspective is challenging to rationalise in the context of our modern understand-

ing of genetics. The research community of the 1940s did not fully understand the

implications of Avery’s work, despite their undisputed importance with the benefit of

hindsight. It was not until the Hershey-Chase experiments of 1952 that the idea of

DNA as the molecule of inheritance was more widely accepted (Hershey and Chase,

1952). Hershey showed that bacteria infected with viruses containing radiolabelled

DNA were themselves radioactive. However, bacteria infected with viruses containing

radiolabelled protein were not radioactive. This finding reaffirmed that the genetic

material used by viruses to infect bacteria was DNA and not protein. Hershey’s work

was arguably less precise and more subject to protein contamination than Avery’s.

However, the findings arrived at a time of already growing acceptance, in part due to

the work of Avery. Hershey ultimately shared the 1969 Nobel Prize in Physiology or

Medicine, while Avery is perhaps the most deserving scientist not to receive a Nobel

Prize for his work.

2.1.4 Discovery of DNA Structure

Shortly after Hershey’s experiments, Crick and Watson famously published their model

of the double-helical structure of DNA (Watson and Crick, 1953). Their model was

built upon two independent insights into the structure of DNA. The first was the

observation by Erwin Chargaff that guanine and cytosine occur in equal proportions and

that adenine and thymine occur in equal proportions within natural DNA. This finding

was critical for identifying the mechanism of complementary base-pairing to replicate

and store genetic information. The second was the groundbreaking X-ray diffraction

images, taken by Raymond Gosling under the supervision of Rosalind Franklin, which

were critical for determining the anti-parallel double-helical nature of DNA (Franklin
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and Gosling, 1953). Following their discovery, Crick proposed the “central dogma”

of molecular biology to describe the one-way flow of genetic information from DNA

to protein (Crick, 1958). The work is widely considered one of the most significant

in the 20th century and saw Watson, Crick, and Wilkins awarded the Nobel Prize in

Physiology or Medicine in 1962. Rosalind Franklin, whose work was equally deserving

of the Nobel Prize, tragically died of ovarian cancer four years previously (Maddox,

2003).

2.1.5 Cracking the Genetic Code

Following the discoveries of the 1950s, it was still not clear how DNA encoded ge-

netic information. It was known that at least a three-letter nucleic acid code (triplet

codon) was required to uniquely encode all 20 amino acids. The existence of triplet

codons was later confirmed by a classic experiment showing that proflavin-induced in-

sertions/deletions produced functional proteins only if the inserted/deleted DNA was

a triplet (Crick et al., 1961). However, it was not until the experiments by Nirenberg

and Matthaei that the first of the 64 possible triplet codons was “cracked” (Matthaei

et al., 1962). An artificial RNA molecule composed of only uracil was found to yield

proteins composed solely of the amino acid phenylalanine. Thus the first triplet codon

of three uracils (UUU) was found to encode phenylalanine. Nirenberg’s group would

later decode all 64 triplet codons by 1966 (Nirenberg et al., 1966).

2.1.6 Sequencing of the Human Genome

In 2004, the Human Genome Project (HGP) succeeded in producing the first human

haploid sequence for the human genome (Hood and Rowen, 2013). It took 13 years

to complete, at the cost of $2.7 billion, and remains the largest ever collaborative

biological project. The project helped identify at least 22,500 protein-coding genes and

identified more segmental duplications than expected. It provided profound insights

into our understanding of human evolution and the contribution of genetic variants to

disease. Incredibly, rapid advances in sequencing technology mean that human genome

sequencing is routine. A human genome can now be sequenced in as little as a day for

no more than $600 (Preston, VanZeeland and Peiffer, 2021).

The original HGP was only able to sequence the euchromatic regions of the genome,

which comprises approximately 92.1% of the genome. Incredibly, it was not until

2021 that the first genuinely complete human genome sequence was published by the
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Telomere-to-Telomere (T2T) consortium (Nurk et al., 2022). The published sequence

includes gap-less assemblies of all autosomes and the X-chromosome. However, to this

day, a complete sequence of the Y chromosome does not exist.

2.1.7 The Future of DNA - the 3D Genome

In the 150 years since its discovery, DNA continues to be a part of some of human-

ity’s greatest scientific achievements. In the two decades since the human genome was

first sequenced, advances in experimental and computational methods have yielded

profound new insights into this enigmatic molecule. Most significantly, developments

in microscopy and so-called Chromosome Conformation Capture (3C) technologies are

enabling research into the three-dimensional (3D) architecture of the genome. It is

now clear that cellular function is not governed solely by the linear genome sequence

but also by dynamic folding and higher-order chromatin architecture. Chromatin fold-

ing is intrinsic to cellular function and regulates gene expression, cell division, and

differentiation.

The importance of understanding the “molecule of inheritance” was recognised cen-

turies before its discovery and is no less relevant today. Here I will review our current

understanding of chromatin architecture and discuss the experimental and computa-

tional methods being employed to probe the 3D genome. A complete understanding of

DNA and its complex role in cellular function will yield wide-ranging benefits across

all of the life sciences, from medical treatments using gene therapy to the conservation

and restoration of biodiversity. In many ways, the story of DNA has only just begun.
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2.2 Overview of Chromatin Organisation & Function

The fundamental building blocks of the eukaryotic genome are the nucleosomes. A

nucleosome consists of a core histone octamer wrapped in 147base pairs (bp) of DNA

(see fig. 2-1). The histone octamer itself comprises two copies of four histone proteins

(H2A, H2B, H3 and H4) and assembles via the association of a (H3 −H4)2 tetramer

and two (H2A − H2B) dimers (McGinty and Tan, 2015). Each of the four histone

proteins contains an N-terminal histone tail which facilitates higher-order interactions

between nucleosomes and other chromatin proteins. Nucleosomes are themselves linked

by approximately 60bp of linker DNA, forming a structurally repetitive complex every

˜200bp akin to “beads on a string”. This repetitive structure is formally known as

the 10-nm fibre. The 10-nm fibre, associated with numerous non-histone proteins, is

collectively known as chromatin.

Figure 2-1: Nucleosome structure. Nucleosomes consist of a histone octamer, com-
prising four distinct histone proteins (coloured), wrapped in 147 base pairs of DNA.
Each histone protein contains an N-terminal disordered tail which facilitates higher-
order interactions. Source: MethylC5, CC BY-SA 4.0, https://commons.wikimedia.
org/w/index.php?curid=1372436, via Wikimedia Commons.

The net negative charge of the DNA phosphate backbone is partially screened by the

positively charged histone proteins, which contain a high proportion of lysine and
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arginine. In the absence of salt conditions, the 10-nm fibre has a net negative charge

and is inherently disordered in its purified state. Early in vitro studies revealed that

the purified 10-nm fibre folded into a higher-order 30-nm diameter structure when

mixed with a low concentration of cations and H1-linked proteins (Finch and Klug,

1976). This regular folding is driven by partial neutralisation of 30-nm fibre, which

facilitates electrostatic repulsion of neighbouring nucleosomes. Although the appealing

“30-nm fibre” model was readily adopted, it has never been directly observed in vivo

(Maeshima, Ide and Babokhov, 2019). Indeed more recent studies utilising super-

resolution imaging (Ricci et al., 2015), as well as novel methods combining chromatin

labelling with electron microscopy (chromEMT) (Ou et al., 2017), all suggest the 10-nm

fibre is non-uniform and irregular.

It has been proposed that an abundance of positively charged molecules, including

cations, leads to near-complete charge neutralisation of the 10-nm polymer in physio-

logical conditions. In the absence of localised repulsion, nucleosomes form large globular

condensates and are free to interact with more distal nucleosomes. This model pro-

poses that chromatin may possess fluid-like properties and is far more dynamic than

previously assumed. Such dynamic properties may be preferable for optimal genome

function; they promote DNA accessibility required for many biological processes, in-

cluding transcription and replication.

2.2.1 Chromatin Remodelling

Nucleosomal DNA, in its condensed state, is inaccessible to the transcriptional ma-

chinery required to regulate gene expression. As such, chromatin must be dynamically

modified to facilitate access to nucleosomal DNA, known as chromatin remodelling.

Chromatin remodelling is primarily achieved via two complementary mechanisms; co-

valent histone modification and the direct manipulation of nucleosome positioning and

structure.

Histone Modifications

Post-transcriptional modification of histones was identified as early as the 1960s (All-

frey, Faulkner and Mirsky, 1964), and a wide variety of modifications have since been

characterised. These modifications may modify chromatin structure directly by their

presence or indirectly via the recruitment of other protein complexes (Bannister and

Kouzarides, 2011).
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Histone acetylation, for example, modifies the electrical charge of the histone, which

directly impacts histone interaction with DNA. It is mediated by histone acetyltrans-

ferases and involves adding a negatively charged acetyl group to lysine residues on the

histone tail. Adding the acetyl group negates the positive histone charge and conse-

quently weakens the interaction of histones with negatively charged DNA. As a result,

the chromatin becomes less compact and more accessible to transcriptional machinery.

In contrast, deacetylation by histone deacetylases has the opposite effect and leads to

gene repression (Gujral et al., 2020).

Histone methylation, unlike acetylation, does not modify the electrostatic charge of

the histone protein. Histone methyltransferases mediate methylation by adding up to

three methyl groups to the lysine or arginine residues (Di Lorenzo and Bedford, 2011).

While histone methylation regulates various cellular functions, it is most frequently

observed on lysine residues of H3 and H4 histone tails (Wang and Jia, 2009). For

example, tri-methylation of the fourth lysine residue of H3 is known as H3K4me3.

H3K4me3 acts to recruit histone acetyltransferases and other remodelling enzymes to

promote transcriptional activation (Sims, Nishioka and Reinberg, 2003). In contrast,

di-methylation of the ninth lysine residue of H3 (H3K9me2) inhibits transcription by

blocking histone acetyltransferases (Wang et al., 2008).

Other types of histone modification include phosphorylation and ubiquitination. In par-

ticular, they have been associated with DNA damage signalling and repair. However,

they have also been implicated in regulating cell division and transcriptional regula-

tion, among other functions (Alaskhar Alhamwe et al., 2018). Indeed, the concept that

the combinatorial effects of histone modifications determine chromatin-DNA interac-

tions and transcriptional regulation is formally known as the histone code hypothesis

(Jenuwein and Allis, 2001). However, the full diversity of histone modifications, and

their impact on cellular function and gene expression, remain poorly understood.

ATP-Dependent Chromatin-Remodelling Enzymes

A distinct class of proteins remodel chromatin by utilising Adenosine triphosphate

(ATP). At least four families of ATP-dependent chromatin remodelling enzymes have

been characterised in eukaryotes: SWI/SNF, ISWI, NuRD/Mi-2/CHD, and INO80

(Tang, Nogales and Ciferri, 2010). All share a common ATPase domain, but each

is distinguished via a unique protein domain in the catalytic region of their ATPase.

SWI/SNF, collectively identified via two independent genetic screens in yeast, and

ISWI are the best characterised of the four complexes (Workman and Kingston, 1998;

32



Sudarsanam and Winston, 2000). These enzymes are thought to act as directional DNA

translocases. The complex is thought to bind to one end of the nucleosome and disrupt

DNA-histone contact. This disruption causes a loop of DNA to propagate around the

histone-octamer surface and causes the nucleosome to “slide” along the DNA (Saha,

Wittmeyer and Cairns, 2006). Repositioning of the nucleosome can be used to regulate

gene expression, for example, by exposing DNA to regulatory factors. In addition

to nucleosome sliding, chromatin remodelling enzymes can inject or eject octamers.

Although the mechanism is less understood, SWR1 has been found to exchange the

H2A histone with an H2A.Z histone variant. H2A.Z is highly enriched at gene promoter

and is known to promoter gene expression (Saha, Wittmeyer and Cairns, 2006).

2.2.2 Chromosome Condensation in Mitosis

Chromosomal condensation is the remodelling mechanism that governs the dramatic

reorganisation of interphase chromatin into compact chromosomes during mitosis and

meiosis. The underlying mechanisms of chromosome condensation have yet to be fully

elucidated, although depletion studies suggest that condensins are known to play a

critical role (Hagstrom et al., 2002). Condensins are large (650 - 700kDa) protein

complexes with five subunits: two SMC proteins, a kleisin and two HEAT repeat-

containing proteins. Together they form a ring-like structure, analogous to cohesin,

which traps two strands of cis DNA (Jeppsson et al., 2014). DNA is extruded in an

ATP-dependent manner to loops of between 80 - 120kilobase (Kb) (Kschonsak and

Haering, 2015). This process occurs in the early prophase and is followed by axial

compression and lateral compaction during M-phase; these are also thought to be

mediated by condensin.

All known eukaryotes possess two distinct forms of condensin, condensin I and con-

densin II, which differ in their non-SMC subunits (Hirota et al., 2004). During inter-

phase, condensin II is localised in the nucleus, whereas condensin I is localised to the

cytoplasm. As such, it is thought that condensin II initialises condensation via loop

extrusion. The subsequent breakdown of the nuclear envelope facilitates nuclear access

to condensin I. Condensin II and condensin I are then thought to contribute to axial

compression and lateral compaction, respectively (Green et al., 2012).

Despite this, condensin depletion is not sufficient to abolish chromosomal condensa-

tion. Although condensin is vital for maintaining structural integrity, it is clear that

our current understanding of the mechanisms underlying chromosome condensation is

incomplete (Hudson et al., 2003).
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2.2.3 Higher-Order Chromatin Domains

The application of 3C technology, discussed in section 2.3 on page 39, has enabled

many recent discoveries in chromatin architecture and dynamics. In particular, these

approaches have revealed a complex hierarchical chromatin organisation at all length

scales of the genome.

Compartments

The earliest genome-wide chromatin conformation experiments identified so-called “ge-

nomic compartments”. These are the largest and most easily detectable structures in

the genome and are characterised by their distinct “checker-board” pattern on Hi-C

matrices (see fig. 2-2)(Lieberman-Aiden et al., 2009).

Figure 2-2: Genomic Compartments in Human Hi-C data. The characteristic
checker-board pattern is visible, illustrating preferential within-compartment interac-
tions. The track underneath represents the strength of the compartmentalisation signal.
Red and blue intervals represent “A” and “B” compartments. Red-Red and Blue-Blue
interacting pairs have higher interaction frequency (darker shading) than Red-Blue
interaction pairs. Analysis performed on Human chromosome 11 (0 - 45Mb) (hg19),
GM12878 (GM12878) at 100kb resolution (Rao et al., 2014).

This pattern reflects alternating intervals (1 - 10megabase (Mb)) of high and low in-

teraction frequency. The block pattern assigns each genomic interval as either an “A”
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or “B” compartment. This way, intervals corresponding to the same compartment in-

teract with higher frequency than intervals of differing compartments. In general, “A”’

compartments correspond to open and transcriptionally active chromatin, whereas “B”

correspond to closed and inactive chromatin.

In summary, genomic compartments are a fundamental building block of chromatin

architecture. Compartments are observed to be highly dynamic, and variations in

compartment states have been associated with changes in gene expression (Liu et al.,

2021). Indeed, phenotypic changes are more often associated with compartmental reor-

ganisation than changes to smaller structures such as TADs or loops (see section 2.2.3)

(Dixon et al., 2015). Recent work has also suggested that “A” and “B” compartments

may be divided into sub-compartments. These are highly variable among cell types

and associated with epigenetic and transcriptional heterogeneity (Liu et al., 2021).

Topological Associated Domains (TADs) and Loops

Early Hi-C experiments also revealed the existence of so-called TADs (Dixon et al.,

2012). These were found to be highly conserved among mammals and had a median

size of ˜800Kb Subsequently higher-resolution studies revealed the existence of nested

sub-TADs (median size ˜185Kb) (Rao et al., 2014). Both TADs and sub-TADs were

loosely defined as any genomic region that more frequently interacts with itself relative

to neighbouring intervals. TADs are clearly distinguishable as characteristic “triangles”

on Hi-C matrices (see fig. 2-3 on the following page).

Many TADs often possessed enriched “corner-peaks” that indicated strong looping

interactions between their boundaries. Importantly, these loops were only observed

between boundaries with convergently oriented CTCF binding sites. Indeed, studies

soon revealed that changes to CTCF orientation was sufficient to disrupt the position of

TAD boundaries (de Wit et al., 2015). In light of these observations, a “loop-extrusion-

model” was proposed to explain TAD formation.

In brief, the model proposes that DNA is extruded via an engaged cohesin complex un-

til it encounters a convergently oriented bound CTCF protein (see fig. 2-4 on page 38).

The cohesin complex consists of three subunits (SMC1, SMC3, and SCC1) which col-

lectively form a ring-shaped structure that surrounds the DNA (Haering et al., 2008).

SCC2/SCC4 and WAPL regulate cohesin loading and release, respectively (Haarhuis

et al., 2017). The loop-extrusion model proposes that DNA is bidirectionally extruded

through the cohesin ring, forming progressively larger loops, until extrusion is halted
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Figure 2-3: Hi-C TADs and Loops. TADs are evident as dark triangles of higher in-
teraction frequency that are often bordered by CCCTC-Binding Factor (CTCF) peaks.
Looping interactions are characterised by “corner-peaks” where loop extrusion has been
halted by convergently oriented CTCF at the TAD boundary. Analysis performed on
Human chromosome 11 (1.5 - 3.2Mb) (hg19), GM12878 at 20kb resolution (Rao et al.,
2014).
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by the presence of convergently oriented CTCF.

The strength of TAD corner peaks is thought to be related to the residence time of the

cohesin complex at the boundary. Experimental observations support this hypothesis;

depletion of Wapl, a cohesin release factor, strengthens TAD boundary “corner-peaks”.

Similarly, the SCC2/SCC4 complex contributes to loop extension; depletion of SCC4

has been shown to lead to shorter loops. SCC2/SCC4 and WAPL play antagonistic roles

in regulating chromatin loops, and their balanced activity is necessary for proper loop

maintenance (Haarhuis et al., 2017). Many have suggested that cohesin-mediated chro-

matin loops may be involved in facilitating promoter-enhancer interactions (Merken-

schlager and Nora, 2016). In addition, it has been proposed that TADs, and specifically

TAD boundaries, insulate against spurious interactions (Lupiáñez et al., 2015). How-

ever, cohesin depletion studies do not find widespread ectopic gene dysregulation (Rao

et al., 2017). Despite the total loss of chromatin looping, cohesin depletion results in

relatively modest changes in gene expression. These results suggest that total tran-

scriptional activity is regulated by the independent and complementary mechanisms of

compartmentalisation and loop extrusion.

Studies have also indicated that TAD formation is not exclusively determined by

cohesin-mediated loop extrusion. TAD like structures, with randomised boundaries,

have been observed in cohesin-depleted cells (Bintu et al., 2018). Moreover, not all

TAD boundaries are enriched with CTCF. Indeed, as many as 20% of boundaries are

resistant to CTCF depletion (Nora et al., 2017). Often these boundaries are associated

with regions of active transcription that may demarcate “A” and “B” compartments

(Szabo, Bantignies and Cavalli, 2019). CTCF mediated looping within TADs has also

been observed between promoter-enhancer pairs, which play a fundamental role in the

regulation of gene expression.

Our current understanding indicates that no single mechanism can explain the forma-

tion of TADs. Until recently, it has been argued that TADs may reflect an artefact of

population averaging and may not exist as physical structures in single cells. However,

single-cell experiments have since suggested that TADs exist in single cells (Bintu et al.,

2018; Moller and de Pablo, 2020).
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Figure 2-4: Cohesin-Mediated Loop Extrusion. a) Cohesin ring binds to DNA. b)
DNA is extruded through the cohesin ring and is not blocked by CTCF bound in the
same orientation as the direction of extrusion. c) Extrusion cannot progress beyond
convergently oriented CTCF; these define the boundaries of TAD domain. Persis-
tent boundary complexes may appear as prominent “corner peaks” on Hi-C matrices.
Source: MoreInput, CC BY-SA 4.0, https://commons.wikimedia.org/wiki/File:

Cohesin-LoopExtrusion-EN.svg, via Wikimedia Commons.
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2.3 Methods of Studying Chromatin Architecture

The study of chromatin architecture can be broadly divided into two major techniques:

microscopy and 3C. These complementary approaches capture different aspects of chro-

matin architecture, and results must be carefully interpreted per each method.

2.3.1 Microscopy

The earliest discoveries regarding nuclear organisation were all driven by conventional

light microscopy methods. Ralph Wagner was the first to formally described the nu-

cleous as early as 1835, and Theodor Boveri introduced the concept of chromosomal

territories in 1909 (Cremer and Cremer, 2006). The combination of fluorescence mi-

croscopy and in situ hybridisation techniques ultimately led to the development of

Fluorescence in situ hybridisation (FISH) (Pardue and Gall, 1969; Rudkin and Stollar,

1977). In FISH, oligonucleotide “probes” are designed according to the genomic target

sequence of interest. Probes are labelled with fluorophores, which fluoresce upon exci-

tation and hybridise with the target sequence of interest in situ. Finally, fluorescence

is then observed via light microscopy. Multiple probes with different fluorophores can

be used to visualise and distinguish the relative positions of different genomic loci in

individual cells. Indeed, chromosome-specific staining has enabled direct visualisation

of discrete chromosomal territories (see fig. 2-5 on the following page) (Cremer and Cre-

mer, 2001; Bolzer et al., 2005). FISH techniques are also widely used in diagnostics.

For example, FISH can readily detect the 17p11.2 duplication associated with Charcot-

Marie-Tooth disease (Mohammed and Shaffer, 2003). The duplicated region appears

to have three rather than two distinct fluorescent signals in the nucleus (Gray et al.,

1986). However, conventional light microscopy approaches are inherently limited by the

optical resolution of light. Advances in probe design and super-resolution microscopy

are enabling imaging of fine-scale chromatin structures (Beliveau et al., 2015). Despite

these advances, light microscopy’s genomic and spatial resolution remains limited. Al-

though electron microscopy has been used to interrogate chromatin architecture, it

has, until recently, been unable to do so with any sequence specificity (McCord, Ka-

plan and Giorgetti, 2020). However, exciting new developments have coupled electron

microscopy with in situ hybridisation to enable ultrastructural visualisation, at the

1-nanometre resolution, of specific genomic loci (Trzaskoma et al., 2020). Microscopy

techniques are rapidly advancing and will continue to provide new, invaluable insights

into chromatin architecture.
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Figure 2-5: Chromosome Labelling (FISH) Top: FISH labelling of all 24 human
chromosomes using seven different fluorochromes. Bottom: Labelled false colour illus-
tration of observed chromosome territories. Source: (Bolzer et al., 2005), part of Figure
1., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1372436, via
Wikimedia Commons.
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2.3.2 Chromosome Conformation Capture (3C)

In contrast to microscopy, 3C methods provide a complementary perspective to study-

ing chromatin architecture. 3C methods measure spatial interaction via proximity lig-

ation following cross-linking and digestion. They encompass the original “3C” as well

as 3C-based variants: 4C, 5C and Hi-C (see fig. 2-6 on the next page). Chromatin is

cross-linked and fragmented in all protocol variants, usually using restriction enzymes.

The choice of restriction enzyme, and the associated length of its recognition sequence,

determines the frequency of fragmentation. For example, the mean fragment length of

a 6-base cutter such as HindIII is 4096bp and 256bp for a 4-base cutter such as DpnII.

The maximum theoretical resolution is ultimately limited by fragmentation frequency

(Denker and De Laat, 2016). However, the maximum observed resolution is limited

due to partial digestion and non-uniform fragmentation (Hsieh et al., 2015). Chromatin

fragments are then ligated under dilute conditions to promoter intra-molecular ligation.

Following ligation, cross-links are reversed to obtain the 3C template common to all

3C-based methods. The template itself represents a hybrid sequence of two spatially

co-localised chromatin regions. 3C protocol variants differ primarily in their approach

to quantifying these ligated sequences (see fig. 2-6 on the following page). Essential

methods are discussed below, although this list is by no means comprehensive (Denker

and De Laat, 2016; Davies et al., 2017).

3C - Original Protocol (“one-vs-one”)

The original “3C” approach, first applied in yeast, uses quantitative Polymerase Chain

Reaction (PCR) to measure the interaction frequency between two genomic loci (Dekker

et al., 2002). 3C is considered a “one-vs-one” approach - it can only quantify interac-

tions between two predetermined loci.

4C - Circularised 3C (“one-vs-all”)

Chromosome Conformation Capture-on-Chip (4C) is an early modification to the origi-

nal “3C” protocol which enabled unbiased interrogation of all interactions with a single

viewpoint (“one-vs-all”) (Simonis et al., 2006). Specifically, 4C utilises inverse PCR fol-

lowing the self-circularisation of ligated fragments to amplify the unknown interacting

sequence using the known viewpoint sequence.
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Figure 2-6: Overview of 3C Technologies for studying chromatin conforma-
tion. DNA cross-linking, followed by chromatin digestion and intra-molecular liga-
tion, are common to all 3C-based techniques. Source: (Li et al., 2014), part of Fig-
ure 1., CC BY-SA 4.0, https://upload.wikimedia.org/wikipedia/commons/b/ba/
Chromosome_conformation_techniques.jpg, via Wikimedia Commons.

42

https://upload.wikimedia.org/wikipedia/commons/b/ba/Chromosome_conformation_techniques.jpg
https://upload.wikimedia.org/wikipedia/commons/b/ba/Chromosome_conformation_techniques.jpg


5C - 3C Carbon Copy (“many-vs-many”)

The 5C protocol can, in principle, be used to detect chromatin interactions between

all restriction fragments within a specific genomic interval (“many-vs-many”) (Dostie

et al., 2006). Primers are designed for every restriction fragment of interest and are

hybridised with the 3C ligation templates. The addition of a universal primer facilitates

PCR amplification of annealed fragments, and interaction frequencies are quantified

using Next Generation Sequencing (NGS).

5C permits the construction of interaction frequency matrices within the genomic region

of interest. The use of universal primers helps to minimise PCR amplification bias.

However, differential annealing efficiencies between primers may introduce bias, and

it is not generally possible to design primers for every restriction fragment. Finally,

since unique primers must be designed for each restriction fragment, 5C is not generally

feasible for regions larger than 1Mb (de Wit and de Laat, 2012).

Hi-C - 3C with High Throughput Sequencing “all-vs-all”)

Hi-C , developed in 2009, utilises high-throughput next-generation sequencing to inter-

rogate all pairwise interactions in an unbiased manner (“all-vs-all”) (Lieberman-Aiden

et al., 2009). Digestion is performed using a restriction enzyme that leaves a 5’ sticky;

this is filled in with biotin-labelled nucleotides. Following blunt end ligation, biotin

pull-down is performed to enrich the library with ligated sequences corresponding to

valid 3C fragments (Denker and De Laat, 2016). Each “end” of the fragment is se-

quenced, via paired-end sequencing, and separately mapped back to a reference genome

to identify the interacting loci. The bioinformatics workflow of processing Hi-C data is

described in detail in section 2.5 on page 53.

As discussed, the maximum theoretical resolution of a Hi-C experiment is determined

by the fragmentation frequency of the restriction enzyme and is generally limited to

˜1Kb (Hsieh et al., 2015). However, given the vast number of possible pairwise inter-

actions, sequencing depth often limits the resolution. The earliest human Hi-C studies

were able to generate megabase scale contact maps sufficient to distinguish genomic

compartments. (Lieberman-Aiden et al., 2009). Continued reductions in sequenc-

ing cost mean that kilobase scale contact maps, approaching the limit of observable

resolution, are now feasible (Rao et al., 2014). A novel Hi-C protocol variant, called

Micro-C, aims to increase the observable resolution and reduce the noise of contact ma-

trices (Hsieh et al., 2015). Micro-C fragments the genome using a micrococcal nuclease
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(MNase). MNase fragments chromatin into mononucleosomes, resulting in a uniform

and more frequent fragmentation (˜200bp) than conventional restriction enzymes. The

original Micro-C protocol did not efficiently capture long-range interactions. However,

a protocol update (Micro-C XL) has substantially improved long-range interaction de-

tection (Hsieh et al., 2016).

Capture-C Methods

Modern research is often concerned with studying localised chromatin architecture in

great detail. Although Hi-C can provide a genome-wide perspective, high-resolution

maps remain prohibitively expensive. In addition, most of the associated sequencing

costs will be wasted if the research question only concerns a specific genomic region.

Capture-C methods have emerged to address the cost associated with the complexity

of interrogating genome-wide interactions. In conjunction with high-throughput se-

quencing, these approaches use custom oligonucleotide probes for hybridising with and

selectively enriching regions of interest. Capture-C was first applied to 3C libraries to

facilitate the high-resolution, quantitative assessment of many regions (“many-vs-all”)

at a fraction of the sequencing cost compared to similar methods (Hughes et al., 2014).

Early protocol designs had issues with differential enrichment efficiency between tar-

get sequences. However, an updated protocol (NG Capture-C) addresses these issues

and improves upon the sensitivity (Davies et al., 2015). NG Capture-C uses a single

120bp biotinylated probe per restriction site. Biotinylation enables specific and efficient

enrichment of targets via streptavidin bead pull-down.

Capture-C may also be applied to Hi-C libraries - this is known as Capture Hi-C (CHi-

C). Given the high complexity of Hi-C libraries, the enrichment of CHi-C is lower

than the aforementioned 3C library approaches such as NG Capture-C (Davies et al.,

2017). CHi-C has been applied to investigate all genome-wide interactions with an-

notated promoters in the human genome (Mifsud et al., 2015). The study yielded a

ten-fold enrichment over Hi-C on average. Longer-range interactions were more ef-

fectively enriched and, in some replicates, exceeded fifty-fold enrichment. Given the

distinct statistical properties of CHi-C libraries, a custom method (CHICAGO) was de-

signed to call significant interactions (Cairns et al., 2016). Despite enrichment, individ-

ual promoter interactions were relatively weakly sampled (˜2000 reads per promoter).

However, under-sampling has primarily been attributed to the complex experimental

design (Davies et al., 2017).

A modified protocol (region CHi-C) enriches a specific genomic region by tiling that re-
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gion with oligonucleotide probes. As with other CHi-C approaches, differential capture

efficiency can bias the interaction protocol. However, the statistical properties of the

region CHi-C data are not fully understood, and methods such as CHICAGO are not

suited to region CHi-C. As such, most region CHi-C studies only consider interactions

where both ends of the ligation product map within the same captured genomic region

(Kraft et al., 2019). Interactions between non-captured regions or other captured ge-

nomic loci (if present) are discarded. The retained “within-capture” interactions can

be used to produce a high-resolution “all-vs-all” contact map of that target region. The

analysis proceeds by treating the capture region as a distinct chromosome. Implicit

normalisation methods (see section 2.5.6 on page 59) are used to correct for unknown

biases that may be introduced due to differential capture efficiency.

ChIA-PET

The previously discussed methods consider protein-independent chromatin folding.

Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) is distinct

in that it facilitates the investigation of protein-mediated looping interactions. ChIA-

PET combines 3C with chromatin immunoprecipitation (ChIP) enrichment (Fullwood

et al., 2009). Antibodies pull down fragments that are bound by a specific protein of

interest. Pull-down facilitates simultaneous detection of where a protein is bound and

with what genomic region it interacts. However, ChIA-PET is limited by low ChIP

enrichment. Hundreds of millions of cells are usually required, and a significant frac-

tion of the library is uninformative. A protocol variant, HiChIP, claims to improve the

yield of informative reads by 10-fold compared to ChIA-PET (Mumbach et al., 2016).

ChIA-PET is most effective when coupled with other 3C methods, such as Hi-C , to

enable functional annotation and interpretation of observed interactions.

Choice of 3C Method

The original 3C protocol has been replaced mainly by modern variants, which are easier

to implement and better control for bias (Davies et al., 2017). Among modern 3C based

methods, the appropriate choice will be determined by the research question. However,

NG Capture-C, which arguably represents a modern replacement for 4C, is perhaps the

most appropriate method for localised investigation of regulatory elements or specific

genes. It can be easily scaled to hundreds of interactions and effectively controls for

PCR duplicates (Davies et al., 2017). Hi-C remains the most popular method of choice
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for investigating genome-wide interactions. However, Micro-C XL may replace Hi-C

given the more even chromatin digestion and higher theoretical resolution that the

protocol provides.

2.3.3 Recent Advances - Beyond 3C

The ever-declining cost of sequencing will ultimately ’solve’ the issues of limited reso-

lution associated with conventional Hi-C and Micro-C technologies. Beyond this, other

outstanding technological limitations must be addressed to gain novel biological in-

sights. Hi-C maps are typically haploid - in multiploid organisms, such as humans,

they represent an average of interactions among homologous chromosomes. As such,

they cannot identify allele-specific interactions. Fortunately, these limitations may be

addressed within the current Hi-C methodology using novel bioinformatics approaches.

These are discussed further in section 2.6 on page 64. However, other limitations are

inherent to the experimental protocol and are discussed below.

Identifying Interaction Dependencies

Hi-C represents a population average of interactions among a population of cells. Con-

tact maps represent relative contact probabilities than simultaneous interactions be-

tween pairs of loci. Given that Hi-C maps represent an aggregate of multiple different

chromatin conformations, it can be challenging to infer detailed information about the

true underlying chromatin conformation (McCord, Kaplan and Giorgetti, 2020). Many

sets of interactions may be mutually exclusive - they may be less likely to co-occur.

Others may be cooperative - they may be less likely to occur independently of one

another. These concepts are illustrated in fig. 2-7 on the facing page. The advent of

Single Cell Hi-C (SC-HiC) is now allowing researchers to directly observe simultaneous

interactions in individual cells (Nagano et al., 2013). Current approaches are limited

in capturing all interactions in a single cell. However, with a sufficiently large sample

of SC-HiC data, it should be possible to infer cooperative and exclusive interactions

(McCord, Kaplan and Giorgetti, 2020).

SC-HiC, in principle, enables direct reconstruction of the chromatin structure within

a given cell. Current SC-HiC contact maps are particularly noisy and sparse. Novel

statistical methods, such as Si-C, utilise Bayesian inference methods and claim to re-

construct genomic structures using as few as 0.2 reads per bin (Meng et al., 2021).

Methods, such as Dip-C, have now incorporated haplotype phasing in combination
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Figure 2-7: Simultaneous Interactions in Single-Cell Hi-C A typical Hi-C map
(centre) represents a population average of simultaneous stochastic interactions across
individual cells. It represents the contact probability of discrete interaction events but
cannot identify dependencies between interactions. This concept is illustrated above
using three coloured sets of interactions. Interactions (1) and (2) are cooperative - they
both occur in the same cell simultaneously. Interaction (3) is mutually exclusive - it
occurs in the absence of (1) and (2). Although all three interactions are never observed
simultaneously in a given cell, the population average Hi-C map cannot distinguish
this. With a sufficiently large sample of single cell Hi-C maps, it should be possible to
infer such dependencies. Other interactions with no clear dependencies are represented
in black.
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with single-cell approaches to reconstruct the full 3D genome of human diploid cells

Tan et al. (2018). These structural inferences have been shown to reproduce previously

observed live imaging chromatin structures. However, it is essential to consider that

these genomic reconstructions represent an instantaneous snapshot of an otherwise

highly dynamic chromatin molecule. Although the evolution of chromatin structure

over time remains poorly understood, rapid advancements in SC-HiC applied to large

populations of cells, in combination with live imaging, should provide new insights into

’4D’ chromatin dynamics (McCord, Kaplan and Giorgetti, 2020).

Identifying Multi-way Interactions

Proximity ligation is an intrinsic step of all 3C based techniques. However, this im-

poses a fundamental limitation on what chromatin interactions can be observed. Since

ligation occurs between pairs of fragments, they are limited to observing simultaneous

two-way interactions and cannot reliably quantify higher-order interactions. In addi-

tion, it has also been argued that proximity ligation can introduce bias. 3C inherently

assumes that ligation probability is determined solely by spatial separation. Ongoing

discrepancies between 3C methods and ligation-independent imaging techniques, such

as FISH, suggest that ligation probability is not purely influenced by spatial separation

(Dekker, 2016). It has been suggested that differences in chromatin solubilisation may

influence ligation (McCord, Kaplan and Giorgetti, 2020). In addition, regions organ-

ised around nuclear bodies may be too distant to ligate and may go undetected by 3C

based methods despite their relative proximity (Wang et al., 2018b).

A novel approach, called Split-Pool Recognition of Interactions by Tag Extension

(SPRITE), maps simultaneous higher-order chromatin interactions without the need

for proximity ligation. Nuclei are cross-linked and sonicated to obtained molecules cor-

responding to individual cross-linked complexes. Complexes are split across a 96-well

plate, and complexes in each well are uniquely tagged with a barcode sequence. Finally,

the barcoded complexes are pooled back into a single well. This process of split-pool-

tagging is repeated for several rounds. Each covalently bound cross-linked molecule

will remain intact throughout the entire cycle, and all of the complexes’ associated

sequences will contain the same barcode. With each successive round, the probability

of any two complexes containing the same barcode decreases exponentially. For ex-

ample, after n rounds, the number of unique barcode combinations is (96)n. SPRITE

assumes that all sequences with the same barcode will originate from the same cross-

linked complex and correspond to simultaneously interacting genomic loci. After six
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rounds of split-pool-tagging there will be (96)6 ≈ 1012 possible unique barcodes. The

authors note that this exceeds the estimated number of cross-linked complexes (≈ 109)

(Quinodoz et al., 2018). However, while the probability of any given pair of complexes

sharing the same barcode is ≈ 10−12, we note that there are approximately 0.5 ∗ 1018

possible pairwise combinations of complexes. As many as ten rounds may be required

to minimise the probability of observing any duplicate barcodes. However, SPRITE

represents a powerful new tool for studying chromatin organisation, providing a closer

analogue to microscopy methods. As a ligation-independent method, SPRITE can de-

tect higher-order interactions and detect other interactions too distant for proximity

ligation. Similarly to Hi-C , SPRITE can also be extended to single-cell approaches.

Another intriguing new technique, called Genome Architecture Mapping (GAM), mea-

sures genome-wide chromatin conformation by collecting random ’slices’ of the nucleus

via ultra-cryosectioning and laser microdissection (Beagrie et al., 2017). The genomic

loci present in each slice are identified via DNA sequencing. Loci in close spatial prox-

imity will be more often detected in the same slice - this is the fundamental assumption

of GAM. It is then possible to infer genome-wide spatial proximity with a sufficient

number of randomly oriented slices. The technique has revealed the existence of exten-

sive simultaneous triplet interactions between enhancers and actively transcribed sites

that were otherwise undetected by 3C based methods. In addition, GAM can also pro-

vide measures of chromatin compaction and associations with the nuclear periphery. In

its current form, GAM could be extended to single-cell approaches since it requires one

nucleus per slice. However, this technique provides significant complementary benefits

and new insights into genomic interactions.

Physical Distance

In all of the above-discussed methods, what constitutes an “interaction” or “contact” is

not adequately defined. The interactions are determined by the threshold for proximity

ligation for ligation-based methods. In ligation-independent methods, such as SPRITE,

interactions are determined via cross-linking, which permits more distant interactions

to be captured (Quinodoz et al., 2018). However, a binary measure of “interaction”

is insufficient to determine global chromatin structure. In any given snapshot, these

methods represent only a small subpopulation of loci within some distance. A pair

of non-interacting loci are assumed to fall outside the expected interaction range, but

their actual spatial separation is unknown (Dekker, 2016). However, exciting new de-

velopments in FISH and super-resolution chromosome tracing now permit observation
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of thousands of genomic loci of parallel (Bintu et al., 2018). Ultimately, no single ap-

proach will be sufficient to understand chromatin structure and dynamics completely.

Complementary imaging techniques, which can directly measure the spatial separation

between any two loci, must be combined with Hi-C or similar methods to interpret this

complex data correctly.
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2.4 The Hi-C Methodology

Of the previously discussed protocols, this project extensively uses public experimental

data derived from Hi-C experiments. The research output of this work primarily con-

cerns computational approaches to Hi-C analysis (see section 2.5 on page 53). However,

an in-depth understanding of the experimental methods and associated sources of bias

is necessary to inform bioinformatic approaches properly.

The following describes the traditional Hi-C protocol in mammalian cells as described

by van Berkum et al., 2010. First, between 2e7 and 2.5e7, cells are grown in suspension

or adherent. Like all 3C-based methods, the protocol begins with formaldehyde cross-

linking of cells. Formaldehyde covalently links spatially proximal chromatin by reacting

with amino and imino groups of DNA and protein (Hoffman et al., 2015) Cells are

subsequently lysed to obtain chromatin in solution before being digested using the

nuclease restriction enzyme HindIII. HindIII hydrolytically cleaves the palindromic

sequence AAGCTT in the presence of the cofactor Mg2+ and results in an average

fragment length of approximately 4Kb (Tang et al., 2000). Digestion results in over-

hanging single-stranded DNA at both ends of the digested fragment. These overhands

are filled by DNA polymerase I, large Klenow fragment in the presence of dNTPs,

including biotinylated dCTP (biotin-14-dCTP). Ligation of cross-linked fragments is

performed by T4 DNA ligase under dilute conditions to favour intra-molecular ligation.

Following this, cross-links are reversed, and protein is degraded using proteinase K. The

prior addition of biotin dNTPs will facilitate the pull-down of digested fragments via

magnetic streptavidin beads. Exposed biotin is removed via the exonuclease activity of

T4 DNA polymerase to prevent the pull-down of uninformative un-ligated fragments.

Removal of exposed biotin ensures only biotin incorporated internally at the ligation

junctions remains for pull-down. Next, the DNA is sheared, via sonication, to a size

suitable for high-throughput sequencing (300bp - 500bp). As previously described, the

sheared DNA is then subjected to biotin pull-down using magnetic streptavidin beads to

enrich for informative digested and ligated DNA fragments. Finally, the Hi-C library is

PCR amplified for an appropriate number of cycles and sequenced via Illumina paired-

end sequencing. The subsequent quality control and analysis steps post-sequencing are

described in detail in section 2.5 on page 53.

Since developing this original protocol, the Hi-C methodology has been iteratively

modified to improve resolution and reduce experimental bias. Early modifications by

Rao et al., 2014 introduced in situ Hi-C using a 4base cutter nuclease such as MboI.

The in situ Hi-C protocol involves DNA digestion and ligation within intact nuclei.
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In other words, cells are not immediately lysed following formaldehyde cross-linking.

This approach vastly simplifies the Hi-C protocol. Specifically, it reduces the protocol

time to 3 days from 7 days and reduces the number of cells and the volume of reagents

required (Lafontaine et al., 2021). In addition, in situ ligation should reduce the number

of random ligation events between uncross-linked, freely diffusing fragments. Finally,

using a 4-base cutter nuclease improves resolution by increasing digestion frequency.

In situ Hi-C has improved reproducibility over the traditional dilution Hi-C due to the

reduction of random intermolecular ligation. However, Kong and Zhang, 2019 argue

that in situ Hi-C increases the probability of incomplete digestion due to incomplete

nuclear permeability. Incomplete digestion may lead to systematic bias, which is more

challenging to account for than random bias.

The most recent iteration of the Hi-C protocol is known as Hi-C 3.0 (Lafontaine et al.,

2021). In contrast to the in situ protocol, Hi-C 3.0 adopts the methodology of the

original protocol by lysing cells prior to DNA digestion and ligation. However, Hi-C

3.0 critically differs in the fixation and digestion steps. At the fixation step, Hi-C 3.0

utilises two distinct chemical cross-linkers; formaldehyde followed by disuccinimidyl

glutarate (DSG) (Akgol Oksuz et al., 2021). Formaldehyde captures proximal interac-

tions via preferential cross-linking within 2Å(Hoffman et al., 2015). In contrast, DSG

captures more distal amineamine interactions within 8Å(Strang et al., 2001). As a re-

sult, the combination of DSG and formaldehyde better preserves chromatin contacts at

a wider range of interaction distances (Akgol Oksuz et al., 2021). Moreover, adding a

second cross-linker may mediate issues of non-uniform formaldehyde cross-linking due

to formaldehyde’s preference for lysine residues (Hoffman et al., 2015). At the digestion

step, Hi-C 3.0 utilises a double digestion protocol with two restriction enzymes (DpnII

and DdeI). Double digestion produces shorter fragments than traditional single diges-

tion Hi-C protocols but longer fragments than MNase digestion, as in Micro-C. This

approach produces short-range signals comparable to Micro-C without losing the long-

range signal typically associated with Micro-C (Akgol Oksuz et al., 2021). In summary,

the updated Hi-C 3.0 protocol facilitates the detection of loops, TADs and compart-

ments and is well suited for studying widespread chromatin interactions (Lafontaine

et al., 2021).
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2.5 Current Approaches in Hi-C Analysis

The complexity of the experimental methods discussed above means that correct analy-

sis and interpretation are non-trivial. Bioinformatic methods inevitably lag behind the

development of experimental approaches. The advent of technologies such as Hi-C has

driven the development of novel algorithms to process and normalise the data. Indeed

the computational resources have often been a limiting factor in the analysis of genome-

wide datasets, especially at high-resolution (Lieberman-Aiden et al., 2009; Rao et al.,

2014). This work will focus on the analysis of Hi-C and Allele Specific Hi-C (ASHi-C)

data. Hi-C is relatively well established and is becoming much more accessible as the

cost of sequencing and computational power decreases. In this section, I will discuss

the general bioinformatic workflow for analysing Hi-C / ASHi-C data, including some

of the new approaches in active development. Despite the abundance of tools available

for processing Hi-C data, the general workflow for processing sequencing data to nor-

malised contact matrices remains broadly the same. The final step of the experimental

Hi-C protocol is paired-end sequencing of the Hi-C library itself. Following this, the

general bioinformatics workflow of processing raw Hi-C sequencing data to normalised

contact matrices is summarised below.

1. Quality Control.

Assess the quality of FASTQ data and the presence of adapter contamination.

2. Read Mapping

Each read of a read pair is mapped independently to the reference genome.

3. Restriction Fragment Assignment

Reads are assigned to a restriction fragment determined by an in silico digest of

the reference genome using the relevant restriction enzyme.

4. Remove PCR Duplicates

5. Remove Invalid Interactions (e.g. unligated fragment, self-circles)

6. Binning

The reference genome is divided into ’bins’ (usually of constant size, e.g. 10kb)

and each read-pair interaction is assigned to a single bin-bin.

7. bias Correction

Implicit bias correction is generally performed using a matrix balancing algorithm.

8. Downstream Analysis
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Compartment analysis, TAD detection and loop calling.

2.5.1 Quality Control

Prior to data processing, it is essential to assess the quality of the sequencing data.

Quality control is most commonly performed using FastQC (Anders, 2010). FastQC

quickly reveals significant sequencing issues, such as poor-quality base calls or adapter

contamination. Helpfully, it will also indicate the Phred encoding of the sequencing

data quality scores. Most modern bioinformatic tools (e.g. read mappers) assume

that input sequences are Phred+33 encoded by default. Although modern datasets

now use Phred+33 encoding, older datasets may use Phred+64 encoding, leading to

problems in downstream analysis. If Phred+64 encoding is detected, then the safest

approach is to convert the raw data to Phred+33 encoding using a tool such as Seqtk

(https://github.com/lh3/seqtk).

seqtk seq -Q64 -V input-phred64.fastq > output-phred33.fastq

Various tools are available to remove adapter contamination and trimming on low-

quality bases. Although modern Illumina sequencing technology produces high-quality

sequencing data, there is minimal risk in applying these tools. In the absence of low-

quality bases, no sequences will be removed. Adapter trimming is dependent mainly on

the stringency of adapter detection. Stringency relates to the minimum length of the

adapter sequence required before trimming is performed. A lower minimum length will

increase sensitivity at the cost of removing more true genomic sequences that match

the adapter by chance. However, in general, read trimming is beneficial for various

NGS based techniques, including RNA-Seq and variant detection (Del Fabbro et al.,

2013). Numerous tools exist for FASTQ pre-processing, including Cutadapt (Martin,

2011), Trimmomatic (Bolger, Lohse and Usadel, 2014) and FASTP (Chen et al., 2018).

These tools have been shown to produce broadly similar data quality metrics (He et al.,

2020). In rare instances, severe issues with sequencing may indicate that resequencing

the Hi-C library is necessary.

2.5.2 Read Mapping

Following pre-processing, reads are mapped to the relevant species’ reference genome,

ideally the most recent version. Although Hi-C data is paired-end, they should not

be treated as such. Conventional paired-end read mappers assume that read pairs
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Figure 2-8: The Hi-C Workflow a) Cross-linking of proximally interacting DNA. b)
Restriction-digestion of chromatin into a library of ligated fragments. c) Each fragment
of a ligated pair is sequenced via pair-end sequencing. d) Sequences are mapped inde-
pendently to the genome, and artefactual interactions are removed. e) An interaction
matrix is built by considering each valid mapping as a valid chromatin interaction.
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originate from the same genomic fragment within the distance of a standard insert

and are convergently oriented. However, a valid Hi-C fragment is chimeric; the two

ligated fragments may feasibly originate from any two positions in the genome, and

their relative orientations will be random. As such, it is necessary to map each read

independently. Mapping is further complicated because the ligation junction of the

fragment may be sequenced, resulting in chimeric reads. The proportion of chimeric

reads may be as higher as 20% (Rao et al., 2014) and increases with more frequency

base cutters (e.g. MboI), longer read lengths and smaller fragment sizes (Ay and Noble,

2015). Chimeric reads cannot be reliably mapped to the genome, and several mapping

techniques exist to deal with them.

Iterative Mapping

The iterative mapping approach, implemented by Hiclib (Imakaev et al., 2012), involves

progressively mapping more extended portions of the 5’ end of each read until a unique

mapping is found. This approach does not assume the position of the ligation junction

and should identify a unique mapping if one can be found. The primary limitation of

this approach is the significant additional computational resources required to perform

repeated mappings of the data.

Read Truncation

The ligation of restriction-digested fragments produces a signature ligation junction

unique to each restriction enzyme. For example, the 4-base cutter MboI cuts at ĜATC

and produces the ligation junction sequence GATCGATC. The read truncation method

identifies reads containing the ligation junction sequence by exact matching. Each read

is scanned for a ligation sequence, and exact matches are truncated to remove the 3’

chimaera prior to mapping. This one-step approach is implemented by HiCUP (Wingett

et al., 2015). HiC-Pro (Servant et al., 2015) implements a modified two-step approach.

Instead of performing a ligation sequence search and truncation of all reads prior to

mapping, reads are first mapped to the reference genome. Ligation sequence detection

and truncation are performed on the unmapped reads before resubmitting these for

mapping. A limitation is that partial ligation sequences at the 3’ end of reads will not

be truncated, potentially leading to misalignment. Although partial ligation sequences

may be trimmed if they occur at the 3’ end of the read, this will increase the chance of

removing a valid sequence. An advantage of these approaches, particularly the one-step
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approach, is that read truncation requires significantly fewer computational resources

than iterative mapping. In addition to being much faster, they have also been shown

to perform similarly (Servant et al., 2015) or even outperform (Lun and Smyth, 2015)

iterative mapping approaches.

Split Alignment using BWA

A more recent approach, adopted by the 4D Nucleome Project (Dekker et al., 2017),

utilises a split alignment strategy implemented by BWA-MEM (Li and Durbin, 2009).

The -5 option of BWA-MEM permits each read to be split into segments and for each

segment to align to different areas of the genome. The most 5’ segment of the read is

then returned as a primary alignment. This option is combined with the -S and -P

options to ensure each read is mapped independently. Finally, the -M option is used

to mark non-primary reads as secondary rather than supplementary; this facilitates

compatibility with downstream tools such as Picard MarkDuplicates This approach is

particularly appealing as it requires no additional pre-processing or post-processing,

which can impact computational requirements. Problematically, BWA-MEM is not

compatible with common approaches of allele-specific Hi-C . Tools such as SNPsplit

(Krueger and Andrews, 2016) require reads to be mapped to genomes masked at sites

of phased variants to prevent reference bias during mapping. However, BWA-MEM

does not permit N bases during mapping; it instead replaces them with a random base

during indexing. As such, it is not compatible with current methods of allelic sorting.

2.5.3 Remove PCR Duplicates

Following mapping, it is standard practice to remove duplicates, retaining one copy of

each read pair. Since Hi-C utilises an unbiased sampling approach of chromatin inter-

actions, the number of possible unique interactions is vast. A 4-base cutter restriction

enzyme, such as MboI, can produce over 7.2 million distinct fragments in the human

genome, with 52 trillion possible unique pairwise interactions. As such, a typical Hi-C

library will under-represent the true complexity of the data, and it is improbable that

the same interaction will be sampled more than once. Therefore it is reasonable to as-

sume that most observed duplications are artefacts of PCR. This assumption has been

experimented validated by ligating barcode sequences to Hi-C libraries prior to PCR

amplification. The overwhelming majority of duplicates were found to have identical

barcode sequences, indicating they originated from the same molecule (Wingett et al.,
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2015).

2.5.4 Read Filtering

Following de-duplication, uninformative or invalid read pairs are identified and re-

moved. Each read is assigned to a single restriction fragment using a simulated re-

striction digest of the reference genome. Reads are usually assigned according to their

leftmost position; this avoids ambiguity if a read overlaps more than one fragment.

The leftmost position corresponds to the position furthest from the restriction cut site

(5’ for forward and 3’ for reverse reads) (Servant et al., 2015).

Same-fragment Read Pairs

All read pairs mapped to the same restriction fragment are considered uninformative

and are discarded. However, the relative orientation of same-fragment read pairs indi-

cates different issues in the experimental protocol. Inward-facing read pairs represent

unligated fragments, whereas outward-facing pairs indicate self-circularisation. Any

other orientations may indicate issues with the reference assembly (Belaghzal, Dekker

and Gibcus, 2017).

Unligated Fragments

Unligated products of partial digestion, so-called “dangling ends”, may also contami-

nate a Hi-C library. Such artefacts appear as inward-facing read pairs between neigh-

bouring restriction fragments but are otherwise indistinguishable from valid Hi-C in-

teractions. However, the relative orientations of valid Hi-C interactions should appear

in equal proportions. This contamination is characterised by a higher-than-expected

proportion of inward-facing read pairs among short-range interactions. Such contami-

nation is familiar to most Hi-C datasets (Belaghzal, Dekker and Gibcus, 2017) and is

removed by removing all inward-facing read pairs within the maximum expected insert

size of the library. This loss of valid interactions is reasonable when the magnitude

of observed contamination far outweighs the expected frequency of inward-facing read

pairs.
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Invalid Ditag Size

While the insert size of Hi-C read pair may span an entire chromosome, the original

ditag insert size can be estimated by summing the distances of each read to their

predicted ligation site. This distance should not exceed the maximum predicted insert

length of the library. If necessary, the maximum insert size can be experimentally

measured using a Bioanalyzer and is usually between 800 and 1500 bases. Any read

pairs exceeding this upper limit are probably mismapped and should also be excluded.

2.5.5 Binning

Finally, a Hi-C matrix (contact map) is built by binning the genome into constant-size

intervals (bins). The chosen bin size determines the resolution of the matrix and the

limit at which interactions can be observed. Smaller bin sizes enable smaller chromatin

structures to be observed at the cost of higher sparsity and lower signal-to-noise ratio.

Sparsity can be alleviated by higher sequencing depth, but the maximum resolution will

ultimately be determined by the digestion frequency of the chosen restriction enzyme.

There is currently no accepted approach for unambiguously selecting an appropriate

bin size. However, it has been suggested that an appropriate bin size is one where 80%

of bins contain at least 1000 contacts (Rao et al., 2014) According to this definition,

approximately 300 million valid Hi-C contacts would be required to achieve a 10Kb

resolution contact map of the human genome (Ay and Noble, 2015). Ultimately the

choice of bin size will also be determined by the biological question of interest and

the size of structures of interest. Small-scale structures, such as individual looping

interactions, require much higher resolution than larger structures such as TADs.

2.5.6 Bias Correction

The final stage of matrix construction involves the normalisation of contact frequencies

to correct for sources of bias. In the absence of bias, all regions of the genome should be

equally represented in the Hi-C library. However, differences in GC content, restriction

fragment length and mappability can cause some regions to be over-represented or

under-represented. Such biases can be fixed using either explicit or implicit methods.

Explicit methods, such as HiCNorm (Hu et al., 2012), use external data (e.g. GC-

content) to account for known sources of bias explicitly. In contrast, implicit methods

utilise matrix balancing to re-weight the contact frequency such that each bin is equally
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represented. Popular methods of matrix balancing include iterative correction (ICE)

(Imakaev et al., 2012) and the fast Knight Ruiz (KR) algorithm (Knight and Ruiz,

2013). Both explicit and implicit corrections have been shown to provide similar results

(Imakaev et al., 2012). However, explicit methods do not account for unknown sources

of bias and have been shown to incompletely remove bias in some datasets (Chandradoss

et al., 2020).

Between Sample Normalisation

The methods of normalisation discussed above were developed to correct for within-

sample bias. However, it has been argued that these methods cannot account for

bias between multiple Hi-C datasets (Stansfield et al., 2018). Joint-normalisation of

Hi-C datasets facilitates comparative analysis and identification of differential chro-

matin states between experimental conditions. Current approaches generally employ

locally weighted linear regression (LOESS) normalisation (Cleveland, 1979) to correct

between-dataset bias before attempting to identify statistically significant differential

interactions. Despite their high computational cost, LOESS methods are favoured be-

cause they enable the implicit removal of unknown bias. Indeed they are widely used

in other areas of genomic analysis, including ChIP-Seq (MAnorm) (Shao et al., 2012)

and RNA-Seq (edgeR) (Robinson, McCarthy and Smyth, 2009).

One such method is DiffHiC (Lun and Smyth, 2015), which employs a statistical frame-

work similar to that used by edgeR. Hi-C data is fit to an MA plot (Bland-Altman plot)

which represents the relationship between the log-fold change (M) and mean abundance

(A) between datasets. In the absence of bias, there should be no relationship between

the magnitude of change and the mean abundance. Any trended bias is removed via

LOESS normalisation. Significant differences between Hi-C conditions are identified

using a negative binomial generalised linear model (GLM) similar to that used by

edgeR.

An alternative approach, employed by HiCcompare (Stansfield et al., 2018), proposes

a novel method of joint normalisation. It represents Hi-C on an “MD” plot where

“M” represent the log-fold change and “D” represents the distance between interacting

regions. As with the MA plot, any trended bias, which reflects distant dependent

bias, is removed using LOESS normalisation. It is argued that the MD normalisation

method is superior since it incorporates distance-dependent properties unique to Hi-

C (Stansfield et al., 2018). Following normalisation, p-values are computed from the

Z-scores derived from chromosome-wide fold changes.
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Research has since lent support to the statistical framework of DiffHiC for modelling

Hi-C data (Stansfield et al., 2018). This framework has recently been incorporated

into multiHiCcompare. MultiHiCcompare combines the novel MD normalisation of

HiCcompare with the validated statistical framework of DiffHiC (Stansfield et al.,

2018). Both multiHiCcompare and DiffHiC perform similarly, although the distance-

dependent joint-normalisation method is claimed to be superior (Stansfield et al., 2018).

Despite the availability of these computational methods, the ability to reliably iden-

tify significant differential interactions will remain limited until highly replicated Hi-C

datasets become routinely available. In RNA-Seq, for example, at least 12 biolog-

ical replicates are required to detect the majority of significantly differentially ex-

pressed genes (Schurch et al., 2016). However, in the absence of statistical power,

joint-normalisation methods are still valuable to facilitate robust visual comparison of

chromatin interaction differences.

2.5.7 Downstream Analysis

Analysis of normalised contact matrices involves the identification and characterisa-

tion of genomic structures. These include genomic compartments, TADs and looping

interactions - each of these is discussed in further detail below.

Compartment Analysis

Early approaches assigned compartments based on the sign (positive or negative) of

the first component of Principal Component Analysis (PCA) (Lieberman-Aiden et al.,

2009). However, in addition to being computationally intensive, the PCA score itself

has no defined meaning besides determining the compartment assignment. A novel

approach, called CScoreTool (Zheng and Zheng, 2018), yields comparable results to

PCA approaches but is 30 times faster and much more memory efficient (Zheng and

Zheng, 2018). More importantly, the C-score is biologically interpretable and can be

compared between samples. Specifically, the score is proportional to the probabil-

ity that a given interval is an “A” compartment. For a given interval i the C-score,

Ci ⊂ [−1, 1], is defined such that that Ci = 2Pi − 1, where Pi is the probability that

interval i is in the “A” compartment. Although the C-score does not explicitly de-

fine sub-compartments, it is defined such that the higher absolute values correspond

with stronger compartmentalisation. Moreover, lower absolute scores can reflect inter-

mediate compartment states. A novel method, called CALDER, attempts to instead
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explicitly group intervals into defined sub-compartments (Liu et al., 2021). CALDER

characterises eight sub-compartments while still retaining the primary “A” / “B” def-

initions. Sub-compartments were shown to vary according to transcriptional activity,

and cell types of similar lineage clustered together.

A caveat of current methods of compartment analysis is that they assign compartment

labels arbitrarily. It is advisable to explicitly orient the compartment labels using

external genomic data such as gene density or GC content.

TAD Detection

Computational identification of TADs remains a crowded field with scores of competing

tools and alternate methods (Zufferey et al., 2018). All methods ultimately attempt

to identify the triangular domains of enriched contacts that characterise TADs in Hi-C

matrices. Early approaches identified domains by representing 2D matrices as a linear

directionality index (Dixon et al., 2012). The directionality index represents the up-

stream and downstream interaction frequency difference for a given genomic interval.

The index often switches signs at putative TAD boundaries, facilitating segmentation

and TAD calling using a Hidden Markov Model (HMM). More sophisticated methods

utilise 2D segmentation of Hi-C matrices and have applied hierarchical clustering or

network theory to identify TADs domains (Lévy-Leduc et al., 2014; Haddad, Vaillant

and Jost, 2017; Norton et al., 2018). Benchmarking of various TAD calling tools sug-

gests that modern algorithms are relatively consistent at reproducing non-hierarchical

TAD domains (Zufferey et al., 2018). However, even among the best tools, domain

identification was strongly dependent on the choice of matrix resolution (bin size). In-

consistency among bin sizes is likely due to hierarchical domain structures. Although

identification of hierarchical domains is arguably more biologically relevant, hierarchical

TAD callers were found to be less reproducible than non-hierarchical ones. Develop-

ment of hierarchical TAD callers continues with recent tools such as OnTAD (An et al.,

2019) and SuperTAD (Zhang, Wang and Li, 2021). Indeed, the abundance of methods

underlines our incomplete understanding of these chromatin structures. Hierarchical

TAD callers have the potential to yield greater biological insight than non-hierarchical

ones. However, no existing tool is considered optimal, and numerous improvements are

expected in the coming years. In the meantime, complementary methods should be

coupled with visual inspection to ensure a robust interpretation of results.
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Loop Detection

Single chromatin looping interactions are amongst the smallest structures observable

in Hi-C . However, a loop may only be distinguished by a few pixels on a Hi-C ma-

trix. Consequently, robust detection requires high-resolution and low-noise datasets to

identify loops against background interaction frequency. Most existing tools attempt

to identify loops by searching for enrichment in contact frequency at specific points

above some local background (Rao et al., 2014; Durand et al., 2016; Ramı́rez et al.,

2018). However, loop callers have poor reproducibility, even among technical replicates

(Forcato et al., 2017; Spill et al., 2019). It has also been argued that such approaches

are empirical and not reflective of underlying chromatin loops. “Loops” are simply de-

fined as points on a contact matrix without consideration of their biological relevance

or if they even represent true looping interactions (Salameh et al., 2020). A recent ap-

proach, called Peakachu, attempts to overcome this issue by performing loop detection

using supervised machine learning techniques (Salameh et al., 2020). Peakachu builds

a binary classification model using a positive training set of biologically validated loop-

ing interactions. These data may be obtained from various sources, including imaging

(HiFISH) or ChIA-PET / HiChIP experiments. A negative training set is also obtained

by providing a set of random positions stratified according to known looping sizes. The

model is trained to identify loops according to their similarity to biologically validated

looping interactions. In addition, Peakachu may be able to distinguish different types

of looping interaction according to the positive training set used. When trained on

CTCF ChIA-PET looping data, Peakachu identified more long-range interactions; this

is consistent with known characteristics of CTCF mediated looping (Phillips-Cremins

et al., 2013). In contrast, when trained on H3K27ac HiChIP data, Peakachu identified

more short-range interactions that are commonly associated with promoter-enhancer

looping (Schoenfelder and Fraser, 2019). Such findings indicate that distinct functional

sub-classes of looping interactions may exist and that these are distinguishable on a

contact matrix. As such, empirical “one size fits all” methods of loop detection are

likely insufficient to characterise loops accurately.
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2.6 Allele Specific Analysis

Conventional Hi-C yields haploid Hi-C maps. The ploidy of the studied organism

is ignored, and contact matrices represent an average of the homologous chromo-

somes. However, humans and many model organisms are diploid ; they inherit a

homologous copy of a chromosome from each parent. These are often referred to

as maternal or paternal chromosomes according to their parent of origin. Many

well-characterised parent-of-origin-specific effects, such as genomic imprinting or X-

inactivation, are thought to be maintained via allele-specific alterations in chromatin

structure. However, haploid Hi-C maps cannot distinguish such allele-specific differ-

ences. Indeed, contact maps as such loci will be observed as a superimposition of

two distinct allelic structures and may be particularly challenging to interpret and

potentially misleading. To properly understand allele-specific chromatin architecture,

diploid Hi-C maps must be built. Note that this section will focus specifically on diploid

genomes. Technological limitations in haplotype assembly and Hi-C limit the feasibility

of producing haplotype-resolved polyploidal Hi-C maps. Determination of haplotype

sequence, even in diploids, is non-trivial, and various approaches are introduced in

section 2.7 on page 67.

Alignment Strategies & Reference Bias

Once the haplotype is known, reads are mapped to the genome, and those overlapping

phased variants can be assigned to their parental genome according to the observed

variant. However, this is complicated because mapping to a reference genome is biased

at polymorphic sites. Reference genomes do not incorporate sequence polymorphisms,

and so reads are more likely to align if they match the reference allele (Degner et al.,

2009). Several strategies have been developed to eliminate reference bias. AlleleSeq

(Rozowsky et al., 2011) utilises a competitive mapping strategy whereby reads are

mapped to a diploid genome incorporating all polymorphisms. However, besides be-

ing computationally intensive, this approach does not eliminate mapping bias since

different alleles may have different “mappability”. Here “mappability” refers to the

probability of finding a unique alignment in the reference genome. It is influenced by

read length and the reference genome sequence composition. If one allelic sequence is

more mappable than the other, this bias could introduce an imbalance of allelic map-

ping. An alternative approach, utilised by SNPsplit, masks the reference genome at

polymorphic sites with the ambiguity base “N”, thus removing reference bias (Krueger
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and Andrews, 2016). Masking eliminates mappability bias associated with differing al-

lelic sequences since reads are mapped to a single masked reference, so allelic sequences

are not “competing” for the alignment. However, “N” masking will reduce overall

mappability as each base mapping over a variant will be identified as a mismatch. In

addition, an exceptionally high density of masked variants may prevent effective map-

ping to that region. The allelic assignment will generally improve with longer read

length as longer reads have higher mappability and are more likely to overlap at least

one variant.

2.6.1 Allelic Assignment

Following mapping, Hi-C read pairs overlapping phased variants can be assigned to a

parental genome as illustrated in fig. 2-9 on the following page. Reads pairs may map

in one of the following states:

1. Both-End Ambiguous (Discarded).

Neither read overlaps a phased variant.

2. Both-End Certain (Retained)

Both reads overlap a phased variant and correspond to the same parental allele.

3. One-End Ambiguous (Retained - “mate-rescue”)

Only one read overlaps a phased variant. The other read is assumed to map in

cis to the same parental allele.

4. Conflicting (Discarded)

Reads each overlap a phased variant corresponding to different parental alleles.

The “mate-rescue” strategy of retaining “One-End Ambiguous” read pairs relies on the

observation that the majority of intra-chromosomal read pairs represent cis interactions

within homologous chromosomes (Edge, Bafna and Bansal, 2017). This assumption is

critical since most retained read pairs will be considered “One-End Ambiguous”. For

example, the GM12878 cell line contains a heterozygous variant on average once per

1700 bp. In published GM12878 Hi-C experiments only ˜0.4% of read pairs were

“Both-End Certain” and ˜10% are “One-End Ambiguous” (Rao et al., 2014). A tiny

fraction of reads (˜0.02%) contained conflicting haplotype information. Though some

of these may be caused by errors in mapping or phasing, this also reflects the rarity of

trans interactions between homologous interactions. The remaining ˜90% “Both-End

Ambiguous” read pairs are discarded. All valid read pairs are split across the two
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parental alleles resulting in Hi-C matrices containing perhaps only ˜5% of data of the

original haploid matrices.

A proportion of true trans homologous interactions will be mislabelled as “One-End

Ambiguous” and consequently misclassified as cis interactions. This error should be

evenly distributed across both alleles, minimising bias when directly comparing parental

contact matrices. However, the impact of this remains unclear, and this approach is

not suitable for studying trans homologous interactions.

A

T

C

G

G

C

C

G

T

A

AGT G

A C G

N N N N N

Figure 2-9: Allelic Assignment Prior to alignment, sites of phased variants are
masked with the ambiguity base “N” to reference bias. Following alignment, Hi-C
read pairs may be assigned into one of four possible categories. Both-End Certain
(top-left) reads overlap a phased variant and correspond to the same parental allele.
One-End Ambiguous (top-right) - Only one read overlaps a phased variant. This group
is retained under the mate-rescue strategy, which assumes the other read map maps
to the same allele. Conflicting (bottom-left) - Reads each overlap a phased variant
corresponding to different parental alleles. These may be errors or true trans homol-
ogous interactions and are discarded. Both-End Ambiguous (bottom-right) -Neither
read overlaps a phased variant. These are generally considered non-informative and
are discarded, although some methods attempt to assign them probabilistically (Ye
and Ma, 2020).
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2.7 Haplotype Phasing

As described above, ASHi-C requires knowledge of the haplotype sequence. The Mouse

Genomes Project has characterised haplotypes for a wide variety of F1 hybrid strains,

and this resource is widely used in mouse ASHi-C studies (Keane et al., 2011; Rivera-

Mulia et al., 2018). F1 hybrid strains are a cross between two highly inbred mouse

strains. The hybrid will possess a heterozygous variant at each site of genetic difference

between the parental strains. Importantly, sufficiently inbred parental strains will be

primarily homozygous so that the haplotype sequence can be directly inferred from the

parental genome sequences.

Of course, hybrid strains or genetic inheritance studies are not readily available for

most organisms. Instead, haplotype sequences must be computationally inferred using

genomic sequencing data using a process known as haplotype assembly (see vreffig:intro-

phasing). In brief, if a mapped read sequence overlaps multiple heterozygous variants,

then alleles present in the read are assumed to originate from the same homologous

chromosome. These variants are then said to be phased - since we now know which

specific alleles co-localise on the same chromosome. This process can be extended

across the entire chromosome, with sufficient read coverage, until all variants can be

phased into a single contiguous block.

Proximity ligation methods, such as Hi-C , are particularly effective for generating

chromosome-spanning phased haplotypes (Selvaraj et al., 2013). Read pairs can have

a sizeable genomic span, allowing variants to be phased across much larger distances.

Numerous algorithms have been developed for haplotype assembly, including HapCUT

(Bansal and Bafna, 2008), RefHAP (Duitama et al., 2010) and HapCompass (Aguiar

and Istrail, 2012). However, these tools have inconsistent performance between differ-

ent experimental protocols, and only HapCUT is suitable for Hi-C data (Edge, Bafna

and Bansal, 2017). In contrast to the idealised example presented in fig. 2-10 on the

next page, sequencing errors and other protocol-specific issues can introduce uncer-

tainty when searching for the actual haplotype sequence. For example, in Hi-C , trans

interactions between homologous chromosomes can cause incorrect phasing if not ad-

equately corrected. A more recent approach, HapCUT2, precisely models the unique

properties of Hi-C data to facilitate efficient haplotype assembly (Edge, Bafna and

Bansal, 2017). Specifically, HapCUT2 implements a maximum likelihood approach to

identify the most likely phasing solution given the observed data.
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Figure 2-10: Haplotype Assembly Reconstruction of the haplotype sequence relies
on the assumption that most read pairs align in cis. If a read overlaps multiple poly-
morphic sites (e.g. a pair of Single Nucleotide Polymorphisms (SNPs)), then those
variants can be phased. SNP variants are assigned to either the red or blue haplotype
according to the sets of reads overlapping them. The G-A read pair (top) overlaps
two SNPs - G/C and A/T. The G allele of G/C and the A allele of A/T occur on
the same read pair, so these alleles are assumed to be on the same chromosome (red).
This process is extended chromosome-wide to build a single contiguous block of phased
variants.

68



Chapter 3

Methods

3.1 Public Datasets

3.1.1 Hi-C Data

This work utilises four publicly available Hi-C datasets for the testing and development

of HiCFlow and for analysing allele-specific genome-wide chromatin conformation in

humans. All public data was downloaded from the 4D Nucleome Project (Dekker et al.,

2017).

Drosophila melanogaster

A Drosophila melanogaster Hi-C dataset was selected for testing and development of

HiCFlow (see table 3.1 on the following page) (Wang et al., 2018a). The dataset was

selected due to its small size, which facilitates rapid reprocessing during development.

The experimental design includes two experimental conditions (G1/S Arrested and

Asynchronous), each with two replicates. It is thus well suited for testing the primary

functionality of HiCFlow; this includes quality control measures and reproducibility

assessments as well as intra-sample and inter-sample analysis. The data were subset to

a small region on chr3L (chr3L:5,500,000-6,000,000), corresponding to a locus studied

in the original publication. Notably, the subset data is sufficiently small to facilitate

rapid reprocessing (< 1 hour) on a typical computer. This is necessary to ensure that

the development of the workflow is not substantially hindered by long reprocessing

times. The data is also small enough to be packaged with the HiCFlow installation as
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an example data set. It is primarily intended to help users quickly explore the main

functionality of HiCFlow prior to analysing a full-size dataset.

Table 3.1: HiCFlow Example Dataset (D. melanogaster)

Sample Accession Bio. Rep Tech. Rep Restriction Reads / 106

G1 SRX2997986 1 1 DpnII 695.3
G1 SRX2997987 2 1 DpnII 253.3
Async SRX2997988 1 1 DpnII 367.2
Async SRX2997989 2 1 DpnII 161.6

Total 1477.4

Note: HiCFlow is packaged with a small D. melanogaster Hi-C data for testing and
example analysis. Hi-C data was subset to a small genomic region (chr3L:5.5Mb -
6.0Mb) for testing and to illustrate HiCFlow functionality. The small size (437MB)
facilitates rapid analysis and enables the dataset to be packaged with the HiCFlow
installation. Source: Wang et al., 2018a.

Human GM12878

The “gold-standard” Human GM12878 (GM12878) dataset was used during HiCFlow

validation to validate the observed output of the workflow (see table 3.2 on the next

page) (Rao et al., 2014). This dataset was also used as part of the genome-wide allele-

specific analysis described in chapter 5 on page 126. GM12878 is a well-characterised

lymphoblastoid cell line, and this particular Hi-C dataset is available for visualisation

on the UCSC genome browser. Notably, genetic inheritance studies have validated the

haplotype of GM12878. The cell line originates from individual NA12878, whose family

pedigree (CEPH 1463) was comprehensively studied as part of the Platinum Genomes

Project (Eberle et al., 2017). To reduce computational resources, initial testing was

conducted on a subset of the entire dataset aligning to chromosomes 11 and 22. Chro-

mosome 11 was selected as it contains the imprinted H19 /IGF2 locus, whose allelic

chromatin conformation has been well validated by Chromosome Conformation Cap-

ture (3C) studies (see fig. 1-2 on page 20) (Reik and Murrell, 2000; Nativio et al., 2011).

Although allele-specific chromatin structure in Hi-C has not been widely studied, Rao

et al., 2014 have detected alternative looping at this locus in this dataset. Specifically

the authors characterise alternative looping at the respective H19 and IGF2 promoters

with a distal locus - the H19/IGF2 Distal Anchor Domain (HIDAD) region. As such,

this locus serves as an effective positive control for the allele-specific analysis and the de

novo haplotype assembly components of the workflow. Chromosome 22, on the other

hand, was selected for its small size and relatively fast reprocessing time.
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Table 3.2: GM12878 Hi-C Data

Accession Bio. Rep Tech. Rep Restriction Reads / 106

4DNEXC8P1KZ6 1 1 MboI 1.18
4DNEX54HU8XJ 1 1 MboI 486.85
4DNEX5LRCIOK 1 2 MboI 160.65
4DNEXNSJLJUS 1 3 MboI 304.04
4DNEXHU7XZ7R 1 4 MboI 153.77
4DNEXGT6EKP6 1 5 MboI 182.89
4DNEXPEYBGGZ 1 6 MboI 212.10
4DNEX456IBLL 1 7 MboI 117.63
4DNEXC6G8UBB 1 8 MboI 55.81
4DNEX3Y75KYE 1 9 MboI 55.82
4DNEX1I1E292 1 10 MboI 194.22
4DNEXAP9J682 1 11 MboI 84.91
4DNEXLHGDM32 1 12 MboI 309.98
4DNEX6YCN9YB 1 13 MboI 174.11
4DNEX8IGST7K 1 14 MboI 186.17
4DNEXYZQHUM3 1 15 MboI 155.72
4DNEXI9XV73W 1 16 MboI 131.17
4DNEX61JT6V1 2 1 MboI 178.30
4DNEXNEX9DN1 3 1 MboI 348.39
4DNEX3UQJRK9 3 2 MboI 322.20
4DNEXONPRHBY 4 1 MboI 111.66
4DNEXWOIPF4F 5 1 MboI 347.96
4DNEXEJM8STO 5 2 MboI 356.96
4DNEXLEMVRUN 6 1 MboI 328.20
4DNEXQLJSIIN 7 1 MboI 74.17
4DNEXS8V14UB 7 2 MboI 165.95
4DNEX5D543VH 8 1 MboI 97.52
4DNEXVRTTDA4 9 1 MboI 107.26

Total 5405.59

Source: Rao et al., 2014
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Human H1 Human Embryonic Stem Cell Line (H1-hESC)

Published Hi-C data for H1-hESC was obtained from Akgol Oksuz et al., 2021 and is

described in table 3.3.

Table 3.3: H1-hESC Hi-C Data

Accession Bio. Rep Tech. Rep Restriction Reads / 106

4DNEXSZZEHXT 1 1 HindIII 381.91
4DNEXPENVNQD 1 1 DpnII 382.88
4DNEXYTD5A9M 1 1 DdeI 378.95
4DNEXW32FN59 1 1 DpnII 371.93
4DNEXCX13ZF9 1 1 DpnII 234.81
4DNEXZEUZJH7 1 2 DpnII 373.38
4DNEXSUMVBKJ 2 1 DpnII 367.34
4DNEXGYGE5BH 1 1 DdeI 356.61
4DNEX83C4KR6 1 1 HindIII 374.07
4DNEXRAUHVDK 1 1 DdeI 353.53
4DNEXNQBY5YS 1 1 DpnII 3276.27
4DNEXUBKKN5P 2 2 DpnII 3206.92
4DNEXP6V97PN 1 1 HindIII 383.12

Total 10 441.72

Source: Krietenstein et al., 2020; Akgol Oksuz et al., 2021

Human Institute for Medical Research-90 (IMR90)

Published Hi-C data for IMR90 was obtained from Rao et al., 2014 and is described in

table 3.4.

Table 3.4: IMR90 Hi-C Data

Accession Bio. Rep Tech. Rep Restriction Reads / 106

4DNEXLU8GQFA 1 1 MboI 252.73
4DNEXODC6CI1 1 2 MboI 276.81
4DNEXBIIOU3P 1 3 MboI 26.45
4DNEXQO7VT6S 1 4 MboI 117.80
4DNEXR2HZ74S 1 5 MboI 240.44
4DNEX99DWGVL 2 1 MboI 289.37
4DNEXC4DJ6WB 2 2 MboI 331.63

Total 1535.23

Source: Rao et al., 2014
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3.1.2 Human CCCTC-Binding Factor (CTCF) Data

Cell line specific CTCF tracks were included for each visualisation (see table 3.5).

Table 3.5: CTCF Data

Dataset GEO Accession Filename

GM12878 GSM749704 wgEncodeUwTfbsGm12878CtcfStdRawRep1
IMR90 GSM935404 wgEncodeSydhTfbsImr90CtcfbIggrabSig
H1-hESC GSM733672 wgEncodeBroadHistoneH1hescCtcfStdSig

Note: Data were obtained as BigWig files (GRCh37) (Consortium et al., 2012).

3.1.3 Chromatin State Data

Chromatin states, specific to each cell line, were obtained from the Roadmap Epige-

nomics Project (Kundaje et al., 2015) (see table 3.6 on the next page). In summary, a

15-state chromatin state model was built using ChromHMM based on five epigenetic

marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3 and H3K9me) (Ernst and Kellis,

2012).

3.1.4 Reference Gene List

Gencode Release 38, build GRCh37 (Gencode38) was selected as the reference human

gene annotation for this analysis (Frankish et al., 2019). Gene name identifiers are

inconsistent across the research community, and a single gene may be associated with

multiple names or symbols. As such, all gene identifiers were converted to their asso-

ciated Ensembl ID in Gencode38 for this analysis. Ambiguous or unknown mappings

were discarded; this ensures results associated with different sources are comparable

and unambiguous.

3.1.5 ASEG Gene List

Allele specific expression gene (ASEG) data for GM12878 was downloaded from Work-

man et al., 2019 as a list of 3592 Ensembl gene IDs which were found to contain at

least two haplotype informative variants. Genes were also filtered to retain only those

with allele-specific expression bias (paternal or maternal) (n = 482). The filtered gene
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Table 3.6: Chromatin State Data

State # Mnemonic Description

1 TssA Active TSS
2 TssAFlnk Flanking Active TSS
3 TxFlnk Transcription at Gene 5 and 3
4 Tx Strong Transcription
5 TxWk Weak Transcription
6 EnhG Genic Enhancers
7 Enh Enhancers
8 ZNF/Rpts ZNF Genes & Repeats
9 Het Heterochromatin
10 TssBiv Bivalent Poised TSS
11 BivFlnk Flanking Bivalent TSS Enh
12 EnhBiv Bivalent Enhancer
13 ReprPC Repressed PolyComb
14 ReprPCWk Weak Repressed PolyComb
15 Quies Quiescent Low

Note: For each of the studied cell lines, data was obtained from the Roadmap
Epigenomics Project (Kundaje et al., 2015). 15 states were imputed based on 5
epigenetic marks using chromHMM (Ernst and Kellis, 2012). Table adapted from
https://egg2.wustl.edu/roadmap/web_portal/imputed.html.

list was merged with Ensembl IDs from Gencode38. ASEG data for IMR90 and H1-

hESC were obtained from the Allele-Specific DNA Methylation Database (ASMdb)

(Kundaje et al., 2015). Genes were downloaded as a list of gene symbols, which were

subsequently mapped back to their associated Ensembl ID in Gencode38. Several genes

had ambiguous or unknown Ensembl ID mappings; these were excluded from the final

datasets (see table 3.7).

Table 3.7: Allele Specific Gene Expression Data

Dataset Total Retained Source SNP source

GM12878 482 480 (Workman et al., 2019) NA
IMR90 455 409 GSM438363 GSM432687
H1-hESC 2703 2398 GSM438361 GSM432685

Note: Allele specific gene expression data data were obtained from the Allele-Specific
DNA Methylation Database (Kundaje et al., 2015). Gene symbols were mapped to
Gencode Release 38, build GRCh37 by their Ensembl ID. Invalid or ambiguous
mappings were excluded.
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Table 3.8: Gene Type Distribution of ASEGs

GM12878 H1-hESC IMR90

Type n % n % n %

Protein Coding 428 94.7 2240 94.2 373 94.2
lncRNA 16 3.5 101 4.2 17 4.3
Processed Pseudogene 1 0.2 7 0.3 1 0.3
miRNA 0 0.0 13 0.5 3 0.8
snRNA 0 0.0 0 0.0 0 0.0
Other 7 1.5 17 0.7 2 0.5

Total 452 100.0 2378 100.0 396 100.0

Note: Gene types distribution of ASEGs in GM12878, H1-hESC and IMR90. During
randomisation testing, selection was stratified by gene type to account for imbalances
in the relative proportions of gene types between the reference gene set and the ASE
gene set. Source: (Workman et al., 2019; Kundaje et al., 2015)

3.1.6 Imprinted Gene List

Known human imprinted genes were obtained from https://www.geneimprint.com

as a list of Gene Symbols. Genes were mapped back to their associated Ensembl ID in

Gencode38 (Frankish et al., 2019) and ambiguous gene symbols were manually curated

where possible. Of the 128 genes, 13 were removed due to ambiguity. A complete list

of the 115 imprinted genes used for subsequent analysis is provided in supplementary

table 8.1 on page 232.

Table 3.9: Gene Type Distribution of Imprinted Genes

Imprinted

Type n %

Protein Coding 88 76.5
lncRNA 15 13.0
Processed Pseudogene 1 0.9
miRNA 2 1.7
snRNA 1 0.9
Other 8 7.0

Total 115 100.0

Note: Gene types distribution of imprinted genes. During randomisation testing,
selection was stratified by gene type to account for imbalances in the relative
proportions of gene types between the reference gene set and the imprinted gene set.
Source: https://www.geneimprint.com
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3.1.7 eQTL Data

Data relating to expression quantitative trait loci (eQTL) and eQTL-linked genes for

GM12878 was obtained from the Genotype-Tissue Expression study (GTEx) (GTEx

Analysis V8 (dbGaP Accession phs000424.v8.p2)) (Aguet et al., 2017). A q-value

threshold of 0.01 was applied to identify “eGenes”, whose expression is significantly

associated with an eQTL.

Table 3.10: Gene Type Distribution of eGenes

GM12878

Type n %

Protein Coding 2046 67.7
lncRNA 585 19.4
Processed Pseudogene 96 3.2
miRNA 0 0.0
snRNA 2 0.1
Other 291 9.6

Total 3020 100.0

Note: Gene types distribution of eGenes in GM12878. During randomisation testing,
selection was stratified by gene type to account for imbalances in the relative
proportions of gene types between the reference gene set and the eGene gene set.
Source: GTEx (GTEx Analysis V8 (dbGaP Accession phs000424.v8.p2)) (Aguet
et al., 2017)

3.1.8 ASM Data

Cell line specific allele specific methylation (ASM) data was obtained from the ASMdb

(see table 3.11 on the facing page) (Zhou et al., 2022). Genome coordinates were

converted to GRCh38, from GRCh37, using CrossMap (v0.5.2) (Zhao et al., 2014).

3.1.9 Whole Genome Bisulphite Sequencing Data

Data corresponding to CpG methylation in ENCODE3 bed bedMethyl format, were

obtained from ENCODE (GM12878: ENCSR890UQO, IMR90: ENCSR888FON, H1-

hESC: ENCSR617FKV) (Zhang et al., 2020).
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Table 3.11: Allele Specific Methylation Data

Cell line ASM sites ASM in CpG Source Source size (Gbp)

GM12878 112 910 865 GSM1002650 120.4
IMR90 13 496 2355 GSM2210597 70.7
H1-hESC 126 023 656 GSM1002649 127.9

Note: Allele specific methylation data were obtained from the Allele-Specific DNA
Methylation Database. Where multiple DNA Methyl Whole Genome Bisulfite Seq
source datasets were available, the highest coverage one was selected.) (Consortium
et al., 2012; Kacmarczyk et al., 2018).
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3.2 Compute Environments

3.2.1 Local Computing Environment

The Hi-C analysis workflow (HiCFlow) and polymer simulation workflow (HiCSim)

were both built and tested using the Ubuntu 18.04.6 LTS (Bionic Beaver) operating

system. The system specifications were as follows: Processor - Intel R©Corei7-8750H

CPU @ 2.20GHz 12, Memory - 15.4GiB, Graphics - GeForce GTX 1060 with Max-Q

Design/PCIe/SSE2, OS-Type - 64-bit, Desk - 124.3GB. Note that a dedicated graphics

processing unit (GPU) is not required to run either workflow. Both workflows were built

using Snakemake (v7.3.1), a Python-based workflow management system compatible

with all major Unix-based operating systems (Köster and Rahmann, 2012). HiCFlow

and HiCSim are similarly compatible on all major Unix-based operating systems, in-

cluding macOS. However, the pipelines are not compatible with Windows operating

systems. Although a typical desktop system should be sufficient to process the exam-

ple Hi-C datasets, most will have inadequate specifications to process real-world Hi-C

data. It is recommended that systems should have at least 5TB of storage and 64GB of

RAM before processing a typical human dataset at 10kilobase (Kb) resolution. Often

this may necessitate using a high-performance computing (HPC) cluster as described

in section 3.2.2.

3.2.2 High Performance Computing (HPC) Environments

Bulk Hi-C analysis and full-scale simulations were conducted on the University of Bath’s

HPC cluster - “Balena”. Balena has 196 compute nodes (Intel R©Xeon R©Processor E5-

2650 v2 CPU @ 2.6GHz x 8) with a minimum 64GB RAM per node and a total storage

space of 568TB. Balena utilises the Slurm Workload Manager, which Snakemake sup-

ports via Snakemake-Profiles available at github.com/Snakemake-Profiles (Köster

and Rahmann, 2012). Snakemake is compatible with many HPC cluster setups, in-

cluding Slurm, IBM Spectrum LSF and Oracle Grid Engine (Köster and Rahmann,

2012).
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3.3 HiCFlow

The first key output of this work is a novel bioinformatics workflow called HiCFlow.

HiCFlow is an automated workflow for processing Hi-C data to publication-ready vi-

sualisations. It includes functionality for a typical Hi-C analysis in addition to Allele

Specific Hi-C (ASHi-C) and comparative analysis between two or more samples. A

complete description of the HiCFlow Method is documented as a separate chapter

in chapter 4 on page 88. Below is a brief overview of the technical specifications of

HiCFlow.

3.3.1 Implementation

HiCFlow integrates a combination of publicly available tools as well as custom-built

software written using Python (v3.7) The workflow can be divided into three sub-

workflows; pre-processing, downstream analysis and haplotype assembly. The pre-

processing workflow encompasses the processing of raw reads to uncorrected Hi-C

contact matrices (see table 3.12 on the next page for technical specifications). The

downstream analysis workflow encompasses feature detection (e.g. Topological Associ-

ated Domains (TADs), compartments and loops) as-well the processing of uncorrected

Hi-C contact matrices to annotated visualisations (see table 3.13 on the following page).

The haplotype assembly workflow encompasses the processing of de-duplicated, aligned

reads to high-quality phased variants; this can serve as input for HiCFlow ASHi-C

analysis (see table 3.14 on page 81). Throughout the workflow, HiCFlow also utilises

a variety of quality control (QC) tools; these are described in table 3.15 on page 81.

3.3.2 Code Availability

HiCFlow (v1.1.0) is archived and freely available at github.com/StephenRicher/

HiCFlow/. The repository contains all necessary scripts, software environment con-

figurations and example data to run HiCFlow.
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Table 3.12: HiCFlow Pre-processing Methods

Analysis Step Tool Version Reference

Adapter Removal Cutadapt 3.5 Martin, 2011
*Filter Variants BCFtools 1.10.2 Li, 2011
*Mask Reference Genome BEDtools 2.29.2 Quinlan and Hall, 2010
Read Truncation HiCUP 0.7.4 Wingett et al., 2015
Build Reference Index Bowtie2 2.4.4 Langmead and Salzberg, 2012
Map Reads to Reference Bowtie2 2.4.4 Langmead and Salzberg, 2012
SAM/BAM Manipulation SAMtools 1.10 Li et al., 2009
Remove PCR Duplicates Samblaster 0.1.26 Faust and Hall, 2014
*Allelic Assignment SNPsplit 0.5.0 Krueger and Andrews, 2016
Build Contact Matrix HiCExplorer 3.7.1 Ramı́rez et al., 2018

Note: Bioinformatic tools utilised by HiCFlow during the “pre-processing” stage.
This stage encompasses the processing of raw reads to uncorrected Hi-C contact
matrices. * Steps used specifically for the allele-specific Hi-C workflow.

Table 3.13: HiCFlow Downstream Methods

Analysis Step Tool Version Reference

Hi-C Matrix Manipulation HiCExplorer 3.7.1 Ramı́rez et al., 2018
Matrix Normalisation (KR) HiCExplorer 3.7.1 Ramı́rez et al., 2018
Compartment Analysis CScoreTool 1.1 Zheng and Zheng, 2018
TAD Insulation HiCExplorer 3.7.1 Ramı́rez et al., 2018
TAD Detection OnTAD 1.2 An et al., 2019
Loop Detection HiCExplorer 3.7.1 Ramı́rez et al., 2018
*Joint Normalisation HiCcompare 1.6.0 Stansfield et al., 2018
Visualisation pyGenomeTracks 3.7 Lopez-Delisle et al., 2021

Note: Bioinformatic tools utilised by HiCFlow during the “downstream” stage. This
stage encompasses feature detection and the processing of uncorrected Hi-C contact
matrices to annotated visualisations. * Steps are used for comparative of analysis of
two or more Hi-C samples.
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Table 3.14: HiCFlow Haplotype Assembly

Analysis Step Tool Version Reference

SAM/BAM Manipulation SAMtools 1.10 Li et al., 2009
Build Reference Index SAMtools 1.10 Li et al., 2009
Create Reference Dictionary Picard 2.26.4 Broad Institute, 2018
Variant Calling GATK 4.2.4.1 Van der Auwera et al., 2013
Haplotype Assembly HapCUT2 1.3.2 Edge, Bafna and Bansal, 2017
VCF Manipulation BCFtools 1.10.2 Li, 2011

Note: Bioinformatic tools utilised by HiCFlow during the haplotype assembly stage.
This stage encompasses the processing of de-duplicated, aligned reads to high-quality
phased variants. The output VCF file is compatible as input for the allele-specific
Hi-C component of HiCFlow.

Table 3.15: HiCFlow Quality Control

Quality Control Step Tool Version Reference

NGS Sequence Quality FastQC 0.11.9 Anders, 2010
Species Contamination FastQ Screen 0.5.2 Wingett and Andrews, 2018
Mapping Statistics Bowtie2 2.4.4 Langmead and Salzberg, 2012
Duplication Statistics Samblaster 0.1.26 Faust and Hall, 2014
Hi-C Artefacts HiCExplorer 3.7.1 Ramı́rez et al., 2018
*Hi-C Reproducibility HiCRep 1.10.0 Yang et al., 2017
QC Report Aggregation MultiQC 1.12 Ewels et al., 2016

Note: Bioinformatic tools utilised by HiCFlow for Quality Control (QC). All QC
reports (except HiCRep) are aggregated into a single report using MultiQC. * steps
are used during comparative of analysis of two or more Hi-C samples.
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3.4 Genome-wide Allele Specific Hi-C

All Hi-C analysis was performed using the HiCFlow workflow as described in chapter 4

on page 88. In brief, raw reads were aligned to the hg19 human reference genome and

binned to a resolution of 10Kb and 20Kb. Compartment analysis and TAD calling was

performed as described in table 3.13 on page 80. All cell lines were processed with

identical configuration settings.

For ASHi-C, haplotype assembly was performed for IMR90 and H1-hESC using the

workflow described in section 4.7 on page 114. For GM12878, the phased variant

dataset, validated by haplotype inheritance, was downloaded from https://github.

com/Illumina/PlatinumGenomes (version 2016-1.0).

The differential TAD methodology of HiCFlow, described in section 4.6.4 on page 107,

was used to define a set of TAD domains with the highest allelic-difference. The set

of TAD domains obtained from the haploid Hi-C analysis at 20Kb was used as the

reference domain set for each cell line. Each TAD was scored and domains with a

differential TAD Z-score ≥ 2 were classified as Allele Specific Topological Associated

Domains (ASTADs). The set of ASTADs were then used to test for enrichment of

various genomic annotations relative to the superset of all TAD domains for each cell

line. Enrichment analysis is described in detail in the following sections.

3.4.1 Visualisation

All visualisations were generated by HiCFlow, as described in section 4.6.2 on page 105

and section 4.6.7 on page 111. For each genomic region, haploid Hi-C matrices (un-

phased) were visualised at 10Kb following Knight Ruiz (KR) normalisation. Subtrac-

tion matrices were visualised at 20Kb following the procedure described in section 4.6.3

on page 105. Gene tracks corresponding to Gencode38 were also included, and genes

were colour-coded according to their gene type. The gene type colour codes are as

follows: protein-coding , lncRNA , pseudogene , miRNA , Other .

3.4.2 Ploidy Estimation

Ploidy estimation was performed using nQuire (version d508fd2) to confirm that the

input datasets were karyotypically normal (diploid) cell lines (Weib et al., 2018). For

each cell line, mapped read data (BAM format) were randomly subsampled to file sizes
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of approximately 100GB to facilitate computational analysis. The tool was run pri-

marily with default settings with an increased stringency of minimum coverage (50);

this improves the reliability of base frequency estimates at biallelic sites. Data were

denoised (nQuire denoise) to minimise the impact of mapping errors and highly repet-

itive regions. Finally, estimation was performed on each chromosome independently,

and ploidy was determined according to the minimum delta log-likelihood score.

3.4.3 Copy Number Analysis

To perform Copy Number Variant (CNV) detection, for each cell line, mapped read

data (BAM format) was randomly subsampled to a reasonable filesize as described

previously in section 3.4.2 on the facing page. CNVs were called at a bin-size of 20Kb

using QDNAseq (v1.31.0) (Scheinin et al., 2014). Regions with non-normal CNV were

excluded from subsequent analysis to minimise artefacts.

3.4.4 Exclusion of Blacklist Regions

Genomic regions defined by the Encode Blacklist (hg19/GRCh37, version 3 (20 May

2020)), which include signal artefacts of low mappability or high signal, were also

excluded from downstream analysis (Amemiya, Kundaje and Boyle, 2019).

3.4.5 Sequence Polymorphism Enrichment

The Pearsons chi-squared test was used to assess whether heterozygous polymorphisms

were over-represented in ASTADs relative to homozygous polymorphisms. Two sets of

tests were performed for each cell line; one for Single Nucleotide Polymorphisms (SNPs)

and one for Insertion / Deletions (INDELs). In brief, the set of all polymorphisms over-

lapping TAD domains was assigned to one of four groups: (ASTAD - heterozygous),

(ASTAD - homozygous), (non-ASTAD - heterozygous) and (non-ASTAD - homozy-

gous). A 2x2 contingency table was built, and the chi-square statistic was computed

using SciPy (chi2 contingency) to test for independence of the observed frequencies

(Virtanen et al., 2020).
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3.4.6 Chromatin State Enrichment

The above chi-squared and randomisation enrichment methods require “two-state” ge-

nomic data (e.g. heterozygous vs homozygous or imprinted vs non-imprinted). For

genomic data defined only by genomic intervals, such as chromatin state data, Locus

Overlap Analysis (LOLA) was used to assess enrichment with ASTADs (Sheffield and

Bock, 2016).

Enrichment analysis was constrained to intervals corresponding to all TAD domains in

the specific cell line. This is necessary since ASTADs, by definition, cannot be detected

outside of a valid TAD interval. Chromatin domains were scored according to their

worst (max) rank across two independent measures - p-value and log-odds ratio.

In addition, LOLA was also used to assess ASTAD enrichment at genomic regions

with abnormal copy number (see section 3.4.3 on the previous page) and at cell-type

specific sites of ASM (see table 3.11 on page 77). CNV is known to introduce bias

when comparing Hi-C datasets from different samples, in particular between normal

and tumour samples (Rickman et al., 2012). Although HiCcompare implicitly corrects

for CNV-driven biases via joint loess normalisation, the impact of CNVs on allele-

specific comparisons is not well characterised (Stansfield et al., 2018). Although most

CNVs will be internally controlled for within-sample comparison, allele-specific CNVs

may confound interpretation and are challenging to distinguish from bi-allelic CNVs

(Wang et al., 2015).

3.4.7 Gene Enrichment

Randomisation testing was performed to assess whether specific gene categories were

over-represented in ASTADs. Two categories of gene type were assessed; imprinted

genes and ASEGs. The observed number of specific genes (e.g. imprinted) overlapping

ASTADs was compared against an expected null distribution of randomly selected

genes. An equivalent number of genes was randomly sampled from a reference gene set

comprising all genes overlapping TAD domains. In total, 10,000 random samples were

taken. For each sample, the total number of observed genes overlapping an ASTAD

was counted to build a null distribution of expected ASTAD overlap. Overlap was

determined using a single base coordinate represented by the transcription start site

for each gene. Representing a gene by a single coordinate prevents bias associated

with gene length, whereby longer genes are more likely to overlap an ASTAD. Random

gene selection was stratified by gene type to account for imbalances in the relative
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proportions of gene types between the reference gene set and the gene set of interest

(see table 3.8 on page 75 and table 3.9 on page 75). Significance was determined by

computing a Z-score, corresponding to the number of standard deviations the observed

value was above the mean of the null distribution. Observed values where Z ' 2.33

(alpha = 0.01) were deemed significantly enriched relative to the null distribution.

3.4.8 eQTL Enrichment

The Pearsons chi-squared test was used to assess whether heterozygous eQTL vari-

ants were over-represented in ASTADs relative to non-eQTL heterozygous variants.

The set of all heterozyous variants overlapping TAD domains was assigned to one

of four groups: (ASTAD/eQTL, ASTAD/non-eQTL, non-ASTAD/eQTL and non-

ASTAD/non-eQTL). A 2x2 contingency table was built, and the chi-square statistic

was computed using SciPy (chi2 contingency) to test for independence of the observed

frequencies (Virtanen et al., 2020).

Finally, the same aforementioned procedure was also used to assess whether eQTLs

associated with allele specific expression (ASE) genes were over-represented in AS-

TADs compared to eQTLs associated with non-ASE genes. The set of eQTLs vari-

ants overlapping TAD domain was filtered to identify only heterozygous eQTLs with

ASE informative associated genes. Each eQTL was assigned to one of four groups:

(ASEG/ASTAD, ASEG/non-ASTAD, non-ASEG/TAD and non-ASEG/TAD). A ma-

jority of eQTLs (2,479,766 (97.9%)) were excluded from the analysis as their associ-

ated gene had not been tested for ASE. The same procedure was also applied to assess

whether eQTLs associated with eGenes were over-represented in ASTADs.

3.4.9 Identification of Conserved ASTADs

Overlap analysis was performed to identify ASTAD intervals that were conserved be-

tween cell lines. Conserved ASTADs were defined as sets of ASTAD intervals, between

cell lines, with at least a 90% reciprocal overlap. A 10% difference in overlap allows

for a slight error in domain positioning due to loss of resolution during matrix binning.

For a bin size of 20Kb, a 10% difference equates to a shift of approximately one bin

length for a median size domain interval. Reciprocal interval overlap was calculated

using BedTools (v2.29.2) (Quinlan and Hall, 2010).

Permutation testing was performed to assess whether the observed number of conserved
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shared overlap (a2 - b1)

a1 b1 a2 b2

Figure 3-1: Reciprocal Overlap Analysis. Loss of resolution during matrix binning
can blur TAD boundaries, such that the intervals of conserved TADs are not identical.
As such, TADs were defined as identical if the size of their shared overlap (a2 - b1) was
at least 90% of each domain ((a2 - a1) and (b2 - b1)).
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ASTAD domains between the three cell lines was higher than expected. Specifically,

the observed number of conserved ASTADs was compared against an expected null

distribution of randomly selected TADs. Briefly, TADs were randomly sampled from

the set of all TADs. For each cell line, the number of sampled TADs was matched to

the number of ASTADs detected in that cell line. In total, 10,000 random samples were

taken and, for each sample, the total number of conserved TADs were counted to build

a null distribution of expected ASTAD conservation. Significance was determined by

computing a Z-score, corresponding to the number of standard deviations the observed

value was above the mean of the null distribution. Observed values where Z ' 2.33

(alpha = 0.01) were deemed significantly higher than expected relative to the null

distribution.

Permutation testing was similarly performed to assess whether conserved ASTADs

displayed significantly highly polymorphism identity compared to conserved TADs.

Identical heterozygous polymorphisms, present in all three cell lines, were identified

using BCFtools (v1.15) (bcftools isec) (Li et al., 2009). The observed number

of identical polymorphism overlapping conserved ASTADs was compared against an

expected null distribution derived from shuffled genomic intervals using the Jaccard

Index. In brief, the conserved ASTAD intervals were shuffled to generate a random

set of non-overlapping, equally sized intervals. Shuffling was stratified by chromosome

and restricted to the set of genomic intervals corresponding to conserved TADs. In

total, 10,000 random samples were taken, and for each sample, the Jaccard index was

to build a null distribution of expected overlap. An exact p-value was calculated by

counting the number of tests with an equal or higher Jaccard index than the observed

value, divided by the total number of tests (n = 10,000). Permutation testing was also

similarly performed to assess enrichment of ASM within conserved ASTADs.

3.4.10 Methylation Status at CpG Islands

Methylation profiles for CpG islands overlapping the imprinting control region (ICR)

differentially methylated regions (DMRs) were generated by pre-processed whole-genome

bisulfite sequencing (WGBS) data. Filtering was performed using the methylKit R

package (Akalin et al., 2012). For each cell line, all CpGs overlapping a CpG island

were selected. Then, a boxplot was generated for each target CpG island to compare

the three cell lines. Data acquisition and analysis were performed by Dr Yuan Tian

(University of Bath, OCRiD: 0000-0003-1312-6166).

87



Chapter 4

HiCFlow

A workflow for the automated processing
of Hi-C data to publication-ready visual-
isations.

Summary

A wide variety of excellent tools exist and continue to be developed for the bioinformatic

analysis of Hi-C data. However, rapid growth and development have inevitably come at

the cost of user-ability. Independent development of different tools across the research

community has meant that approaches are not yet well standardised, and data for-

mats are rarely consistent. As such, comprehensive and robust analysis is particularly

challenging and may present a significant barrier to conducting Hi-C research for non-

bioinformaticians. There is a clear gap within the research field for a comprehensive

and user-friendly Hi-C workflow that non-expert users can use. This chapter introduces

HiCFlow, a purpose-built user-friendly workflow that combines readily available Hi-C

tools with custom scripts for reprocessing data formats and creating visualisations.

HiCFlow contains modules for performing TAD and loop detection, Allele Specific Hi-

C (ASHi-C) and comparative analysis of Hi-C data. It also implements a variant calling

and haplotype phasing workflow to perform de novo haplotype assembly. Ultimately

HiCFlow is built to facilitate access to these novel approaches and to enable a wider

variety of researchers to implement chromatin conformation methods into their work.
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4.1 Overview of Existing Workflows

As previously discussed, the overall bioinformatics workflow for analysing Hi-C data is

well established. In brief, paired-end Hi-C data is aligned to the genome, ensuring that

each end is mapped independently. Mapped reads are filtered to remove experimen-

tal artefacts, including PCR duplicates, un-ligated fragments and self-circles. Filtered

data is binned into a Hi-C matrix, normalised to remove bias and visualised at genomic

regions of interest. Downstream analysis of Hi-C matrices includes detecting genomic

features such as looping interactions and Topological Associated Domain (TAD) do-

mains. This general workflow is illustrated in fig. 2-8 on page 55, and I have previously

reviewed the availability of existing Hi-C tools in section 2.5 on page 53. In this con-

text, I consider a tool a specialised software for performing a specific analysis task. For

example, Bowtie2 is a tool for aligning read data to a reference genome. In contrast,

a workflow describes how multiple tools can be combined to process data into a more

meaningful and interpretable output.

Many existing Hi-C workflows only specialise in one component of the overall work-

flow. For example, HiCUP processes Hi-C sequencing data to filtered alignment files

(Wingett et al., 2015). In contrast, HOMER was initially developed to conduct the

post-alignment stages, which include construction and normalisation of contact matri-

ces and visualisation (Heinz et al., 2010). HOMER has recently evolved into a more

comprehensive workflow capable of processing raw Hi-C sequencing data. The most

widely cited Hi-C workflow is HiC-Pro (Servant et al., 2015). HiC-Pro was one of the

earliest workflows to process raw Hi-C data to normalised contact matrices. HiCFlow

can also build allele-specific contact matrices where haplotype phased data is available.

HiC-Pro is a well-established, mature project and remains widely used. It remains an

excellent choice for users comfortable performing their visualisation and downstream

using other tools. HiC-bench is perhaps the most comprehensive Hi-C workflow (Lazaris

et al., 2017). It provides end-to-end processing of raw Hi-C data to normalised contact

matrices and visualisations. HiC-bench also includes functionality for TAD and loop

detection, in addition to comparative (between-sample) analysis. However, a funda-

mental limitation of HiC-bench is that it lacks the functionality to perform ASHi-C.

Although this list is far from comprehensive, these workflows are among the most es-

tablished and comprehensive. They are a good benchmark against which the next

generation of Hi-C workflow can be built.
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4.2 Workflow Design & Rationale

Before commencing the development of a novel workflow, it is essential to establish the

design rationale and requisite features. A novel Hi-C workflow should improve existing

approaches and incorporate novel developments in the field. On this basis, several

fundamental design principles were established prior to development.

4.2.1 Design Principles

Accessible

Accessibility and ease of use are at the heart of HiCFlow’s design. The workflow will

be specifically tailored towards non-expert users with little or no bioinformatics exper-

tise. Many workflows, including HiC-bench, require the user to have pre-configured an

appropriate software enrichment before using the workflow. This step is often a sig-

nificant barrier to users, particularly when different versions of software conflict with

their system. As such, HiCFlow includes functionality to automate the installation of

appropriate software dependencies. Furthermore, non-expert users are often unfamiliar

with command-line environments, so HiCFlow only requires minimal interaction with

the command line. Specifically, the workflow is configurable from a single text file and

can be run to completion with a single command.

Comprehensive

HiCFlow performs end-to-end analyses of raw Hi-C data to publication-ready visualisa-

tions. It includes all standard downstream analyses, including loop and TAD detection

and compartment analysis. Comprehensive workflows are inherently more accessible

as users do not need to employ additional tools to complete their analysis.

HiCFlow is the first workflow to combine multi-sample (HiC-bench) and allele-specific

(HiC-pro) methods. The growing accessibility and declining cost of Hi-C will likely

encourage more complex experimental designs requiring such functionality.

Finally, a fundamental limitation of existing ASHi-C workflows is that they require

haplotype-resolved genotypes from an external source. As such, HiCFlow incorporates

a variant calling and haplotype assembly workflow. This enables users to perform de

novo ASHi-C from raw Hi-C without requiring a pre-assembled haplotype.
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Reproducible

Reproducibility is a critical requirement for any peer-reviewed published analysis and

is particularly important for complex workflows such as Hi-C . A key advantage of pre-

built workflows is that they are inherently reproducible; their code is publicly available,

so the user only needs to document their configuration. Accordingly, HiCFlow is self-

documenting and reproducible via a single user-provided configuration file. Recreating

the local software environment is also key to ensuring reproducibility, although existing

workflows do not usually handle this. However, HiCFlow automatically handles the

installation of all external dependencies and ensures that the software environment is

consistent between analyses.

Scalable

Scalability ensures that a workflow can efficiently handle Hi-C libraries of arbitrary

size. Often Hi-C datasets cannot be processed on a single machine in a reasonable

amount of time. For example, HiC-Pro benchmarking took 11 hours, across 320 CPUs,

to analyse a 1.5 billion read pairs dataset (Rao et al., 2014; Servant et al., 2015). An

equivalent analysis would have taken 147 days (11 * 320 = 3520 hours) on a single

machine. Accordingly, HiCFlow is deployable in High-Performance Computing (HPC)

environments where it can take advantage of parallel systems.

Modular

As with any software, there is a trade-off between accessibility and flexibility. Flex-

ible tools are inherently more complex, but this comes at a cost to usability. Since

accessibility is the guiding design principle of the workflow, HiCFlow will offer fewer

customisation options to ensure non-expert users can run it with minimal setup. To

offset this trade-off in flexibility, HiCFlow is written using modular design. Modularity

allows workflow components, such as the TAD caller, to be modified or replaced with-

out disrupting workflow functionality. This approach enables expert users to customise

the workflow according to their specific requirements or expertise. More importantly,

it ensures that HiCFlow can be easily maintained and upgraded as new tools and

methodologies are developed.
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4.2.2 Summary of Design Features

These design principles ensure that HiCFlow represents a novel and meaningful con-

tribution to the existing choice of Hi-C workflows. A summary of the critical features

of HiCFlow, and how these compare to some of the most well-known Hi-C workflows

is provided in table 4.1.

Table 4.1: Comparison of Published Hi-C Workflows

HiCFlow HiC-Bench HiC-Pro HiCUP HOMER

Alignment X X X X X
Filtering X X X X X
Contact Matrices X X X X
Quality Control X X X X X
Normalisation X X X X
Joint-Normalisation X
TAD Detection X X X X
Loop Detection X X X X
Compartment Analysis X X
Boundary Comparison X
Differential TADs X
Allele-Specific Analysis X X
Visualisation X X X
Variant Calling X
Haplotype Phasing X
Automatic-Installation X

Note: “X” indicates presence of functionality.

4.2.3 Implementation

HiCFlow is implemented using the workflow management system Snakemake (Köster

and Rahmann, 2012). Snakemake is a programmatic framework for creating repro-

ducible and scalable analyses. It has been applied to various bioinformatics workflows,

including RASflow for RNA-Seq (Zhang and Jonassen, 2020) and CHIPS for ChIP-seq

(unpublished). In addition, a basic Hi-C workflow, which processes read data to nor-

malised contact matrices, is also available through the snakePipes package (Bhardwaj

et al., 2019).

Snakemake provides several features that are key to meeting the specified design prin-

ciples. The central idea of Snakemake workflows is that each step in a workflow is

represented by a rule (see fig. 4-1 on the facing page). Each rule clearly describes the
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execution of a specific command and has a defined input and output. Multiple rules

within a workflow are linked such that the output of one rule is the input of a down-

stream rule. This rule-based system ensures that the workflow is modular ; individual

rules can be modified or replaced without disrupting the broader workflow. Each rule

also defines the software environment required to execute the rule’s command, which

ensures the workflow is reproducible between systems. The relevant software is au-

tomatically installed via the package manager Conda (Continuum Analytics, 2014),

which helps to ensure the workflow is accessible to non-expert users.

Snakemake also fully supports execution via Kubernetes, ensuring compatibility with

cloud services such as Microsoft Azure and Amazon AWS. In this way, HiCFlow is

scalable and can be used to process arbitrarily large datasets.

Figure 4-1: An example of Snakemake rule. The above rule describes the KR
normalisation step of HiCFlow. Each rule is named according to its function and has
a clearly defined input and output. The input and output are themselves linked to
successive upstream and downstream rules. Here, KR Normalisation is performed on
the upstream rule “buildMatrix” output. All filenames are dynamically assigned using
wildcards ({sample}, {chromosome}, {bin}) which are inferred from the user configura-
tion. Fixed naming conventions ensure consistent and readable file names throughout
the entire workflow. The conda sub-heading describes the path to the YAML file,
which describes the required software environment; Snakemake automatically installs
this. Finally, the shell sub-heading describes the command to run; in this example,
hicCorrectMatrix from the HiCexplorer package (Ramı́rez et al., 2018).
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4.3 Overview of HiCFlow

HiCFlow aims to be the most comprehensive Hi-C workflow available (see fig. 4-2 on

the next page). It can process raw Hi-C data to publication-ready visualisations and

incorporates functionality for loop detection, TAD calling and compartment analysis.

HiCFlow also performs several quality control checks summarised as a single report

to the user. HICFlow can also perform between-sample comparative analysis; this

includes joint-normalisation of inter-sample bias and the detection of differential TAD

domains. These comparisons are visualised via custom subtraction matrices. Finally,

HiCFlow also includes a variant calling and haplotype assembly workflow optimised

for human data, which facilitates de novo haplotype assembly from the raw Hi-C data.

The resulting phased haplotype can then be used to process Hi-C allele specifically. To

our knowledge, this is the first integrated Hi-C workflow capable of performing de novo

haplotype assembly in conjunction with allele-specific Hi-C analysis.
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Figure 4-2: Overview of HiCFlow. The primary workflow of HiCFlow performs
trimming of paired-end sequences followed by sequence alignment and Hi-C matrix
construction. Features, including TADs and compartments, are detected and over-
laid on the Hi-C matrix visualisations. Comparative analysis (dashed) is performed if
multiple samples are provided. ASHi-C is performed using a pre-phased haplotype or
following de novo haplotype assembly.
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4.4 Testing & Development - Overview

The previous sections have introduced the general design principles, implementation

and workflow of HiCFlow. Using examples from publicly available data, I will describe

the underlying methodology (summarised below) of different workflow stages.

1. Pre-processing (fig. 4-3 on page 98)

Hi-C sequencing data are aligned to the reference genome following adaptor re-

moval and truncation at ligation sites. Experimental artefacts and PCR dupli-

cates are removed, and a raw Hi-C matrix is constructed at the specified base

resolution (e.g. 10kilobase (Kb)).

2. Downstream Analysis (fig. 4-6 on page 103)

Hi-C matrices are normalised and feature detection (loops, TADs and compart-

ments) is performed. Comparative analysis is performed if multiple experimental

conditions are provided. Annotated Hi-C maps and subtraction matrices are

visualised for selected genomic loci.

3. Haplotype Assembly (fig. 4-13 on page 115)

Mapped reads from the same cell lines are merged and passed through the GATK

Best Practise Short Variant Discovery workflow. Identified Single Nucleotide

Polymorphisms (SNPs) are passed to HapCut2 for haplotype assembly. The

largest contiguous haplotype block is extracted and formatted for allele-specific

workflow.
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4.5 HiCFlow - Pre-processing

The initial stage of HiCFlow processes the input Hi-C sequencing files to uncorrected

contact matrices (see fig. 4-3 on the next page). Reads are first passed to Cutadapt,

which performs adapter trimming and removes poor quality reads as required (Mar-

tin, 2011). HiCFlow then utilises the “read truncation” mapping strategy whereby

reads are truncated at their ligation sequencing prior to mapping (see section 2.5.2

on page 56). Reads are truncated using HiCUP (hicup_truncate), and each read

mate is independently aligned to the reference genome using Bowtie2 (Langmead and

Salzberg, 2012). As previously discussed, this approach has produced comparable re-

sults to iterative mapping strategies at a fraction of the computation time (Servant

et al., 2015; Lun and Smyth, 2015). Following alignment, reads are re-paired with

their respective mates using SamTools (Li et al., 2009) and de-duplicated to remove

Polymerase Chain Reaction (PCR) artefacts using SAMBLASTER (Faust and Hall,

2014). At this point, alignment files may be passed to the Haplotype Assembly work-

flow to generate a phased haplotype. (see section 4.7 on page 114). Finally, reads are

passed to HiCExplorer (Ramı́rez et al., 2018) which performs further filtering of Hi-C

artefacts (see section 2.5.4 on page 58) and constructs an uncorrected contact matrix

at a defined base resolution (default = 10Kb). The uncorrected matrices are passed to

the Downstream Analysis workflow, described in section 4.6 on page 102, where they

may be merged to lower resolutions as required.

If the user provides a phased haplotype, the pre-processing workflow includes addi-

tional steps to prepare the data for ASHi-C. Non-informative homozygous variants

are removed using BCFtools (Li, 2011), and the reference genome is masked at het-

erozygous loci using BEDtools, to remove reference bias (Quinlan and Hall, 2010).

Following mapping and de-duplication, alignment files are allelically assigned, using

SNPsplit (Krueger and Andrews, 2016), which employs the mate-rescue strategy de-

scribed in section 2.6.1 on page 65. Allelic assignment yields two contact matrices (A1

and A2); these are independently passed to the “Downstream Analysis” workflow.
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Figure 4-3: HiCFlow - Pre-processing Workflow. HiCFlow processes raw Hi-C se-
quencing files (.fastq) to uncorrected contact matrices at a user-defined base resolution
(default = 10Kb). If required, de-duplicated alignment files (.bam) may also be passed
to the haplotype assembly workflow. HiCFlow will prepare the data for ASHi-C (see
steps with dashed lines) if a phased haplotype is provided. This first involves masking
the reference genome as phased sites before mapping to remove reference bias. Follow-
ing de-duplication, alignment files are split by allelic assignment (SNPsplit), and two
contact matrices (A1 and A2) are built. Note that not all intermediary steps of the
workflow are not included in this flowchart.
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4.5.1 Quality Control

HiCFlow incorporates a variety of quality control methods to thoroughly assess the

quality of the Hi-C libraries and assist the user in determining optimal parameters.

Before mapping, HiCFlow uses FastQC (Anders, 2010) and FastQ Screen (Wingett and

Andrews, 2018) to assess overall sequencing quality and detect potential cross-species

contamination. These results may help the user to configure the read trimming set-

tings of Cutadapt, which are set in the configuration file (see section 4.8 on page 121).

A second FastQC report is also generated after adapter trimming to assess the im-

pact of read trimming. Following alignment, mapping statistics are collected from

Bowtie2 and Samtools (samtools stats). Quality control reports are also collected

from SAMBLASTER during de-duplication and HiCExplorer during the contact ma-

trix construction and Hi-C artefact removal. These outputs are aggregated into a

user-friendly, interactive report using MultiQC (Ewels et al., 2016). An example of

this report is packaged with the HiCFlow repository. Note that the HTML file must

be downloaded before it can be rendered appropriately.

HiCFlow also incorporates HiCRep to assess reproducibility among Hi-C samples and

replicates (Yang et al., 2017). HiCRep defines a Hi-C -specific similarity measure, the

Stratum Adjusted Correlation Coefficient (SCC), for quantifying the similarity between

Hi-C matrices. HiCFlow computes the SCC between all pairs of samples and visualises

the data as a heatmap (see fig. 4-4 on the following page).

Finally, HiCFlow includes a custom script to visualise artefact contamination in the

Hi-C libraries. As discussed in section 2.5.4 on page 58, the relative orientations of

read pairs should be equally represented in a Hi-C library. To assess this, HiCFlow

plots the distribution of each orientation against the observed insert size (see fig. 4-5

on page 101). Unligated fragments are indistinguishable from valid Hi-C read pairs.

However, the over-representation of short-range inward-facing pairs is evidence of such

contamination. In such cases, it is advisable to configure HiCFlow to remove all inward-

facing read pairs within the expected maximum ditag insert size of the Hi-C library.

If necessary, the maximum insert size can be experimentally measured with a Bioana-

lyzer but is generally around 1000base pairs (bp). Over-representation of short-range

outward-facing read pairs is evidence of same-fragment self-circularisations. HiCFlow

automatically removes these uninformative read pairs. However, users may wish to

review experimental procedures to minimise their impact in subsequent Hi-C experi-

ments.
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Figure 4-4: HiCFlow heatmap of HiCRep SCC. Example HiCRep heatmap us-
ing the HiCFlow example D. melanogaster dataset. HiCRep identifies high repro-
ducibility between the replicates of both experimental conditions (G1/S Arrested and
Asynchronous). The SCC varies from 0 - 1. Lower SCC scores between samples from
different conditions suggest detectable structural differences associated with differences
in the cell cycle states.
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Figure 4-5: HiCFlow Custom QC Visualisation of Insert Size Distribution.
The relative orientations of valid Hi-C read pairs should appear in equal proportions at
a given interaction distance. Over-representation of inward-facing read pairs in close
proximity is evidence of contamination with unligated fragments in D. melanogaster
example dataset.
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4.6 HiCFlow - Downstream Analysis

The downstream analysis of HiCFlow comprises contact matrix normalisation, feature

detection (e.g. TADs, loops and compartments) and visualisation (see fig. 4-6 on the

next page). Raw Hi-C matrices are first split into per-chromosome matrices (cis-only

interactions) and binned to a pre-configured resolution. If desired, multiple bin res-

olutions can be provided to repeat the downstream analysis at different resolutions.

All contact matrices are rescaled to the same contact frequency range (default = 0 -

10,000) prior to implicit bias removal via Knight Ruiz (KR) normalisation. Follow-

ing the normalisation of contact matrices, HiCFlow applies various feature detection

algorithms to detect genomic features of interest (see section 4.6.1 on page 104).
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Figure 4-6: HiCFlow - Downstream Workflow. Following construction of the
raw Hi-C matrix, HiCFlow extracts cis interactions and optionally merges replicates.
Interaction frequencies are then normalised to a constant range (e.g. 0 - 10000). For
between-sample comparison (dashed line), pairs of samples are joint-normalised using
HiCcompare and a subtraction matrix is constructed using the method described in
section 4.6.6 on page 109. For within-sample comparison, matrices are normalised
using KR normalisation. The matrices are passed to a variety of tools to conduct
compartment analysis, TAD detection and loop detection. Both within- and between-
sample analyses are combined with user-provided genomic annotations and visualised.
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4.6.1 Feature Detection

Loops

Robust loop detection remains challenging and susceptible to parameter selection (see

section 2.5.7 on page 63). Recent attempts have utilised supervised machine learning,

trained on validated looping interactions, to detect loops (Salameh et al., 2020). How-

ever, such methods require external datasets and custom methodology tailored to the

specific Hi-C library. They are currently beyond the scope of user-friendly, automated

workflow. HiCFlow utilises a basic loop detection algorithm implemented by HiCEx-

plorer (hicDetectLoops) (Ramı́rez et al., 2018). Even so, results remain susceptible

to the specific properties of each Hi-C library and the selected parameters of the al-

gorithm. Since loop detection is potentially prone to misinterpretation by non-expert

users, it is not performed by HiCFlow unless explicitly specified.

TADs

HiCFlow performs TAD detection using two independent approaches. The first method

utilises OnTAD, a relatively recent TAD caller capable of identifying hierarchical do-

main structures typical of Hi-C matrices (An et al., 2019). Notably, the authors note

that the default parameters of OnTAD are well justified and robust to different ex-

perimental data sets. As such, it is a suitable choice for automated workflows and

non-expert users. The second method utilises HiCExplorer hicFindTads to compute

an insulation score along the genome. The insulation score is an effective visual aid for

interpreting Hi-C data (see fig. 4-7 on page 106). Although the insulation score does

not explicitly call TADs, local minima in the score are indicative of TAD boundaries.

Since the insulation score has few parameters, it is highly robust to parameter selection

and data resolution. It serves to aid in the interpretation and cross-validation of the

OnTAD results.

Compartments

HiCFlow utilises CScoreTool for compartment analysis (Zheng and Zheng, 2018). As

previously discussed in section 2.5.7 on page 61, CScoreTool is highly performant com-

pared to conventional Principal Component Analysis (PCA) based methods. More

importantly, unlike PCA, it yields a biologically interpretable score. Specifically, the
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C-score ranges from -1 and 1 and is proportional to the probability that a given inter-

val is an “A” compartment. Since the orientation of the C-score output is arbitrary,

HiCFlow automatically reorients the score such that positive scores (“A” compart-

ment) are positively correlated with GC-rich regions (Lieberman-Aiden et al., 2009).

Reorientation is achieved by computing the Pearson correlation coefficient between

the per-interval GC content and the per-interval C-score. The sign of the C-score is

switched if the correlation is negative.

4.6.2 Hi-C Visualisation

HiCFlow uses pyGenomeTracks to construct annotated, customisable visualisations

(see fig. 4-7 on the next page) (Lopez-Delisle et al., 2021). Each KR-normalised contact

matrix is plotted on a log scale with underlaid TAD calls. Log scales aid visualisation

by reducing the skew of high interaction frequency at short interaction distances. The

independently computed TAD insulation score is plotted underneath to assist in inter-

pretation. If loop-calling is enabled, loops are overlaid with the Hi-C matrix as point

interactions. Finally, the C-score compartment analysis uses a diverging colour scheme

(default: Red = A, Blue = B) to represent A/B compartment strength. In addition,

users may provide custom annotation tracks, in BedGraph, BigWig or BED format,

via the configuration file (see section 4.8 on page 122). Other parameters may also be

configured, including the matrix colour scheme and output file type (default = SVG).

4.6.3 Methods for Comparing Hi-C Matrices

Differences between Hi-C matrices are often visualised using the log2(ratio) of nor-

malised contact maps (Ramı́rez et al., 2018). However, most normalisation proce-

dures only correct for within-sample bias, and typical approaches fail to account for

between-sample bias properly. Correcting for between-sample bias is known as joint-

normalisation and is discussed more thoroughly in section 2.5.6 on page 60. HiCFlow

employs a custom visualisation which incorporates joint-normalisation of between-

sample bias using HiCcompare (Stansfield et al., 2018). Specifically, a pair of Hi-C

matrices, denoted A1 and A2, are joint-normalised to yield adjusted A1 and A2 con-

tact frequencies. Each normalised matrix is then transformed into an “obs/exp” matrix

to correct for differences in contact frequency related to genomic distance. This step

ensures that observed differences in interaction frequency are independent of genomic

distance. The matrices are subtracted (A2 - A1) following distance correction to yield a

105



Figure 4-7: HiCFlow visualisation from D. melanogaster example dataset.
KR-normalised matrices are plotted on a log-scale with underlaid TAD domains, in-
sulation score and Cscore compartment analysis. The Cscore ranges from -1 (Blue: B
compartment) to +1 (Red: A compartment). User-provided annotations can also be
provided during configuration. Other plotting parameters, including the matrix colour
scheme and output file type, are similarly configurable.
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raw difference matrix. Finally, a median filter is applied to remove spurious background

noise. Random noise, associated with technical subsampling of the Hi-C library, man-

ifests as a background of normally distributed differences in contact frequency. The

global average of this noise is zero, and a median filter effectively removes it. In doing

so, this emphasises regions of consistent directional bias. From here on, we refer to the

resulting comparative between-sample Hi-C visualisation as a “subtraction matrix”.

This procedure and the impact of the median filter in aiding visualisation is illustrated

in fig. 4-8 on the following page.

4.6.4 Quantification of Differential TADs

In addition to providing a visual representation of between-sample differences, we also

sought to implement an objective approach to identifying regions of significant dif-

ference. Specifically to identify TAD domains that display differences in normalised

contact frequency between samples. Two distinct approaches of differential TAD iden-

tification, described below, were assessed and compared.

4.6.5 Wilcoxon Rank-Sum Test

HiCExplorer implements a method of differential TAD detection (hicDifferentialTAD)

which utilises the Wilcoxon rank-sum test. In brief, the approach performs 3 Wilcoxon

tests per TAD to assess differences in contact frequency at both intra-TAD and left/right

inter-TAD regions. The minimum p-value from the three tests is used to define the

differential TAD (see fig. 4-9 on page 109).

This approach treats all TAD contacts within a sample as replicates of the same popu-

lation. However, whether this assumption is reasonable or to what extent data sparsity

will affect the conclusions is unclear. Moreover, the size of each TAD domain will deter-

mine the “sample size” of the differential test, which may bias results between TADs of

different sizes. Due to the lack of validation by HiCExplorer, we first performed some

validation testing before implementing the method in HiCFlow. “Differential TADs”,

between allelic A1 and A2 matrices, were called on chromosome 22 of the GM12878

(GM12878) dataset using hicDifferentialTAD. From here on we will refer to differen-

tial TADs between alleles as Allele Specific Topological Associated Domains (ASTADs).

In total, 72 ASTADs were identified on chromosome 22 of GM12878. Randomisation

testing was then used to assess the false positive rate of differential TAD detection.

Specifically, we randomly shuffled the alignment files’ A1 and A2 allelic assignments
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Figure 4-8: Illustration of Hi-C Matrix Subtraction Methodology. Data was
simulated to model random background noise with three TAD domains of higher intra-
domain contact frequency. One TAD is only present in A2, and the subtraction matrix
visualisation highlights this. a-b) Contact frequencies of A1 and A2 matrices are ad-
justed, via joint-normalisation, to correct for between-sample bias using HiCcompare.
c) Distance correction (obs/exp) is applied to matrices to ensure differences are in-
dependent of genomic distance. The difference is computed (A2 - A1) to generate a
raw difference matrix. d) A median filter is applied to remove random background
noise. Here, median filtering emphasises the TAD domain exclusive to A2 and removes
spurious background interactions.
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Figure 4-9: Illustration of HiCExplorer Differential TAD Methodology. For
each TAD domain, three Wilcoxon rank-sum tests are performed between the contacts
of matrices A1 and A2. a) Left inter-TAD, b) intra-TAD, c) right inter-TAD. The
minimum p-value of these three tests is used to define the differential TAD.

to remove any true-positive allelic difference. Any ASTADs detected in the shuffled

dataset would therefore represent false-positive calls. Randomisation was repeated 100

times to build a distribution and estimate the false positive rate. On average, 50 false-

positive ASTADs were detected with estimates ranging for 4 to 141 (see fig. 4-10 on the

following page). Since the “true” value falls within the range of the randomised esti-

mates, it cannot be assumed that these are true-positive results. The high false-positive

rate suggests the hicDifferentialTAD methodology is inappropriate for robustly de-

tecting changes in TAD contact frequency between samples. It was not included with

HiCFlow; instead, we sought to identify an alternative approach (described below).

The poor performance of the hicDifferentialTAD methodology is likely due to the

absence of true biological replicates. The treatment of pairwise contacts as pseudo-

replicates is inappropriate, and the results are likely biased by TAD size and data

sparsity. While biological replicates of Hi-C are becoming more common, replicates are

often merged to improve data resolution. Diploid Hi-C matrices are often very sparse,

even among the highest resolution datasets, so merging replicates is usually necessary

and reasonable (Rao et al., 2014).

4.6.6 Novel Differential TAD Methodology

Given the limitations of the Wilcoxon method, we sought to develop an approach capa-

ble of scoring differential TADs using un-replicated or merged datasets. In the absence
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Figure 4-10: Assessment of hicDifferentialTAD Methodology. Differential
TADs were called between A1 and A2 matrices on chromosome 22 (GM12878) us-
ing hicDifferentialTAD (alpha = 0.05). In total, 72 TADs domains were identified.
Randomisation testing was used to assess the false positive rate by repeatedly shuffling
allelic assignments (n = 100). The histogram of the counts of differential TADs identi-
fied in each replicate is shown above. Differential TAD detection was highly inconsis-
tent. The “true value” (dashed line) was within the range expected by randomisation.
These results illustrate that the hicDifferentialTAD methodology is inappropriate for
assessing changes in TAD contact frequency between samples.
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of biological replication, significance testing is likely to fail. Instead, we developed

a scoring system to quantify absolute differences in intra-TAD contact frequency be-

tween a pair of samples. Scoring facilitates ranking all TAD domains and allows a

defined threshold to extract the top differential TADs. Although this approach does

not attempt to identify statistically significant differences, it does identify a subset of

differential domains that may be of interest. An illustration of how TAD differences

are quantified and score is shown below in fig. 4-11 on the next page. In brief, an

uncorrected score is obtained for each TAD by computing the sum of the absolute

intra-domain differences from the subtraction matrix. This value is converted to Z-

score by normalising it against the observed background sum of absolute differences

for a domain of that specific size. Size-stratified normalisation ensures scores are com-

parable between domains of different sizes within a dataset. Finally, TADs are ranked

according to their Z-score and a threshold is applied (e.g. Z > 2) to obtain a subset

of differential TADs for downstream analysis. This differential TAD methodology is

applied more thoroughly to investigate the genome-wide distribution of allele-specific

TADs in chapter 5 on page 126.

4.6.7 Visualisation of Comparative Analysis

Normalised subtraction matrices and annotations are similarly visualised by HiCFlow

using pyGenomeTracks. Comparative analysis between allelic matrices at the imprinted

H19 / IGF2 locus clearly identify alternative looping at the H19/IGF2 Distal Anchor

Domain (HIDAD) locus (see fig. 4-12 on page 113). These results are in agreement

with the findings Rao et al., 2014. Differential TADs are overlaid on the subtraction

matrix and the methodology has objectively identified this locus as a differential TAD

(ASTAD). The differential TAD methodology can independently detect true-positive

regions of known allelic difference. Compartment analyses from both alleles are plotted

side by side to facilitate easy comparison and reveal no differences at the locus. HiCFlow

includes an additional SNP density track when a comparative analysis is performed

between alleles. This aids in interpreting the subtraction matrix as regions of low SNP

density cannot be appropriately phased. These loci should be carefully interpreted as

an absence of differences could indicate missing data rather than no allelic differences.
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Figure 4-11: Illustration of Differential TADs Scoring a) A raw subtraction ma-
trix obtained by subtracting the contact frequency of a pair of joint-normalised matrices
after distance correction. b) The subtraction matrix is computed by applying a median
filter to the raw difference matrix. c) The absolute values of the subtraction matrix
are obtained. For each TAD the sum of the absolute differences in intra-TAD contact
is computed. d) The background sum of absolute differences is computed for equiv-
alently sized domains across the length of the chromosome. The TAD score is then
transformed to a Z-score using the mean and standard deviation of the observed back-
ground interactions. This ensures TADs of different sizes are comparable. TADs are
ranked according to their Z-score and a threshold is applied (e.g. Z > 2) to obtain a
subset of differential TADs.
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Figure 4-12: HiCFlow Subtraction Visualisation at the imprinted H19 / IGF2
locus. Alternative looping with the HIDAD region is identifiable and agrees with the
findings of Rao et al., 2014. Differential TADs, showing greater than expected changes
in absolute contact frequency, are underlaid with the subtraction matrices. Cscore
compartment analysis tracks for both samples are visualised to identify compartmental
changes. When the comparative analysis is performed between alleles, an additional
track visualising SNP density is also provided. Similar to the conventional Hi-C matrix
visualisation, the user may provide additional annotation tracks via the configuration
file.
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4.7 HiCFlow - Variant Calling & Haplotype Assembly

Proximity ligation methods are well suited to performing haplotype assembly, and

algorithms that leverage the unique properties of Hi-C data are now available (see

section 2.7 on page 67). However, HiCFlow will be the first Hi-C workflow to integrate

this functionality with an allele-specific Hi-C workflow.

HiCFlow implements an automated variant calling and haplotype assembly workflow

that combines the GATK Best Practise Workflow (Short Variant Discovery) with the

HapCUT2 haplotype assembly algorithm (Van der Auwera et al., 2013; Edge, Bafna

and Bansal, 2017). A comprehensive flowchart visualises the haplotype assembly work-

flow in fig. 4-13 on the next page. In brief, raw Hi-C FastQ files are aligned to the

relevant reference genome using the same alignment workflow as described in section 4.5

on page 97. Samples from the same cell type (defined during configuration) are merged

into a single alignment file. Variant calling is then performed according to the GATK

Best Practises Workflow. The workflow calls both SNPs and Insertion / Deletions (IN-

DELs) although currently only SNPs are compatible with haplotype assembly. Follow-

ing haplotype assembly, the largest contiguous phased block of SNPs per chromosome

is written to VCF format. The VCF output can be passed directly back to HiCFlow

to perform allele-specific Hi-C analysis.

It should be noted that the variant calling and haplotype assembly workflow is currently

only implemented for human data since the variant caller, GATK, is optimised explicitly

for analysing human genetic data. The GATK Resource Bundle contains validated

human reference datasets to facilitate accurate short variant discovery. HiCFlow utilises

these reference datasets, which must be provided during configuration (see fig. 4-18 on

page 123), to enable workflow automation. In the absence of pre-validated reference

data, accurate variant calling may require custom approaches per dataset that cannot

be automated.

Although not currently implemented, future versions of HiCFlow will enable users to

skip the variant calling step of the workflow and provide a VCF directly to HapCUT2.

This functionality will facilitate haplotype assembly of non-human organisms, although

the responsibility of obtaining a robust set of variant calls will lie with the user. Further

details on configuring HiCFlow to run the GATK workflow are provided in section 4.8

on page 121.
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Figure 4-13: HiCFlow - Variant Calling and Haplotype Assembly Workflow.
Following alignment of Hi-C reads, variants are called using the GATK Best Practises
Workflow for Short Variant Discovery. Haplotype assembly is performed using Hap-
CUT2, and the largest contiguous haplotypes, per chromosome, are written to a VCF
file. The output VCF is compatible as input to HiCFlow’s allele-specific workflow.
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4.7.1 Validation of Haplotype Assembly

Appropriate validation of the haplotype assembly workflow must first ensure that the

assembled haplotype is accurate by comparing it against an externally validated hap-

lotype. In addition, when used with the allele-specific workflow, it is also necessary to

ensure the assembled haplotype is sufficient to identify known allelic interactions. The

human GM12878 cell line was chosen as an appropriate validation set to meet these

criteria. Notably, the haplotype of this cell line has been validated by the genetic inher-

itance studies (Eberle et al., 2017). In conjunction with the high-resolution GM12878

dataset by Rao et al., 2014, it was possible to assess the accuracy of HiCFlow’s haplo-

type assembly as well as assess the reproducibility of allelic chromatin structures.

Phasing Accuracy

HiCFlow’s haplotype assembly algorithm (fig. 4-13 on the previous page) was applied to

the Rao et al., 2014 GM12878 dataset to assemble the haplotype of chromosome 11. In

total 97,793 phased SNPs were identified across 905 contiguous fragments. The largest

fragment contained 95,558 (97.7%) of all phased variants. The validated haplotype

truth-set contained 102,307 phased variants, of which HiCFlow also identified 89,136.

(see fig. 4-14 on the facing page). 13,171 and 6,422 variants were exclusively identified

in the truth-set and the HiCFlow haplotype.

Phasing accuracy was estimated by considering all genomic loci containing phasing

information in both haplotypes. Of the 89,268 loci common to both datasets, 89,136

(99.85%) had matching haplotypes (see table 4.2 on the next page). While this suggests

a high-level accuracy between phasing methodologies, it remains unclear whether the

phased variants exclusive to the HiCFlow are true positives. GM12878 is an Epstein-

Barr virus (EBV)-transformed lymphoblastoid cell lines (LCL), and these are known

to accumulate mutations following prolonged culture (Oh et al., 2013). Genetic discor-

dance may explain the minor discrepancies in the assembled haplotypes.

Allele-specific Hi-C Reproducibility

Discrepancies between the validated haplotype and the HiCFlow haplotype are not

unexpected. However, a key question is to what extent these discrepancies influence

reproducibility when performing ASHi-C. More importantly, is the inferred haplotype

sufficiently accurate to identify known allele-specific chromatin interactions? HiCFlow
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Figure 4-14: Haplotype Methodology Overlap Analysis (GM12878, chr11).
The validated haplotype truth-set contained 102,307 phased variants, of which HiCFlow
also identified 89,136. 13,171 and 6,422 variants were exclusively identified in the truth-
set and the HiCFlow haplotype. Analysis performed using BCFtools (v1.10.2) (Li,
2011).

Table 4.2: Haplotype Phasing Accuracy (GM12878, chr11)

In-common Phased Loci

Phasing (n) (%)

Identical 89 136 99.85
Mismatched 132 0.15

Total 89 268 100.00

Note: Considering the SNPs common to both the validated haplotype and the de
novo assembled haplotype, 99.85% of phasings were in agreement.
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was used to perform ASHi-C to process the GM12878 dataset using both haplotypes.

Following this, we computed the SCC to assess chromosome-wide reproducibility of the

phased A1 and A2 matrices for each of the haplotypes (see fig. 4-15 on the facing page)

(Yang et al., 2017).

The SCC was high (0.98 - 0.99) between all samples. High reproducibility is expected

since the matrices are subsets of the same Hi-C dataset, and allelic differences are not

likely to be widespread. However, the SCC was higher between matrices corresponding

to the same allele (e.g. A1 (HiCFlow) vs. A1 (truth-set)) than between matrices

corresponding to different alleles (e.g. A1 (HiCFlow) vs. A2 (HiCFlow)). The lowest

reproducibility was found between matrices of different alleles and different haplotypes

(e.g. A1 (HiCFlow) vs A2 (truth-set)). These results suggest that differences due to

haplotype discrepancies are lesser than those observed between alleles.

Allele-specific Hi-C Visual Comparison

Finally, we sought to assess if the HiCFlow haplotype could recover known allelic

chromatin conformations at a localised scale. Specifically, we assessed whether HiCFlow

could resolve allelic looping at the imprinted H19 / IGF2 locus as effectively as the

validated haplotype. We found that the HiCFlow haplotype was sufficient to identify

this interaction correctly, and the subtraction matrices from the two haplotypes were

highly similar (see fig. 4-16 on page 120). This is consistent with the high SCC score

(0.99) identified at a chromosome-wide level.
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Figure 4-15: Haplotype Phasing Reproducibility (GM12878, chr11). Repro-
ducibility was assessed using the SCC from HiCRep (Yang et al., 2017). The SCC
was high among all samples (0.98 - 0.99). However, reproducibility was higher between
haplotypes of the same allele (e.g. A1 (HiCFlow) vs A1 (truth-set) than between alleles
of the same haplotype (e.g. A1 (HiCFlow) vs A2 (HiCFlow)).
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a) Truthset Phasing

b) HiCFlow Phasing

Figure 4-16: Haplotype Phasing Validation (GM12878, chr11). Comparison
of allelic chromatin conformation, at the H19 / IGF2 locus, between the validated
haplotype truth-set and the HiCFlow haplotype. Subtraction matrices show very high
similarity and are sufficient to reproduce the well-characterised alternative at this locus.
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4.8 Usage & Configuration

This section describes how a typical user can set up and configure HiCFlow for their

own Hi-C datasets. This information is also detailed at the HiCFlow GitHub reposi-

tory (github.com/StephenRicher/HiCFlow), where HiCFlow can also be downloaded.

Users will not need to interact with the underlying programming of HiCFlow. How-

ever, they must ensure their computer is configured correctly to run the workflow (see

section 4.8). In addition, HiCFlow requires a custom configuration file that defines

the relevant data files’ workflow parameters and locations. This is discussed below in

section 4.8 on the next page.

Installation

It is highly recommended that the user install Conda prior to setting up HiCFlow.

Conda simplifies the installation of Snakemake and is used by HiCFlow to automate

the installation of all other dependencies.

Once Conda is installed, the following command will install the latest version of Snake-

make within a local environment on the user’s system.

conda create -c conda-forge -c bioconda -n snakemake snakemake

Following the installation of Snakemake, HiCFlow can be downloaded directly from

https://github.com/StephenRicher/HiCFlow via a web browser. Alternatively, if

the user has Git installed, they can run the following command to download HiCFlow.

git clone --depth 1 https://github.com/StephenRicher/HiCFlow.git

Finally, once the user’s machine is configured correctly to run HiCFlow, they can acti-

vate the Snakemake environment and run the following Snakemake command to process

the example dataset. HiCFlow must install all other dependencies (i.e. bioinformat-

ics software) during the initial setup, which may take some time. Subsequent uses of

HiCFlow will not need to perform this installation step. In addition, the following

command may be provided to instruct Snakemake where to install the software.

--conda-prefix /path/to/condaEnvs/

This option must also be included on subsequent reruns on HiCFlow to ensure Snake-

make knows where to look. The example output is saved to example/analysis/.
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cd HiCFlow

conda activate snakemake

snakemake --use-conda --configfile example/config/config.yaml

Configuration File

Each HiCFlow analysis requires a custom configuration which specifies the parameter

settings and any relevant data files used by the workflow (see section 4.8 on the facing

page). HiCFlow has many configurable parameters. These include visualisation pa-

rameters, the bin size of the Hi-C matrix, or the removal stringency of Hi-C artefact.

A comprehensive description of these is provided at the HiCFlow repository. However,

most parameters are preset to reasonable default values and do not need to be specified

for typical usage.

Figure 4-17: Example HiCFlow Configuration File. The configuration file is
written in YAML format and is provided to HiCFlow via the command line. HiCFlow
can process samples from different genomes and restriction protocols. The genome
and phased vcf settings must be associated with an ID (see above - “S2Rplus”) that
matches the data file. Each set of restriction sequences should also be associated with
a matching Experiment ID.

The user must set several settings. These include the restriction enzymes used during

the experimental protocol, the path to the relevant reference genome of the organism

and a data file containing the paths and metadata associated with the Hi-C sequencing
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files. The configuration file should also contain the path to a BED file containing the

set of genomic loci which should be processed. These loci will generally correspond

to the chromosomal coordinates of the organism unless a region-capture Hi-C protocol

is used. In this case, the coordinates should correspond to the capture regions. If

the phase parameter is set to True (phase: True), then HiCFlow will also execute

the variant calling and haplotype assembly workflow. This variant calling workflow

utilises GATK and is currently only compatible with human data. In addition, the

user must also provide the relevant files obtained from the GATK resource bundle (see

fig. 4-18. If these are provided, HiCFlow will generate a phased haplotype which can

later be provided to the phased_vcf parameter to run an allele-specific Hi-C analysis.

Alternative, an externally sourced phased haplotype can be provided to run allele-

specific Hi-C analysis.

Figure 4-18: Example Configuration of GATK Resource Bundle. If the phase
parameter is set to True (see fig. 4-17 on the facing page), then the user must also
provide local paths to the relevant files downloaded from the GATK Resource Bundle
as above. Currently, the HiCFlow variant calling workflow is only suitable for Human
data.

Data File

The data file (data: ../config/samples.tsv) contains the paths to the Hi-C paired-

end FastQ file and the naming conventions for each of the samples (see fig. 4-19 on the

next page). Fixed naming conventions ensure consistency and accuracy of sample la-

belling throughout the entire workflow, minimising the chance of critical mislabelling

errors. The file also defines the cell type and experiment ID for each sample. Sample

identifiers ensure that samples are mapped to the correct reference genome and pro-

cessed with the correct restriction enzymes. Since configurations are passed to each

sample independently, HiCFlow can simultaneously process samples with different ex-
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perimental conditions.

Figure 4-19: Example Data File. The data file contains the paths to the paired-
end sequencing data and metadata associated with each sample. Here, all samples are
processed under experiment ID “A” which associates them with the DpnII restriction
enzyme in the configuration file (see fig. 4-17 on page 122). Similarly, the cell type
“S2Rplus” associates the samples with the same BDGP6.28 reference genome. The
“group” and “rep” data define the experimental design and sample naming conventions.
The path to the data file is provided to the configuration file via the “data” parameter.
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4.9 Summary & Future Development

In this chapter, I have introduced HiCFlow, a comprehensive and user-friendly Hi-C

workflow comprising over 6000 lines of custom code. It is currently the only publicly

available workflow to combine comparative Hi-C analysis with allele-specific Hi-C .

HiCFlow also includes up-to-date approaches for detecting typical Hi-C features, such

as TADs, loops and compartments. The entire workflow is self-documenting and is con-

figured from a single configuration file. All required software is automatically installed,

and raw Hi-C is processed to publication-ready visualisations with a single command.

In addition to performing all common aspects of Hi-C analysis, HiCFlow can auto-

matically generate accurate de novo phased haplotypes from input human Hi-C data.

These haplotypes can be used to perform allele-specific Hi-C and are sufficient to re-

produce known allele-specific interactions, such as at the imprinted H19 /IGF2 locus.

Visualisation of comparative analysis is facilitated by our novel ”subtraction-matrix”

methodology, which enables robust visualisation of differences between any two Hi-C

matrices. HiCFlow also provides a novel approach for the objective scoring and detec-

tion of putative “differential TADs”” and this method correctly identified differences

at the H19 /IGF2 locus.

The field of Hi-C and associated approaches are still relatively immature, and the

community is continually gaining new insight into the complex properties of Hi-C data.

However, there is an ongoing development of existing and novel analysis methods. One

example is HiCHap, a novel approach for correcting systematic bias in diploid matrices

associated with variable genetic variable density (Luo et al., 2020). A second example

is DeepHiC which utilises generative adversarial networks for enhancing low-resolution

Hi-C data (Hong et al., 2020). Indeed, the release of novel tools frequently outpaced the

development of HiCFlow. However, the research community often drives the continued

development of such workflows. HiCFlow has a modular design to facilitate future

workflow development and modification in anticipation of this. This way, HiCFlow is

a framework that can be continually built upon to incorporate exciting new advances.
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Chapter 5

Genome-wide Allele Specific

Hi-C

Allele-specific chromatin conformation is
not confined to imprinted gene clusters.

Summary

Mammalian genomes are diploid and possess two copies of each chromosome - one pa-

ternally and one maternally inherited. Allelic imbalance in gene expression between

homologous chromosomes is widespread and thought to contribute to phenotypic differ-

ences and disease pathogenesis. In addition, mammalian genomes possess a variety of

mechanisms for regulating mono-allelic expression (MAE) whereby one copy of a gene

is silenced. These include X-inactivation, genomic imprinting and random mono-allelic

expression (RMAE). However, despite widespread interest in the three-dimensional

(3D) chromatin conformation of the genome, most studies do consider differences be-

tween these homologous chromosomes. As such, the regulatory mechanisms of MAE

and allelic-imbalance are frequently overlooked. To address this, we utilised HiCFlow

with multi-omics data to characterise the properties of diploid genome architecture

genome-wide in three human cell lines. We found that imprinted loci were frequently,

though not always, associated with allelic differences in chromatin architecture. More-

over, we did not find clear evidence for canonical imprinted three-dimensional (3D)

structures; the allele-specific chromatin architecture at most imprinted loci was vari-
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able between cell lines. Regions with substantial allelic differences in chromatin were

also strongly correlated with genetic heterozygosity and allele specific expression (ASE).

This study highlights the widespread differences in chromatin conformation between

homologous chromosomes and provides a new framework for understanding allelic-

imbalance and MAE in mammalian genomes.
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5.1 Background

The higher-order genome architecture is known to play a crucial role in genome func-

tion, particularly gene expression. As previously discussed, Topological Associated Do-

mains (TADs) are thought to facilitate specific promoter-enhancer interactions within

a local regulatory environment. However, the extent to which TADs, and the broader

chromatin architecture, determine gene expression remains unclear. Indeed, a growing

body of evidence suggests that chromatin architecture is not a strong determinant of

gene activity. Recent work in Drosophila has shown that chromatin organisation is

broadly maintained across cell types, even in regions with tissue-specific gene expres-

sion (Ing-Simmons et al., 2021). It has been suggested that chromatin architecture

may provide a flexible foundation upon which regulatory mechanisms can act when

activated. In such a model, regulatory looping interactions may be established before

differentiation and these interactions may be subsequently stabilised via TADs forma-

tion (Misteli and Finn, 2021). Upon differentiation, tissue-specific transcription factors

utilise the chromatin scaffold to activate or repress gene expression.

Consequently, disruption to the chromatin scaffold or the binding efficiency of transcrip-

tion factors may impact gene regulation. It is also widely accepted that genetic variation

can explain a component of variation in gene expression levels (Nica and Dermitzakis,

2013). Specific loci associated with this variation are known as expression quantitative

trait locis (eQTLs), and these have been linked to trait and disease-associated variants

detected in GWAS population studies (Nicolae et al., 2010). Within individual diploid

organisms biallelic gene expression functions to buffer against the potentially delete-

rious impact of mutations on gene expression. However, heterozygosity at eQTLs is

known to cause an allelic imbalance in gene expression between homologous chromo-

somes of the same individual (Shao et al., 2019; Fan et al., 2020). Allelic imbalance

is frequently associated with disease and is particularly prevalent within tumour cells

(Liu, Dong and Li, 2018). Studying allelic imbalance is key to obtaining a complete

understanding of genetic variation and its role in disease. In particular, the relationship

between allelic imbalance and chromatin architecture remains poorly characterised.

5.1.1 Gene Dosage Regulation

In order to maintain proper genomic function, cells must regulate gene dosage to ensure

genes are not over-expressed or under-expressed. Diploid organisms frequently employ

mechanisms to silence one allele of a gene per cell; this is a particular case of allelic
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imbalance known as mono-allelic expression (MAE). The silenced allele may be parent-

of-origin specific - this is known as imprinting, or it may be randomly determined -

this is known as random mono-allelic expression (RMAE) (Bartolomei and Ferguson-

Smith, 2011; Ferguson-Smith, 2011; Pinter et al., 2015). MAE genes are particularly

susceptible to functional disruption. Point mutations, leading to dysregulation or si-

lencing of the active allele, cannot be compensated for by the silenced allele. Many

of the most common congenital human disorders, including Prader-Willi/Angelman,

and Beckwith-Wiedemann syndromes, are associated with dysregulation of X-linked or

imprinted genes.

Random Mono-allelic Expression (RMAE)

Perhaps, the most famous example of RMAE is X-chromosome inactivation (XCI)

which facilitates sex chromosome dosage compensation in females (Payer and Lee,

2008). By silencing one copy of the X chromosome, the gene dosage of X-linked genes

is matched to the dosage of hemizygous males. Although XCI is typically random, as

in humans, this is not always the case. In marsupials, XCI is imprinted such that the

paternally inherited X-chromosome is silenced (Cooper et al., 1971).

RMAE is also prevalent on autosomes; a study in human cell lines identified 300 genes,

of 4000 screened, that were subject to RMAE (Gimelbrant et al., 2007). A well char-

acterised example of autosomal RMAE is the olfactory receptor (OR) genes (Chess

et al., 1994; Monahan and Lomvardas, 2015). The olfactory system comprises thou-

sands of olfactory sensor neurons, each receiving information on different odorants.

Each neuron is highly specific; it express one allele (MAE) of one OR gene. In this

case, MAE functions to maintain the specificity of the neuron - functional differences

between alleles would otherwise diminish the specificity of a given neuron if the gene

were bi-allelically expressed. Moreover, random inactivation enables different neurons

to express different alleles. Random inactivation increases sensory diversity when those

alleles are functionally different (Monahan and Lomvardas, 2015).

Imprinting

A second class of MAE is genomic imprinting. In imprinting, the silenced allele is

parent-of-origin specific. Maternal imprinting refers to the silencing of the maternal

copy of a gene, and paternal imprinting refers to the silencing of the paternal copy of

a gene (Ferguson-Smith, 2011).
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Although the exact mechanism of imprinting varies, it invariably involves the methy-

lation of cytosine bases in the CpG dinucleotides. CpG-rich differentially methylated

regions (DMRs) act as master imprinting control regions (ICRs) that may regulate the

expression of multiple imprinted genes within an imprinted gene cluster (Butler, 2009).

At the imprinted H19 /Igf2 locus, differential methylation of the intergenic ICR drives

reciprocal expression of H19 and Igf2. The ICR is a CCCTC-Binding Factor (CTCF)

binding site and paternal methylation prevents CTCF binding. Inhibition of CTCF

binding enables Igf2 to access the downstream enhancer. On the maternal allele, where

the ICR is unmethylated, CTCF insulates the enhancer from Igf2 and enables H19 to

access the downstream enhancer. In this instance, the ICR functions as a methylation-

sensitive insulator which alters higher-order chromatin structure via parent-specific

chromatin looping (Murrell, Heeson and Reik, 2004). Although it remains unclear

whether other examples of insulation-mediated imprinting exist, CTCF-binding sites

at other imprinted loci (Lee and Bartolomei, 2013).

Paternally methylated ICRs, as in H19 /Igf2, are confined to intergenic regions (Barlow,

2011). On the other hand, maternally methylated ICRs are frequently localised to

lncRNA promoters. For example, at the Kcnq1 locus, the ICR contains the promoter

of theKcnq1ot1 lncRNA. On the unmethylated paternal allele, expression of Kcnq1ot1

acts to silence Kcnq1. Methylation of the ICR on the maternal allele silences Kcnq1ot1,

allowing Kcnq1 to be expressed. However, the exact mechanisms by which lncRNAs

silence gene expression are not fully understood. However, at the Igf2r/Airn it has been

shown that transcription of the Airn lncRNA may interfere with RNA polymerase II

recruitment at downstream Igf2r promoter (Latos et al., 2012). In contrast, there is

evidence that other imprinted lncRNAs may actively recruit repressive histone proteins,

including Polycomb proteins (Zhao et al., 2010).

Understanding the complex molecular mechanisms underlying genomic imprinting is

key to developing novel therapeutic targets for imprinted diseases. Imprinting may

also have implications for the field of regenerative medicine. Loss of imprinting has

been observed in human induced pluripotent stem cellss (hiPSCs), and ensuring con-

servation of epigenetic information is vital for developing successful therapies (Perrera

and Martello, 2019).
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5.1.2 The Role of Chromatin Architecture in Allelic Gene Regulation

The fundamental role of allele specific expression (ASE) and MAE, including imprint-

ing, is widely acknowledged but poorly studied in higher-order chromatin architecture.

Typically, Hi-C experiments in diploid organisms will average the chromatin interac-

tions between homologous chromosomes. Averaging masks any biologically meaningful

differences between them and may mislead the interpretation of chromatin architec-

ture at loci with allele-specific differences. A recent study in mice represents one of the

most comprehensive attempts to characterise mammalian diploid architecture using

Hi-C (Han et al., 2020). Research in hybrid mice suggests that chromatin architec-

ture is broadly similar between homologous chromosomes and that local similarity is

highly correlated with allelic co-expression. Moreover, ASE was associated with both

epigenetic and genetic marks (Han et al., 2020).

5.1.3 Summary

This chapter assesses genome-wide allele-specific chromatin conformation at three dis-

tinct cell lines from previously published datasets; GM12878 (GM12878), Institute for

Medical Research-90 (IMR90) and H1 Human Embryonic Stem Cell Line (H1-hESC)

(Rao et al., 2014; Dekker et al., 2017; Akgol Oksuz et al., 2021). These cell lines

and datasets were selected according to several critical criteria. All three cell lines are

widely studied and well characterised, with abundant multi-omics data. Secondly, these

datasets, in particular H1-hESC and GM12878, are among the most deeply sequenced

Hi-C datasets available. High read coverage is crucial for successful chromosome-wide

haplotype phasing and visualising allele-specific chromatin domains at a reasonable res-

olution. Moreover, the GM12878 dataset is considered a “gold-standard” dataset, and

its haplotype has already been experimentally validated. In addition, this dataset was

previously utilised for the testing and development of HiCFlow, where it was shown

to resolve to know allele-specific interactions successfully. Finally, all three cell lines

are documented to have normal karyotypes (diploid - 23 x 2). An abnormal karyotype

would likely prevent any meaningful interpretation of allele-specific interactions. In ad-

dition, several critical components of the HiCFlow workflow, including variant calling,

haplotype phasing and allelic assignment, all assume that the input sample is diploid.

Violations of this assumption would likely introduce significant bias.

The investigation first assessed local allelic chromatin conformation at several disease-

associated imprinted loci. Across all three cell lines, we could robustly identify the
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known stable allele-specific interactions at the imprinted H19 /IGF2 locus. However,

other imprinted loci (DLK1 and SNRPN ) were more variable and, unlike H19 /IGF2,

there was no “canonical” three-dimensional (3D) conformation that characterised the

locus. At several loci, we also detected allele-specific differences in A/B compartmen-

talisation.

To assess characteristics of genome-wide allele-specific associations, TADs were scored

according to the observed magnitude of allelic in contact frequency. The set of top-

scoring TADs, showing the most robust allelic differences, were compared against the

superset of all TAD domains to test for enrichment of particular genomic properties.

As expected, in all cell lines, imprinted genes were significantly over-represented within

Allele Specific Topological Associated Domains (ASTADs) compared to non-imprinted

genes. For all cell lines, ASTADs were also enriched with heterozygous polymorphisms.

IN GM12878 and IMR90, but not H1-hESC we also detect enriched of allele specific

expression genes (ASEGs). However, we did not find strong evidence of allele specific

methylation (ASM) enrichment in ASTADs. The absence of ASM enrichment suggests

that genetic sequence polymorphisms drive most of the allelic differences.

Although a component of heterozygous polymorphism enrichment may be an artefact

of allelic assignment, we find that heterozygous variants corresponding to known eQTLs

are significantly over-represented in ASTADs relative to non-eQTL heterozygous vari-

ants. In addition, we find that eQTLs associated with ASE genes were over-represented

in ASTADs compared to eQTLs associated with non-ASE genes.

This study is one of the first to comprehensively assess allele-specific chromatin architec-

ture across multiple human cell lines. We find strong evidence linking changes in allelic

conformation at known eQTLs with differences in allele-specific gene expression. Dif-

ferences in chromatin conformation between homologous chromosomes are widespread

and not confined to imprinted domains. This methodology provides a novel framework

for characterising genome-wide allele-specific architecture, which could be applied to

disease diagnostics and quantitative trait loci population studies.
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5.2 Results - Allele Specific Hi-C (ASHi-C) Efficiency

Prior to ASHi-C, the raw Hi-C data for H1-hESC and IMR90 were used to perform

variant calling and haplotype assembly via HiCFlow. For GM12878 the validated

haplotype available from the Platinum Genomes Project was used to perform ASHi-C

(Eberle et al., 2017). For each cell line, the largest contiguous block of phased Single

Nucleotide Polymorphisms (SNPs) per chromosome were used for allelic assignment

and ASHi-C. The levels of heterozygosity and proportion of available phased SNPs

are shown in table 5.1. IMR90 was found to have the highest density of heterozygous

SNPs and the highest total number of phased SNPs. As expected, nearly all available

heterozygous SNPs in GM12878 had valid phasing information. H1-hESC has the

lowest density of heterozygous SNPs, and only 84% of these were able to be phased.

Table 5.1: Haplotype Phasing Efficiency

GM12878 H1-hESC IMR90

Het. SNP n % n % n %

Total 2 149 734 100.0 1 956 309 100.0 2 465 623 100.0
Phased 2 147 688 99.9 1 643 225 84.0 2 231 685 90.5

Note: Phased variants in GM12878, H1-hESC and IMR90. Total phased variants
represent the sum of the largest contiguous phased block per chromosome.

The efficiency of allelic assignment is shown in table 5.2 on the following page. Here,

allelic assignment efficiency refers to the proportion of total valid Hi-C read pairs

assigned to one of the parental alleles. Allelic efficiency was proportional to phased

heterozygous SNPs density. Consequently, IMR90 had the highest efficiency (14.2%)

and H1-hESC had the lowest (5.8%). In GM12878, assignment efficiency of GM12878

was only (10.7%) but absolute read density of the ASHi-C matrices was the highest.

ASHi-C read density of H1-hESC was 52% of GM12878 and ASHi-C read density of

IMR90 was 15% of GM12878.
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Table 5.2: ASHi-C Efficiency

GM12878 H1-hESC IMR90

Read Pairs n % n % n %

Haploid Map 4.63e9 100.0 4.87e9 100.0 0.76e9 100.0
Diploid Maps 0.51e9 11.1 0.27e9 5.6 0.11e9 14.2

Note: Valid HiC read pairs for haploid (full) and diploid (allele specific) cis contact
maps in GM12878, H1-hESC and IMR90. Diploid map counts represent the sum of
assigned read pairs across both alleles.
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5.3 Results - Imprinted Loci

Here we characterise allelic chromatin conformation at key imprinted loci; H19 /IGF2,

DLK1 and Snprn/Ube3A. We also identify previously uncharacterised allelic chromatin

conformation at the TAS2R gene cluster. These encode an array of bitter taste receptors

on chromosome 12p13.2 with functional similarities to olfactory receptor genes.

5.3.1 Ploidy Estimation

We found strong support for diploidy in all chromosomes, which affirms the published

karyotype of the cell lines and validates suitability for performing ASHi-C (see fig. 5-1

on the next page).

5.3.2 H19/IGF2 and Kcnq1 Imprinted Domain

The observed allelic chromatin conformation at the H19 /IGF2 locus supports previous

ASHi-C findings from Rao et al., 2014 (see fig. 5-3 on page 138). Specifically, we iden-

tified differential looping interactions between the H19/IGF2 Distal Anchor Domain

(HIDAD) at ˜1.6megabase (Mb) and H19 /IGF2. An additional looping interaction

was detected between H19 /IGF2 and a more proximal region at ˜1.8Mb. This may

reflect additional allele-specific enhancer interactions between H19 and IGF2. Alterna-

tively, this may represent the recently characterised looping interactions between INS

and KRTAP5-6 (Jian and Felsenfeld, 2021). The same pattern of allelic interactions

was consistently identified in all cell lines, although the differential HIDAD loop was

weaker in H1-hESC.

At the Kcnq1 locus, strong allelic interactions were identified in H1-hESC and IMR90

but these were absent in GM12878. In IMR90, a paternal allelic interaction (blue) at

the Kcnq1ot1 promoter may reflect promoter-enhancer looping on the unmethylated

paternal homolog. Expression of the Kcnq1ot1 lncRNA on the paternal homolog is

known to silence Kcnq1 by a mechanism that is not fully understood. On the maternal

allele, where we identify a local increase in maternal interactions, methylation of the

ICR at the Kcnq1ot1 promoter silences Kcnq1ot1 and allows Kcnq1 to be expressed.

Partial methylation (˜50%) of the IMR90 Kv DMR is consistent with previous reports

of expression and allele-specific methylation (Woodfine, Huddleston and Murrell, 2011)

(see fig. 5-2 on page 137). In addition, the observed paternal loop at the Kcnq1ot1
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Figure 5-1: Validation of Diploid Karyotype. Ploidy estimation was performed
using nQuire (Weib et al., 2018). Delta log-likelihood values are normalised between
0 and 1 for each chromosome. Smaller values indicate stronger support for the
corresponding ploidy. All chromosomes were found to be karyotypically normal.
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promoter is also indicative of allele-specific methylation at the DMR (see (2) in fig. 5-3

on the following page). However, the methylation status of the Kv DMR is not entirely

consistent with the observed findings in GM12878 and H1-hESC. Methylation at Kv

DMR in H1-hESC was less than 25% which is consistent with hypo-methylation and

biallelic expression of Kcnq1ot1. Hypo-methylation contrasts with the prominent allelic

differences being detected at this locus. Methylation in GM12878 was similar to IMR90

although no allelic interactions were detected at this locus.

Figure 5-2: Methylation at the Kv DMR. Proportion of CpG methylation at Kv
DMR. Partial methylation in IMR90 is consistent the observed allele-specific chromatin
conformation. However, the partial methylation and hypo-methylation of GM12878
and H1-hESC contrast allelic differences observed from the Hi-C data. Credit: Dr
Yuan Tian, University of Bath.
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a) GM12878 b) H1-hESC c) IMR-90

Figure 5-3: The Imprinted H19/IGF2 Locus. On the maternal homolog, the H19 -HIDAD loop is represented by the
red interactions. On the paternal homology, the IGF2 -HIDAD loop is represented by the blue interactions. The observed
allelic chromatin conformation supports previous ASHi-C findings from Rao et al., 2014 (see fig. 5-3). Clear differential looping
interactions were identified between the HIDAD at ˜1.6Mb and H19 /IGF2. See fig. 4-7 on page 106 for HiCFlow figure format
description.
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a) GM12878 b) H1-hESC c) IMR-90

1)

2)

Figure 5-4: The Imprinted H19/Kcnq1 Locus. We observe a local increase in interactions on the maternal homolog, which
may be linked to Kcnq1ot1 silencing and Kcnq1 expression. 1) An absence of interactions in GM12878 may suggest a loss of
imprinting. 2) A paternal allelic interaction with the Kcnq1ot1 promoter in IMR90 may reflect activation of paternal expression.
See fig. 4-7 on page 106 for HiCFlow figure format description.
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5.3.3 DLK1 Imprinted Domain

At the DLK1 locus profound allelic differences were detected in IMR90 (see fig. 5-6 on

page 142). The results suggest that, on one homolog, the imprinted domain is contained

within a single larger chromatin domain. On the other homolog, the imprinted domain

appears to be split into smaller sub-domains that may insulate chromatin interactions

from one other. In H1-hESC, the DLK1 locus was identified as an ASTAD but visual

inspection reveals minor changes compared to IMR90. Specifically, we identified a stripe

of putative allelic interactions extending from a CTCF site downstream of the imprinted

domain and encompassing the whole imprinted region up to DIO3. In GM12878, no

allelic differences were detected.

Methylation profiles for CpG islands overlapping the MEG3-DMR, which is thought

to control imprinting, revealed hypermethylation in H1-hESC (see fig. 5-5). The

MEG3-DMR in IMR90 showed 50% methylation, which is consistent with the allele-

specific methylation and imprinting. Finally, GM12878 showed a slight bias towards

hypomethylation at the MEG3-DMR.

Figure 5-5: Methylation at the MEG3 DMR. Proportion of CpG methylation at
MEG3 DMR. The partial methylation status of the MEG3 DMR is consistent with
allele-specific methylation and imprinting. Hypo- and hyper- methylation in GM12878
and IMR90 are consistent with the lack of allelic differences and may explain why the
locus exists in different compartments between the cell lines. Credit: Dr Yuan Tian.

Compartment analysis revealed contrasting compartmentalisation at the same locus

across different cell lines. In GM12878, the DLK1 locus was within the inactive ‘B’

compartment on both homologs. In contrast, in H1-hESC, the locus was in the active

‘A’ compartment. Finally, in IMR90, the two homologs were in contrasting compart-
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ments. These results may suggest that the activity of this domain is regulated by

differential compartmentalisation. In addition, imprinting may be maintained by seg-

regating each homolog into different genomic compartments.

All cell lines have a large 3Mb sized TAD approximately 2Mb upstream of the DLK1

domain (see fig. 5-7 on page 143). This TAD was named ‘v-TAD’ after the VRK1 near

it’s boundary and was identified as an ASTAD in both GM12878 and H1-hESC. Three

structural variations have previously been characterised at this locus. Precisely three

duplications (nssv16165643, nssv16173610 and nssv16177248), although no variation

in copy number was identified at this domain in these cell lines. Both GM12878 and

H1-hESC possess different Insertion / Deletion (INDEL) mutations within the region

corresponding to the nssv16165643 duplication near the centre of the TAD. However,

this mutation occurs near the centre of the TAD and does not overlap a known CTCF

binding site.
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a) GM12878 b) H1-hESC c) IMR-90

Figure 5-6: ASHi-C - Dlk1/MEG3. Highly prominent allelic associations in IMR90 are accompanied by differential ‘A’/‘B’
compartmentalisation. This suggests that, on one homolog, the imprinted domain is contained within a single larger chromatin
domain. Limited changes were observed in GM12878 and H1-hESC. Curiously, this locus was in different compartments between
GM12878 (‘A’) and H1-hESC (‘B’). See fig. 4-7 on page 106 for HiCFlow figure format description.
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a) GM12878 b) H1-hESC c) IMR-90

Figure 5-7: ASHi-C - Dlk1/MEG3. A large TAD domain (‘v-TAD’), 2Mb upstream of Dlk1, was present in all three cell lines
and displayed allelic conformation in GM12878 and H1-hESC. Although the TAD was consistently in the ‘B’, allelic differences
were only detected in GM12878 and H1-hESC. See fig. 4-7 on page 106 for HiCFlow figure format description.
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5.3.4 Snprn/Ube3A Imprinted Domain

Chromatin conformation at the Snprn was highly variable between cell lines (see fig. 5-9

on the next page). In GM12878, the region was characterised by its lack of domain-

level structure. A single TAD was identified overlapping UBE3A. In addition, the

compartment score of this domain was not consistent with the broader region’s “B”

compartmentalisation. Allelic interactions were detected between Snprn and Ube3A

and marginal differences where detected between the allelic compartment scores over-

lapping Snprn. A similar pattern of compartmentalisation was detected in IMR90.

However, poor resolution at the locus prevented robust assessment of allelic interac-

tions. In contrast, the same locus in H1-hESC was highly structured with numerous

hierarchical TAD domains. Prominent differences were detected in allelic chromatin

conformation and compartmentalisation; one homolog was identified as an ‘A’ and the

other as ‘B’.

Unexpectedly, despite the observed differences in H1-hESC, the PWS-AS DMR was

hypermethylated. These results indicate that the observed structural changes at H1-

hESC are independent of DMR methylation.

Figure 5-8: Methylation at the PWS-AS DMR. Proportion of CpG methylation
at PWS-AS DMR. Methylation was not consistent with observed allelic differences.
H1-hESC is hyper-methylated with the weakest evidence for differential methylation.
However, it displays the most prominent allelic chromatin conformation. Credit: Dr
Yuan Tian.
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a) GM12878 b) H1-hESC c) IMR-90

Figure 5-9: ASHi-C - Snprn/Ube3A. a) In GM12878 the Snprn locus was unstructured. Some allelic interactions were
detected surrounding the Snprn/Ube3A gene cluster. b) Substantial differential domain structure was identified, and changes in
compartmentalisation accompanied this. c) In IMR90, poor resolution limited interpretation although compartmentalisation was
similar to GM12878. See fig. 4-7 on page 106 for HiCFlow figure format description.
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5.3.5 TAS Receptors

We observed allelic differences in chromatin conformation throughout the genome at

numerous loci not known to be imprinted. However, a cluster of TAS2R genes, which

encode an array of bitter taste receptors on chromosome 12p13.2, was of particular

interest (see fig. 5-10 on the next page). A pair of conserved ASTADs were identified

overlapping the genes in both GM12878 and H1-hESC. TAS2R genes have not previ-

ously been directly identified as imprinted or to have allelic expression. Although it

was impossible to verify allelic expression, these results may be the first to report allele-

specific chromatin conformation at this locus. Taste receptors, like olfactory receptors,

are G-protein coupled receptors, and they may similarly have mono-allelic expression

due to allelic exclusion.
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a) GM12878 b) H1-hESC c) IMR-90

Figure 5-10: ASHi-C - TAS2R. Allelic differences were observed in two TADs in GM12878 and H1-hESC. The TAS2R genes
share functional similarity to the olfactory receptors, which utilise mono-allelic expression to enhance the specificity of odorant
detection in olfactory epithelium cells. These results suggest that allelic chromatin conformation may play a role in bitter taste
reception. See fig. 4-7 on page 106 for HiCFlow figure format description.
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5.4 Results - Global Properties of Allelic Conformation

Here we performed an unbiased assessment of genome-wide ASTAD distribution. AS-

TADs represent a subset of TADs which scored highly for differences in allelic chromatin

conformation. Conservation analysis was performed to assess whether the overlap fre-

quency between ASTADs in different cell lines is higher than expected. In addition we

assessed enrichment between ASTADs and various genomic features, including ASEGs,

eQTLs and chromatin state data.

5.4.1 Exclusion of Blacklist Regions

Genomic loci corresponding to Encode Blacklist regions were frequently associated

with allelic differences across all three cell lines (see fig. 5-11 on page 150) (Amemiya,

Kundaje and Boyle, 2019). These regions have been associated with false-positive

artefacts in other Next Generation Sequencing (NGS) based assays, and their exclusion

is standard practice. “Low Mappability” Blacklist regions are prone to type II errors

(false-negative), whereby true-positive allelic differences are missed. In contrast, “High

Signal” Blacklist regions are more prone to type I errors (false-positive), whereby allelic

differences are incorrectly identified. Although the true impact of such errors cannot

easily be determined, many of the highest-scoring ASTADs were associated with “High

Signal” Blacklist regions. Any TAD overlapping a Blacklist region was excluded from

subsequent analyses.

The proportions of blacklisted regions overlapping non-ASTAD versus ASTAD was

found to be broadly similar in both GM12878 and IMR90 (see table 5.3 on the fac-

ing page). However, in H1-hESC, a substantially higher proportion of ASTADs were

found to overlap “High Signal” blacklist regions compared to non-ASTADs. These

discrepancies are likely attributable to individual differences in the cell line genotypes.
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Table 5.3: Blacklist Regions in TADs

GM12878 H1-hESC IMR90

Type TAD ASTAD TAD ASTAD TAD ASTAD

High Signal 10.9 10.9 9.1 19.6 8.8 9.9
Low Mappability 2.6 3.1 2.8 2.0 2.9 1.3
Both 2.6 1.7 2.2 4.6 2.2 1.8
Normal 83.9 84.3 85.9 73.8 86.1 87.0

Note: Percentage of TADs (non-ASTADs) and ASTADs overlapping blacklisted
regions in GM12878, H1-hESC and IMR90 (autosomes).
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a) GM12878 b) H1-hESC c) IMR-90

Figure 5-11: ASHi-C at Blacklist Regions. An illustrative example of a suspected false positive ASTAD overlapping a Blacklist
region in all three cell lines. Any TAD overlapping a blacklist region was excluded from subsequent analyses. Plot coordinates:
chr3:194.81Mb - 196.190Mb (hg19). See fig. 4-7 on page 106 for HiCFlow figure format description.

150



5.4.2 Conserved ASTADs

Overlap analysis was perform to assess the extent of TAD and ASTAD conservation

across cell lines and within ASTADs. A set of intervals between cell lines was considered

“conserved” if they shared at least a 90% reciprocal overlap. Approximately 1.9% of

ASTAD domains were conserved across all three cell lines, compared to 16.0% of TAD

domains (see fig. 5-12 on the following page).

39 ASTADs were identified as conserved among all three cell lines. Notably one of the

conserved ASTADs was found to overlap the imprinted H19 /Igf2 locus, shown in fig. 5-

3 on page 138. In total, 7 of the 39 conserved ASTADs (18%) were associated with a

“High Signal” Blacklist region, including the one described in fig. 5-12 on the following

page. However, 17 of the 39 (44%) did not overlap a blacklist region and had normal

Copy Number Variant (CNV) across all cell lines. Randomisation testing was used to

assess whether the observed frequency of conserved ASTADs was more significant than

expected given the TAD conservation rate. All domains overlapping Blacklist regions

or regions with abnormal CNV were excluded. We found that in all comparisons,

the observed frequency of conserved ASTADs was significantly higher (p < 0.01) than

would be expected from a random distribution (see fig. 5-13 on page 153).

Conserved heterozygotic variants (SNPs and INDELs), present in all three cell lines,

were significantly more highly represented among conserved ASTADs compared to all

conserved TADs. This conservation suggests that shared genetic heterozygosity may

drive consistent allelic differences in chromatin conformation. We also assessed whether

differential methylation was enriched within conserved ASTADs. Each cell line was

tested independently as conserved sites of ASM were too infrequent to estimate enrich-

ment reliably. Evidence of ASM enrichment was inconsistent; significant enrichment of

ASM conserved ASTADs was detected in IMR90 but not in GM12878 and H1-hESC.
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Figure 5-12: Venn Diagram of TAD/ASTAD Overlap. A set of TAD intervals
between cell lines was considered “conserved” if they shared at least a 90% reciprocal
overlap. a) Proportion of TADs conserved among sets of cell lines. b) Percentage of
TADs conserved among sets of cell lines. c) Proportion of ASTADs conserved among
sets of cell lines. d) Percentage of ASTADs conserved among sets of cell lines.
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Figure 5-13: Observed vs. Expected ASTAD Overlap. Randomisation testing
was used to assess whether the observed frequency of conserved ASTADs was more
significant than expected given the TAD conservation rate. The observed value is
shown as the dashed red line. In all comparisons, the observed number of conserved
ASTADs was significantly higher than randomly expected (p < 0.01) given the observed
number of conserved TADs. a) Expected vs observed conservation between GM12878
and IMR90. b) Expected vs observed conservation between GM12878 and H1-hESC.
c) Expected vs observed conservation between IMR90 and H1-hESC. d) Expected vs
observed conservation between GM12878, IMR90 and H1-hESC.
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Figure 5-14: Enrichment of Conserved Variants and ASM in Conserved AS-
TADs. Randomisation testing was performed to assesses whether the observed overlap
of each genomic feature was higher than expected by chance using the Jaccard Index.
The observed Jaccard score is shown as the dashed red line. a) Heterozygotic con-
served variants were significantly enriched in conserved ASTADs, relative to all con-
served TADs. This enrichment indicates that genetic polymorphisms may cause allelic
differences in chromatin conformation. b-d) With the exception of IMR90, ASM was
not significantly enriched within conserved ASTADs.
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5.4.3 Sequence Polymorphism Enrichment

Overlap analysis previously revealed that shared genetic variants were enriched in con-

served ASTADs. To more robustly characterise this, we sought to assess whether

heterozygous variants were over-represented among all ASTADs compared to homozy-

gous variants. In all cell lines, heterozygous polymorphisms (SNPs and INDELs) were

found to be significantly over-represented in ASTADs relative to homozygous polymor-

phisms (p < 0.001). The magnitude of enrichment, as defined by the Pearson residuals,

was higher in SNPs than in INDELs (see fig. 5-15). This difference may be because

heterozygous SNPs were used to distinguish allelic read pairs. A component of this

enrichment may be an artefact of allelic assignment.

Figure 5-15: Heterozygous polymorphisms are enriched in ASTADs. Chi-
squared analysis revealed non-independence between genetic zygosity and ASTAD sta-
tus. Heterozygous polymorphisms were over-represented in ASTADs relative to TADs
compared to homozygous polymorphisms. The values shown are Pearson’s residuals.
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5.4.4 Chromatin State Enrichment

Locus Overlap Analysis (LOLA) was used to test for ASTAD enrichment with chro-

matin state data obtained from the Roadmap Epigenomics Project (see table 3.6 on

page 74) (Kundaje et al., 2015; Sheffield and Bock, 2016). Each chromatin state was

scored according to its worst (max) rank across two independent measures - p-value and

log-odds ratio. The relative ASTAD enrichment ranking of different chromatin states

is shown in fig. 5-16. Each state is colour coded as either active, inactive or bivalent,

and states are ordered according to their enrichment ranking. In both GM12878 and

IMR90, ASTADs were more strongly associated with active chromatin states. In con-

trast, ASTADs in H1-hESC were more strongly associated with inactive and bivalent

chromatin states. This discrepancy suggests that ASTADs may be functionally distinct

between differentiated and undifferentiated cells.

Figure 5-16: Chromatin State Enrichment. Chromatin states were ranked accord-
ing to their LOLA enrichment rank. The rank describes the level of ASTAD enrichment
for that particular state and is determined using the worst (max) rank of two inde-
pendent measures: p-value and log-odds ratio. ASTADs in GM12878 and IMR90 were
more strongly associated with active chromatin states, whereas ASTADs in H1-hESC
were more strongly associated with inactive and bivalent chromatin states.

In addition, we found no evidence of significant enrichment at sites of ASM. We also

found that ASTAD distribution was not strongly influenced by the presence of abnormal

CNVs. Enrichment was only detected in IMR90, where ASTADs were significantly

associated with a gain of CNV. These results are fully broken down in fig. 5-17 on the

next page.
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Figure 5-17: Heat map of all LOLA enrichment results. Each cell is coloured
according to the strength of ASTAD enrichment, as determined by the worst (max)
rank of two independent measures: p-value and log-odds ratio. Higher enrichment is
indicated by darker red, and cells with a hatched pattern indicate statistically signifi-
cant enrichment (p < 0.01). There was no statistically significant enrichment of ASM
in ASTADs. With the exception of regions with gain of CNV in IMR90, abnormal
CNV domains were not significantly enriched in ASTADs.
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5.4.5 Imprinted Gene Enrichment

The observed number of imprinted genes overlapping ASTADs was significantly higher

than expected in both GM12878 and IMR90 (see fig. 5-18 on the facing page). Overlap

was not significant in H1-hESC (p = 0.03, alpha = 0.01), although the observed overlap

was higher than the expected mean, consistent with the other cell lines.
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Figure 5-18: Imprinted Gene Enrichment in ASTADs. Randomisation testing (n
= 10,000) revealed that, in GM12878 and IMR90, the observed number of imprinted
genes overlapping ASTADs was significantly higher (p < 0.01) than expected compared
a stratified random sample of all genes. The observed number of imprinted genes
overlapping ASTADs is shown as the dashed red line. * (p < 0.05), ** (p < 0.01), ***
(p < 0.001).
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5.4.6 ASE Gene Enrichment

The observed number of ASEGs overlapping ASTADs was significantly higher than

expected in both GM12878 and IMR90 (see fig. 5-19 on the next page). Overlap was not

significant in H1-hESC (p = 0.998) and suggest that ASEGs may be under-represented

within ASTADs. This is consistent with the chromatin state analysis suggesting that

H1-hESC ASTADs are distributed within inactive, non-genic regions.
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Figure 5-19: Allele Specific Expressed Gene Enrichment in ASTADs. Ran-
domisation testing (n = 10,000) revealed that, in GM12878 and IMR90, the observed
number of ASEGs overlapping ASTADs was significantly higher (p < 0.01) than ex-
pected. The observed number of ASEGs overlapping ASTADs is shown as the dashed
red line. * (p < 0.05), ** (p < 0.01), *** (p < 0.001).
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5.4.7 eQTL Gene Enrichment

We have earlier described heterozygotic variants, and ASEGs were significantly over-

represented within ASTADs. Genetic polymorphism, known as eQTLs, are variants

associated with changes in gene expression, and heterozygotic eQTLs may drive allele-

specific differences in gene expression. To further investigate the relationship between

eQTLs, gene expression and chromatin conformation was obtained data for eQTL and

eQTL-linked genes in GM12878 from the Genotype-Tissue Expression study (GTEx)

(GTEx Analysis V8 (dbGaP Accession phs000424.v8.p2).

Heterozygotic eQTLs were highly enriched within ASTADs compared to heterozygotic

non-eQTLs. This enrichment suggests the eQTLs may drive changes in gene expres-

sion via differences in chromatin conformation. It also provides further evidence that

heterozygotic enrichment is not an artefact of allelic assignment and haplotype phas-

ing. We also found that heterozygous eQTLs were more likely to be associated with

ASE genes compared to homozygous eQTLs. Furthermore, we found that heterozygous

eQTLs within ASTADs were significantly more likely to be associated with ASE genes

compared to heterozygous eQTLs in non-ASTADs. Similarly, genes whose expression

was significantly influenced by an eQTL (eGenes) were significantly over-represented

in ASTADs compared to non-eGenes.

These findings suggest that heterozygous eQTLs may drive allele-specific gene expres-

sion via differences in allelic chromatin conformation.
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Figure 5-20: eQTLs and eGenes - analysis of ASTAD distribution in
GM12878. a) Heterozygous eQTL variants were significantly over-represented in AS-
TADs compared to non-eQTL heterozygous variants. b) Heterozygous eQTLs were
significantly more likely to associated with ASE genes compared to homozygous eQTL
variants. c) eQTLs associated with ASE genes were significantly over-represented in
ASTADs compared to non-ASE eQTL associated genes. d) Similarly, eGenes (whose
expression was significantly influenced by an eQTL), were significantly over-represented
in ASTADs compared to non-eGenes. * (p < 0.05), ** (p < 0.01), *** (p < 0.001).
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5.5 Discussion

Allelic imbalance, or allele-specific gene expression, is generally attributed to variances

in binding efficiency at regulatory sites due to genetic variation (Pinter et al., 2015).

Although it is a frequent event in normal cells, it can also cause congenital and acquired

diseases, including cancer (Calabrese et al., 2020; Przytycki and Singh, 2020). Genome

Wide Association Studies (GWAS) have linked genetic variants to diseases and enabled

insights into complex-trait genetics and disease mechanisms. However, approximately

93% of GWAS variants occur in non-coding intergenic regions, introns, and long ter-

minal repeats (Maurano et al., 2012). As such, GWAS data alone is often insufficient

to directly infer the functional mechanism of disease association and, consequently, the

aetiology of disease. More recent approaches attempt to integrate GWAS data with

expression quantitative trait loci data (Meng et al., 2018). eQTLs are loci where ge-

netic variation is known to influence the expression of a specific gene. Identification

of eQTLs overlapping GWAS variants enables disease associated variants to be linked

with specific genes. More recently, chromatin interaction information has been used

to link GWAS and eQTL variants to target genes (Javierre et al., 2016; Gorkin et al.,

2019; Yu, Hu and Li, 2019).

Aside from allele-specific differences at imprinted loci, the occurrence of allele-specific

chromatin structures and their association with allele-specific gene expression has not

been extensively documented at a genome-wide level. A key benefit of ASHi-C is

that many factors that would otherwise influence chromatin conformation between

individuals are internally controlled within the same individual. As such, our ASHi-C

methodology provides an ideal framework for assessing the impact of specific genetic

variants on chromatin structure and expression.

In this work, we have utilised the HiCFlow workflow to conduct genome-wide char-

acterisation of the allele-specific chromatin conformation. We have also assessed the

feasibility of using the input Hi-C data to perform de novo haplotype assembly and de-

veloped standardised methods for scoring TADs according to the observed differences in

allelic-chromatin structure. We initially focused on three imprinted gene clusters that

exemplified imprinted domains known to be allele-specifically regulated. Following this,

we conducted an unbiased genome-wide characterisation of Allele Specific Topological

Associated Domain distribution and enrichment. We observed enrichment of imprinted

and ASE genes underlying ASTADs. We could directly associate heterozygous eQTLs

with changes in chromatin structure linked to allele-specific expression.
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5.5.1 Chromatin Conformation at Specific Loci

Another prominent feature of ASTADs is that they were all significantly enriched in

imprinted genes. Although imprinting mechanisms vary between genes, this suggests

that the epigenetic-based chromatin scaffolds required for imprinting are established

early in cell development and maintained irrespective of expression.

H19/IGF2 and Kcnq1

In all cell lines we detected consistent differential striping patterns at H19 DMR. This

consistency indicates that the ICR is sufficient to establish the allele-specific chromatin

scaffold required for proper imprinting across cell lines. In addition, we show that the

HIDAD locus is positioned at a CTCF site at the boundary of the TAD encompassing

the entire imprinted domain. The HIDAD locus predominantly interacts with CTCF

sites at the H19 -DMR on the maternal allele, and with CTCF sites near the IGF2

promoter on the paternal allele, when the H19 -DMR is methylated. In addition, IGF2

or H19 can gain access to a series of enhancers located near to intervening CTCF

pause-sites during loop extrusion. This access is evidenced by the number of sub-

TADs detected within the TAD that encompasses the entire imprinted domain. Allele-

specific interactions between the HIDAD and H19 /IGF2 were much less prominent

in H1-hESC. This observation may explain previous reports of unstable H19 /IGF2

imprinting in these cells (Rugg-Gunn, Ferguson-Smith and Pedersen, 2007).

At the Kcnq1 locus a CTCF site previously identified as “region 3” has been shown to

be required for setting up maternal looping interactions to facilitate Kcnq1 expression

(Naveh et al., 2021). . The paternally expressed Kcnq1ot1 lncRNA is regulated by the

Kv DMR, and its transcription on the paternal allele may disrupt CTCF binding at

“region 3” and silence Kcnq1. This silencing is consistent with the observed decrease in

chromatin interactions on the paternal homolog in IMR90. However, it remains unclear

why similar structural changes were observed in H1-hESC despite evidence of Kv DMR

hypo-methylation. Similarly, partial methylation of the Kv DMR was not accompanied

by such changes in GM12878. This discrepancy could suggest that the CTCF looping

at “region 3” is dependent on both the Kv DMR and the correct higher-chromatin

structure to facilitate proper imprinting.
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DLK1

At the DLK1 locus, the MEG3 -DMR has been shown to directly regulate imprint-

ing (Zhu et al., 2019). However, the mechanisms by which DLK1 is silenced remain

unclear. Our results suggest that hyper-methylation of the MEG3 -DMR triggers ‘A’

compartmentalisation of the locus which in turn may promote DLK1 expression. In-

house expression data generate by the Murrell lab group (credit: Dr. Giuseppina

Pisignano) revealed high DLK1 expression in H1-hESC and comparatively low DLK1

expression in GM12878. This agrees with the hyper-methylation of the MEG3 -DMR

and ‘A’ compartmentalisation of both homologs in H1-hESC. In addition, low DLK1

expression in GM12878 is consistent with the observed MEG3-DMR hypo-methylation

and ‘B’ compartmentalisation. In IMR90 partial methylation of the DMR is also con-

sistent with allele-specific methylation. Partial methylation also correlates with differ-

ential “A”/“B” compartmentalisation between homologs and the observed differences

in allelic chromatin conformation. However, DLK1 expression levels were nearly unde-

tectable in IMR90.

The observed allelic differences at the v-TAD may be attributable to disruption of

CTCF binding at the TAD boundaries. However, it remains unclear what role the

v-TAD plays in regulating imprinting at the DLK1 locus. It is notable that allelic

associations were absent in the IMR90 v-TAD despite the substantial differences at

the DLK1 locus. It is feasible that allelic interactions at the v-TAD and the DLK1

locus are mutually exclusive. Large scale disruption at the v-TAD could propagate

downstream and disrupt the mechanisms of DLK1 imprinting. Depending upon which

homolog (maternal or paternal) is disrupted, the DLK1 locus may revert to a fully ‘A’

or ‘B’ compartment state, as observed in H1-hESC and GM12878 respectively.

SNRPN

The SNRPN locus in GM12878 is highly unstructured with very few TAD domains.

The observed structural differences overlapping the imprinted locus may be indepen-

dent of loop extrusion. The observed changes appear to originate from a single CTCF

site overlapping SNRPN. It is therefore possible that paternal SNRPN expression may

displace CTCF occupancy. Previous work has shown that RNA polymerase II’s activity

may displace CTCF binding (Lefevre et al., 2008).

The observed changes in H1-hESC are not consistent with GM12878. Allelic differences,

including differential compartmentalisation, were identified beyond the imprinted do-
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main. In addition, hypermethylation of the PWS -AS DMR suggests that these differ-

ences may be independent of the underlying imprinting mechanisms. Despite this, im-

printed gene expression is highly stable in H1-hESC, and previous work has indicated

that imprinted expression is independent of methylation at this locus (Rugg-Gunn,

Ferguson-Smith and Pedersen, 2007; Kim et al., 2007).

TAS2R - Bitter Taste Receptors

Although not an initial target of this research, we were intrigued to find that the bitter

taste receptor genes (TAS2R) were identified in conserved ASTADs in both GM12878

and H1-hESC. These findings suggest chromatin conformation may play a role in bitter

taste reception. To our knowledge, these genes have not been reported to be subject

to allelic exclusion. However, they are present in regions of high genetic variability,

and share similarities with olfactory receptors as both are G protein-coupled receptors.

About 25 functional TAS2R genes and 11 pseudogenes spread between chromosomes 5,

7 and 11. The functional effects of the variants on G-protein receptor protein structures

and the mechanisms whereby they convey taste perception to the brain have been

elucidated. It has also been recently shown that TAS2R genes are expressed on the

tongue but are also present in the heart, respiratory epithelia, and the gut. Indeed the

TAS2R genes may have additional sensing functions unrelated to bitter taste.

Although there is limited research on their transcriptional regulation, sensitivity to

bitter ligands varies significantly between individuals with the same genotype. The

differences in sensitivity are thought to be due to variable mRNA expression (Douglas

et al., 2019). Furthermore, an in situ hybridisation study has indicated that humans

co-express a heterogeneous mix of between 4-11 TAS2Rs per cell in the papillae of the

tongue (Behrens et al., 2007). Whether these genes are subject to allelic exclusion

remains unclear despite this work. However, the TAS2R genes seem likely candidates

for allelic exclusion as a mechanism for increasing sensory specificity similar to the

olfactory receptors. The observation supports this hypothesis; allele-specific expressed

genes are enriched within ASTADs.

5.5.2 Methods of Assessing Allelic Chromatin Conformation

This work provides a genome-wide assessment of allele-specific differences at TADs.

Specifically, we have scored each domain using a measure of dissimilarity between ho-

mologous chromosomes. The top scoring TADs (z > 2) were defined as ASTADs and
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this subset was used to assess enrichment against the superset of all TADs. We ac-

knowledge that this approach is not a test of statistical significance. However, previous

work has indicated that statistical approaches are not appropriate given the low res-

olution and lack of biological replicates (see section 4.6.4 on page 107). Our ranking

approach has enabled us to characterise genome features associated with domains of

high dissimilarity between homologous chromosomes. Allele-specific differences are not

limited to TADs, and this approach could feasibly be extended to other chromatin

features such as loops. It may be possible to identify allele-specific differences using

supervised learning approaches with sufficient data. Similar approaches have been at-

tempted with loop detection (Salameh et al., 2020), but the main challenge would be

obtaining a sufficiently large experimentally validated training dataset of allele-specific

differences.

5.5.3 Polymorphism Enrichment in ASTADs

The most prominent feature of ASTADs is that they are significantly enriched with

heterozygous SNPs. Heterozygous enrichment was unsurprising; genetic variation, par-

ticularly regulatory elements, has long been associated with higher-order chromatin or-

ganisation changes. However, we note that this enrichment may, in part, be an artefact

of allelic assignment. ASHi-C utilises phased heterozygous SNPs to assign Hi-C read

pairs to a particular allele. As such, allele-specific differences can only be detected

in regions with sufficient heterozygosity. Although INDELs were similarly enriched

in ASTADs, which were not used for allelic assignment, we note that co-localisation

of SNPs and INDELs could feasibly introduce artefacts to the INDEL enrichment -

akin to linkage disequilibrium. Despite this, we found that heterozygous eQTLs were

enriched in ASTADs relative to other heterozygous polymorphisms. This enrichment

would not be expected if ASTADs were purely an artefact of allelic assignment.

5.5.4 Discrepancies in H1-hESC

Our findings support previous work in hybrid mice where allelic co-expression was cor-

related with the structural similarity between homologous chromosomes (Han et al.,

2020). Specifically, we observed that ASE genes were significantly enriched in ASTADs

in both GM12878 and IMR90. However, unexpectedly, we found evidence that ASEGs

in H1-hESC may be under-represented in ASTADs. When assessing chromatin state en-

richment, we also found similar discrepancies in H1-hESC. While ASTADs in GM12878
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and IMR90 were predominantly associated with active chromatin, H1-hESC was more

associated with inactive chromatin. While the reasons for this remain unclear, studies

have indicated that HESC cell lines possess significantly higher non-CG methylation

than differentiated cells (Chen et al., 2011). As such, it might also be expected that

HESCs would have a higher level of ASM compared to differentiated cells. This is

supported by our public ASM data; H1-hESC has the higher number of ASM sites but

the lowest proportion of ASM in CpGs (see table 3.11 on page 77). It is feasible that

elevated ASM in H1-hESC may disrupt the binding of architectural proteins, leading

to substantial differences in the chromatin scaffold between homologous chromosomes.

If this disruption does occur, it is likely localised to inactive regions that are not critical

to cellular function. Furthermore, if this disruption predominates over other sources

of allelic chromatin conformation (including ASE), then this would sufficiently explain

the observed discrepancies in ASTADs disruption between undifferentiated and differ-

entiated cells. Further investigation is required to assess this, and it would be helpful

to perform a similar analysis on differentiated and undifferentiated cells of the same

individual. Such an analysis would implicitly control numerous confounding factors,

particularly genotype differences.

5.5.5 Conservation of Allelic Chromatin Structures

We find evidence that the distribution of ASTADs is non-random. In particular, we

found a significantly higher than expected overlap of ASTADs between cells of differ-

ent individuals and cell types. Among these conserved ASTADs, we identified a higher

rate of conserved polymorphisms shared between cell lines. This conservation suggests

that ASTAD conservation is predominantly sequence-based and supports our previ-

ous findings of polymorphism enrichment in ASTADs. There was insufficient data to

robustly assess enrichment of conserved ASM. However, we did detect enrichment of

ASM in the conserved ASTADs of IMR90. ASM enrichment could suggest that there

is also an epigenetic component to this conservation; however current findings remain

inconclusive.

5.5.6 eQTL Enrichment

In considering publicly available eQTL and ASE data for GM12878, we found that

heterozygous eQTLs are more likely to be associated with ASEGs than homozygous

eQTLs. This makes sense; eQTLs are thought to regulate the expression of target
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genes by altering cis-regulatory elements (Albert and Kruglyak, 2015). As such, it is

expected that heterozygous eQTLs will have a different regulatory pattern on different

homologs. To our knowledge, this work provides some of the first direct evidence

for this. More importantly, we also found that the target genes of eQTLs variants

overlapping ASTADs were more likely to be allele-specifically expressed. This key

finding shows that genetic sequence variation can alter higher-order chromatin structure

with functional implications for gene expression.

5.5.7 Chromatin Structure and Expression

Gene regulation is likely governed by an interplay of transient promoter/enhancer loops,

tissue-specific transcription factors and TADs. TADs may assist in constraining chro-

matin fibres to increase the probability of promoter-enhancer interaction, which in

turn conditionally activate gene expression in the presence of tissue-specific transcrip-

tion factors. Transcription itself is known to disrupt chromatin structure, and this

will likely mean that promoter-enhancers must be reformed to reactivate transcription

(Misteli and Finn, 2021). This work shows that allele-specific chromatin conformation

is associated with ASE. However, it remains unclear which is the causal factor - does

ASE lead to variable transcription-induced differences in chromatin architecture or do

underlying differences in the allelic chromatin scaffolds drive ASE? In the former case,

variants at regulatory sites may disrupt transcription factor binding and prevent gene

activation even if the underlying chromatin scaffold and promoter-enhancer looping

interactions are undisrupted. Differential transcription may mean that the extent of

transcription-induced changes in chromatin conformation will differ between alleles.

In the latter case, variants that disrupt the underlying chromatin scaffold established

early in cell development may alter the frequency of promoter-enhancing looping.

Allelic imbalance, which defines ASE, is most often associated with genotypic variation

(Pinter et al., 2015). With sufficient data and utilising the framework of methodolo-

gies provided here, it will be possible to characterise specific eQTL genetic variants

consistently associated with structural changes in allelic chromatin architecture. By

assessing the impact of these variants across cell types of the same individual, it should

be possible to identify which variants are associated with structural changes indepen-

dent of expression and those that are dependent on expression. If stable structural

differences are observed between cell types with variable expression patterns, then the

variant may directly disrupt chromatin structure which in turn causes ASE. On the

other hand, if allelic differences are cell-type dependent according to expression pattern,
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the variant may directly disrupt transcription, which disrupts chromatin structure. In

reality, likely, ASE and allelic-chromatin conformation are reciprocally dependent on

one another.
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5.6 Conclusion

This work has demonstrated the feasibility of investigating allelic chromatin conforma-

tion and characterising the relationship between genetic variation and ASE. As high-

resolution Hi-C data and haplotype phased genotypes become more widely available,

this methodological framework can be applied to identify so-called “structural quan-

titative trait loci” (sQTL). Such an approach, conceptually similar to eQTL, would

enable the identification of genetic variants associated with structural changes in chro-

matin architecture, both within individuals and between individuals in a population.

Combined with data from GWAS and eQTL analysis, this would provide a complete

understanding of genomic regulation and its impact on phenotypic traits and disease.
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Chapter 6

HiCSim - Chromatin Polymer

Simulations

A workflow for modelling chromatin us-
ing polymer simulations.

Summary

In vivo approaches remain the “gold-standard” approach for investigating the prop-

erties of chromatin architecture. Microscopy and 3C-based methods provide direct

observations of chromatin behaviour in vivo. However, they are not without their lim-

itations. The high financial cost and the requisite specialist experimental techniques

inevitably limit the scope of experimental work. Biophysical models of chromatin struc-

ture can provide complementary benefits to experimental work. Specifically, chromatin

fibres can be modelled as simple bead-and-string polymers, and the behaviours of each

bead can be defined according to underlying epigenetic or chromatin-state data. These

models can recreate experimentally-observed large-scale chromatin structures with a

high degree of accuracy, and their performance is continually improving as more is

learned about the properties of chromatin. In this chapter, I introduce HiCSim, a

tool for performing coarse-grain polymer simulations to interrogate, visualise and com-

pare simulated chromatin conformation. HiCSim was developed using the same design

principles as HiCFlow; it is purpose-built to be user-friendly and suitable for use by

experimental researchers. Together, HiCFlow and HiCSim comprise a suite a comple-

mentary bioinformatics tools for studying chromatin chromatin in vivo and in silico.
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6.1 Background

Advances in experimental research have enabled various properties of the “multiome”

to be probed with unprecedented detail. A vast array of genomic data exists relating to

chromatin structure, epigenetic marks and gene regulation within the public domain.

Each of these data independently reveals distinct properties of genomic function. How-

ever, no component of the genome acts in isolation. The genomic structure cannot be

understood without considering both the epigenome and transcriptome and vice versa.

We can learn far more by considering the whole than the sum of its parts. Integrating

multi-omics data to reveal the hidden interactions of factors that govern chromatin

function remains a crucial challenge in modern biology.

6.1.1 Approaches to Modelling Chromatin

Biophysical modelling is one possible approach to gaining novel insights into the com-

plex interplay of factors governing chromatin dynamics. Models incorporating multi-

omics data can facilitate accurate inference and interrogation of dynamic chromatin

fibres at temporal resolutions beyond 3C-based technologies and spatial resolutions be-

yond modern microscopy. Approaches to modelling chromatin generally fall into two

categories: “top-down” or “bottom-up” (Moller and de Pablo, 2020). Both approaches

have distinct and complementary advances, as discussed below.

Top-down Modelling of Chromatin

Top-down approaches fit models directly to experimental three-dimensional (3D) chro-

matin conformation data and other omics datasets. The goal is to represent the ob-

served properties of the datasets accurately. However, the resolution of the experimen-

tal data inherently limits top-down approaches. In human, autosomal simulations have

been built at 50kilobase (Kb) resolution (Di Pierro et al., 2016), and, in yeast, whole-

nucleus simulations have been performed at 5-10Kb (Arbona et al., 2017). A canonical

example of a top-down approach is the work of Di Pierro et al., 2016. Di Pierro et

al. utilise the principle of maximum entropy to devise an energy landscape model of

chromatin known as the Minimal Chromatin Model (MiChroM). MiChroM includes

27 parameters that define the biochemical interactions of genomic loci - these include

distance-dependent gain/loss of energy when specific loci interact and the change in

free energy when loop anchors are formed. The optimal values for each parameter
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were then determined by training the model using experimental data from GM12878

(GM12878) chromosome 10 (Rao et al., 2014). The optimised energy function was

then applied to generate an ensemble of structures for all autosomes. Remarkably, the

model recovered many known properties of the genome, including phase-separation of

compartments, unknotted chromosomes, and the formation of chromosomal territories.

In addition, simulated contact matrices closely agreed with the observed experimental

Hi-C maps. In later work, Di Pierro et al. trained a similar energy function capable

of accurately predicting Hi-C maps using only epigenetic data (Di Pierro et al., 2017).

This remarkable work suggests that information encoded in epigenome alone may be

sufficient to determine global chromatin architecture.

Top-down approaches are, therefore, very effective at accurately representing experi-

mental data, and maximum entropy approaches may help elucidate the general prop-

erties of chromatin energetics. However, high representability frequently comes at the

cost of low transferability. Models trained on experimental data will embed all of

the same biases and limitations of the experimental methods. Di Pierro et al. note

that their model was trained on population-average Hi-C data; as such, it is unlikely

to accurately reflect the underlying properties of single-cell chromatin conformations.

Similarly, a model optimised for a specific experimental method and cell type is un-

likely to perform optimally under different conditions. Moreover, top-down approaches

alone cannot provide insight into the underlying biochemical interactions that govern

the observed chromatin dynamics. Nevertheless, integrative approaches combining ex-

perimental and simulation data have the potential to advance our understanding of

chromatin architecture much more than either method alone (Moller and de Pablo,

2020).

Bottom-up Modelling of Chromatin

Bottom-up approaches, on the other hand, are “fitting free”; they do not directly in-

corporate information about the observed 3D structure. Instead, these approaches

define the system’s physical properties, such as force fields, and may include one-

dimensional genomic information, such as protein-binding and histone modifications.

In other words, in a bottom-up approach, the 3D structure is inferred from the model.

In a top-down approach, the model is inferred by the 3D structure. Bottom-up ap-

proaches are much less able to represent the observed experimental data accurately.

These models can only incorporate known biological mechanisms and will always be

incomplete representations of the whole system. Top-down models, on the other hand,
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are built directly from the observed structure and so implicitly incorporate all known

and unknown biological mechanisms that govern that structure. Although bottom-up

approaches may be less representable, they are generally more transferable. Transfer-

ability describes the extent to which the model can be applied to different contexts.

Since bottom-up approaches are built using the fixed fundamental principles thought

to govern chromatin dynamics, their findings can be more easily generalised.

Bottom-up approaches also differ in the scale of structures that they model. For ex-

ample, high-resolution (1.9 Å) X-ray crystallography imaging has facilitated atomistic

simulations of individual nucleosomes with free Deoxyribonucleic acid (DNA) (Davey

et al., 2002; Bishop, 2005). These models have now been applied to solve real-world

questions in biology. For example, histone variants, including macroH2A and H2A.Z,

are known to influence DNA accessibility to modulate transcriptional activity (Abbott

et al., 2001; Zhang and Reinberg, 2001; Nusinow et al., 2007). Atomistic simulations

have since been used to characterise the previously unknown molecular mechanisms

that underlie differences in histone variants (Bowerman and Wereszczynski, 2016).

Currently, large-scale atomistic chromatin simulations are beyond modern technology’s

reach. A critical limiting factor of these simulations is the imprecision of interatomic

force values; this can lead to model inaccuracy and, therefore, loss of transferability.

However, recent advances in machine learning for force field determination, including

AlphaFold for protein folding, may soon be applied to chromatin simulations (Moller

and de Pablo, 2020; Jumper et al., 2021). In addition, advances in high-performance

computing power are finally being matched with highly scalable algorithms for molec-

ular dynamics simulation. Recently, the first billion-atom simulation of a whole-gene

locus (GATA4 ) was performed utilising 130,000 individual processors at one nanosec-

ond per day. (Jung et al., 2019). Although impressive, the simulation falls far short

of the time and length scales required to simulate genome-wide chromatin dynamics.

Quantum computing may one day facilitate molecular simulations beyond the reach

of conventional computers. As proof of principle, single molecules, such as beryllium

hydride (3 atoms), have been simulated using quantum computers, although real-world

applications remain some way off (Kandala et al., 2017). In the meantime, bottom-up

approaches at larger scales must instead employ coarse-grained modelling approaches.

In this context, coarse-grained models are simplified representations of atomistic mod-

els. At the nucleosome level, coarse-graining has been applied to model a variety of

scales from single nucleosomes to multi-nucleosome oligomers. DNA is often modelled

as a worm-like chain of inter-connected “beads” where a bead may represent one or

several DNA base pairs (Moller and de Pablo, 2020). Such models aim to simplify
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atomistic force-field representations while ensuring they sufficiently approximate ex-

pected molecular dynamics. Despite the loss of precision, the simulations can be run

for longer and at larger scales for a fraction of the computational cost. Nucleosome-level

coarse-grained models have been applied to resolve several experimental questions, in-

cluding how the sequence specificity of histone binding is influenced by DNA curvature

(Freeman et al., 2014). However, even the most coarse-grained nucleosome-level models

cannot yet be applied to model higher-order chromatin structures such as Topological

Associated Domains (TADs). Although top-down approaches are more frequently ap-

plied at long-length scales, novel implementations utilising kilobase scale coarse-grained

models can now simulate higher-order features using bottom-up approaches.

6.1.2 Bottom-Up Simulation of Higher-Order Chromatin

Simulations of higher-order chromatin structure utilise a similar framework to coarse-

grained simulations at the nucleosome level. The DNA is similarly represented as a

chain of “beads” connected with springs which move according to Newtonian physics.

However, in these models, a “bead” may represent several kilobases of double-stranded

DNA, perhaps from 1Kb to as much as 100Kb. At this scale, intra-nucleosome and

multi-nucleosome interactions are no longer the predominant force guiding polymer

structure. Instead, the model must consider higher-order interactions such as cohesin-

mediated loop-extrusion and transcription-factor-mediated promoter-enhancer loops.

Approaches in the literature have generally built models that incorporate either mecha-

nisms of protein-bridge formation (Brackley et al., 2016) or loop-extrusion mechanisms

(Fudenberg et al., 2016). These mechanisms are complementary to one another; each

influences genome organisation differently. For example, transcription factor and poly-

merase protein complexes between promoters and enhancers are dictated primarily by

transcriptional activity, which may vary across cell-types (Buckle et al., 2018). For ex-

ample, Capture C studies have revealed distinct chromatin conformations, at the same

locus, between cell types with high and low transcriptional activity (Hughes et al.,

2014). On the other hand, loop-extrusion mechanisms may establish the underlying

chromatin scaffold and the formation of chromatin domains which, in turn, may pro-

mote transcription-factor mediated looping.

Pereira et al., 2018 compared the predictions of these models and revealed that the

loop-extrusion model more strongly predicts local domain patterning. In contrast,

long-distance interactions are better predicted by the protein-bridge model. Following

this, Buckle et al., 2018 have since developed HiP-HoP, which incorporates both models
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into a single chromatin polymer simulated. HiP-HoP modelling at the Pax6 gene locus

was able to predict, with reasonable accuracy, how local chromatin conformation varies

according to transcriptional activity.

6.1.3 Chapter Overview

In this work, I build upon the approach first described by the HiP-HoP model for per-

forming chromatin polymer simulations. With the guidance of Dr Davide Michieletto,

who works closely with the developers of HiP-HoP, I have developed a novel frame-

work for running chromatin polymer simulations. The framework is built upon the

same principles as HiCFlow (see section 4.2 on page 90) and is designed to improve the

accessibility of chromatin modelling to experimental researchers. More importantly,

the framework is generalised to facilitate the development and integration of future

chromatin polymer simulation paradigms.
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6.2 Implementation

As previously discussed, HiCSim implements a coarse-grained “bottom-up” approach

to simulate a chromatin fibre. The simulation represents the chromatin fibre as a

chain of “beads” connected with springs which move according to Newtonian physics.

Input data (i.e. epigenetic, protein-binding or chromatin-state) are mapped onto the

bead-polymer chain, and the underlying signal defines the behaviour of each bead.

Ultimately, the accuracy of a “bottom-up“ chromatin simulation relies on three factors;

which input data are used, how these data are mapped to the polymer, and what

behaviours are defined for the input data type. This overview will briefly cover the

fundamental concepts underlying the simulation. These include how the input data

is obtained, how it is mapped to a coarse-grained bead-polymer and finally, how this

polymer is defined to behaviour such that it mimics mechanisms that govern chromatin

dynamics.

6.2.1 Input Data Selection

HiCSim models protein-bridge formation and cohesin-mediated loop-extrusion; these

represent distinct biological mechanisms contributing to chromatin dynamics. Protein-

bridge formation describes a generic mechanism of protein binding. For example, pro-

tein complexes of polymerase and transcription factors may mediate promoter-enhancer

looping to activate transcription. In contrast, Polycomb repressive complexes are gen-

erally associated with transcriptional repression. On the other hand, loop extrusion is

mediated via cohesin binding and extrusion is halted by convergently bound CCCTC-

Binding Factor (CTCF). Although numerous protein bridges may exist in the genome,

the current implementation of HiCSim can only model one type of protein bridge in

a single simulation. The choice (e.g. promoter-enhancer) is up to the user and will

ultimately depend on data availability, the region of interest and the research question.

However, it is hoped that future implementations of HiCSim can model an arbitrary

number of different protein-bridge complexes. To summarise, HiCSim requires two

types of input data; oriented CTCF binding to define loop extrusion and protein-

binding corresponding to a specific protein-bridge mechanism.

ChIP-seq binding data for each protein (e.g. RNA PolII or CTCF) is usually rep-

resented as a continuous genomic signal. Before these data are passed to HiCSim,

the analogue signal must first be converted to a binary signal describing the pres-

ence/absence of signal “peaks”. Numerous peak-detection algorithms are available for
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ChIP-seq data, including MACS2 (Feng et al., 2012) and CNN-Peaks (Oh et al., 2020).

In the case of CTCF, the orientation of the CTCF motif must also be determined. Ori-

entation can be inferred using CTCFBSDB 2.0, which performs motif detection of a

target sequence to estimate the probability of CTCF binding and orientation (Ziebarth,

Bhattacharya and Cui, 2013). In addition, where genomic annotation data for multiple

epigenetic marks are available, these can be combined to directly infer chromatin-state

using tools such as ChromHMM (Ernst and Kellis, 2012). ChromHMM assigns accu-

rate functional annotations to genomic loci (e.g. Promoters or Enhancers); these can

be passed directly to HiCSim.

This work utilises publicly available for the GM12878 cell line. Specifically, CTCF

peak data, described in table 3.5 on page 73, and chromatin-state data describing

promoter/enhancer localisation to define promoter-enhancer looping (see table 3.6 on

page 74).

6.2.2 Mapping Input Data to the “Bead-Polymer”

As described, the input data are provided as sets of genomic loci for each genomic anno-

tation. These annotations may include: forward orientation CTCF, reverse orientation

CTCF, promoters and enhancers. Mapping these data to a bead-polymer is illustrated

in fig. 6-1 on the next page. Briefly, the genome is binned at a specific resolution (e.g.

1Kb) corresponding to the size of each bead in the bead-polymer. Each genomic bin

is labelled with any overlapping input annotations. Each bead is labelled according

to the underlying annotation, and labelling is performed using a single base position

at the midpoint of the bin to avoid ambiguity at the boundaries. For each replicate,

the annotation data is randomly subsampled according to some probability p; this

increases stochasticity and reflects that binding sites are not permanently occupied.

Beads represented by each genomic bin are then “coloured” according to the underly-

ing annotation. This colour defines the bead’s “type” and how it behaves within the

simulation. The bead type is randomly determined when multiple annotation labels

are associated with the same bead. As such, across multiple replicate simulations, the

bead-polymer will randomly vary according to the heterogeneity of the input data.

Explicit Definition of Bead Polymer

HiCSim also allows the user to skip the mapping of genomic loci and explicitly define

the bead polymer sequence. This functionality is helpful in providing synthetic se-

180



quences with specific distributions of genomic features that the user may be interested

in exploring. Synthetic sequences are provided as a simple text file, with one bead

per line. Each bead in the sequence can be a constant (e.g. N) or be defined prob-

abilistically (e.g. N:1,P:2); such the bead type is randomly selected, with weighted

probability, for each replicate.

Figure 6-1: Mapping Input Data to “Bead-Spring” Polymers. Coarse-grained
“beads”, here represented by 1Kb of DNA, are aligned with selected input annotation
signals. Signals are converted to a discrete set of genomic loci, which above correspond
to the signal “peaks”. Each bead is then “coloured” according to the underlying input
- this colour defines the bead’s “type” and how it behaves within the simulation. Bead
assignment may be ambiguous; multiple peaks may overlap the same bead. Therefore,
to accurately capture data heterogeneity, bead type is randomly determined for each
replicate simulation.

6.2.3 Defining Mechanisms of Chromatin Dynamics

HiCSim defines two distinct behaviours to independently model the mechanism of

cohesin-mechanism loop-extrusion and protein bridge formation. fig. 6-2 on page 183

illustrates a simplified example of each of these behaviours.
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Protein Bridges

Generalised protein complexes (e.g. a transcription-factor (TF)) are represented as

freely diffusing monomers to model protein-bridge formation. Each monomer ran-

domly switches between an “active” and “inactive” state to mimic protein-complex

association and dissociation. The proportion of active TFs remains constant, at 20%,

throughout the simulation; this parameter was selected based on previously published

work (Brackley et al., 2021). In the “active” state, the monomer has an affinity for

bead-types corresponding to input data associated with protein-bridge formation. For

example, in fig. 6-2 on the next page, each monomer (TF) represents an RNA poly-

merase II transcription complex and, in its active state, has an affinity for beads labelled

as promoters or enhancers.

Loop Extrusion

To model loop-extrusion, Loop Extruding Factors (LEFs) are modelled using a finite

number of transient harmonic bonds that can spontaneously form between adjacent

beads in the bead polymer. The spontaneous formation of a LEFs mimics the ini-

tial attachment of the cohesin onto the DNA. For each time step of the simulation,

cohesin attachment may occur according to probability (P (attachment)) at a ran-

dom position along the polymer. Upon each subsequent time step, the LEF may

detach according probability (P (detachment)) or it may extrude according probability

(P (extrusion)). Extrusion may continue, in either direction, until the LEF encounters

a bead corresponding to a convergently oriented CTCF. At this point the probabil-

ity of extrusion is 0 (P (extrusion) = 0) in that specific direction. HiCSim does not

prevent nested loop extrusion but does prevent loops from crossing over one another.

The default values of P (attachment) and P (extrusion) were set to 0.001 and 0.002

per time-step respectively. Previous work has shown that these simulated attachment

and binding probabilities are not realistic and are much lower in biological systems.

However, realistic probabilities would necessitate long simulation times and the ratio

of P (extrusion)/P (detachment) is more critical than absolute probabilities (Buckle

et al., 2018). The optimal value of P (detachment) was calculated to ensure the mean

simulated loop size falls between 80 and 120Kb. This rate corresponds to biological

estimates of LEF processivity (Goloborodko, Marko and Mirny, 2016).
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Figure 6-2: Defining Simulation Behaviour According to Bead Type. HiC-
Sim incorporates two biological mechanisms influencing chromatin dynamics: protein
bridges and cohesin loop-extrusion. Protein-bridge formation is modelled using freely
diffusing monomers that represent generalised protein complexes. These monomers
randomly switch between active and inactive states and, in their active state, have
an affinity for specific bead types. In the above example, monomers represent RNA
polymerase II transcription complexes (labelled TF) which have an affinity for beads
labelled as promoters or enhancers. Loop-extrusion is modelled using transient bonds
to represent cohesin rings. These bonds may form spontaneously between adjacent
beads according to some probability. In subsequent time steps, the “cohesin-bonds”
may extrude in either direction or detach according to defined probabilities. Extrusion
is halted in a particular direction if a bead corresponding to a convergently oriented
CTCF is reached.
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6.2.4 Initialisation of Polymer Structure

Over the time of a sufficiently long simulation, the initially defined conformation of the

bead polymer should have no consequence on the simulation. Most approaches initialise

the polymer conformation using a 3D random walk whereby the initial conformation is

randomly determined with each simulation run (Buckle et al., 2018). However, random

walks may introduce knotted or tangled conformations, especially when simulating long

polymers. In such situations, the initial conformation could introduce bias if the knots

persist throughout the simulation. To avoid this, HiCSim initialises the 3D conforma-

tion of the bead polymer as a helicoid given by eq. (6.1). Helicoidal conformations

are ordered and unknotted (see fig. 6-3 on the next page) and crudely approximate

metaphase chromosome structure. Specifically, experimental evidence suggests that

metaphase chromosomes are folded into “rosettes” of length 30-100Kb, which arrange

radially along the chromatid axis (Rosa and Everaers, 2008). Rosette lengths are ran-

domly set between 30Kb and 100Kb, and the number of rosettes per turn is randomly

set between 4 and 12; this increases stochasticity between simulations to reflect uncer-

tainty in the true parameters.

x(φ)

y(φ)

z(φ)

 =

rchr[x+ (1− x)cos2(kφ)cos(φ)]

rchr[x+ (1− x)cos2(kφ)sin(φ)]
pφ
2π

 (6.1)

6.2.5 Simulation Properties

The physical equations governing the molecular dynamics simulation of the chromatin

fibre were kindly provided by Dr Davide Michieletto from the University of Edinburgh.

Further details of the underlying physics are described in Buckle et al., 2018. Briefly,

the molecular dynamics simulator LAMMPs was used to run an over-damped Langevin

Dynamics (Brownian Dynamics) simulation of the chromatin fibre with periodic bound-

ary conditions (Thompson et al., 2022). The position ri of a given bead i with mass mi

evolves according to the Langevin equation described in eq. (6.2) on the next page. All

beads have equal mass, and each bead experiences random uncorrelated noise (ηi) and

viscous drag /friction from an implied solvent (γi). The Langevin equations given by

eq. (6.2) on the facing page are integrated with a constant time-step ∆0.01TLJ using

the Velocity-Verlet algorithm (Verlet, 1967).
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Figure 6-3: Initial Helicoidal Polymer Conformation. Visualisation of initial
3megabase (Mb) bead polymer conformation a rosette length of 57Kb 12 rosettes per
turn (left: side view, right: top-down) The equation of the conformation is given by
eq. (6.1) on the facing page.

mi
d2ri
dt2

= −∇ ∪i −γi
dri
dt

+
√

2kBTγuηi (t) (6.2)

Steric (non-bonding) interactions between all beads were defined according to the

Weeks-Chandler-Anderson (WCA) interaction potential. The WCA potential is a mod-

ified version of the Lennard Jones (LJ) potential, which combines short-range repulsion

with long-range attraction. The LJ potential was truncated at the minimum interac-

tion potential to remove all long-range attraction. The resulting interaction was purely

repulsive, and the repulsive force is inversely proportional to the interaction distance.

The repulsive force acts to prevent beads from overlapping with one another.

A truncated LJ potential similarly governs interactions between freely-diffusing monomers

(e.g. transcription factors) and polymer beads. However, a slightly higher truncation

point was used. This modification maintains short-range repulsion (to prevent over-

lap) and facilitates attractive long-range interactions. As such, monomers can “stick”

to multiple polymer beads and form “protein-bridges” as described in section 6.2.3

on page 182. The attractive potential is adjusted throughout the simulation as each

monomer randomly oscillates between an “active” and “inactive” state. In the in-

active state, the force between monomers and polymers beads is purely repulsive, as

described by the WCA potential above. In the active state, the attractive potential be-

tween monomers and certain polymer bead types (e.g. promoters/enhancers) is higher
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than between polymer beads of non-specific DNA.

Adjacent beads in the polymer are bound by finite-extensible non-linear (FENE) springs.

The FENE spring acts much like a conventional spring; the greater the separation dis-

tance between the two beads, the stronger they are pulled back to their equilibrium

distance. The cosine bending potential, which defines the “stiffness” of the polymer,

was defined as 10/x where x is the size of each “bead” in kilobases. This parameter

ensures that the polymer stiffness is proportionally adjusted to the scale of the simu-

lated chromatin fibre. For example, a polymer of 10Kb beads will be less flexible than

a polymer of 1Kb.

6.2.6 Running the Simulation

The simulation begins with an equilibration stage; polymer dynamics are evolved in

the absence of all attractive interactions, including LEFs and monomers (TFs). Specif-

ically, LJ interactions are replaced with a “soft” interaction potential, allowing atoms

to be slowly pushed apart. Equilibration is necessary to avoid extremely large repul-

sive forces that can occur due to overlapping initial positions of atoms. These can

otherwise cause simulations to “blow up,” whereby large repulsive forces cause atoms

to move unreasonable distances within a single time-step (Braun et al., 2019). Equili-

bration is continued as long as necessary until a steady state is reached. Steady-state

is determined by measuring the radius of gyration against time. At equilibrium, the

derivative of the radius of gyration, with respect to time, will be approximately zero.

HiCSim performs equilibration once per simulation, and the same equilibrated polymer

conformation is used for all replicates in a simulation. Following equilibration, beads

are “coloured” with their specific bead type, and LJ interactions are switched on. The

simulation progresses for a predetermined number of time steps, and “snapshots” of

the atomic coordinates are periodically written to file for downstream analysis.

6.2.7 Simulated Hi-C Profiles

In Euclidean geometry, the euclidean distance d between two atoms, A(x1, y1, z1) and

B(x2, y2, z2), is given by eq. (6.3).

d =

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (6.3)
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However, HiCSim utilises periodic boundary conditions to facilitate a “boundary-free”

simulation. This approach is frequently applied to molecular dynamics simulations and

is used to approximate a much larger system (e.g. the wider genome and surrounding

chromatin). The geometry of this system is not Euclidean but can be considered a 3D

torus. Consequently, along any axis, two atoms cannot be more distant than half the

size boundary length. Given a box P with periodic boundary conditions and dimensions

Px, Py and Pz, the euclidean distance between two atoms A(x1, y1, z1) and B(x2, y2, z2)

is given by eq. (6.4).

∆X = min(|x1 − x2|, Px − |x1 − x2|)
∆Y = min(|y1 − y2|, Py − |y1 − y2|)
∆Z = min(|z1 − z2|, Pz − |z1 − z2|)

d =

√
(∆X)2 + (∆Y )2 + (∆Z)2

(6.4)

The spatial coordinates of all atoms in the system are captured periodically through-

out the simulation. At each snapshot, the distances between all pairs of atoms are

computed. To simulate a typical Hi-C profile, the contact probability of any two atoms

is inversely proportional to their separation. Specifically, the contact probability f(d)

is given by eq. (6.5) where d represent the distance between atoms and d0 represents

interaction length threshold. Given eq. (6.5), the contact probability is 1 when the

beads occupy the same position (i.e. d = 0 and decreases asymptotically to 0 as d

approaches infinity.

f(d) = e−d
2/d20 (6.5)

The interaction length threshold, d0, is modified according to the bead size. It is set

to approximate the estimated Hi-C cross-linking distance of 90nm, which is assumed

to correspond to approximately 90Kb of folded DNA (Walker et al., 2019). The length

units of the simulation are measured in terms of σ, where 1σ is equal to the diameter

of a single bead. As such, d0 is modified according to the bead size where d0 = (9/x)σ

and x represents the diameter of that bead in kilobase pairs. For example, given a bead

diameter of 2Kb, d0 = 9/2 = 4.5σ. This corresponds to approximately 90nm where 1σ

is equivalent to 2Kb (20nm).

Finally, contact events are averaged across replicates and can be visualised against ex-

perimental Hi-C data of the equivalent region using pyGenomeTracks (Lopez-Delisle

187



et al., 2021). In some cases, the chosen bead size of the simulated polymer may not

match the resolution of the available experimental data. To ensure Hi-C profiles are

compared at the exact resolution, HiCSim automatically adjusts the simulated contact

matrices using spline interpolation to match the experimental data. HiCSim also quan-

tifies Hi-C profile accuracy by computing the Stratum Adjusted Correlation Coefficient

(SCC) between the simulated and experimental Hi-C data using HiCRep (He et al.,

2020).

6.2.8 Measuring TU-TF Interactions

HiCSim also incorporates a model of transcriptional activation that was first described

by Brackley et al., 2021. Brackley et al., 2021 show that fundamental properties of

transcriptional activity, including bursting transcription and regulatory networks, arise

spontaneously within chromatin polymer models. The model defines the transcriptional

activity of specific beads (“Transcriptional Units” (TUs)) depending on their proxim-

ity to an active Transcription Factor (TF). In HiCSim, TFs are modelled as freely

diffusing monomers randomly switching between an “active” and “inactive” state to

mimic protein-complex association and dissociation. Accordingly, a TU is defined as

“active” if it is within 1.8σ of an active TF. The state of each TU is monitored pe-

riodically throughout the simulation and recorded for downstream analysis. HiCSim

includes downstream analysis functionality for visualisation and correlation of pairwise

TU activity as exemplified in section 6.4.2 on page 205.

6.2.9 Summary of HiCSim Snakemake Workflow

A visual summary of the key stages of the HiCSim workflow described in section 6.2

on page 179 is provided in fig. 6-4 on the facing page. HiCSim is fully documented

and freely available at github.com/StephenRicher/HiCSim. In addition, the GitHub

repository contains the configuration parameters and necessary data to reproduce the

key validation models described in section 6.3 on page 190.
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Figure 6-4: Overview of HiCSim Workflow. HiCSim, implemented using Snake-
make, facilitates user-friendly and accessible “bottom-up” molecular dynamics simula-
tions of chromatin fibre. Simulated Hi-C contact matrices can be visually compared
to experimental data using pyGenomeTracks (Lopez-Delisle et al., 2021). HiCSim also
facilitates direct visualisation of the simulated polymer using VMD (Humphrey, Dalke
and Schulten, 1996) and can compute the SCC between the simulated and experimental
Hi-C data using HiCRep (He et al., 2020).
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6.3 Validation

HiCSim was tested at two distinct genomic loci, of size 4.4Mb, on human chromosome

1 (hg19). The first locus (chr1:65.834 - 70.234Mb) included the GNG12-ASI gene and

was selected as the Murrell lab has well characterised this gene locus. The second locus

(chr1:89.416 - 93.816Mb) was selected randomly to avoid bias and provide an addi-

tional assessment of model accuracy. Random selection was performed using BedTools

(v2.30.0) (bedtools random -l 4400000 -seed 60953 -n 1 -g chr1.sizes).

The simulation was performed using annotation data corresponding to the GM12878

cell line. Accordingly, model accuracy was assessed by comparing the simulated Hi-C

profile against high-resolution experimental Hi-C data of GM12878 (10Kb resolution).

To model loop extrusion, CTCF for GM12878 was obtained from Consortium et al.,

2012 as described in table 3.5 on page 73. Chromatin state segmengation data, corre-

sponding to “Weak Enhancers”, “Strong Enhancers”, “Weak Promoters”, and “Active

Promoters” , were obtain to model promoter-enhancer bridges (Ernst and Kellis, 2010;

Ernst et al., 2011).

6.3.1 Default Parameters

Each genome region was represented as a coarse-grained bead polymer consisting of

2200 x 2Kb beads (4.4Mb). The bead polymer was simulated under dilute condi-

tions in a periodic cubic simulation box of side 100σ; this corresponds to a bead

density of 0.0176σ−1. In addition, the simulation was initialised was 200 freely-

diffusing monomers, representing TFs, randomly positioned in the simulation box.

Monomers randomly switched between “active” and “inactive” states with a mean

frequency of 1 × 102τLJ . In their active state, monomers were assigned weak affinity

(3kBT ) to beads corresponding to normal DNA, moderate affinity (6kBT ) to beads

corresponding to weak promoters/enhancers, and high affinity (8kBT ) to beads corre-

sponding to “strong” enhancers and active promoters. Switching is configured using

semi-grand yes such that the proportion of active and inactive monomers remains

constant throughout the simulation. Equilibration was performed for 1× 105τLJ , and

the active simulation was performed for a further 1 × 105τLJ . The time-step was set

at ∆0.01τLJ , and snapshots of simulations, including all atomic coordinates, were cap-

tured every 20τLJ .
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6.3.2 Parameter Exploration

Parameters were independently varied across various values to assess their impact on

simulation accuracy. The full array of parameter combinations tested, for the region

chr1:65.834 - 70.234Mb, is shown on table 6.1.

Table 6.1: HiCSim Parameter Exploration

Type Model Bead Size / Kb Sim. Time / 105τLJ Sample Prob. TFs / n

1 LE + TF 2 1.00 0.6 200
2 LE + TF 4 1.00 0.6 200
3 LE + TF 6 1.00 0.6 200
4 LE + TF 8 1.00 0.6 200
5 LE + TF 10 1.00 0.6 200
6 LE + TF 2 0.50 0.6 200
7 LE + TF 2 0.25 0.6 200
8 LE + TF 2 0.10 0.6 200
9 LE + TF 2 0.05 0.6 200
10 LE + TF 2 0.01 0.6 200
11 LE + TF 2 1.00 0.0 200
12 LE + TF 2 1.00 0.2 200
13 LE + TF 2 1.00 0.4 200
14 LE + TF 2 1.00 0.8 200
15 LE + TF 2 1.00 1.0 200
16 LE + TF 2 1.00 0.6 1000
17 LE + TF 2 1.00 0.6 500
18 LE + TF 2 1.00 0.6 100
19 LE + TF 2 1.00 0.6 50
20 LE only 2 1.00 0.6 0
21 TF only 2 1.00 0.6 200
22 No Model 2 1.00 0.0 0

Note: HiCSim parameters were independently varied to assess the impact on model
accuracy. “Sampling prob.” indicates the probability that a given annotation locus will
be used in a particular replicate. For example, given a sampling probability of 0.6, on
average 60% of the annotation data will be used to define the bead types for each
replicate.

6.3.3 Modelling Transcriptional Activity

A synthetic sequence of TUs was designed to illustrate the functionality of the TU-TF

interaction model (see section 6.2.8 on page 188). The model was designed to recover

the findings of Brackley et al., 2021, whereby linearly proximal TUs form clusters with
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positively correlation expression and linearly distant TUs are negatively correlated. In

brief, a synthetic sequence comprising 1300 beads of size 3Kb was constructed. The

sequence contained 38 TFs, distributed into two clusters of size 19 at either end of the

bead polymer. The simulation was initialised with 20 randomly diffusing monomers

representing TFs. In their active state, monomers were assigned weak affinity (3kBT )

to beads corresponding to normal DNA and high affinity (8kBT ) to beads correspond-

ing to TUs. Following the equilibration of 1 × 105τLJ , the system was evolved for a

further 1×105τLJ . Throughout the simulation, each TU was recorded as either “active”

or “inactive”; a TU was considered active if it was within 1.8σ of an active TF. Follow-

ing the simulation, HiCSim automatically computes the Pearson correlation coefficient

between the pairwise activities of each TU. Correlation is performed per replicate on

the binary activation sequence. The correlation coefficient is then aggregated across

replicates (n = 20) using the median coefficient values and visualised as a heat map.

The correlation data is also used to generate a circos plot of significant correlations to

aid in visualising TU regulatory networks. The median p-value across replicate simula-

tions is selected for each TU-TU pair to determine correlation significance. Following

this, p-values are adjusted using False Discovery Rate (FDR) correction and significant

interactions are identified according to the user-defined alpha value (default = 0.01).
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6.4 Results

HiCSim was used to simulate chromatin dynamics at two genomic loci, chr1:65.834

- 70.234Mb and chr1:89.416 - 93.816Mb, in human GM12878. The polymer evolved

without attractive interactions for a total of 1× 105τLJ until sufficient equilibrium was

reached. The polymers’ radius of gyration rapidly increased during the early stages

of equilibration. It was approaching a steady-state (dGG/dt ≈ 0) by the end of the

equilibration period (see fig. 6-14 on page 203).

Simulated Hi-C profiles were visually compared against experimental Hi-C profiles at

10Kb resolution (see fig. 6-6 on page 195 and fig. 6-7 on page 196). Model accuracy,

between the experimental and simulated data, was quantified using HiCRep’s Stratum

Adjusted Correlation Coefficient (see fig. 6-8 on page 197).

The visual assessment suggests that HiCSim can accurately reproduce critical features

of the experimental Hi-C profile in both regions. Small TAD domains and some stripe

patterning are most accurately modelled, particularly in chr1:65.834 - 70.234Mb. Point

interactions are not as accurately reproduced, and the simulated profile contains several

artefactual point interactions not present in the experimental data.

Both regions yield similarly high SCC scores (0.82 and 0.84) up to maximum inter-

action distances of approximately 300Kb. Long-range interactions are less accurately

reproduced, and accuracy is less consistent between the two regions. In chr1:65.834 -

70.234Mb the SCC scores for all interactions up to 1Mb is approximately 0.6. In con-

trast, in chr1:89.416 - 93.816Mb, the SCC score is less than 0.2 at the same maximum

interaction distance.
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Figure 6-5: Radius of Gyration at Equilibration. Changes in radius of gyration
(RG) between equilibration (T = -1 → 0, n = 1) and during simulation (T = 0 → 1,
n = 12, CI = 0.95). The RG rapidly increases during the early equilibration stage and
the mean rate of change over time is approximately zero by the end of the equilibration;
this indicates the polymer is close to a steady state. Parameters: Model: LE + TF,
Bead Size: 2Kb, Sampling Prob.: 0.6, TFs: 200, Sim. Time: 1 × 105τLJ , n = 12.
Locus: chr1:65.834Mb - 70.234Mb (hg19).
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Figure 6-6: Simulated Hi-C Profile - chr1:65.834 - 70.234Mb. Simulated Hi-C
profile compared to experimental Hi-C at the GNG12-ASI locus. The model accurately
predicts short range TADs, stripes and structural sparsity. Parameters: Model: LE +
TF, Bead Size: 2Kb, Sampling Prob.: 0.6, TFs: 200, Sim. Time: 1× 105τLJ , n = 12
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Figure 6-7: Simulated Hi-C Profile - chr1:89.416 - 93.816Mb. Simulated Hi-
C profile compared to experimental Hi-C . Short-range interactions are much better
predicted than long-range interactions. Parameters: Model: LE + TF, Bead Size: 2Kb,
Sampling Prob.: 0.6, TFs: 200, Sim. Time: 1× 105τLJ , n = 12
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Figure 6-8: Model Accuracy by Interaction Distance. The maximum SCC
was similar (0.82 and 0.84) for both regions. Long-range interactions, particularly in
chr1:89.416 - 93.816Mb, were less accurately reproduced. This drop in accuracy is re-
flected by a decrease in SCC at interaction distances above 300Kb. Parameters: Model:
LE + TF, Bead Size: 2Kb, Sampling Prob.: 0.6, TFs: 200, Sim. Time: 1× 105τLJ , n
= 12.
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6.4.1 Parameter Exploration

A range of parameter values were tested, as described in table 6.1 on page 191, at

chr1:65.834 - 70.234Mb using 12 replicates per region. Unless otherwise stated, the

default parameters for each of these analyses are as follows: Model: LE + TF, Bead

Size: 2Kb, Sampling Prob.: 0.6, TFs: 200, Sim. Time: 1 × 105τLJ , Max Interaction

Distance: 210Kb.

Model Accuracy vs Choice of Model

A simulated Hi-C profile of chr1:65.834 - 70.234Mb was generated using four distinct

models of chromatin dynamics. The SCC scores across 12 replicates for each of the

models at 210Kb maximum interaction distance are shown in fig. 6-9 on the facing

page. As expected, the null model performed the worst with median SCC of -0.069.

The median score of the LE-only model was only 0.057, which is comparable and

only marginally higher than the null model. The LE + TF model performed best

(median SCC = 0.755). However, the performance of the TF-only model (median

SCC = 0.702) was comparable to the full model. The loss of accuracy in the absence

of the TF model suggests that TF-mediated protein bridges contribute significantly

to simulation performance. The loop-extrusion mechanism contributes marginally to

improved performance, but only when combined with the TF model. The same ranking

of model performance is apparent regardless of the maximum interaction distance used

to calculate the SCC (see fig. 6-10 on the next page).

1. No model.

A null model without any loop-extrusion or transcription factor mechanisms.

2. LE-only.

Simulation performed with loop-extrusion (LE) and CTCF data only.

3. TF-only.

Simulation performed with transcription-factor (TF) mediated protein-bridges and

promoter/enhancer data only.

4. LE + TF.

Full model combining transcription-factors and loop-extrusion.
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Figure 6-9: Model Comparison. Assessment of reproducibility between models.
The LE model incorporates loop-extrusion constrained by convergent CTCF. The TF
model incorporates protein-bridge formation between promoters and enhancers. The
combined LE + TF model performs best; however, comparable accuracy is achieved
with the TF model alone. Parameters: Bead Size: 2Kb, Sampling Prob.: 0.6, TFs: 200,
Sim. Time: 1× 105τLJ , Max Interaction Distance: 210Kb, n = 12. Locus: chr1:65.834
- 70.234Mb (hg19).

Figure 6-10: Model Comparison by Interaction Distance. assessment of repro-
ducibility between models using 12 merged replicates at different maximum interaction
distances. The combined LE + TF model outperforms the other models, regardless
of interaction distance. Parameters: Bead Size: 2Kb, Sampling Prob.: 0.6, TFs: 200,
Sim. Time: 1× 105τLJ , n = 12 (merged). Locus: chr1:65.834 - 70.234Mb (hg19).
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Model Accuracy vs. Simulation Time

A monotonic relationship was observed between model accuracy and simulation time;

on average, longer simulation times yielded more accurate results. However, this growth

was also logarithmic; only minor improvements in accuracy with increasing simulation

times beyond approximately 0.1×105τLJ . This relationship suggests that the simulation

is approaching a saturation point at 0.1× 105τLJ , whereby no further information can

be extracted from the system.

Figure 6-11: The relationship between simulation time and model accuracy.
Model accuracy displays logarithmic growth with increasing simulation time. Only
small improvements in model accuracy are made beyond 0.1 × 105τLJ . Parameters:
Model: LE + TF, Bead Size: 2Kb, Sampling Prob.: 0.6, TFs: 200, Max Interaction
Distance: 210Kb, n = 12. Locus: chr1:65.834Mb - 70.234Mb (hg19)
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Model Accuracy vs Sampling Probability

Simulation accuracy was independent of sampling probabilities for non-zero values (0.2

→ 1.0). The best scoring test was at a maximum interaction distance of 210Kb with

a sampling probability of 0.6. In general, a sampling probability of 0.6 performed best

at shorter-range interaction distances, and a sampling probability of 1.0 performed

best at longer-range interactions. However, these differences are minimal and possibly

within the expected noise level. As expected, model performance was poor without

annotation data (sampling probability = 0.0). Unexpectedly, performance improved

substantially at longer-range interaction distances. This improvement may indicate

that some component of the chromatin architecture is determined by the polymer’s

intrinsic properties that are independent of local genetic or epigenetic features.

Figure 6-12: The relationship between annotation sampling probability and
model accuracy. Simulation accuracy was independent of sampling probabilities for
non-zero values (0.2 → 1.0). However, model performance was poor at a sampling
probability of 0; this represents a total exclusion of all annotation data. Unexpectedly,
accuracy in the absence of annotation data was found to improve at larger interaction
distances. Parameters: Model: LE + TF, Bead Size: 2Kb, TFs: 200, Sim. Time:
1× 105τLJ , n = 12 (merged). Locus: chr1:65.834Mb - 70.234Mb (hg19).
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Model Accuracy vs. TF Density

HiCSim uses freely-diffusing monomers, denoted TFs, to represent transcription fac-

tor/polymerase protein complexes; these mediate protein bridge formation between

beads annotated as promoters and enhancers. The TF density, determined by the to-

tal number of monomers in a given simulation, directly impacts model performance.

As expected, model performance was poor in the absence of any TFs (n = 0), as this

completely excludes the mechanism of protein-bridge formation. For non-zero values,

200 TFs were the optimal number for model performance across a wide range of in-

teraction distances. The best scoring test was at a maximum interaction distance of

210Kb with a sampling probability of 0.6.

Figure 6-13: The relationship between TF density and model accuracy. At
most interaction distances, optimal model accuracy was obtained with 200 TFs. Param-
eters: Model: LE + TF, Bead Size: 2Kb, Sampling Prob.: 0.6, Sim. Time: 1×105τLJ ,
n = 12 (merged). Locus: chr1:65.834Mb - 70.234Mb (hg19).
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Model Accuracy vs. Bead Size

The bead size determines the “resolution” of the chromatin polymer; smaller bead

sizes correspond to higher resolutions. Bead sizes between 2Kb and 10Kb had minimal

impact on simulation accuracy (see fig. 6-14). However, 2Kb beads generally outper-

formed other bead sizes at most interaction distances. This difference was particularly

apparent at longer-range interactions above 0.4Mb. Unexpectedly, the highest reso-

lution model (1Kb bead size) was the worst performing across almost all interaction

distances.

Figure 6-14: The relationship between bead size and model accuracy. Model
performance was broadly similar between ranges of bead sizes from 2Kb to 10Kb.
However, optimal model accuracy was obtained for a bead size of 2 Kb across a range of
interaction distances. In particular, 2Kb beads substantially outperformed other sizes
at longer range interaction distances above 0.4Mb. Unexpectedly, model performance
was poor for beads of size 1Kb. Parameters: Model: LE + TF, Sampling Prob.: 0.6,
TFs: 200, Sim. Time: 1×105τLJ , n = 12 (merged). Locus: chr1:65.834Mb - 70.234Mb
(hg19).

203



Compute Time vs. Parameter Choice

Figure 6-15: The relationship between real simulation compute time and
parameter choice. a,c,d) There is a positive linear relationship between compute
time and the parameters, simulation time, total TFs and sampling probability. b)
Linear increases in bead resolution, which correspond to smaller bead sizes, lead to
exponential increases in compute times. Locus: chr1:65.834Mb - 70.234Mb (hg19)
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6.4.2 Visualising Emergent Regulatory Networks

HiCSim successfully reproduces the findings of Brackley et al., 2021 to uncover the

regulatory networks that emerge from the simulated chromatin dynamics. fig. 6-16 on

the next page shows a heat map of the median correlation coefficient between the TU-

TU pair. Although TFs bind to TUs with the same affinity, the activity of a given TU is

strongly determined by its proximity to neighbouring TUs. In line with the findings of

Brackley et al., 2021, TU-TU correlation is inversely proportional to inter-TU distance.

Specifically, proximal TU pairs show positively correlated activity expression, whereas

distal TU-TU pairs show negatively correlated expression. Significant correlations are

also visualised on a circos plot, as shown in fig. 6-17 on page 207.
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Figure 6-16: Pearson Correlation Matrix of TU activity Example of automated
HiCSim output visualising pairwise correlation of TU activity. The findings reproduce
the results of Brackley et al., 2021. Linearly proximal TUs form clusters with positively
correlation expression, whereas linearly distant TUs, are negatively correlated. To aid
interpretation, HiCSim also includes a visual representation of TU distribution along
the polymer. In this example, 38 TUs are distributed into two clusters of 19 at either
end of the polymer. Within each cluster, the spatial separation of TUs is arbitrarily
defined according to the Fibonacci sequence. The increase in inter-TU distance is
reflected by a decrease in the correlation of TU-TU activity.
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Figure 6-17: Regulatory Networks are an emergent property of simulated
TU-TF interactions. The circos plot visualises significant (α = 0.01) pairwise cor-
relations. For each TU-TU pair, the median p-value across replicate simulations is
selected. P-values are adjusted using FDR correction, and significant interactions are
identified according to the user-defined alpha value.
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6.5 Future Development

This work presents a novel, user-friendly workflow for predicting 3D chromatin or-

ganisation from input epigenetic or chromatin state date. HiCSim builds upon the

previous work of Buckle et al., 2018 to provide a robust methodological framework to

perform Hi-C polymer simulations. Specifically, HiCSim was written using the same

design principles as HiCFlow. The workflow is highly modularised, and installation

and execution are automated via Snakemake. Uniquely, HiCSim implements methods

for visualisation and robust comparison of simulated and experimental Hi-C profiles

using the Stratum Adjusted Correlation Coefficient.

This work illustrates proof-of-concept of HiCSim functionality and a comprehensive

evaluation of the model’s limitations. Simulated Hi-C profiles reproduced experimental

Hi-C data with varying accuracy. For both loci tested, profiles were consistently repro-

duced with a maximum SCC of approximately 0.8. Performance was best at short-range

interaction distances of approximately 200Kb. However, long-range interactions were

not as consistently reproduced. Considering a maximum interaction distance of 1Mb,

the SCC at chr1:65.834Mb - 70.234Mb was approximately 0.6. However, at chr1:89.416

- 93.816Mb, reproducibility was only 0.1 for the same interaction distance. These find-

ings suggest that protein-bridge formation and loop-extrusion mechanisms are more

predominant in short range and that their contribution to long-range interactions is

much more variable at different loci. Unexpectedly, in the absence of interaction data

(sampling probability = 0), we found that model accuracy increased at larger interac-

tion distances. This finding may suggest that CTCF and promoter/enhancer bridges

are less critical in determining long-range chromatin organisation. Long-range inter-

actions may, to some degree, be governed by intrinsic properties of the polymer that

are independent of the epigenetic or genetic state. It remains unclear why the simula-

tion using the 1Kb bead resolution performed so poorly. It is possible that the cosine

potential, which governs polymer stiffness, is not appropriately set. HiCSim defines

the cosine potential using a linear relationship between the bead size (10/X) where

X is the bead size in Kb. At higher resolutions (smaller bead size), it is feasible that

this linear approximation is not applicable. However, it was impossible to assess this

rigorously due to time constraints and computational limitations.

We acknowledge that two critical sources of information loss occur when mapping the

input data to the bead polymer. The first limitation pertains to a loss of resolution in-

herent to coarse-grained modelling. During input data mapping, each bead is assigned

a single state. Each replicate simulation’s state is randomly determined when multiple
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different signals overlap the same bead. However, “overlapping” signals may simul-

taneously exist at distinct genomic loci too close to resolve within the selected bead

resolution. An appropriate choice of input data can alleviate this limitation. Instead

of directly utilising epigenetic marks, it is recommended that chromatin state data be

used as input instead. ChromHMM infers chromatin states by modelling the “combi-

natorial presence or absence of each mark” (Ernst and Kellis, 2012). Chromatin state

data implicitly captures combinatorial effects, and each state annotation is linked to

specific functionally. The impact of overlapping chromatin states within the resolution

of a single bead is likely to be much less significant as chromatin state domains are

generally larger than single epigenetic signals.

Secondly, the input data has poor temporal resolution because it does not capture

whether interactions are cooperative or mutually exclusive. However, the growing

availability of high-quality single-cell annotation data will ultimately enable models to

correctly incorporate cooperativity and exclusivity information. Single-cell epigenetic

data enables single-cell simulations using one dataset per replicate; input data could be

mapped directly to the bead polymer without random down-sampling. This approach

would more accurately capture the true heterogeneity underlying population Hi-C data

and facilitate a more meaningful interpretation of the simulated polymer behaviour at

a per-replicate level.

Finally, the model’s loop-extrusion (LE) component assumes that cohesin binding prob-

ability is uniform across the simulated region. However, cohesin complex attachment

probability is likely non-uniform and determined by local chromatin dynamics and ac-

cessibility. Previous models have indicated that DNA accessibility data is effective at

determining appropriate TF binding sites (Buckle et al., 2018). As such, DNA accessi-

bility data could also be applied to model non-uniform attachment probabilities of the

cohesin complex prior to initiating loop extrusion.

In addition to performing in silico Hi-C , HiCSim also incorporates models of tran-

scriptional activity based on the methodologies developed by Brackley et al., 2021.

Importantly, these models and accompanying visualisations are part of the default

HiCSim workflow. This framework can predict the transcriptional activity of actual

genomic loci and explore the inherent properties of chromatin dynamics using synthetic

sequences. However, while this approaches models how the 3D chromatin conforma-

tion may influence transcription, it says nothing about the reciprocal relationship. To

what extent transcriptional activity directly influences chromatin conformation remains

unclear (Zhang et al., 2021). However, it has been shown that higher transcriptional ac-

tivity is inversely correlated with gene compaction(Hsieh et al., 2020). Modelling such
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complex and poorly understood relationships is beyond the scope of this work. How-

ever, as HiCSim already computes TU activation in real-time during the simulation,

adding additional LAMMPS commands that conditionally execute upon activation or

inactivation of a TU is simple. It is hoped that the generalised HiCSim framework

will facilitate the ongoing development and implementation of new chromatin models

as our understanding continues to improve.

In summary, this proof-of-concept work demonstrates the feasibility of HiCSim as a

practical framework for performing chromatin polymer simulations. Ultimately, it is

hoped that HiCSim will make polymer simulation experiments more accessible to ex-

perimental researchers and serve as a robust methodological framework for others to

incorporate more sophisticated modelling techniques.
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Chapter 7

Discussion

7.1 Summary of Output

This work describes developing and applying two novel workflows for conducting robust

and reproducible chromatin conformation research.

Chapter 4 on page 88 describes the development of HiCFlow - a novel workflow for

analysing experimental Hi-C data. HiCFlow is among the most comprehensive Hi-C

workflow available and is the first to incorporate methods for haplotype assembly and

Allele Specific Hi-C (ASHi-C). This functionality uniquely facilitates automated end-to-

end processing of raw Hi-C data to haplotype-resolved Hi-C matrices and publication-

ready visualisations. It is hoped that HiCFlow will improve the accessibility of these

techniques to non-expert users while also providing a framework upon which emerging

techniques can be incorporated.

The work described in chapter 5 on page 126 reveals new insights in allele-specific

chromatin architecture but also serves to illustrate the critical functionality of HiCFlow.

We successful apply HiCFlow to perform “de novo ASHi-C” whereby a single Hi-C

dataset is used to perform variant calling, haplotype assembly and ASHi-C. To our

knowledge, this is the first work to demonstrate the feasibility of de novo ASHi-C. In

addition, the work describes the first comprehensive genome-wide assessment of allele-

specific chromatin conformation in humans. We characterise chromatin architecture at

key imprinted loci and provide evidence that expression quantitative trait locis (eQTLs)

may drive allele specific expression (ASE) via the disruption of chromatin structure.

Hopefully, this novel paradigm will enable non-expert researchers to efficiently perform
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ASHi-C on their own Hi-C data with minimal additional expense.

The second workflow, HiCSim, implements a ”bottom-up” approach for modelling chro-

matin using molecular dynamics simulations. It combines modelling techniques similar

to those utilised by tools such as HiP-HoP with the bioinformatics workflow techniques

of HiCFlow (Buckle et al., 2018). This work demonstrates that HiCSim can success-

fully reproduce experimental Hi-C data at two mega-base scale loci. The findings are

consistent with other published work that utilise similar approaches. HiCSim remains

proof-of-concept within the scope of this project. However, to our knowledge, it is the

first end-to-end workflow for automating chromatin molecular dynamics simulations

and performing in-silico Hi-C .
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7.2 Reproducibility in Bioinformatics

The COVID-19 pandemic saw the closure of many academic research labs worldwide.

Without access to experimental research facilities, many researchers turned to bioinfor-

matics to further their work. Similarly, many experimental students found themselves

gaining new skills in computational research. Inevitably, the pandemic has also in-

fluenced the outcomes of this work, which has focussed on developing computational

methods and applying them to publicly available data. Specifically, the predominant

theme of this work is the pursuit of bioinformatics “best practices” and the development

of reproducible and scalable workflows for Hi-C analysis. As computational research

becomes more widely applied, reproducible and user-friendly workflows’ availability

is increasingly essential. Such workflows enable novice and expert users to perform

complex analyses that utilise well-documented and best practice methodologies.

The “reproducibility crisis” in science is a well-publicised and multi-faceted issue. A

survey of researchers suggested that pressure to publish, selective reporting and poor

analysis were the top causes of reproducibility issues (Baker and Penny, 2016). How-

ever, even the “perfect” experimental researcher could not hope to achieve 100% repro-

ducibility for any non-trivial experiment. In most experiments, there will be unknown

confounding factors that cannot be wholly controlled. However, analyses can and

should be fully reproducible within the bioinformatics domain. Put simply, the same

bioinformatics experimental run by different researchers will produce the same results.

Unfortunately, reproducibility in bioinformatics remains an issue (Papin et al., 2020).

Often the analysis scripts may not be provided with the publication or, if they are, they

may be difficult to understand. In addition, incomplete documentation of software and

hardware environments can influence the outputs of a workflow. In principle, these fac-

tors are entirely avoidable. However, these factors are also not trivial and are coupled

with the underlying pressures to publish and obtain grants. For this reason, this work

supports the critical role of bioinformaticians in developing comprehensive, robust and

reproducible workflows. Very often, the initial core bioinformatics processing required

for a given technique (e.g. Hi-C ) is the same regardless of the final research ques-

tions. As such, workflows can help to standardise the computational approach across

research labs. A small amount of custom analysis tailored to the research question

may be required, which is much easier to document than the complete workflow. It

would be unfeasible for researchers to personally build and maintain their PCR ma-

chines. There is no reason why the same principles should not be applied to standard

computational methods. Ultimately, these workflows enable experimental researchers
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to focus their time and expertise on the relevant research questions rather than writing

and debugging code.

In addition to reproducibility, it is equally vital that bioinformatics workflows are adapt-

able and transparent (Mölder et al., 2021). A fully reproducible workflow, specific to

a single experiment, is of little utility to the broader research community. Adaptable

workflows should be sufficiently generalised and modifiable to apply to a broad range

of research questions. Transparent workflows are inherently easy to comprehend; this

allows others to judge the methodological validity of the workflow. The workflow man-

agement system Snakemake, which was used to build HiCFlow and HiCSim, explicitly

encourages adherence to all three principles. Workflow management systems contribute

to developing sustainable workflows that have long-term, tangible utility to a research

group or the broader research community. HiCSim, in particular, represents a novel

application of workflow management systems to the field of molecular dynamics and

chromatin polymer simulations. Ultimately, it is hoped that both of the workflows

developed in this work will positively contribute to improving the reproducibility and

sustainability of computational techniques in research.
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7.3 Recent Advances and Future HiCFlow Development

The field of chromatin conformation research is rapidly advancing, and new bioinfor-

matic techniques are under constant development. Although HiCFlow was built to

integrate the latest methodological workflows, it cannot hope to stay ahead of the

field for long. The last couple of years, in particular, have seen the development of

tools applying advanced statistical frameworks to the problem of Hi-C resolution and

ASHi-C.

7.3.1 Machine Learning in Hi-C Analysis

In recent years, Machine Learning (ML) approaches have been applied to the problem of

Hi-C data analysis. These approaches can be divided into supervised and unsupervised

techniques.

Supervised Approaches

Supervised ML requires a ground-truth dataset from which a model can be trained to

classify a particular pattern. For example, for loop detection, a ground-truth dataset

may include loops validated by high-throughput imaging or promoter Capture Hi-C . In

addition to positive examples, a training dataset must also include negative examples.

With sufficient training data, a trained model can classify the presence or absence of a

loop in new datasets. Peakachu (Salameh et al., 2020) and, more recently, HiC-LDNET

(Chen et al., 2022) are two such tools that use supervised ML to detect loops. Such

approaches are appealing because their methodology is grounded in experimental data;

the optimal model and appropriate parameters are learned from a validated training set.

Conventional methods, in contrast, usually rely on human-built models to detect loops

based on the visual characteristics of Hi-C data (e.g. a high contrast “dot”) (Ramı́rez

et al., 2018). In addition, such models often have numerous parameters that may be

arbitrarily defined without a rigorous approach to determine their optimal values. Loop

classification is particularly suited to supervised ML as externally validated training

data is widely accessible (e.g. ChIA-PET/HiChIP, promoter Capture Hi-C, HiFISH

imagining) (Salameh et al., 2020).

Resolution Enhancement Supervised ML, specifically deep learning, has also been

applied to artificially enhance the resolution of sparse datasets. The earliest model,
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HiCPlus, utilises a convolutional neural network to enhance resolution (Zhang et al.,

2018). Other approaches, have utilised auto-enconders (HiCSR) (Dimmick, Lee and

Frey, 2020) and Generative Adversarial Networks (GANs) (deepHiC) (Hong et al.,

2020). Of these, deepHiC is the most performant, albeit at the cost of high training

time, which limits applicability to genome-wide resolution enhancement. However,

resolution enhancement models are under continued development to address ongoing

limitations (Hicks and Oluwadare, 2022).

In addition to enhancing visual characteristics, resolution enhancement methods may

improve structural features’ detection accuracy, such as chromatin loops. However,

this indirect approach relies on independent secondary algorithms to perform feature

detection on artificially enhanced data. On the other hand, direct methods such as HiC-

LDNET utilise ML models trained to detect specific features (e.g. chromatin loops)

from low-resolution data. Such direct approaches rely on fewer assumptions and may

be preferable if they are available.

Application of Supervised Approaches Supervised ML approaches can be effec-

tively applied to chromatin conformation data, including Hi-C . In particular, ML can

address the issue of sparsity, For example, recent models, such as HiC-LDNET, are

particularly effective at extracting information from inherently sparse Single Cell Hi-C

(SC-HiC) datasets (Chen et al., 2022). Of course, since supervised techniques require

some validated input training data to learn an appropriate model, they cannot neces-

sarily make inferences beyond what is theoretically possible with the best experimental

techniques. However, they may reduce the financial burden of deep sequencing by en-

abling researchers to extract the same amount of information with a lower sequencing

depth. In addition, models are often trained on specific cell types of specific species.

Given the heterogeneity of chromatin conformation data, even between cell types of

the same species, it is unclear to what extent these models are generalisable beyond the

scope of their training data. In addition, all the models above were trained using the

canonical human GM12878 (GM12878) Hi-C dataset from Rao et al., 2014. Although

this dataset serves as an effective benchmark, it also means the models are biased to

the properties of a limited set of datasets in a small number of cell types.

For these reasons, supervised feature detection methods may not currently be appro-

priate for general-purpose automated workflows such as HiCFlow. These models’ scope

remains too constrained to deploy within an automated framework reliably. However,

with sufficient data, it may be possible to train more generalisable models by utilising

a more comprehensive array of data from different experiments and cell types.
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On the other hand, supervised resolution enhancement methods, such as deepHiC, may

be suitable for automatically enhancing ASHi-C data using HiCFlow. Specifically, the

high-resolution, unphased Hi-C data could be used as an internal training set to build

a model to enhance phased allele-specific Hi-C data resolution. This approach may be

particularly effective as the ASHi-C matrices are a subset of full Hi-C matrices, so many

biases between the training and testing datasets are adequately controlled. However, it

is essential to consider that the sources of sparsity in ASHi-C (e.g. variation in Single

Nucleotide Polymorphism (SNP) density) are distinct from those of a typical Hi-C

matrix. The impact this may have on model performance is unclear. It is feasible that

prior modification of the training data, for example, by pruning data to approximate

the distribution of SNPs, may improve model performance. However, further work

needs to be done to assess this approach’s viability robustly.

Unsupervised Approaches

Unsupervised ML learning approaches, in contrast, attempt to identify hidden patterns

in unlabelled data (i.e. in the absence of ground-truth training data). For example,

an early application of unsupervised methods to Hi-C analysis was the identification

of genomic compartments. Principal Component Analysis (PCA), a dimensionality

reduction technique, revealed that the genome could be broadly into two compartments;

“A” and “B” (Lieberman-Aiden et al., 2009). More recently, unsupervised ML has been

applied to predict genomic sub-compartments from Hi-C data. (Ashoor et al., 2020).

For example, SCI utilises graph embedding and k-means clustering to segregate Hi-

C data. The overall output is similar to that of non-ML tools such as CScoreTool,

which is implemented in HiCFlow. However, an advantage of unsupervised ML is that

it makes minimal a priori assumptions before seeing the data. Patterns are learned

directly from the data, so the approach is arguably less biased and more generalisable

to a broader range of datasets.

7.3.2 Allele-Specific Hi-C

A distinguishing feature of HiCFlow is its ability to perform de novo haplotype assembly

and ASHi-C from a single Hi-C dataset. In conventional ASHi-C read pairs are assigned

to either the paternal or maternal alleles using the conventional “mate-rescue” strategy.

Read pairs are retained if at least one read overlaps a phased variant. “Both-End

Ambiguous” read pairs, where neither read overlaps a phased variant, are assumed to

217



be non-informative and are excluded from the analysis This strategy is discussed more

thoroughly in section 2.6.1 on page 65.

However, a recent approach, ASHIC, utilises a novel hierarchical Bayesian statistical

framework to impute the allelic status (i.e. Paternal, Maternal, Trans) of the “Both-

End Ambiguous” read pairs (Ye and Ma, 2020). This approach utilises all Hi-C read

pairs and fully decomposes the diploid matrix into a pair of haploid matrices. The

authors report that ASHIC outperforms more conventional methods, especially in re-

gions of low variant density. Therefore, such probabilistic approaches are likely to be

more widely adopted to alleviate the limitations of conventional SNP assignment-based

methods. However, the computational requirements of ASHIC currently limit its appli-

cation to small genomic regions. As such, it is not currently suited to the genome-wide

allele-specific analysis described in this work.

As previously noted, the variant calling and haplotype assembly workflows are only

implemented for human data. The methodology of Human variant calling is well es-

tablished, and GATK is optimised for analysing human genetic data. Variant calling

in non-human species, where validation data are often unavailable, is very challenging,

and such a task is beyond the scope of HiCFlow. However, it is hoped that future

versions of HiCFlow will enable users to skip the variant calling step of the workflow

and provide a VCF directly to HapCUT2. Enabling VCF calling to be skipped will

facilitate haplotype assembly of non-human organisms, although the responsibility of

obtaining a robust set of variant calls will lie with the user.

7.3.3 Between-Sample Hi-C Comparison

As discussed, much focus has been placed on feature detection in chromatin conforma-

tion data. However, methods for directly comparing Hi-C datasets remain limited and

underdeveloped. Lack of development is primarily due to the financial cost of generat-

ing multi-sample Hi-C experiments that are adequately replicated. The most popular

existing methods, diffHiC (Lun and Smyth, 2015) and HiCcompare / MultiHiCcompare

(Stansfield et al., 2018; Stansfield, Cresswell and Dozmorov, 2019), leverage a statisti-

cal framework originally developed for differential gene expression analysis in RNA-seq

(Robinson, McCarthy and Smyth, 2009). However, in practice, the applications of such

methods to Hi-C data are non-trivial. For assessing differential interactions, each pair-

wise interaction in Hi-C may be considered equivalent to a gene in RNA-seq. There

are many more pairwise interactions than genes, and, as such, the total number of

differential tests required exceeds that of RNA-seq by several orders of magnitude.
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Furthermore, given the vast Hi-C interaction space, a typical pairwise interaction is

likely to be proportionally under-sampled compared to a typical gene in an RNA-seq

dataset. Under-sampling means that many more replicates may be required to assess

differential interactions accurately. Lastly, a fundamental limitation of such approaches

is that they consider each pairwise interaction as an independent sample. This assump-

tion is violated in Hi-C ; the interaction frequency of given interaction is necessarily

correlated with neighbouring interactions as the Deoxyribonucleic acid (DNA) is phys-

ically linked. Although this assumption is also violated in RNA-seq analysis, where

gene expression is known to be influenced by that of neighbouring genes (Ghanbar-

ian and Hurst, 2015), the extent of non-independence is likely to be less significant.

In principle, this non-independence could be leveraged to increase statistical power.

Neighbouring interactions could be aggregated to a single differential test, increasing

sample size and potentially enabling local technical variability to be approximated.

However, such approaches would likely require significant adaptation of current sta-

tistical frameworks. Adequate development of comparative techniques will be vital in

the coming years, particularly as replicated, multi-sample experiments become cheaper

and more widespread.

Given the lack of suitable comparative techniques, developing a robust methodology

for meaningfully comparing ASHi-C datasets was a vital challenge of this work. To

minimise sparsity, the ASHi-C strategy adopted by HiCFlow aggregates technical and

biological replicates. However, meaningful statistical inference is impossible without

replication using the abovementioned techniques. Given the limitations above and the

unknown error rates of such approaches, it is unclear whether any statistical findings

could be reasonably interpreted. As such, we sought to develop a threshold-based

methodology which ranks chromatin domains according to the magnitude of observed

between-sample differences.

Specifically, we developed the “differential Topological Associated Domain (TAD)”

(diffTAD) methodology, a novel approach for scoring TAD domains for between-sample

differences. Although we have applied this method to an ASHi-C dataset to identify Al-

lele Specific Topological Associated Domains (ASTADs), it is equally applicable to any

pair of Hi-C samples. In brief, following joint normalisation, the absolute magnitude

of intra-TAD differences is compared against the global background of differences for

an equivalently sized domain. Observed scores across different domain sizes are trans-

formed into Z-scores using the mean and standard deviation of the global background.

Z-score standardisation ensures TAD domains of different sizes are scored on the same

scale and can be robustly ranked and subset according to a pre-defined threshold. Im-
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portantly, this approach does not attempt to identify statistically significant differences.

Thresholding will, by definition, always identify a set of top scoring domains, irrespec-

tive of whether true-positives differences exist. However, the approach yields a subset

of domains that can be assessed using enrichment analysis. For example, here we show

that allele specific expression genes (ASEGs) are significantly enrichment among TADs

with the highest degree of observed allelic differences. The diffTAD methodology is a

novel and robust approach for comparing TAD domains in Hi-C data. It is a conserva-

tive approach for investigating between-sample differences that can be applied where

statistical inferences are impossible. Conservative approaches are particularly valuable

as many Hi-C experiments are not sufficiently replicated to facilitate robust statistical

detection of differential interactions.

7.3.4 Other Limitations of HiCFlow

HiCFlow was built as a general-purpose Hi-C analysis tool and, as such, can be applied

to Hi-C and a variety of Hi-C variants. These include standard Hi-C , region-capture

Hi-C , Micro-C and SC-HiC. However, the current implementation of HiCFlow does

not compute inter-chromosomal trans interactions. Analysis of trans interactions re-

quires the construction of genome-wide contact matrices. The resulting matrix size can

become impractically large for high-resolution matrices of large genomes (e.g. human

10kilobase (Kb)). At this point, computing resources become a limiting factor, and

analysis may be unfeasible with typical hardware. In addition, the analysis of trans

interactions is arguably outside of a typical use case for many Hi-C researchers. For ex-

ample, trans interactions are not utilised in the ASHi-C workflow. Although the novel

ASHIC methodology can estimate inter-homologous contacts, the resulting matrices

are even more sparse that the intra-homologous ASHi-C contact matrices (Ye and Ma,

2020). As such, this functionality was excluded from the workflow as a trade-off to

facilitate usability for most users.
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7.4 What are ASTADs?

This key output of this work is a novel methodology for robustly scoring TAD do-

mains according to between-sample differences in contact frequency. This methodol-

ogy is generalisable to any between-sample comparison, although this work compares

allelic-specific differences between maternal and paternal chromosomes. Specifically, I

introduce the concept of ASTADs, which defines TAD domains displaying the highest

magnitude allelic differences in a given Hi-C dataset. It is important to note that AS-

TADs do not necessarily represent TADs with significant allelic differences. ASTADs

are classified according to a z-score threshold (z > 2). Therefore, assuming a nor-

mal distribution of TAD z-scores, approximately 2% of all TAD domains in any given

ASHi-C dataset will be classified as ASTADs.

The ASTAD methodology contrasts with other approaches which attempt to apply sta-

tistical models to infer statistical significance (see section 4.6.4 on page 107). This work

provides evidence that such statistical approaches may be highly biased and prone to a

high false-positive detection rate (see fig. 4-10 on page 110). Without replicated, high-

resolution datasets, statistical hypothesis testing for identifying statistical differences

in Hi-C data is likely unreliable. ASTAD detection does not rely on hypothesis test-

ing but does facilitate robust ranking and discrimination of TADs according to allelic

differences. Following ASTAD classification, robust hypothesis testing can be applied

to assess for differential enrichment of various genomic features between ASTADs and

non-ASTADs. The findings of this work reveal a strong association with ASTADs and

numerous genomic features, including imprinted genes, ASE genes and heterozygous

eQTLs.

A key caveat of the ASTAD / differential TAD methodology is that it is, by definition,

constrained to TAD domains. This constraint is convenient as TAD domains represent

an objective set of genomic regions with a biologically interpretable basis. However,

changes in chromatin organisation are unlikely to be exclusively constrained to TAD

domains. More importantly, chromatin differences observed within a TAD domain may

not necessarily be due to the changes in the TAD itself. In other words, the methodology

cannot discriminate between the functional origin of observed differences. For example,

an ASTAD may be called due to complete loss of TAD structure in one allele or it may

be called due to TAD-independent changes in intra-TAD interaction frequency. An

equivalent “TAD-independent” genome-wide methodology may be desirable. Genome-

wide approaches would facilitate unbiased detection of differences across the entire

genome.
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Given these caveats, an ASTAD can be conservatively defined as a TAD domain with

above-average allelic differences in intra-TAD interaction frequency. ASTADs cannot

distinguish between changes to the TAD structure and TAD-independent changes such

as loss of promoter-enhancer looping. Ultimately experimental approaches will be

required to directly associate specific physics changes with observed patterns of allelic

differences. However, unsupervised clustering approaches could be applied to ASTAD

patterns to identify sub-groups of specific differential patterns.
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7.5 HiCSim - A Framework for Chromatin Modelling

The final output of this work is HiCSim - a ”bottom-up” approach for modelling chro-

matin using molecular dynamics simulations. As previously discussed, HiCSim builds

upon the work of Brackley et al., 2021 to implement an end-to-end workflow of a chro-

matin simulation experiment. The simulations underlying HiCSim utilise a typical

coarse-grained polymer model of chromatin. However, the key output of this work

is not the simulations themselves but the framework upon which these simulations

are built. HiCSim implements automated, parameterised approaches for converting

genomic regions into polymers. It also incorporates models of protein-bridge forma-

tion and cohesin-mediated loop-extrusion. Finally, it includes post-simulation methods

for performing in-silico Hi-C , among others. In practice, these components are in-

dependent of the underlying physical equations that govern the interactions between

molecules in the simulation. For example, the HiP-HoP model utilises a custom har-

monic spring with WCA short-range repulsion when modelling the extrusion factors

(Brackley et al., 2021). In contrast, HiCSim utilises a typical harmonic spring; how-

ever, this could be modified to match HiCSim with no impact on workflow functionality.

Ultimately, HiCSim is a proof-of-concept workflow built as a generalised methodolog-

ical framework for performing robust chromatin polymer simulations and facilitating

ongoing development.

This work validates HiCSim functionality and accuracy at two illustrative genomic loci

as a proof-of-concept. However, there remains substantial scope for validating HiCSim

models against other experimental work. A key outstanding question is to what extent

HiCSim can correctly model the impact of chromatin disruption - for example, due

to a CCCTC-Binding Factor (CTCF) deletion or inversion. Previous experimental

work in mice has revealed the structural impact of CTCF deletions and inversions and

how these manifest on Hi-C contact matrices (Kraft et al., 2019). By repeating this

work in silico, it will be possible to quantify how accurately HiCSim can reproduce

these disruptions. If HiCSim can correctly predict experimentally validated disruption,

then, in principle, it could be used to hypothesise the impact of changes at novel loci.

In particular, HiCSim may elucidate the origin of specific patterns of allelic-specific

differences observed at ASTADs.

A proposed study would use a diverse set of synthetic sequences with randomly per-

muted distributions of CTCF sites and promoters/enhancers. For each synthetic se-

quence, fixed bead type modifications can be introduced to mimic the impact of gene

inactivation or CTCF-binding inhibition. The results of these simulations may be vi-
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sualised using in silico subtraction matrices, similar to the ones employed by HiCFlow.

This functionality is already implemented into HiCSim; subtraction matrices are auto-

matically generated between all pairs of synthetic sequences if more than one sequence

is provided. Significantly, this work may facilitate the association of specific genomic

modifications with particular patterns of changes in a Hi-C subtraction matrix. These

patterns could be cross-referenced with the genome-wide allele-specific patterns iden-

tified in chapter 5 on page 126. In doing so, it may be possible to infer which genomic

differences may be causing specific observed patterns of allelic difference.

Such an ambitious experiment would require substantial computational resources to

model an extensive range of possible genomic modifications. However, a logical start-

ing point would be to reproduce known in vivo modifications at loci such as at the

imprinted H19 /Igf2 locus. The extent to which observed genomic differences could be

reproduced will inform the underlying mechanisms that cause them. In particular, poor

reproducibility will indicate that additional mechanisms not modelled by HiCSim drive

these processes. One mechanism not modelled by HiCSim, or other existing models,

is transcription. Although HiCSim loosely models the impact of chromatin conforma-

tion on transcription, it does not account for reciprocal effects. Indeed, precisely how

transcription should be modelled at a coarse grain level has not been widely explored.

Recent preliminary work has suggested that chromatin dynamics at active genes are

complex and cohesin-dependent (Banigan et al., 2023). However, the results broadly

indicate that the gene body is insulated from upstream and downstream contacts and

that this insulation is proportional to gene activity. Perhaps a simple approach to

model this insulation would be to increase the repulsion of active “gene body” beads

with upstream and downstream beads. This modification would be reasonably simple

to implement as the HiCSim coding framework already allows for conditional execution

of LAMMPs commands upon activation and inactivation of “transcription”.
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7.6 Final Considerations - Garbage In, Garbage Out

Each workflow presented in this thesis was designed primarily to remove technical

barriers associated with bioinformatics analytics. The workflows manage raw data

processing, visualisation, and software dependencies and can easily be scaled. However,

although a high-quality workflow is necessary to generate high-quality output, it is not

sufficient. Indeed the scientific validity of the output of these workflows is ultimately

contingent on the input data. More problematically, if the input is in the correct format

(e.g. FASTQ), these workflows may generate very “reasonable looking” results that are

otherwise nonsensical. Colloquially, this is known as “garbage in, garbage out”. How

can this be avoided?

Firstly, HiCFlow generates extensive quality control reports. Users should be familiar

with interpreting these and consult them carefully, regardless of the output.

Secondly, users should also be familiar with the underlying tools utilised by HiCFlow;

these are documented in GitHub. Although HiCFlow automates command execution,

it is up to the user to understand the strengths and limitations of a particular approach

before it can be correctly interpreted.

Finally, users should completely understand their input data, specifically the experi-

mental approaches and their associated biases. A complete understanding is particu-

larly important when utilising public datasets where the user has no control over the

validity of the experimental protocol. The public Hi-C data in this work are widely

utilised and considered gold-standard reference datasets in the field. However, the

validity of public data should never be assumed. Concerningly, a study of published

human transcriptomics datasets identified mislabelling of samples in 46% of datasets

(Toker, Feng and Pavlidis, 2016). Specifically, the researchers identified discrepancies

in the sex of samples detailed in the metadata versus the genetic sex. As such, users

should be aware that annotation errors may be widespread and difficult to detect in

published datasets. Users should consult the published methodology and ideally con-

sult directly with the authors of published data to establish the appropriateness of the

data for the proposed use case.

Despite these limitations, workflows such as HiCFlow may simplify meta-analysis stud-

ies that utilise multiple public datasets. Typically, when aggregating datasets from

multiple separate studies, it is necessary to re-process the raw data from scratch. Re-

processing is necessary to ensure each dataset is processed consistently; this cannot

be guaranteed if the pre-processed published datasets are used. Workflows such as

225



HiCFlow are well suited to analysing different datasets consistently.

As comprehensive bioinformatics workflows become more widely available, they must

not act as a substitute for scientific rigour. The outputs of these workflows can only be

implicitly trusted with a complete understanding of the input data and the underlying

processes utilised by the workflow. By removing the technical barriers associated with

command execution, users will have more time to study the critical details of their

analysis. However, it is equally the responsibility of workflow developers to honestly

describe the limitations of their workflow and make users aware of their responsibilities.
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7.7 Conclusion

Until relatively recently, biological research was conducted exclusively through experi-

mental approaches. However, recent years have seen an explosion in bioinformatics and

the availability of cheap and powerful computational approaches. In many domains,

computational methods are arguably just as valuable as experimental methods. This

paradigm shift means that many pure experimentalists must adapt and adopt compu-

tational approaches to keep pace with the rapidly changing face of biological science.

In addition, computational research has also blurred the boundaries of disciplinary do-

mains and facilitated more cross-disciplinary engagement. Modern biological research

is now highly multi-disciplinary, and the unique expertise of physicists and mathemati-

cians, among other specialists, will be vital for tackling critical questions in biology.

Despite this, approaches to integrating computational methods with experimental meth-

ods remain in their relative infancy. Arguably, the value of computational methods can

only be fully unlocked if these methods are accessible and user-friendly. This statement

is particularly relevant for interdisciplinary approaches such as molecular simulations

of chromatin. Molecular dynamics simulations have the potential to be a powerful

complementary tool for experimental researchers. If the methods are appropriately de-

signed, experimentalists can glean novel insights from these approaches without needing

domain-specific knowledge in computing or molecular dynamics. The idea that compu-

tational methods can be both powerful and accessible/easy-to-use has been a common

philosophy throughout this work.

The development of two computational workflows, HiCFlow and HiCSim, represents a

vital output of this work. Both outputs build upon previously implementations of Hi-C

workflows and molecular dynamics simulations and explore best practices for enhancing

user-ability. Each workflow is among the first of its kind to be implemented using the

workflow management software Snakemake (Köster and Rahmann, 2012). The use of

Snakemake solves numerous problems associated with user-ability, including the man-

agement of software environments, deployment on compute clusters and reproducibility.

Both HiCFlow and HiCSim use configuration files and both are designed so that the

user does not have to interact with the code base directly. Importantly, configuration

files provide a complete human-readable description of workflow parameters and en-

able workflows to be reproduced exactly. In addition, the functionality and utility of

these workflows have been demonstrated extensively throughout this work. HiCFlow

was capable of extracting novel insights from three widely studied Hi-C datasets. In

particular, it was able to explore allele-specific characteristics of genome-wide chro-
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matin architecture via a novel implementation of de novo ASHi-C. It is acknowledged

that the field of chromatin conformation research is constantly evolving and that the

methods underlying HiCFlow and HiCSim will likely change as the field progresses.

However, this is true for any field of research, and this reality does not need to be

a barrier to developing robust processes. The in-built modularity of both workflows

means that the overall framework of the workflow is highly robust to changes in the

methods. Of course, best practices will themselves be adapted as these workflows are

more widely tested in the research community. However, it is hoped that the strategies

and practices explored in this work will ultimately contribute to facilitating effective

cross-disciplinary research in the future.
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Chapter 8

Supplementary

Table 8.1: Known Human Imprinted Genes (GRCh37).

Ensembl ID Chrom Start End Name

ENSG00000078900 1 3 569 080 3 652 765 TP73

ENSG00000200169 1 45 196 727 45 196 842 RNU5D-1

ENSG00000162595 1 68 511 569 68 517 314 DIRAS3

ENSG00000198825 10 121 485 554 121 588 659 INPP5F

ENSG00000130600 11 2 016 406 2 022 700 H19

ENSG00000167244 11 2 150 342 2 162 468 IGF2

ENSG00000099869 11 2 161 731 2 169 896 IGF2-AS

ENSG00000254647 11 2 181 009 2 182 451 INS

ENSG00000053918 11 2 465 914 2 870 335 KCNQ1

ENSG00000269821 11 2 629 558 2 721 224 KCNQ1OT1

ENSG00000237941 11 2 891 263 2 893 335 KCNQ1DN

ENSG00000129757 11 2 904 443 2 907 005 CDKN1C

ENSG00000110628 11 2 920 951 2 946 476 SLC22A18

ENSG00000181649 11 2 949 503 2 950 650 PHLDA2

ENSG00000021762 11 3 108 337 3 187 969 OSBPL5

ENSG00000184937 11 32 409 321 32 457 110 WT1

ENSG00000183242 11 32 457 064 32 480 315 WT1-AS

ENSG00000131620 11 69 924 408 70 035 634 ANO1

ENSG00000149289 11 109 964 118 110 042 566 ZC3H12C

ENSG00000182667 11 131 240 373 132 206 716 NTM

ENSG00000139194 12 7 268 332 7 281 485 RBP5
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ENSG00000111728 12 22 216 707 22 589 975 ST8SIA1

ENSG00000135100 12 121 416 346 121 440 315 HNF1A

ENSG00000180389 13 28 519 397 28 519 552 ATP5F1EP2

ENSG00000139687 13 48 877 880 49 173 572 RB1

ENSG00000140009 14 64 550 950 64 804 830 ESR2

ENSG00000198732 14 70 320 848 70 499 083 SMOC1

ENSG00000185559 14 101 192 042 101 204 561 DLK1

ENSG00000214548 14 101 245 747 101 327 368 MEG3

ENSG00000254656 14 101 346 090 101 370 059 RTL1

ENSG00000225746 14 101 361 107 101 505 196 MEG8

ENSG00000202191 14 101 391 161 101 391 229 SNORD113-1

ENSG00000199575 14 101 416 170 101 416 241 SNORD114-1

ENSG00000258498 14 102 018 558 102 026 768 DIO3OS

ENSG00000197406 14 102 027 688 102 029 789 DIO3

ENSG00000179455 15 23 810 821 23 875 222 MKRN3

ENSG00000254585 15 23 888 696 23 893 014 MAGEL2

ENSG00000182636 15 23 930 547 23 932 452 NDN

ENSG00000185823 15 24 920 922 24 928 540 NPAP1

ENSG00000128739 15 25 068 784 25 223 870 SNRPN

ENSG00000273173 15 25 200 133 25 222 997 SNURF

ENSG00000239014 15 25 232 072 25 232 142 SNORD108

ENSG00000257151 15 25 277 020 25 281 637 PWAR6

ENSG00000201831 15 25 415 870 25 415 951 SNORD115-1

ENSG00000201634 15 25 514 930 25 515 005 SNORD115-48

ENSG00000239169 15 25 523 490 25 523 556 SNORD109B

ENSG00000114062 15 25 578 875 25 684 198 UBE3A

ENSG00000206190 15 25 922 418 26 110 331 ATP10A

ENSG00000058335 15 79 252 248 79 383 122 RASGRF1

ENSG00000259424 15 99 190 180 99 190 600 IRAIN

ENSG00000167981 16 3 482 414 3 493 504 ZNF597

ENSG00000122390 16 3 493 649 3 536 953 NAA60

ENSG00000089505 16 66 600 296 66 613 040 CMTM1

ENSG00000184939 16 68 563 993 68 609 975 ZFP90

ENSG00000141510 17 7 565 097 7 590 856 TP53

ENSG00000186496 18 32 946 658 32 957 301 ZNF396

ENSG00000178184 18 77 915 115 78 005 397 PARD6G

ENSG00000130816 19 10 244 018 10 341 962 DNMT1
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ENSG00000199031 19 54 290 929 54 290 995 MIR371A

ENSG00000022556 19 55 464 498 55 512 510 NLRP2

ENSG00000269699 19 57 285 915 57 352 097 ZIM2

ENSG00000198300 19 57 321 445 57 352 096 PEG3

ENSG00000268654 19 57 352 234 57 359 924 MIMT1

ENSG00000162951 2 80 515 476 80 531 877 LRRTM1

ENSG00000183671 2 207 040 040 207 082 771 GPR1

ENSG00000204186 2 207 139 387 207 179 151 ZDBF2

ENSG00000166619 20 36 120 874 36 156 333 BLCAP

ENSG00000053438 20 36 149 608 36 152 092 NNAT

ENSG00000185513 20 42 118 082 42 179 594 L3MBTL1

ENSG00000101049 20 42 187 608 42 216 877 SGK2

ENSG00000124194 20 42 875 739 42 909 587 GDAP1L1

ENSG00000216031 20 57 393 281 57 393 368 MIR298

ENSG00000235590 20 57 393 974 57 425 958 GNAS-AS1

ENSG00000087460 20 57 414 773 57 486 247 GNAS

ENSG00000171587 21 41 382 926 42 219 084 DSCAM

ENSG00000183628 22 18 893 541 18 901 751 DGCR6

ENSG00000128185 22 20 301 761 20 307 603 DGCR6L

ENSG00000177432 4 89 617 064 89 618 980 NAP1L5

ENSG00000109320 4 103 422 488 103 538 459 NFKB1

ENSG00000164292 5 95 049 226 95 160 087 RHOBTB3

ENSG00000164308 5 96 211 690 96 255 407 ERAP2

ENSG00000270123 5 135 416 159 135 416 286 VTRNA2-1

ENSG00000168994 6 3 722 848 3 751 947 PXDC1

ENSG00000145945 6 3 849 607 3 851 554 FAM50B

ENSG00000111863 6 11 712 287 11 807 279 ADTRP

ENSG00000187772 6 105 384 491 105 531 207 LIN28B

ENSG00000112297 6 106 808 592 107 019 892 CRYBG1

ENSG00000118495 6 144 261 437 144 385 736 PLAGL1

ENSG00000283122 6 144 326 053 144 329 399 HYMAI

ENSG00000112499 6 160 592 093 160 698 670 SLC22A2

ENSG00000146477 6 160 769 410 160 873 609 SLC22A3

ENSG00000136238 7 6 414 158 6 443 598 RAC1

ENSG00000197576 7 27 168 126 27 170 399 HOXA4

ENSG00000106571 7 42 000 547 42 303 699 GLI3

ENSG00000002746 7 43 152 228 43 605 600 HECW1
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ENSG00000132437 7 50 526 134 50 633 102 DDC

ENSG00000106070 7 50 657 760 50 861 159 GRB10

ENSG00000187391 7 77 646 372 79 082 983 MAGI2

ENSG00000105825 7 93 514 708 93 520 065 TFPI2

ENSG00000127990 7 94 153 516 94 285 884 SGCE

ENSG00000242265 7 94 285 637 94 299 007 PEG10

ENSG00000158528 7 94 536 514 94 925 727 PPP1R9A

ENSG00000105880 7 96 649 708 96 654 262 DLX5

ENSG00000253276 7 106 294 806 106 301 604 CCDC71L

ENSG00000128510 7 129 932 974 129 964 020 CPA4

ENSG00000272701 7 130 125 883 130 130 874 MESTIT1

ENSG00000106484 7 130 126 012 130 146 306 MEST

ENSG00000266265 7 130 415 525 130 418 967 KLF14

ENSG00000157703 7 138 279 030 138 386 107 SVOPL

ENSG00000198010 8 687 628 1 656 642 DLGAP2

ENSG00000066827 8 135 490 031 135 725 292 ZFAT

ENSG00000248492 8 135 610 314 135 612 932 ZFAT-AS1

ENSG00000169427 8 140 613 081 140 716 352 KCNK9

ENSG00000282164 8 141 104 993 141 110 642 PEG13

ENSG00000107249 9 3 824 127 4 348 392 GLIS3
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ization of the Stability and Folding of H2A.Z Chromatin Particles: Implications for

Transcriptional Activation. Journal of biological chemistry, 276(45), pp.41945–41949.

Aguet, F., Brown, A.A., Castel, S.E., Davis, J.R., He, Y., Jo, B., Mohammadi, P., Park,
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Habermann, B., Akhtar, A. and Manke, T., 2018. High-resolution TADs Reveal

DNA Sequences Underlying Genome Organization in Flies. Nature communications,

9(1), p.189.

Rao, S.S., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-

Kwon, K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D., Huang,

X., Shamim, M.S., Shin, J., Turner, D., Ye, Z., Omer, A.D., Robinson, J.T., Schlick,

T., Bernstein, B.E., Casellas, R., Lander, E.S. and Aiden, E.L., 2017. Cohesin Loss

Eliminates All Loop Domains. Cell, 171(2), pp.305–320.e24.

Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson,

257

https://www.nature.com/articles/d42473-021-00030-9
https://www.nature.com/articles/d42473-021-00030-9


J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S. and Aiden, E.L., 2014. A

3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chro-

matin Looping. Cell, 159(7), pp.1665–1680.

Reik, W. and Murrell, A., 2000. Silence Across the Border. Nature, 405(6785), pp.408–

409.
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Kadlof, M., Wolny, A., Parteka, Z., Arabasz, S., Kiss-Arabasz, M., Plewczyński,
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J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso,
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