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The proposed architecture applies the principle of predictive coding and deep learning in

a brain-inspired approach to robotic sensorimotor control. It is composed of many layers

each of which is a recurrent network. The component networks can be spontaneously

active due to the homeokinetic learning rule, a principle that has been studied previously

for the purpose of self-organized generation of behavior. We present robotic simulations

that illustrate the function of the network and show evidence that deeper networks enable

more complex exploratory behavior.
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1. INTRODUCTION

Deep neural architectures (Fukushima and Miyake, 1980; Hinton et al., 2006) have reached a level
comparable to human performance in certain pattern recognition tasks (Krizhevsky et al., 2012).
Also in robotic applications, deep networks gainmore andmore importance, from state abstraction
to seamless end-to-end control in complex repetitive tasks (Levine et al., 2016). Moreover, it has
been speculated whether deep feed-forward networks can account for some aspects of information
processing in the mammalian visual system (Serre et al., 2007), which is not to say that the brain is
nothing but a collection of deep neural networks. Quite to the contrary, the brain is known to have
dynamical properties that are much richer than standard deep architectures:

• Biological neural systems consist of patches of interconnected neurons which also receive
re-entrant connectivity via other patches.

• Spontaneous behavior can occur at any level of depth and may spread in either direction.
• Sensory inputs are not only providing information for decision about actions, but are also

analyzed for effects of previous actions.
• A hierarchical organization enables lateral transferability and flexible compositionality.
• There is little use for supervised learning.

Based on these considerations, we propose here an architecture that combines the undeniable
strengths of deep neural networks with homeokinesis (Der, 2001), an approach to meet
requirements of autonomous robots (see section 2). Our work connects to (Carvalho and Nolfi,
2016) where the introduction of flexibility and plasticity in a neural controller showed a good
effect in a cleaning task, however, mainly based on an evolutionary approach, whereas we
aim at a more principled architecture that achieves an increased flexibility by a hierarchy of
identical controllers. The autonomously generate activity of higher-lever controllers provide an
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intrinsic motivation (Oudeyer et al., 2007) for the lower
ones. In this way, we are able to propose a more brain-
like architecture which implicitly realizes a predictive coding
principle, compare (Adams et al., 2013) for a related approach,
at least in some parameter range, as discussed below. An early
interesting comparison is provided by (Rusu et al., 2003) which
presents a neuro-fuzzy controller for determining the behavior
of a robot in a navigation task. Their architecture had a similarly
layered structure, although the behaviors had to be predefined at
a time when homeokinesis (Der, 2001) was just being developed.
More recently, differential Hebbian learning was used to explore
possible behaviors of a robot (Pinneri and Martius, 2018),
presenting a more brain-like approach at the low level, whereas
we aim a model that captures characteristics of the area-level
organization of the brain.

In the following, we will consider first the homeokinetically
controlled sensorimotor loop (Der, 2001) as the basic element
of the proposed system (section 2). In this way, we incorporate
a source of spontaneous activity. The composition of these
elements in the DIAMOND (Deep Integrated Architecture for
sensoriMotor self-Organization aNd Deliberation) architecture
(section 3) will thus be able to generate activity at all levels
and work in a fully self-supervised way, although it is also
possible to steer the system to desired behavior by very small
guiding inputs (Martius and Herrmann, 2011). The main layout
of the architecture includes a basic layer that receives information
from outside world and sends actions and is expected to
represent low-level features. There is a variable number of
deeper layers that interact only with the neighboring layers and
which represent more abstract features that are extracted from
the data through the lower layers. The architecture learns by
the homeokinetic learning rule (see below) which implies that
consistency between neighboring layers is required. We will
present a few experimental results in section 4, and discuss the
realism and performance of the architecture as well as further
work in section 5.

2. HOMEOKINETIC CONTROL

The basic element of our architecture is formed by a
homeokinetic controller, which we will describe here only
briefly, details can be found in (Der and Martius, 2012).
This unsupervised active learning control algorithm shapes the
interaction between a robot and its environment by updating the
parameters of a controller and of an internal model. The learning
goal can be characterized as a balance of predictability and
sensitivity with respect to future inputs. The resulting behavior is
random yet coherent both temporally and acrossmultiple degrees
of freedom. The controller is a parametric function

yt = C(xt;C) (1)

of the vector xt of current sensory states of the robot. It generates
a vector of motor commands yt in dependence on the current
values of the parameter matrix C. The update of the parameters
is based on the sensitivity of the distance between inputs and their

predictions by means of an internal model. This model

x̂t+1 = M(xt , yt;M), (2)

produces a prediction of future states x̂t+1 based on the current
input xt or action yt or both, and a parameter matrix M.
The difference between actual and estimated state defines the
prediction error

ξ t+1 = xt+1 − x̂t+1, (3)

which gives rise to one of the two complementary objective
functions that are relevant here, firstly the prediction error

Et+1 = ‖xt+1 − x̂t+1‖
2, (4)

which is used to adapt the parameters M of the internal model
(2), and secondly the time loop error

Et = ‖xt − x̌t‖
2, (5)

which is based on a post-diction x̌t of previous input xt obtained
via the inverse of Equation (2) given the new input xt+1, i.e., Et is
calculated only at time step t + 1, and is related to the prediction
error (4) by

Et = ‖ηt‖
2 = η⊤t ηt = ξ⊤t+1(JtJt

⊤)−1ξ t+1. (6)

where J is the linearization of themaps from current input to next
input dependent on the current controller. As only the projection
η of J−1 on ξ is relevant, the time loop error can be efficiently
estimated. The homeokinetic learning rule updates the parameter
matrix C of the controller (1) by gradient descent

1Cij = −εC
∂Et

∂Cij
, (7)

where Cij is an element of C and εC is a learning rate.
If the representational power is of less importance than the

flexibility (Smith and Herrmann, 2019), then a simple quasi-
linear system can be considered as sufficient. Below, when we
will consider a multi-layered system, the representational power
is meant to be achieved by the interaction between the layers each
of which will consist of one instance of the current controller-
predictor unit. A pseudo-linear controller, i.e., a quasi-linear
function of the inputs with coefficients that are adaptive on the
behavioral time scale,

yt = C (xt) = g (Cxt + c) (8)

and a linear model

x̂t+1 = M(yt) = Myt +m, (9)

does thus not limit the complexity of achievable control. The
parameters of the controller and the model are now the matrices
C and M resp., which are complemented by the matching bias
vectors c and m. In order to incorporate limitations of actions
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FIGURE 1 | Schematic representation of multi-layer homeokinetic learning. Left: In the elementary sensorimotor loop, a control action y0 is calculated by the

controller C1 and executed in the environment W which then produces the new input x̂0. The prediction error is obtained as the difference of new sensory input x̂0
and its prediction x̂1 that was obtained from the previous input x̂0. It is used in the update of the model M, see Equations (13), (14). Right: In homeokinetic learning,

the time-loop error, i.e., the difference of previous input x0 and re-estimated previous input x1 (which is obtained via the downwards arrows and corresponds to x̌t in

Equation 5), is used to update the controller parameters, see Equations (11), (12). The curved downward arrows indicate the time step: The “new” input that was

previously predicted or obtained from the environment, is now used by the controller to produce the next action (rather than the re-estimated input). The inner layers

follow exactly the same dynamics based on predictions from the respective outer layers rather than based on the environment. Top-down effects are included by

additional connections This includes virtual actions (arrows from yi to Mi ) analogous to the initiation of actions in the environment, and virtual states taken into account

by the controller (arrows from xi to Ci ). The activities are propagated alternatingly through the upwards (orange, violet, and brown) arrows and through the respective

transposed matrices via downwards arrows (cyan), both of which correspond to a set of parallel fibers, whereas the adaptive interconnections are maintained in the

controller (C nodes) or the model (M nodes).

of the robot, the controller is quasi-linear due to the element-
wise sigmoidal function g. Because of the simple structure
of Equation (8), we can omit here the state dependency (2) and
define the model M only in motor space. The parameter update
(7) becomes

1Cij = εC η⊤J
∂J

∂Cij
η, (10)

and analogously for the bias term c. With µ = G′M⊤
(

J⊤
)−1

η

and ζ = Cη the learning rules for a linear controller with a linear
model are

1Cij = εCµiηj − 2εCµiζiyixj (11)

1ci = −2εCµiζiyi. (12)

Simultaneously, but possibly with a different learning rate, the
parameters M of the linear model (9) are updated via gradient
descent on the standard prediction error (Equation 4, rather than
Equation 6).

1Mij = −εM
∂E

∂Mij
= εMξiyj (13)

1mi = −εM
∂E

∂bj
= εMξi (14)

where εM is the learning rate for the adaptation of the internal
model. The ratio of the two learning rates εC and εM is
known to be critical for the behavior of controlled robot (Smith
and Herrmann, 2019). For the architecture presented next, an
optimized ratio is to be used, see also Figure 2.

3. THE DIAMOND MODEL

3.1. Deep Homeokinesis
The DIAMOND model is a generalization of the homeokinetic
controller described in section 2. As shown in Figure 1, the
comparison of a state variable x (t) and its estimate x̂ (t) is now
repeated also for estimates of estimates etc., x0 (t) = x (t),
x1 (t) = x̂ (t), x2 (t), . . . , where each pair of neighboring layers
corresponds to a homeokinetic controller that acts onto the lower
layer as its environment and receives biases from the higher layer.
In the inner layers (larger ℓ) the external information becomes
less and less dominant.

In order to use homeokinetic learning in a multilayer
architecture, several instances of the homeokinetic sensorimotor
loop are stacked. The internal model of any lower layer serves as
the “world” for the next higher layer. Likewise, estimates for input
obtained at by a lower layer are the inputs for the higher layers,
so each layer reproduces the elementary loop shown in Figure 1.
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3.2. Simple Variant
The architecture consists of controllers for each layer ℓ < L (no
controller for ℓ = L)

yℓ (t) = Cℓ+1 (xℓ (t)) = g (Cℓ+1xℓ (t) + cℓ+1) (15)

and linear models that are given by

x̂ℓ (t + 1) = Mℓ(yℓ−1 (t) , yℓ (t))

= Mℓyℓ−1 (t) + M̃ℓỹℓ (t) +mℓ. (16)

which simplifies for the top layer ℓ = L where ỹL (t) ≡ 0, i.e., no
higher effects are present.

In Equation (16) also the effect of virtual actions ỹℓ (t), ℓ ≥ 1
is included as follows: First, the previous prediction of a layer
x̂ℓ (t − 1) is copied into the input unit xℓ (t) at the beginning
of the new time step, see Figure 1. The back-propagated input
x̌ℓ (t − 1) that was used in Equations (5) and (6) is no longer
needed. From xℓ (t) a virtual action yℓ (t) is computed that
then contributes additively to the prediction (16). The controller
update is here the same as for the one-layer model, and the M̃

matrix (not shown in the figures) is updated in the same way as
theMmatrix.

3.3. Main Variant
The variant with extra connections (Figure 1) has for
the controller

yℓ (t) = Cℓ+1 (xℓ (t)) (17)

= g
(

Cℓ+1xℓ (t)+C̃ℓ+1x̂ℓ+1(t − 1)+cℓ+1

)

i.e., in the same way as new input x̂0 (t + 1) that is used to
calculate the prediction error is also used in the next time step
as input x0 (t), we are also for ℓ > 0 using previous predictions
as new virtual input. For the deepest layer ℓ = L, Equation (17)
is not applied, and for the penultimate layer we have simply

yℓ (t) = Cℓ+1 (xℓ (t)) = g (Cℓ+1xℓ (t) + cℓ+1) . (18)

For the model, Equation (16) is used as above.
While the first C matrix in Equation (17) is adapted learned

in the standard way (see Equations 11 and 12), the matrix C̃ is
updated by gradient descent with respect to the prediction error
for the action

E =
(

yℓ (t) − ỹℓ (t)
)2
,

where

ỹℓ (t) = g
(

C̃ℓ+1x̂ℓ+1 (t − 1) + c̃ℓ+1

)

,

i.e., the input x̂ℓ+1 (t − 1) from the more inner level is used to
predict the motor output yℓ (t). The update equations for C̃ are
similar to Equations (13) and (14), but also contains a derivative
of g. Note that no loops are present in the network of Figure 1,
which may not be a problem as the loops have no function

(yet), and may be included later. However, it is not clear what
“deliberation” could mean without these loops.

We assume that the inner (deeper) layers are updated first.
The deepest layer ℓ = L has no variables, just the controller
and the model. According to Equation (18), no higher-level input
variables are needed in order to update the variables at ℓ = L−1.
In this way, virtual actions and virtual inputs are available to be
used in Equations (17) and (16) to update the next layer toward
the outer side, i.e., with lower ℓ. For the update of the matrices
M, M̃, C and C̃ the time order is not essential, if the variables are
calculated as described above.

3.4. Main Variant With Deep Associations
As a further variant, which is, however, not implemented in
the present simulations, a standard deep neural network can
be employed to connecting the inputs xℓ directly between
neighboring levels. In this case a separate set of connections Pℓ

would be learned for map from xℓ−1 to xℓ. The weights P are
learned by the activations xℓ that arise due to the activations of
the network. In addition it is possible to add a further set of
connections R that play the same role as P, but for the predicted
sensor values.

The network can sustain persistent activity that represents
an action perception cycle. Activity in the subnetworks that are
completed by recurrent connections arises by self-amplification
of noise or spurious activity following the homeokinetic learning
of the respective controller. It may be possible to use also
the cycles more explicitly for learning, but we want to restrict
ourselves here to one-step learning rule, i.e., gradients are
calculated only over one The full model also includes perceptual
pathways consisting of bridges between input-related units. In
this way the network activity becomes shaped by standard deep
feed-forward networks.

4. EXPERIMENTAL RESULTS

4.1. Active Response by the Recurrent
Network
As a first test, we have considered the simple variant of the
architecture (see section 3.2) when it is driven with a sinusoidal
input and the “world” reproduces simply a noisy version of the
motor action as next input to the robot. Typical results are
shown in Figure 2 for a two combinations of the learning rates
εC (11, 12) and εM (13, 14), which lead either to an abstracted
reproduction of the input in the deeper layers or to a self-
organization of activity that, however remains without effect in
this simple variant. At lower learning rates (left column), even
deeper layers respond to the original input. In this case, the
internal layers are square versions of the original input. For larger
learning rates (right column), the internal layers have a different
response. The fifth row shows a combination of homeokinetic
adaptation (the red line between 310 and 320 s) and noisy output
while still following the input from the first layer. Deeper layers
(lower rows), tend have a decay in the generation of motor action
attributed to the squashing function.
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FIGURE 2 | Activity evolution in a perceptually connected network structure according to the model in section 3.2. The sensory trajectory is shown by the solid line

(red) and the intermediate motor action by the dashed line (green). The top row gives the input activity, the second row the activity of the first layer and the following

rows show every 10th layer of the architecture to a total depth of 50. The left panel is for learning rates εM = 0.01, εC = 0.05, and the right one for εM = 0.1,

εC = 0.2. While at low leaning rates, the input is similar across all layers, for larger ratios εM/εC the model is more flexible and the deeper activity becomes largely

independent on the input, which allows for self-organized activity in the deeper layers that is not immediately affecting the outside world.

4.2. A Wheeled Robot in the Hills
The main variant (section 3.3) is used in an exploration task,

where a four-wheeled robot is expected to cover a large portion

of an unknown territory (Smith and Herrmann, 2019). The
hilly landscape shown left in Figure 3 can be scaled in vertical
direction such that different levels of difficulty can be achieved
ranging from a flat ground (level 0) to slopes that require
maximal motor power (level 1) and that can cause instabilities
and thus large prediction errors (4). The activity decays in a five-
layer DIAMOND model for a flat arena, as the inner layers are
not needed, whereas for a hilly landscape (difficulty level > 0)
the inner layers did not show much attenuation. The behavior
of the robot is evaluated based on a 10 × 10 grid overlaid to the
square-shaped arena. The number of visited grid cells is averaged
over five runs for each difficulty and each controller depth and
represented as a coverage rate. The total coverage was in all cases
below 50% such that the increase of the coverage with time was
nearly linear.

Whereas a single layer can achieve a similar performance
across all terrain difficulties, for increasing difficulty of the task
the higher layer are more and more engaged and take advantage
of the increased errors in the terrain that provide thus a potential
for a more comprehensive coverage of the arena per time unit.

4.3. A Spherical Robot in a Polygonal Arena
Finally, we studied a simulated spherical robot which is
controlled by three masses that a movable along internal axes,
see Figure 4, left. The robot is exploring freely in an polygonal
environment which was chosen to discourage circular movement
along the wall. The controller picks up quickly a suitable rhythm
of the internal weights that is effecting in moving the robot in
any direction. Collisions with wall usually stop the robot until the
emergence of a different mode of the movements of the internal
weights moves the robot in a different direction. Although amore
systematic study is yet to be performed, it is already obvious
that adding a small number of additional layers increases the
behavioral repertoire of the robot and reduces the duration of
any wall collisions and re-emergence of behavior in the robot.
The example is also meant to demonstrate, that the applications
of the learning rule and architecture are beyond exploration of a
planar arena and can be used in order to generate and to organize
elementary robotic behaviors.

5. DISCUSSION

The numerical results seem to imply that a few layers
are sufficient, i.e., a larger number of layers does not lead
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FIGURE 3 | A four-wheeled robot exploring a hilly landscape. (See text and Smith and Herrmann, 2019 for details on the task). The panel on the right shows results

for five levels of difficulty (linear scaling of the slopes, with the simples level being a flat ground) and five depths of the network (ℓ = 1, 2, 3, 4, 5) are considered,

showing an increased exploration capability. The code for simulator (Der and Martius, 2012) and the DIAMOND controller architecture described here is available at

https://github.com/artificialsimon/diamond.

FIGURE 4 | Spherical robot (left) in a dodecagonal arena. For a one-layer architecture, the robot mostly follows the wall (middle), while for a 3-layer network, the

robot shows a highly exploratory behavior (right).

to further improvements or may require a much longer
learning time than attempted here. It should, however,
be considered that the tasks and environments are all
very simple, such that it is not possible to generalize this
observation to more complex situations. It can nevertheless
be expected that the spontaneous internal activations that
were observed for suitable learning rate ratios, lead to
a learning time that is approximately linearly increasing
with the number of layers, and not much worse. This is
suggested by earlier results with homeokinetic learning rule
(Martius et al., 2007).

The present model is a representation of the idea (see
e.g., Anderson et al., 2012) that it is difficult to define a
clear boundary between brain and body or even between
body and world. At all layers the system follow the same
principles in its adaptation of the actions onto lower layers
and in the learning of a model that affects higher layers.
The reduction of complexity of the internal dynamics toward
higher layers is counterbalanced by the autonomous activity such

that the main eigenvalue at each layer will hover near unity
(Saxe et al., 2014).

Although the activity is updated here in parallel
in all layers, the stacked structure is clearly similar
to the subsumption architecture (Brooks, 1986) as it
allows for shorter or longer processing loops. It remains
to be studied whether more general architectures
are beneficial, especially when more complex tasks
are considered.

In Figure 1, it is understood that the dynamical variables (x, y,
and x̂) exist each in two instances, one updated by the controlling
and predictive pathways, the other by the feedback within the
re-estimation system. The need to disambiguate these units
points to an interesting parallel to the roles of the layers of the
mammalian cortex.

Finally, it should be remarked the principle of predictive
coding is inherent in the architecture from the homeokinetic
principle. Activity can only travel to the deeper layers if
it is not already predicted by the internal model of the
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current layer. In some cases this can lead to a complete
decay of the activity in the deeper layers (see Figure 3),
although more complex robots and more challenging
environments need to be studied in order to precisely
identify parallels to the predictive coding principle in natural
neural systems.
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