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Abstract: Floods are a devastating natural calamity that may seriously harm both infrastructure
and people. Accurate flood forecasts and control are essential to lessen these effects and safeguard
populations. By utilizing its capacity to handle massive amounts of data and provide accurate
forecasts, deep learning has emerged as a potent tool for improving flood prediction and control.
The current state of deep learning applications in flood forecasting and management is thoroughly
reviewed in this work. The review discusses a variety of subjects, such as the data sources utilized,
the deep learning models used, and the assessment measures adopted to judge their efficacy. It
assesses current approaches critically and points out their advantages and disadvantages. The article
also examines challenges with data accessibility, the interpretability of deep learning models, and
ethical considerations in flood prediction. The report also describes potential directions for deep-
learning research to enhance flood predictions and control. Incorporating uncertainty estimates into
forecasts, integrating many data sources, developing hybrid models that mix deep learning with other
methodologies, and enhancing the interpretability of deep learning models are a few of these. These
research goals can help deep learning models become more precise and effective, which will result
in better flood control plans and forecasts. Overall, this review is a useful resource for academics
and professionals working on the topic of flood forecasting and management. By reviewing the
current state of the art, emphasizing difficulties, and outlining potential areas for future study, it lays
a solid basis. Communities may better prepare for and lessen the destructive effects of floods by
implementing cutting-edge deep learning algorithms, thereby protecting people and infrastructure.

Keywords: deep learning; flood forecasting; flood management; recurrent neural networks;
convolutional neural networks

1. Introduction

Flooding is a serious problem that affects many areas of the world. An area becomes
submerged by water, usually as a result of heavy rain, melting snow, or rising sea levels [1].
Floods may cause serious harm to homes, businesses, infrastructure, and crops in addition
to fatalities [2]. Along with its immediate impacts, flooding may also have long-term
implications. Floodwaters may contaminate water supplies and spread illness [3]. Floods
frequently disrupt transportation infrastructure, making it difficult to escape and receive es-
sential goods and services. Flooding is a complex problem that requires a multidisciplinary
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approach to solve [4]. This includes programs to improve land use and urban growth, as
well as the implementation of early warning systems and flood control measures [5]. Addi-
tionally, it is critical to spread knowledge about floods and teach people how to prevent
and respond to these events [6]. There are several strategies to lower the risk of flooding
and lessen flood damage. Here are some of the most well-liked methods. Building flood
control structures like dams, levees, and dikes may hold back or redirect floodwaters [7].
These structures, which also aid in water flow regulation, reduce the risk of flooding in
areas downstream. One part of managing floodplains is limiting development in areas that
are prone to flooding. By doing so, flood damage is reduced, and both people and property
are protected [8].

Several flood modeling approaches are used to forecast and simulate flood occurrences,
each with its benefits and drawbacks. Listed below are a few of the most popular methods.
To forecast how much water will be accessible during a flood event and how it will move
over the landscape, a procedure known as “hydrologic modeling” simulates the flow of
water in a watershed [9]. The benefit of hydrologic modeling is that it can simulate the
consequences of changes in land use and human activity as well as take into consideration
the intricate interactions between water, soil, and plants. Its disadvantages include the
reliance on potentially incomplete or inaccurate data, as well as how difficult it may be to
use on a large scale due to its computational complexity [10]. In hydraulic modeling, the
flow of water in a river or canal is simulated to forecast the depth and speed of water during
a flood event [11]. Hydraulic modeling has the benefit of being able to precisely forecast
water levels and velocities while also taking into account the impacts of infrastructure like
bridges and dams. Some of its disadvantages are its dependence on accurate information
about the river or channel geometry, which can be difficult to obtain, and its complexity,
which can make it difficult to apply to large-scale applications [12]. The movement of
water may be simulated using physical equations and boundary conditions to predict
water levels, velocities, and depth in a river or canal during a flood [13]. These models can
be created numerically or analytically using fluid mechanics equations or finite element
methods [14].

Applying statistical techniques to estimate the probability that a flood event will occur
under different circumstances is known as probabilistic modeling [15]. The advantages of
probabilistic modeling include its ability to account for the ambiguity and unpredictable
nature of flood periods and its capacity to provide a quantitative evaluation of risk. Its
drawbacks include its reliance on potentially incomplete or erroneous data as well as
its sensitivity to the analysis’s assumptions and techniques. Utilizing satellite and aerial
data, remote sensing and geographic information system (GIS)-based modeling comprises
mapping and assessing flood events [16]. The benefit of this method is that it may mix data
from many sources and provides precise information on the nature and impact of floods.
Its drawbacks include the fact that it depends on high-quality data, which could be scarce
or unavailable, as well as the computational complexity that makes it challenging to apply
to large-scale applications [17].

Machine learning (ML), a branch of artificial intelligence (AI), is concerned with
creating models and algorithms that can learn from and forecast data [18]. The goal of
ML is to automatically improve a model’s performance on a task without having been
specifically trained to do so. ML algorithms are divided into four categories: reinforcement
learning, semi-supervised learning, unsupervised learning, and supervised learning [19].
In supervised learning, predictions are made on fresh, unforeseen data using an algorithm
that has been trained on a labeled dataset [20]. Unsupervised learning uses an algorithm
that is trained on an unlabeled dataset to find trends and correlations in the data [21].
Image recognition, natural language processing, recommendation systems, and predictive
modeling are just a few of the many applications that make use of machine learning
methods [22].

ML, which has several advantages over traditional approaches, is being used more
and more in flood prediction and management [23]. Here are some examples of how ML is
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being applied to stop flooding: Predicting flooding to forecast future flood occurrences [24],
ML models may be trained on past data including rainfall, river flow, and satellite images.
These models can aid in early flood warning, enabling more efficient preparation and
response [25]. ML models can assess real-time data from sensors and satellite imagery
to monitor floods in near real-time [26]. This makes it possible to identify floods early
and thus speed up responses. By examining data on variables like land use, geography,
and infrastructure, ML models may be used to evaluate flood risk [27]. This can assist in
locating flood-prone locations and providing information to guide management decisions.
ML models are used to evaluate flood damage by using satellite images and other data
sources. This speeds up the damage assessment process and provides information for
decision-making on relief and recovery activities [28].

Deep learning (DL) is a subfield of ML that uses algorithms inspired by the structure
and function of the brain, known as artificial neural networks, to model and solve complex
problems [29]. Although traditional statistical methods and hydrological models have been
utilized extensively for flood forecasting, they frequently fail to represent the intricate and
nonlinear interactions present in flood dynamics. Researchers have looked at different
strategies in response to this constraint, and DL has demonstrated remarkable possibilities.
Convolutional neural networks (CNNs) [30], recurrent neural networks (RNNs) [31], and
their variants are examples of deep learning models that can handle enormous amounts of
data, recognize complex patterns, and generate precise predictions. Given the numerous
factors involved, such as rainfall, river levels, soil moisture, and topographic characteristics,
these models excel at managing high-dimensional and spatiotemporal data, which are
crucial for flood forecasting. Figure 1 depicts the hierarchical representation of AI, ML, and
DL in a simplified representation of how these terms are related. AI refers to the broader
concept of machines or algorithms that can mimic human intelligence. As illustrated
in Figure 1 deep learning is a subset of machine learning that falls under the larger AI
umbrella. DL algorithms have demonstrated exceptional performance in a variety of
applications, including computer vision, natural language processing, speech recognition,
and gaming [32]. The depth of the model, which refers to the number of hidden layers in
the neural network, is the key difference between traditional machine learning algorithms
and deep learning algorithms.

1.1. Literature Review

DL models contain many hidden layers; they may learn at many levels of abstraction
and complete challenging tasks. They are therefore suitable for problems like image
classification, where the model needs to identify objects in an image despite variations
in illumination, background, and perspective [33]. A lot of times, the stochastic gradient
descent method is used to train DL algorithms on huge volumes of data. The parameters
of the model are changed during training to reduce the discrepancy between the model’s
predictions and the actual labels in the training data [34]. Because of their ability to learn
complex relationships and patterns in data, DL models are increasingly being used for flood
forecasting. The prediction accuracy of these models is higher than that of conventional
models, and they can be trained on a lot more data [35].

Applications for DL algorithms include the following: Predicting future flood
occurrences—DL algorithms may be trained on significant historical flood data sets, such
as rainfall data, river flow data, and satellite images. These algorithms contribute to
the delivery of more precise and fast flood warnings, enabling greater preparedness and
response [36]. Flood monitoring—near-real-time analysis of satellite images and other
remote sensing data using DL algorithms can be used to monitor floods. These algorithms
help identify flood-prone locations by detecting changes in water levels [37]. Assessment of
flood risk—DL algorithms are capable of conducting extensive analyses of data on terrain,
infrastructure, and land use. This assists in locating flood-prone locations and provides
information for managing flood risk [38]. Flood damage assessment—DL algorithms may
be used to examine satellite images and other data sources to determine the degree of flood
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damage. This helps assess the scope of a flood and informs decisions about relief and
recovery activities [39].
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In comparison to conventional models, ref. [40] investigated the construction of a
DL-based flood prediction model that accurately anticipates flood features in both the tem-
poral and spatial dimensions. The model showed exceptional performance and possible
application in emergency planning and real-time flood management. Ref. [41] used DL
approaches to reliably estimate flood gauge height with the increased temporal resolution,
exceeding conventional models and providing enhanced flood forecasting for numerous
applications. To forecast floods by capturing the spatiotemporal aspects of hydrological
data, ref. [42] suggested a ConvLSTM model that integrates CNN with long short-term
memory networks (LSTM). The model outperforms other models in its ability to anticipate
the timing of the flood and its peak discharge. Ref. [43] introduced the spatio-temporal
attention long short-term memory model (STA-LSTM), an interpretable flood forecasting
model that integrates LSTM and attention processes. The model performs better than
several already-used methods and offers attention weights that are both visually appealing
and easily comprehensible. Ref. [44] assessed the precision of four data-driven approaches
(linear regression (LR), multilayer perceptron (MLP), support vector machine (SVM), and
LSTM) for daily streamflow forecasting in the Kentucky River basin. In hydrological model-
ing applications, the LSTM network performs better than alternative models, illustrating its
reliability and efficiency. Other applications of DL in floods include flood forecasting [45,46],
flood monitoring [47,48], and flood hazard mapping [49].

Some of the current shortcomings in the use of DL may be filled by future research.
For instance, DL models may overfit certain datasets and fail to generalize to new data.
More research is required to develop DL models that successfully generalize to various
situations and data. Since deep learning models can be difficult to read and comprehend,
their practical applications are rather limited. There is a need for more research on the
interpretability and transparency of DL models, as well as the development of methods
for expressing and elucidating the decision-making processes of these models. DL mod-
els require a significant amount of data and processing power and are computationally
expensive. Further study on the scalability and computational efficiency of DL models is
required, as well as the development of methods for boosting their efficiency on certain
hardware platforms. To build DL models that can effectively manage this kind of data,
more research is required. Missing or noisy data may render DL models vulnerable. Since
DL models are vulnerable to adversarial attacks, further research is needed to ascertain
how robust these models are and to develop defenses against them.

1.2. Contribution of the Paper

This paper aims to make a significant contribution to the field of flood forecasting and
management by providing a comprehensive review and summary of recent advancements
in deep learning (DL) applications. The key objectives of this review article are as follows:

1. Identifying the main challenges that DL approaches can solve in flood forecasting and
management.

2. Conducting a comprehensive review on the use of DL for managing and forecasting
floods.

3. Identifying current trends in the area and potential paths for future study, including
chances for advancement and innovation in DL applications for flood forecasting and
management.

1.3. Structure of the Paper

The structure of this review paper is as follows: The methodology for the article is
described in Section 2. An in-depth discussion of DL, its methods, and its applications is
presented in Section 3. The use of DL techniques, including the use of several DL models, in
flood forecasting and management is covered in Section 4. In Section 5, problems with and
possible solutions for employing DL in flood forecasting and management are identified.
Future directions are covered in detail in Section 6. Section 7 concludes by summarizing
the main ideas and highlighting the value of DL in flood predictions and management.
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2. Methodology

Machine learning (ML) and deep learning (DL) are two subfields within the wider
area of artificial intelligence (AI). The earliest AI algorithms and symbolic AI systems were
created in the 1950s, marking the beginnings of AI [50]. The development of AI, however,
was gradual until the 1980s, when ML made it possible for AI systems to continuously
improve their performance by learning from data [51]. Among the early ML techniques
were decision trees (DT) [52], neural networks (NN) [53], and support vector machines
(SVM) [54]. These methods opened the way for the development of AI systems that can
identify patterns in speech, text, and picture data [55].

DL is a branch of ML that uses multiple-layer artificial neural networks (ANN) to
learn complicated data representations [56]. The early development of backpropagation,
a technique for training neural networks, in the 1980s, gave rise to DL [57]. However,
DL did not become a major force in AI research until the 2010s, when large datasets and
potent GPUs were available [58]. AI, ML, and DL are now used in a variety of uses,
including image, speech recognition, natural language processing, self-driving cars, and
medical diagnosis [59]. Today, the development of AI, ML, and DL is a fast-expanding and
changing field, with continuing research and innovation leading to new developments and
applications across sectors and disciplines. The primary distinction between ML and DL
is in how features are extracted and processed from input data (see Figure 2). ML relies
on handcrafted features, whereas DL learns and extracts features automatically through
multiple layers of non-linear transformations [60]. DL has proven to be extremely effective
in a wide range of applications, particularly those involving complex and high-dimensional
data. However, it necessitates a large amount of training data as well as computational
resources [61].
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The feed-forward neural network is the most frequently used neural network architec-
ture in ML [62]. This network is made up of three levels: an input layer, one or more hidden
layers, and an output layer. Each layer is made up of a group of neurons, and each neuron
receives its input from the previous layer and generates an output that is passed on to the
next layer. The weights of the connections between neurons are adjusted during training to
minimize the difference between predicted and actual outputs [63]. A basic feed-forward
network with an input layer, one hidden layer, and an output layer is depicted in Figure 3.
The deep feed-forward neural network, also known as a deep neural network, is the most
frequently used neural network architecture in DL [64]. This network is made up of several
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layers of interconnected neurons, each of which performs a non-linear transformation on
the incoming data. The network may have tens or hundreds of layers and may include
extra components such as convolutional layers, pooling layers, and recurrent layers [65].
Backpropagation, a gradient-based optimization method, is used during training to adjust
the weights of the connections between neurons. Figure 4 depicts an example of a deep
feed-forward neural network.
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Figure 5 shows the working methodology of the DL algorithm for flood forecasting.
There are several stages involved in the operation of DL algorithms for flood forecasting. To
begin, historical data on river flows, rainfall, temperature, and other pertinent variables are
gathered from a variety of sources, including weather stations, satellite data, and ground-
based sensors. To remove any outliers or missing values, the data are preprocessed and
cleaned. Following that, the data are split into training, validation, and testing groups. The
training set is used to train the DL model. The validation set is used to adjust the hyper-
parameters of the DL model and prevent overfitting. The model’s efficacy is evaluated
using the testing set. These models, which were developed using historical data, can
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comprehend the complex relationships between the input variables and the river flow.
The model may be used to predict future water flow conditions based on the input data
once it has been trained. The effectiveness of the model’s predictions may be evaluated
using a variety of performance metrics, including mean absolute error, root mean squared
error, and correlation coefficient. The precision of the model’s predictions can be increased
by using ensemble techniques like stacking and bagging. To decrease prediction errors
and increase accuracy, these strategies combine the predictions of many models. Figure 6
shows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
method to demonstrate how the paper selection process is organized.
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3. Deep Learning Overview, Techniques, and Applications
3.1. Deep Learning Overview

The goal of DL algorithms is to automatically learn from huge amounts of data without
the use of specialized programming or feature engineering [66]. The artificial neuron, which
accepts inputs, carries out calculations, and generates output, is the essential building block
of a DL algorithm [67]. The outputs of one layer serve as inputs to the following layer in
this tier-based arrangement of neurons. To find complex links and patterns in data, DL
techniques are utilized [68]. DL techniques fall into three categories: supervised learning,
unsupervised learning, and reinforcement learning. In terms of flood forecasting and
management, each of these approaches offers a unique set of applications. A model is
trained on labeled data with known input and output pairings as part of supervised
learning. In the case of floods, supervised learning can be used to forecast the water level
or flood extent based on past data [69]. Unsupervised learning comprises training a model
with data that have not been labeled with output values, or “unlabeled” data. In the case
of floods, unsupervised learning can be used to spot patterns or abnormalities in the data
that can be a sign of emerging flood-related events [70]. The process of teaching a model
to make decisions based on the maximizing of a reward signal is known as reinforcement
learning [71]. Comparing the costs and advantages of various activities, flood control
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systems may be improved through reinforcement learning. One illustration is the use of
reinforcement learning to improve flood control dam performance [72]. The classification
of DL algorithms into different categories is shown in Figure 7.
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These categories include deep feed-forward neural networks (DFNN), multilayer per-
ceptron (MLP), convolutional neural networks (CNNs), recurrent neural networks (RNNs),
long short-term memory (LSTM), gated recurrent units (GRUs), generative adversarial net-
works (GANs), self-organizing maps (SOMs), auto-encoders, deep neural networks (DNNs)
deep transfer learning (DTL), Boltzmann machines (BM), information retrieval (IR). The
method used depends on both the nature of the problem being addressed and the nature of
the data being used. In recent years, DL has produced cutting-edge outcomes on a variety
of tasks and has been extensively embraced in industry, academia, and government [73].
DL algorithms have a limited range of applications due to their computational complexity
and data requirements [74]. Furthermore, because of their tendency for overfitting, DL may
perform excellently on training data but poorly on new or untested data [75].

3.2. Application and Classification of Deep Learning Techniques

DL approaches are divided into a variety of classes based on their design and the
types of problems they are intended to solve. Some of the most popular DL methods are
outlined in the following subsections.

3.2.1. Deep Feed Forward Neural Network (DFNN)

DFNNs, which are the most fundamental kind of DL algorithms, are used for su-
pervised learning tasks including image classification and regression analysis [76]. They
consist of several layers of neurons, with the input from one layer acting as the output of
the following layer [77]. DFNNs can be utilized for a variety of purposes, such as flood
mapping [78], forecasting [79,80], and risk assessment [81]. DFNN can forecast flood levels
based on historical data and meteorological variables like rainfall and river discharge [82].
These data may be used to train a neural network so that it can make precise predictions
depending on the present situation. Ref. [83] used DFNN for the downscaling of rainfall
for the Vietnamese Mekong Delta.

3.2.2. Multilayer Perceptron (MLP)

The first neural network of this kind was created in the 1960s, making it the most
traditional [84]. An MLP is a particular kind of feed-forward neural network made up of
several layers of artificial neurons called feed-forward perceptron [85]. MLP refers to a
network design having at least one hidden layer [86], while a feed-forward neural network
can refer to any network architecture in which data travel in only one way, from input to
output [87]. This is the difference between MLP and a general feed-forward neural network.
The development of effective training methods like back-propagation, which sparked a
resurgence in interest in neural networks, did not occur until the 1980s [88]. During the
1990s, MLPs were widely employed in applications including speech recognition and
picture classification [89]. MLPs can forecast the intensity of a flood occurrence based
on past data and current weather conditions [90]. This can aid local governments and
emergency services in better preparing for and responding to flood occurrences. Based on
elements including elevation, geography, land use, and soil type, MLPs can be trained to
recognize locations that are vulnerable to flooding [91]. Local governments may use maps
of the flood risk created using these data to help them plan for and lessen the effects of
floods. MLPs are also used in the evaluations of flood risk [92].

3.2.3. Convolutional Neural Networks (CNNs)

CNNs are a sort of feed-forward neural network (FNN) created in the 1990s by Yann
LeCun and his associates for image identification [93]. Contrarily, the fundamental idea
behind CNNs was developed in the 1970s [94]. Convolutional layers and pooling layers,
which lower the dimensionality of the input, are used in CNNs, which are particularly
created for image identification and computer vision applications, to extract features from
pictures [95]. CNNs have fundamentally altered computer vision and are being used in a
wide range of applications. The detection and mapping of flood-affected areas using remote
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sensing data, such as satellite and aerial images, is one such application [96]. By learning
the patterns and characteristics of flooded areas, CNNs can automatically recognize and
categorize flooded locations in real time, enhancing the ability of local governments and
emergency services to respond to flooding incidents [97]. CNNs can be utilized for a variety
of other flood applications, such as flood susceptibility mapping [98] and flood forecasting
and flood warnings [99].

3.2.4. Recurrent Neural Networks (RNNs)

RNNs have been known since the 1980s, but they were not generally employed in
ML until the 2000s when they were effectively applied to speech recognition and language
modeling [100]. However, the approach had problems with training, which limited its
use. These difficulties were addressed by the long short-term memory (LSTM) architecture,
which was introduced in 2014 and led to a renewed interest in RNNs [101]. RNNs are useful,
especially for sequential data like time series, audio signals, and text. They are excellent
at tasks like speech recognition and natural language processing because they contain a
memory system that enables them to remember information from previous time steps [102].
To anticipate future flood levels, RNNs may analyze sequential data, such as time series
data, and use knowledge from prior observations and predictions. This approach may
result in improved flood management and more accurate flood forecasts [103].

Long Short-Term Memory (LSTM): To address the vanishing gradient problem that
regular RNNs face, LSTMs were developed in the 2000s [104]. Since they are particularly
suited to handling sequential data, such as time series data, they may be used to forecast
future flood levels by merging data from prior observations and forecasts. The main benefit
of LSTMs is their capacity to grasp long-term dependencies in data [105]. Memory cells
are used to do this, enabling the model to remember prior inputs that may be updated or
forgotten dependent on the current input and the previous memory state. To anticipate
future flood events, LSTMs may be used in flood control to examine time series data,
such as river water levels [106]. By combining information from earlier observations and
projections, the model may produce precise predictions and help emergency responders
and policymakers better prepare for impending floods [107]. LSTM can be utilized for a
variety of other flood applications, such as flood prediction [108] and flood forecasting [109].

Gated Recurrent Unit (GRUs): A GRU is a specific type of RNN architecture that was
initially introduced by [110]. The vanishing gradient problem that can arise during the
training of conventional recurrent neural networks is something that GRUs and LSTM
networks are designed to address [111]. GRUs contain fewer parameters than LSTMs,
which makes training them faster and with a lower risk of over-fitting possible [112]. This is
one of the key benefits of LSTMs. GRUs are used in flood control for time series analysis and
prediction, such as forecasting river levels and spotting possible flood occurrences [113].
GRUs can analyze historical data and use data from earlier time steps to create precise
forecasts and help emergency responders and policymakers better prepare for impending
floods [109].

3.2.5. Generative Adversarial Networks (GANs)

GANs are a class of generative models made up of two neural networks: a generator
and a discriminator developed in the 2010s [114]. The generator is in charge of creating new
data samples, whereas the discriminator is in charge of distinguishing between genuine and
fake data samples [115]. This procedure is repeated until the generator is able to generate
data that are indistinguishable from real data. GANs can have several different applications
in flood management. Some of these applications include flood damage assessment, flood
forecasting, flood early warning systems, and flood risk assessment [116]. GANs can be
used to create synthetic flood data for model training and testing in the context of flood
management [117]. The model can learn to handle a broad variety of flood conditions and
increase its prediction accuracy by creating a diverse set of synthetic data [118]. This is
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especially helpful when data are scarce or when the data available do not cover all possible
flood scenarios.

3.2.6. Self-Organizing Maps (SOMs)

In the 1980s, SOMs were presented as a neural network architecture that can be used
for unsupervised learning, such as dimensionality reduction and clustering [119]. Despite
being overshadowed in recent years by other neural network architectures, they are still
extensively used in a variety of uses such as clustering, anomaly detection, and visualizing
high-dimensional data [120]. SOMs are used to find patterns and relationships in flood-
related data, such as topographic and hydrological data. SOMs help in spotting areas at
high risk of flooding by visualizing the data and assisting in decision-making and resource
allocation during flood events [121].

3.2.7. Auto-Encoders

Auto-encoders were first used to acquire efficient data representations in the 1980s [122].
Although they were less popular than other methods at the time, their successful applica-
tions in tasks like image de-noising and anomaly detection in the 2000s sparked renewed
interest [123]. Auto-encoders are primarily used for unsupervised learning, such as dimen-
sionality reduction and feature extraction. They are made up of two parts: an encoder that
compresses the incoming data and a decoder that maps the compressed representation
back to the original data [124]. To produce a more concise depiction of flood-related data,
auto-encoders can extract features from topographic, hydrological, and meteorological
data [125]. This representation can then be used to train a flood-predicting supervised
learning model. To spot flood-prone regions and map the extent of flooding, auto-encoders
extract features from satellite imagery or remote sensing data [126]. To better anticipate
floods, auto-encoders are also used to obtain features from hydrological and meteorolog-
ical data [127]. This process enables the identification of patterns and relationships in
the data. Auto-encoders have the ability to improve the precision and effectiveness of
flood-related applications by extracting important characteristics from big and complicated
datasets [128].

3.2.8. Deep Neural Networks (DNNs)

DNNs are a type of FNN with several hidden layers that simulate complex non-
linear interactions between inputs and outputs [129]. Applications for flood control using
DNNs include flood forecasting, mapping, and risk assessment [130]. DNNs can forecast
probable flood levels based on previous data and meteorological factors like rainfall and
river discharge. The model’s several hidden layers enable feature extraction from the data
and learning from it, increasing prediction precision. Based on several inputs, including
precipitation data, topography data, and river flow data, DNNs are utilized in flood
forecasting to anticipate probable flood levels [35]. These models can offer helpful data for
early warning systems, emergency response planning, and resource allocation during flood
occurrences [131]. To map flood hazards, which requires locating flood-prone locations,
DNNs can be utilized. To identify flood extent and indicate flood-prone locations, DNNs
are used to evaluate satellite or aerial images [132]. Additionally, DNNs are used to assess
flood risk, which comprises determining the possibility and possible consequences of a
flood event [38]. It aids in the prioritization of areas for flood mitigation and preparedness
by decision-makers.

3.2.9. Deep Transfer Learning (DTL)

Although DTL has been around for a while, deep learning did not really start to take
advantage of it until the early 2010s [133]. Transfer learning was powerfully shown by the
Image Net competition in 2012, and it has since evolved into a mainstream technique for
training DNNs [134]. Transfer learning, which involves optimizing a previously trained DL
algorithm for a new task, can drastically minimize the amount of data and computational
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resources required to train a model for a new activity. In the context of flood forecasting
and management, DTL can be used to adapt pre-trained models to new tasks [135]. Flood-
related photos, such as satellite photographs of inundated areas or images taken during
flood occurrences, may be recognized and categorized using a pre-trained DL model for
image classification. To increase the precision of flood forecasts, transfer learning may
be used to adapt models that have already been trained for similar tasks like weather
forecasting [136].

3.2.10. Boltzmann Machines (BM)

Initially, training BMs was difficult, but with contrastive divergence research in the
2000s, they became an effective tool for generative tasks and unsupervised learning [137].
They generate new data that are comparable to the training data by learning a probability
distribution over the input data [138]. BMs can be used to create synthetic flood data for
model training and testing in the context of flood management. It is useful when data are
scarce or when the data provided does not cover all possible flood scenarios [139]. Further-
more, BMs are used to identify anomalies in flood-related data. By learning the normal
data probability distribution, they can spot data points that deviate from it, suggesting
potential anomalies or unusual events. During flood events, this will be useful for early
warning systems and decision-making [140]. BMs are also used for forecasting floods. They
learn to forecast future flood conditions with high accuracy by training on historical flood
data and meteorological parameters. During flood events, this aids in emergency response
planning and resource allocation.

3.2.11. Information Retrieval (IR)

IR has a long past that dates back to the dawn of computing. In the late 1990s and
early 2000s, the development of search engines such as Google greatly popularized the
field, leading to the development of new methods such as latent semantic indexing and
word embedding [141]. Natural language processing and text analysis now make extensive
use of these methods. IR approaches may be used to mine large flood datasets, including
social media posts, news articles, and government reports, for relevant data [142]. This
information may be used to support decision-making procedures including locating areas
at high risk of flooding and crisis management in certain situations [143]. Additionally, to
develop more precise flood forecasting models, IR approaches may be utilized to evaluate
and simulate hydrological data, such as rainfall patterns and river flow rates.

This section included advanced methods including DFNN, MLP, CNN, RNN, LSTM,
GRU, GAN, SOM, auto-encoders, DNN, DTL, BM, and IR, as well as their uses in flood
forecasting and management. In general, applying deep learning techniques to flood
forecasting and management can significantly increase the precision and dependability of
flood predictions, facilitate decision-making during flood occurrences, and eventually help
with flood mitigation. Table 1 shows the detailed comparison of DL models in terms of their
performance, computational requirements, and suitability for different flooding scenarios.
Table 2 shows the detailed comparison with respect to the accuracy, RMSE, advantages,
and disadvantages. Please take note that the accuracy and RMSE values given in the
table are only guidelines and may change based on the precise application, dataset, and
implementation. A rapid comparison of the algorithms’ accuracy and RMSE performance
is made possible by the table, which provides a high-level summary of the results of several
methods.
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Table 1. A detailed comparison of DL models.

Deep Learning Model Performance Computational
Requirements

Suitability for Flooding
Scenarios

FNN
Good performance in capturing

complex patterns and
relationships

Moderate computational
requirements

Suitable for both short-term
and long-term flood

forecasting

MLP Effective in handling non-linear
relationships

Moderate computational
requirements

Suitable for general flood
forecasting and

management tasks

CNN Excellent in capturing spatial
information and patterns

High computational
requirements due to

convolutional operations

Suitable for analyzing
flood-related imagery and

spatial data

RNN Suitable for time-series data
analysis

Moderate computational
requirements

Suitable for short-term flood
forecasting and temporal

analysis

LSTM
Superior in capturing long-term

dependencies and handling
sequence data

Moderate computational
requirements

Suitable for both short-term
and long-term flood

forecasting

GRU
Similar to LSTM, effective in

capturing long-term
dependencies

Lower computational
requirements compared to

LSTM

Suitable for real-time flood
forecasting and analyzing

time-series data

GAN Suitable for data generation and
augmentation

High computational
requirements, especially for

training

Suitable for enhancing data
availability and training
robust flood prediction

models

SOM Effective in clustering and
visualizing data patterns

Moderate computational
requirements

Suitable for exploratory
analysis and data

visualization in flood
management

Auto-encoders Useful for feature extraction
and dimensionality reduction

Moderate computational
requirements

Suitable for preprocessing
and extracting relevant

features from
flood-related data

DNN Versatile and can be applied to
various flood forecasting tasks

Computational requirements
depend on the model

complexity

Suitable for different flood
scenarios based on

problem-specific adaptation

DTL Utilizes pre-trained models for
transfer learning

Computational requirements
depend on the pre-trained

model size

Suitable for scenarios with
limited labeled flood data
and knowledge transfer

BM Effective in unsupervised
learning and pattern recognition

High computational
requirements for training

complex models

Suitable for unsupervised
feature learning and
anomaly detection in

flood events

IR Primarily used for data retrieval
and analysis

Low computational
requirements

Suitable for retrieving and
analyzing flood-related

information from textual
and unstructured data



Sustainability 2023, 15, 10543 16 of 33

Table 2. A detailed comparison with respect to accuracy, RMSE, advantages, and disadvantages.

Algorithm Accuracy RMSE Advantages Disadvantages

FNN High Low Effective in capturing complex
relationships

Limited in handling sequential
or spatial data

MLP High Low Suitable for numerical inputs
and large datasets

Limited in handling spatial or
sequential data

CNN Moderate Moderate Effective in capturing spatial
features

Limited in handling
non-image data

RNN Moderate Moderate
Captures temporal

dependencies and long-term
dependencies

Vulnerable to
vanishing/exploding gradient

problems

LSTM High Low Effective in capturing
long-term dependencies

Higher computational
complexity than traditional

RNNs

GRU High Low Balances memory capacity and
computational efficiency

May struggle with capturing
very long-term dependencies

GAN Variable Variable Can generate synthetic flood
scenarios or augment datasets

Training can be challenging
and require large datasets

SOM Moderate Moderate Useful for feature extraction
and dimensionality reduction

Require manual tuning of
hyper-parameters

Auto-encoders Moderate Moderate Effective for pre-processing
data and extracting features

Sensitive to noisy or
incomplete data

DNN High Low Powerful for modeling
complex relationships

Prone to over fitting if not
properly regularized

DTL High Low
Improves performance in

scenarios with limited
training data

Requires access to pre-trained
models and large datasets

BM Moderate Moderate Useful for unsupervised
learning and feature extraction

Computationally expensive
and difficult to train

IR Moderate Moderate Useful for specific tasks like
flood data retrieval

Limited in terms of direct
application in flood forecasting

4. Application of Deep Learning Methods in Flood Forecasting and Management

DL methods are increasingly being used in flood forecasting and management because
they have several benefits over conventional machine learning methods. DL is commonly
used in the following domains.

4.1. Time Series Forecasting

Based on historical data and climatic factors, DL algorithms are utilized to predict
probable flood levels [144]. Better prediction accuracy is achieved by using these models
which can describe non-linear correlations and temporal dependencies in data. Time series
forecasting with DL is crucial for the control and prediction of flooding [145]. Using time
series forecasts for flood prediction, DL may be utilized in the following situations.

4.1.1. River Flow Forecasting

The ability to make informed decisions regarding resource allocation, evacuation plans,
and other flood protection measures is a benefit of accurate river flow forecasts for officials
and emergency responders [146]. To create models for predicting river flow, DL techniques
including DFNN, MLP, CNN, RNN, LSTM, GRU, GAN, SOM, auto-encoders, DNN, DTL,
BM, and IR can be utilized. To forecast future river flow conditions, these methods extract
relevant features from historical river flow data, meteorological data, and other relevant
data sources [147]. Using historical data, the models can be trained to understand the
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relationships between various variables and how they affect river flow. Once trained, the
model can be used to forecast future river flow based on current and expected weather
conditions [148]. These projections are employed to assess flood risk and inform choices
about the deployment of flood protection and evacuation of vulnerable areas.

Historical river flow data are gathered and preprocessed before using DL models for
river flow forecasting [149]. River flow can be influenced by a variety of factors, including
precipitation, snowmelt, and water demands. The data are usually divided into three
sets—training, validation, and testing—and used to train the DL model. RNNs and LSTMs
are especially well-suited for river flow forecasting because they can handle time series
data with temporal dependencies [150]. In other words, they use information from earlier
time steps to forecast later time steps. A supervised learning approach is usually used to
train the model, with the target output being the river flow value at a future time step.
Once trained, the model is used to forecast future river flow based on present and historical
data [151]. These forecasts can be used to assess the likelihood of flooding and inform
flood management choices such as the deployment of flood protection measures and the
evacuation of vulnerable populations. Prediction accuracy can be measured using measures
such as root mean square error (RMSE) and mean absolute error (MAE) [152,153].

4.1.2. Rainfall Forecasting

DL models can be used to analyze past rainfall data and forecast future rainfall. These
forecasts can be used to assess flood risk and guide flood management choices, such as the
deployment of flood protection measures and the evacuation of at-risk populations [154].
It is necessary to collect and prepare historical rainfall data before employing DL models
to predict rainfall. Several factors, including humidity, temperature, and wind speed,
have an impact on rainfall [155]. Three sets of data—training, validation, and testing—are
frequently created and used to train the DL model. DL models like CNNs, RNNs, and
LSTMs may be used to predict rainfall. CNNs can extract spatial features from weather
imagery or satellite images, while RNNs and LSTMs can handle time series data with
temporal dependencies [156]. The model is usually trained using supervised learning,
with the output being the quantity of rainfall at a future time step [157]. With the use of
these estimates, one may assess the likelihood of flooding and decide how to respond to it,
such as by putting in place flood protection measures and evacuating vulnerable people.
Metrics like RMSE and MAE are used to assess the forecasts’ accuracy [158]. DL models
are a helpful tool for forecasting rainfall and floods. Through the prompt and precise
delivery of rainfall information, these models can aid in reducing the impact of floods on
infrastructure and communities. It is important to keep in mind, however, that DL models
may need domain knowledge to comprehend the findings and significant quantities of
data and computer power to train properly [61]. Furthermore, terrain and other factors like
river flow must be taken into account in addition to precise rainfall forecasts, which is only
one component of flood prediction and management.

4.1.3. Flood Forecasting and Warning Systems

To create real-time flood forecasting and warning systems, DL models can combine
a variety of data sources, such as river flow, rainfall, and meteorological data [36]. These
technologies can assist in lessening the effects of floods by giving local authorities and
rescue services a head start. Before DL models can be employed for flood forecasting and
warning systems, many data sources must be gathered and preprocessed [27]. This data
collection might include information such as historical flood data, river flow data, and
rainfall data, among other things. The data are often combined and processed using several
methods, including feature engineering and data fusion, to produce a single dataset. CNNs,
RNNs, and LSTMs are employed in flood forecasting and warning systems [159]. These
models may learn complicated correlations between data from numerous sources with
varied temporal and spatial dimensions. The model is often trained using a supervised
learning technique to predict flood risk or severity as the output [160]. When the model is
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complete, it will be possible to use it to generate real-time forecasts about the likelihood and
severity of flooding based on recent and past data [161]. The local government, emergency
services, and flood warning systems may all be informed using these forecasts. The accuracy
of predictions may be evaluated using measures including accuracy, precision, recall, and
F1 score [162].

4.2. Hydrological-Modeling-Based Forecasting

A collection of meteorological and topographical data, as well as flood levels, is
gathered to apply DL algorithms for hydrological modeling. This dataset is often prepro-
cessed to cope with missing or imperfect data as well as to normalize and standardize the
data [163]. CNNs and RNNs may be used in a range of hydrological modeling applications.
The relationship between topographical information (elevation and slope) and flood levels
is frequently modeled using CNNs [164]. These models can recognize spatial patterns in
data, such as how a river’s bend or constriction affects flood levels. Conversely, RNNs are
frequently used to predict the temporal link between meteorological data, such as rainfall,
temperature, and flood levels [165]. Using these models, it is possible to see how flood
levels are impacted over time by variations in the weather. The DL model is typically
trained using a supervised learning technique, and the intended output is a prediction
of flood levels based on the input data [144]. The model may be trained to incorporate
a variety of inputs and outputs, including a variety of meteorological data sources and
a variety of sites where flood levels are predicted. It improves prediction accuracy by
taking into account the complex relationships between multiple variables that contribute
to flood levels. Once trained, the model is used to forecast flood levels in real-time using
current and historical data [166]. These data can be used to guide flood management
choices like the deployment of emergency response teams and the implementation of flood
prevention measures [167]. Prediction accuracy can be measured using measures such as
mean absolute error and mean squared error.

4.3. Image-Based Flood Detection

Another use of DL in flood is image-based flood detection. To find flooded areas,
CNNs can be used to analyze satellite or drone imagery [168]. Real-time flood monitoring
and emergency response can both benefit from this information. Satellite or drone imagery
must first be gathered and preprocessed before CNNs can be used for image-based flood
detection [169]. The images could be red-green-blue (RGB) or multispectral and could have
elements like the texture and reflectance of the water’s surface. The images are used to
train the DL model and are typically labeled as either flooded or non-flooded areas [170].
CNNs are particularly well-suited for image-based flood detection because they can learn
relevant features from images automatically, eliminating the need for manual feature
engineering [171]. The model is typically trained using a supervised learning approach,
where the target output is a binary classification of flooded or non-flooded areas. After
training, the model can be used to analyze new satellite or drone imagery in real time to
detect flooded areas [70]. These data can be used to track flood conditions and inform
emergency response efforts, such as the deployment of rescue and relief teams. Metrics
such as precision, recall, and F1 score (combining both precision and recall) are used to
assess the accuracy of flood detection [172].

Several DL techniques are available for image classification in flood applications.
Some examples are as follows: CNNs, as previously stated, are frequently used for image
classification in flood applications [173]. These models are intended to learn and extract
features from raw images automatically, making them well-suited for jobs such as flood
detection in remote sensing imagery [174]. DTL is a technique that entails using a previously
trained CNN as a starting point for a new image classification assignment. This method is
especially helpful when the labeled data are limited. For example, a pre-trained CNN that
was trained on a large dataset of general images can be fine-tuned for a particular flood
detection task using a smaller dataset of labeled flood images [128]. Deep convolutional
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neural networks (DCNNs) are CNN variants with extra layers that enable them to learn
more complex features from input images [175]. These models have been demonstrated to
be especially successful for image classification in applications with significant variability,
such as flood detection in remote sensing imagery [176]. RNNs are intended to handle
sequential data, such as time series or video data. RNNs are used to classify images from
a sequence of remote sensing images in flood applications, enabling more accurate and
robust flood detection [177]. GANs generate new, realistic images based on a training
dataset. In the context of flood applications, GANs are used to generate synthetic flood
pictures that are utilized to supplement the labeled dataset and increase the accuracy of
image classification models [178].

4.4. Information Retrieval

DL information retrieval in flood forecasting comprises utilizing DL models to extract
relevant information from multiple flood-related sources, such as social media postings,
news articles, and government data [179]. This information is utilized to aid in flood
predictions and decision-making during floods. DL techniques such as CNN and RNN are
utilized for text categorization and information retrieval [180]. These models may be taught
to extract relevant information from unstructured text data, such as tweets or news reports,
and classify it as flood warnings, flood impacts, or flood recovery activities [181]. From
several types of flood-related data, such as topographic, hydrological, and meteorological
data, auto-encoders can extract characteristics and then compress the information. Then,
using this summarized representation, a supervised learning model for flood forecasting
can be trained. As a result of their capacity to develop a probability distribution across the
input data, BMs are an efficient tool for processing and evaluating flood-related data [117]
such as satellite photos or flood data, as well as for creating precise and trustworthy
predictions about the likelihood of future floods [182].

4.5. Predictive Maintenance

The ability to maintain and repair infrastructure proactively before a flood occurrence
makes predictive maintenance a key component of flood management [183]. Decision-
makers can take action before a flood occurs by using DL algorithms to estimate the risk
of flooding at specific sites based on historical data and present observations. Predictive
models that foresee flood risk are developed utilizing DL approaches employing a number
of inputs, including historical river levels, precipitation data, and soil moisture content [184].
Using methods like CNNs and RNNs, these models can analyze massive datasets to uncover
patterns and trends that conventional approaches would overlook. Based on past data
and current observations, DL algorithms can predict the likelihood of a dam failing [185].
The danger of catastrophic flooding in the event of a dam failure can be reduced by using
these data to prioritize maintenance and repair work [186]. The likelihood of a levee
failing may also be predicted using DL algorithms based on historical data and current
observations [187]. This information may be used to identify regions where levees are
vulnerable to failure and to set priorities for maintenance and repair work to lower the
danger of flooding. Table 3 shows the different articles used in flood applications.

Table 3. The different articles used in flood application.

Paper Network Type Deep Learning Task Water Field Location

[188] LSTM Forecasting River flow forecasting Tunxi, China

[189] DNN Prediction River flow prediction Yangtze River, China

[190] LSTM Forecasting River flow forecasting Chao Phraya River Basin
Thailand
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Table 3. Cont.

Paper Network Type Deep Learning Task Water Field Location

[191] GRU, MLP, LSTM Forecasting River flow forecasting Awash River Basin/Ethiopia

[192] CNN Forecasting River flow forecasting
Huanren Reservoir and
Xiangjiaba Hydropower

Station, China

[193] SOM Forecasting River flow forecasting Selangor, Malaysia

[155] CNN, LSTM Forecasting Rainfall forecasting Northwestern Pacific Ocean

[157] LSTM, CNN Forecasting Rainfall forecasting Niavaran station, Tehran,
Iran

[194] MLP Forecasting Rainfall forecasting Meteorology Sites in China

[195] LSTM Forecasting Rainfall forecasting Indian summer monsoon

[196] LSTM Forecasting Rainfall forecasting Indonesia

[197] GAN Forecasting Rainfall forecasting Korea

[198] MLR Prediction Flood forecasting and warning
systems Indonesia

[199] LSTM Forecasting Flood forecasting and warning
systems Dorim River Basin, Seoul

[200] CNN Prediction Flood forecasting and warning
systems Southwest Japan

[201] GRU, LSTM Prediction Flood forecasting and warning
systems Southeast China

[202] MLP Forecasting Flood forecasting and warning
systems Republic of Korea

[203] LSTM Forecasting Flood forecasting and warning
systems Seoul metropolitan city

[204] GRU, CNN, LSTM Simulation Hydrological-modeling-based
prediction Southeast China

[205] GAN Prediction Hydrological-modeling-based
prediction Hunan Province

[206] LSTM, RNN Forecasting Hydrological-modeling-based
prediction Nedon River, Greece

[207] LSTM Calibration Hydrological-modeling-based
prediction Brazilian Cerrado biome

[208] RNN Forecasting Hydrological-modeling-based
prediction Southern China

[209] LSTM Calibration Hydrological-modeling-based
prediction USA

[210] DNN Prediction Image-based flood detection Brisbane River, Australia

[131] DNN Prediction Image-based flood detection Bangladesh

[211] MLP Susceptibility Image-based flood detection Vietnam

[212] CNN Prediction Image-based flood detection Indus River in Pakistan

5. Challenges and the Way Forward

Although there is a lot of potential for using DL in flood forecasting and management,
there are several difficulties that must be solved. The following are some of the difficulties
and potential solutions.

Complex Model Selection and Optimization: When selecting and enhancing com-
plex models, DL faces significant challenges. It might be challenging to choose the ap-
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propriate DL model for a specific task when there are so many models available [213].
Hyper-parameter tuning of these models can also be expensive and computationally
time-consuming [214]. One remedy for this problem is the employment of automated
machine learning (AutoML) techniques. The selection and optimization of DL models,
hyper-parameters, and even raw data pre-processing are all automated using auto-ML
algorithms [215,216]. As a result, building an accurate and effective deep-learning model
may take much less time and effort. Another choice is transfer learning. Transfer learning is
the process of optimizing a DL model that has already been trained for a specific task [217].
By using information from an existing model to complete a new task, this approach can
reduce processing time and resources. Numerous deep learning models can be combined
using ensemble methods to boost overall prediction accuracy. Individual model shortcom-
ings can be solved using ensemble approaches, which integrate many models to obtain
predictions that are more reliable and precise [218].

Data Availability and Quality: One of the primary obstacles to the implementation
of DL in flood forecasting and management is the availability and quality of data [219].
To properly train DL models, a substantial amount of high-quality data must be avail-
able, which might be challenging in some regions. For instance, a lack of sensors, poor
infrastructure, or political considerations may result in restricted data. Furthermore, due to
differences in data quality and format, comparing and merging datasets may be difficult.
To solve this issue, efforts should be made to gather and exchange data from various
sources as well as to develop quality control procedures to guarantee data consistency and
correctness [220]. Crowdsourcing approaches might be used to replenish scarce data, and
partnerships between researchers, governments, and private sector companies could be
developed to enhance data gathering and sharing.

Model Interpretability: One of the main issues with DL models is that they are difficult
to interpret, which makes it challenging to understand why the model predicts certain
outcomes. In areas like flood forecasting and prediction [221], where decision-makers need
to understand the reasoning behind a model’s predictions to take the right action, this
lack of interpretability is especially troublesome [222]. To address this problem, efforts
should be made to develop more interpretable models, such as rule-based or decision-tree
systems that offer transparent and comprehensible explanations of the models’ prediction
processes. Researchers might also focus on developing visualization methods that facilitate
the comprehension and justification of the DL model results [223].

Model Generalization: Since DL models are often trained on historical data, they
struggle to generalize to new and unexplored data [224]. Because new and unforeseen
events might occur, this can be challenging in the forecasting and control of floods. To solve
this problem, models should be trained on a range of data sets to increase their adaptability
to novel scenarios [225]. Researchers might also focus on developing models that can learn
from comments supplied by human experts or through crowdsourcing approaches and
that are better at adjusting to new data [226].

Computational Resources: To train and operate DL models, a lot of processing power
is required because of their computational demands [61]. In places with few computational
resources, this may be challenging. To solve this problem, efforts should be made to develop
deep learning algorithms that are more effective and to make use of cloud computing
resources to lessen the burden on local infrastructure [227]. Researchers can also focus on
developing models that can be taught and used on mobile or low-power edge computing
devices [228].

Ethical Considerations: Applications of DL for flood prediction and management
raise ethical issues including algorithmic bias and data privacy [229]. DL algorithms may
produce biased results because of the biases present in the training data. Researchers
should carefully choose and preprocess training data to ensure representativeness and
fairness across various demographics to reduce algorithmic bias. Regular model testing and
assessment for bias can help find and fix any possible problems. Data protection laws and
ethical guidelines must be followed while gathering and using data for flood forecasting.
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While still allowing for data interchange, anonymization techniques like differential privacy
can be used to safeguard individual privacy. In addition to explicitly communicating data
usage rules and putting in place effective data security measures, researchers should obtain
informed consent from people whose data will be utilized. Efforts should be taken to
guarantee that data collection and usage are ethical and transparent and that models be
created and evaluated to lessen algorithmic bias to reduce these concerns [230]. For instance,
differential privacy may be used to secure individual data privacy while yet allowing for
data exchange. DL models are frequently regarded as “black boxes,” which makes it difficult
to comprehend how they make decisions. To address ethical issues, improving model
openness and explainability is essential. Model-agnostic interpretability approaches and
attention mechanisms are two techniques that can shed light on the characteristics affecting
the model’s predictions. Additionally, researchers might concentrate on developing models
that are impartial and fair as well as those that take into account social and cultural elements
that could affect decision-making [231].

Limited Adoption: Despite the potential benefits of DL, adoption will likely be limited
due to a lack of understanding, competence, and information [232]. To address this,
attempts can be made to raise awareness of the potential benefits of deep learning, as well
as to provide practitioners with training and support. Collaborations between researchers,
businesses, and governments can also aid in driving adoption and accelerating progress in
the field [233]. These collaborations can promote the exchange of knowledge and expertise,
assisting in the development of effective solutions that address local requirements and
challenges. The difficulties of using DL for floods can be overcome through collaboration
and innovation. DL can help to improve flood forecasting and management efforts and
reduce the impact of floods on communities around the world by collecting and sharing
data, developing more interpretable models, training models on diverse data, utilizing
efficient computing resources, and addressing ethical concerns [234].

6. Discussion and Future Directions

DL applications for flood forecasting and management heavily depend on choosing
the right algorithm. Several important algorithms have been widely used in this sector,
each having unique advantages and adaptability for various input sources. The DFNN and
MLP methods, which are often utilized, are good at detecting complicated correlations and
patterns in the data. They are capable of handling huge datasets and are ideally suited for
numerical inputs. CNNs are particularly good at processing spatial data, such as satellite
images or maps, since they can extract spatial information through convolutional layers.
Since they can analyze the spatial distribution of floods, they are useful for jobs involving
that. RNNs, such as long short-term memory (LSTM) and gated recurrent units (GRUs),
are used often for sequential data, such as time series data, and are meant to capture
temporal relationships. They work well for capturing long-term relationships in the data
and representing the dynamic character of floods. GANs are utilized for creating artificial
flood situations or enhancing existing datasets. They can understand the underlying data
distribution and produce accurate flood events. Feature extraction and dimensionality
reduction may be accomplished using the SOM unsupervised learning method and auto-
encoders. They help in preparing data for analysis and removing relevant representations
from high-dimensional inputs. DTL uses pre-trained models from big datasets to enhance
DT model performance in situations with little training data. In areas with limited data
availability, this method is very helpful for applying DT to flood predictions and control. In
some situations, BM and IR approaches can be used to solve certain problems or improve
particular facets of flood forecasting and management.

DL in floods has the potential to revolutionize flood forecasting and management, but
much work remains to be done to completely realize this potential. Some potential future
directions and study areas for the field include the following:

Developing hybrid models: Combining DL and statistical models, flood forecasts and
management can be improved in terms of accuracy and interpretability [235]. The strengths
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of both methods can be combined in hybrid models, such as using DL models to extract
features from data, which can then be used as inputs to statistical models. The constraints
of DL models, such as their inability to handle small datasets or high-dimensional data,
can also be solved with the use of this technique [236].

Uncertainty estimation: DL models that include uncertainty estimates can improve
the stability and accuracy of flood simulations [237]. Particularly when the models are
unclear or do not have enough data, uncertainty estimates help to provide a more accurate
and useful understanding of the projected outcomes [238].

Integrating multiple data sources: Integrating data from several sources can give
a more comprehensive picture of flood occurrences and increase the accuracy of fore-
casts [239]. Examples of these sources include remote sensing, social media, and informal
research. However, due to problems such as data inconsistency, missing data, and the
requirement for data pre-processing, data integration is typically challenging [240].

Improving the interpretability of deep learning models: It is essential for boosting
decision-makers’ trust and fostering better communication with them [241]. Using methods
like feature visualization, attention mechanisms, and rule extraction, deep learning models
can be made more visible and understandable.

Addressing ethical concerns: When using deep learning to predict floods, there are
ethical issues to be addressed, including those with data collection and usage, privacy, and
algorithmic bias [242]. To reduce algorithmic bias, it is essential to design and test models
and to gather and use data transparently and ethically.

Scaling models: Model scaling is a crucial challenge since deep learning models must
be expanded to cover greater areas and longer periods due to problems with data quality
and processing resources [243]. Researchers might look at methods like transfer learning,
ensemble learning, and distributed computing to address these problems.

Transfer Learning: Transfer learning, which enables pre-trained models to be adapted
to specific contexts and regions with limited data, can be especially helpful in flood fore-
casting [40]. For instance, a DL model that has been calibrated to predict flood events
in a place with similar environmental and meteorological parameters can be trained on
flood events in that region [244]. Future research could concentrate on the development of
transfer learning methods that effectively utilize pre-trained models for downstream flood
forecasting and management tasks.

Real-time data processing: The ability to handle large amounts of data in real time
is essential for timely and accurate flood forecasting and control [219]. With the growing
availability of data from various sources, such as satellite data, sensor networks, and
social media, future research could concentrate on developing distributed computing
and streaming data processing methods that allow real-time data processing [245]. This
could include the creation of new algorithms and architectures capable of processing and
analyzing data on the run, as well as the use of cloud-based solutions capable of scaling to
meet the demands of real-time data processing [246].

Integration with other technologies: Integrating deep learning with other technologies,
such as GIS, UAVs, and IoT devices, could provide a more complete view of flood events
and enhance decision-making [247]. Deep learning models, for example, could be combined
with GIS to evaluate and visualize flood risk maps, whereas UAVs and IoT devices could
provide real-time data on flood events [248]. Future studies could concentrate on creating
new techniques and frameworks for integrating deep learning with these technologies,
as well as investigating new applications of these technologies in flood forecasting and
management [249].

Open data sharing: Open data sharing is essential for the creation and training of
DL models. Researchers can enhance the accuracy and generalizability of their models by
sharing big and diverse datasets [250]. Future efforts could concentrate on encouraging
open data sharing and cooperation among researchers, industry, and government agencies
in order to improve flood forecasting and management [251].
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To summarize, there is considerable potential for using DL in floods. To improve
the accuracy and efficacy of deep learning models and reduce the impact of floods on
communities around the world by addressing the challenges and pursuing future research
directions.

7. Conclusions

The use of deep learning in flood forecasting and management has the potential to rev-
olutionize the field by increasing the accuracy and timeliness of flood predictions. However,
several issues must be addressed, including data availability, model interpretability, and
ethical considerations. Future research directions could include creating hybrid models,
incorporating uncertainty, integrating multiple data sources, improving interpretability,
addressing ethical and social concerns, and scaling up models to cover larger areas and
longer time periods. Transfer learning, real-time data processing, integration with other
technologies, and open data sharing will all help deep learning models improve their
accuracy and effectiveness in flood forecasting and management. We can reduce the impact
of floods on communities around the world and improve their resilience to natural disas-
ters by addressing these challenges and pursuing future research directions. Researchers,
practitioners, and decision-makers interested in adopting DL approaches for flood-related
activities will find this paper useful. It provides an overview of the present state of the
art in the topic, as well as a discussion of the obstacles and potential solutions. The paper
underlines the need for multidisciplinary collaboration and data exchange in tackling these
challenges.
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