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Abstract 

Legionella are globally ubiquitous aquatic bacteria that cause both Pontiac Fever (a mild flu) and 

Legionnaires' disease, a severe form of pneumonia with a 5-10% mortality rate. They are natural 

parasites of freshwater protozoa that may also cause opportunistic human infections when 

inhaled from the environment via aerosols. Human infections are generally sporadic, although the 

last decade has seen a global increase in the number of infections, and large-scale outbreaks place 

an appreciable annual burden on public health worldwide. The species Legionella pneumophila 

causes around 90% of infections, a large number of which are caused by relatively few clonal 

lineages, each estimated to have emerged recently and independently. However, the factors 

leading to their pathogenic success still remain largely unknown. 

The growing abundance of whole genome sequence (WGS) data has revealed a new horizon for 

bacterial comparative genomics. Larger, more varied datasets enable more advanced statistical 

approaches to investigate bacterial evolution, epidemiology and pathogen emergence. In this 

project, I assembled a comprehensive WGS dataset to conduct population-scale genomic analysis 

of L. pneumophila. In addition to a historic Scottish reference isolate collection, I downloaded all 

publically available assemblies and sequence reads for Legionella species. A pipeline was then 

developed to assemble, filter, clean and curate these data based on a range of parameters, which 

was improved by visual inspection. I conducted a population-wide meta-analysis of the data to 

explore the global distribution of Sequence Types (STs) over time. Our results highlight the power 

of population-scale genomic analysis to monitor disease trends, although several major sources 

of spatial and temporal sampling bias were identified that should be accounted for in future work. 

I then used these data to conduct a nation-wide genomic epidemiological analysis of culture-

positive clinical L. pneumophila isolates from Scotland over a 36 year timeframe in context with 

global isolates and epidemiological metadata. The analysis shed new light on the epidemiology of 
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travel-associated infections and revealed widely disseminated endemic clones that were 

associated with repeated infections in Scotland over many years. In addition, specific clones were 

identified that were isolated from the water systems of individual hospitals over very long time 

periods, indicating either repeated re-colonisation or long-term environmental persistence. The 

results indicate that routine regular environmental sampling is required to support the 

identification of epidemiological links, attribution of outbreak sources and to inform public health 

measures targeting endemic clones that present an ongoing risk.  

Finally, I investigated the genomic features that differentiate clinical and environmental isolates 

of L. pneumophila and which may be important for human infection potential. I used PIRATE to 

calculate the L. pneumophila pangenome, which revealed that the number of genes was closely 

correlated with the population structure, and identified two major lineages in which clinical 

genomes contained significantly fewer genes. To identify specific genes or variants correlated with 

an environmental or clinical source, I mapped the hits from a machine learning-based association 

analysis to corresponding orthologous genes clusters, revealing a number of previously 

undetected associations with disease. Using a network visualisation approach, I identified strong 

linkage disequilibrium influencing the significance of hits in commonly syntenic genes throughout 

the pangenome.  

Taken together, the results demonstrate the value of high-resolution population-scale WGS data 

to monitor the distribution and spread of different Legionella pneumophila clones, including those 

posing a higher human health risk. Furthermore, it empowered the identification of genomic 

factors significantly associated with the isolation source, which may contribute towards human 

infection potential. 
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Lay Summary 

Legionella are disease-causing bacteria that can infect immune cells in our lungs. When inhaled, 

they can cause Legionnaires' disease, a type of pneumonia that is fatal in around 5-10% of cases. 

They are found in nearly all natural and man-made water sources across the world but only in very 

low numbers. Human infections are rare and Legionella are not known to be contagious, mostly 

infecting bigger aquatic microbes such as amoeba. They are thought to only infect humans 

accidentally by chance. However, Legionnaires' disease is becoming more common, with 

outbreaks that stem from highly contaminated water sources posing a particular risk to global 

human health. Scientists have identified a small number of recently and independently evolved 

variants (related groups) of the species Legionella pneumophila that are responsible for a large 

number of infections. The factors leading to their evolution remain unknown. 

Modern technology allows researchers to perform large-scale comparisons of the genome (the 

entire genetic code) of different Legionella strains. In this project, I assembled the largest genome 

dataset for Legionella to date in order to explore their evolution and the spread of disease. I 

combined genomes from a 36-year historic collection of Scottish Legionella isolates with those 

from collective global studies to investigate the global distribution of variants over time. The 

results highlight the power of large-scale genomic analysis to monitor disease trends but show 

that future studies with a similar approach must be careful to account for the effects of uneven 

sampling in time and space.  

I then used this data to investigate the historic spread of disease in Scotland, which supported 

previous evidence that a few variants cause the majority of infections. The analysis revealed that 

one variant was responsible for a large number of unrelated infections across a broad area over 

many years. Genomic data provided more information to determine whether patients were 

infected during travel and I was able to detect the same variants in the same hospitals many years 
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apart. Sometimes, these variants were also present in other nearby locations.  

Finally, I compared Legionella pneumophila isolated from the environment and from patients to 

identify genome features that could be important for human infection. I found that although the 

number of genes was correlated with evolutionary relatedness, the number was significantly 

higher for environmental isolate genomes within some related groups. I also used a statistical 

association analysis to identify specific genes that were associated with either isolation source. 

Using a new visual analysis approach, the location of genes were identified as a major factor 

contributing false positive associations, adding valuable information for interpretation. 

Overall, our results demonstrate the potential value of large-scale genomic data to monitor the 

distribution and spread of different Legionella variants, including those that pose a higher human 

health risk. These findings demonstrate how such data enables advanced statistical analysis to 

better understand the spread of infections and the genomic factors that influence their capacity 

to cause disease. 
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1) Introduction 
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1.1)  Population genomic analysis of bacterial pathogens 

1.1.1)  Dynamics of bacterial evolution 

Bacteria are estimated to have evolved over 3.9 billion years, diverging in the first major taxonomic 

split after the last universal common ancestor1. As such, their evolution is fundamentally very 

different from eukaryotes and there is enormous diversity between different bacterial taxa. 

Bacteria are single-celled prokaryotes that reproduce asexually, mostly with very short generation 

times that promote large, clonal populations2. Nearly all prokaryotes are haploid, with small 

genomes containing few introns that are typically organised into a single, circular chromosome2. 

In eukaryotes, genetic diversity is derived in part from homologous recombination between 

chromosomes during meiosis and although prokaryotes lack meiosis, their genomes can still 

recombine with foreign DNA acquired by HGT3. This can occur directly from the environment by 

natural transformation, from their native viruses (phages) via transduction, or from other bacteria 

through connected outer membrane pili in a process called conjugation. In addition, other means 

of HGT have been identified that are less well explored4. Smaller extrachromosomal elements 

(plasmids) are therefore common in bacteria and these can exist in multiple copies, introducing 

small ‘islands’ of genome polyploidy5,6. Notably, carrying plasmids has been shown to bear a fitness 

cost for individual bacterial cells and they are frequently lost during replication. However, some 

plasmids can integrate into genomes allowing their genes to persist in the host cell progeny7.  

Mechanistically, evolution is the result of four biological processes that interact to create changes 

in genetic code over time. Mutations (nucleic acid sequence changes caused by replication errors 

or damage) are the ultimate source of all genetic diversity, mediating the divergence of related 

organisms. The spread of these changes in natural populations is then promoted by selection 

(fitness effects), drift (stochastic effects) and migration (the spread of alleles between populations; 

or gene flow)8. The efficiency of selection and drift are related to population size, with drift 

prevailing in smaller populations and leading to a loss of diversity9. More precisely, their efficiency 
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is determined by the effective population size (Ne), a measure of the size of an ‘idealised’ 

population (in which only drift affects genetic diversity) for which the rate of diversity loss would 

equal that of the observed population10. These evolutionary processes are mostly influenced by 

environmental factors, for example how pathogen host jumps can lead to drift through population 

bottlenecks and provide a strong selective pressure for host adaptation11. However, genome 

organisation and dynamics can also influence evolution, with mutation rates differing considerably 

across genomes and sometimes at individual nucleotide sites12. Genetic features linked to 

beneficial or deleterious mutations may be influenced by selection on neighbouring sequence in 

a phenomenon known as genetic hitchhiking, a defining feature of both background selection 

against deleterious mutations and selective sweeps of adaptive traits13. Together, these are called 

Hill-Robertson effects and by breaking up genomic linkage, homologous recombination can reduce 

these effects and maintain genetic diversity14.  

HGT provides the core mechanism of prokaryotic gene flow and typically involves homologous 

recombination. The exchange of entirely homologous sequence (sometimes referred to as 

horizontal allele transfer) is common. However, the RecA protein that mediates recombination is 

guided only by the homology of flanking regions, therefore allowing the exchange of non-

homologous sequences between these regions to also occur15,16. In this way, HGT can introduce 

novel regions and genes, potentially from distantly related organisms15. Homologous 

recombination is limited to exchange between close relatives (as for meiotic recombination) and 

the efficacy of HGT by this mechanism has been shown to decrease with sequence divergence17,18. 

Bacteria evolve differently from eukaryotes in other ways too. For example, in haploid populations, 

SNPs can more easily reach fixation and are subject to higher substitution rates19. However, the 

absence of genetic dominance effects and the large Ne of many bacterial species allow selection 

to operate more efficiently20,21. Since most mutations are deleterious, this could explain why many 

bacteria don’t have high estimated rates of evolution9,22. Instead, genome evolution in 

prokaryotes is primarily driven by gene gain and subsequent loss following HGT and recombination 



8 

 

events23,24. This leads to strain-specific differences in gene content, making analysis of the 

pangenome (the collective gene set of a population) fundamental to understanding the evolution 

of prokaryotic species25. Prokaryotic pangenomes are dynamic, with gene content that can 

fluctuate over time26. Changes can occur in response to their environment and ecosystem, such 

as changes in nutrient availability, competition or antagonism23,27,28. Consequently, the division of 

genes into core (universally shared) and accessory (strain-specific) regions does not remain 

constant, leading to the emerging concept of both pangenomes and individual prokaryotic 

genome assemblies as snapshots in time that potentially include many transient genes 25,29. 

1.1.2)  Bacterial comparative genomic methods 

Comparing the relatedness of bacterial genomes can be used to explore their ancestry, detect and 

differentiate sub-populations, explore adaptations and to measure gene flow between these. 

Estimating bacterial population structures lies at the heart of bacterial comparative genomics and 

a plethora of tools and approaches have been developed for this30. Many of these methods start 

by generating sequence alignments and this has specific challenges for prokaryotes. In 

phylogenetic analysis, alignments are used to generate a tree that represents the evolutionary 

relationships between isolates. Although hierarchical trees can be constructed from any distance 

metric, phylogenies are derived directly from nucleotide sequences and typically provide a 

stronger estimate of the isolates’ ancestry30. Phylogenetic analysis is improved by increasing 

alignment length, with the comparison of longer sequences providing a higher resolution31. 

Therefore, a major caveat of bacterial phylogenetic analysis is the restriction to regions conserved 

among all taxa32. Moreover, phylogenetic analysis can only model vertical evolution because 

recombined sequences have divergent ancestry and produce incongruent phylogenies. As 

recombination is prevalent among many bacterial species, several phylogenetic tools have been 

designed to predict and remove recombined regions from alignments, although recent evidence 

suggests these may underestimate homologous recombination in highly conserved regions33. 
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There are many different methods and tools for phylogenetic analysis. In the simplest case, 

Neighbour-Joining trees (hierarchies of pairwise genetic distances) are crude estimates of the true 

evolutionary relationships but remain useful as starting predictions for more complex methods34. 

Other methods use evolutionary models with different probabilities assigned to different 

mutations, for example transitions and transversions or between sites with different mutation 

rates. Most of these use Maximum-Likelihood estimates to compare trees and predict the most 

likely evolutionary history (e.g. RaxML), although some methods use Bayesian estimates instead 

(e.g. MrBayes)35,36. The IQTree tool includes a feature to compare evolutionary models with 

varying complexity and choose the one that best fits the data37. More complex Bayesian 

phylogenetic approaches (e.g. BEAST) can incorporate population genetic and demographic 

models that estimate changes in Ne and population structure over time38. These can be combined 

with sampling dates to predict the evolutionary rates of populations and the divergence times of 

the common ancestors at each node38. Some alignment-free methods have been used for highly 

recombinant bacteria but these tools cannot provide the level of population demographic detail 

of BEAST and similar methods32. Therefore, phylogenetic analysis of frequently recombining 

bacteria remains a challenge in bacterial comparative genomics. 

There are also many approaches to identify clusters in bacterial populations, which are useful to 

differentiate and monitor clinically significant genetic variants39. The simplest methods involve 

pairwise distance calculations that allow rapid calculations and tend to scale efficiently for large 

datasets. Distance metrics can be derived directly from WGS data, including genetic distances 

(measuring SNP diversity) and differences in gene content31,40. Whilst traditional molecular genetic 

methods like MLST or SBT include only a few genes (6 or 7 respectively), cgMLST and wgMLST can 

leverage the information from the full complement of genes across the core genome or 

pangenome to calculate distances respectively31. Either simple Hamming distance or more 

complex mathematical measures such as Jaccard distance can be used to cluster genomes with 

respect to a similarity threshold31,41. Neither SNP-based nor gene-based methods capture all the 
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variation across entire population pangenomes, excluding either strain-specific or accessory 

regions respectively. Therefore, some tools apply sketch-based distances (e.g. Mash) that are less 

biologically meaningful but allow the incorporation of entire genome sequences across diverse 

isolates42,43. Finally, some statistical clustering methods use genetic mixture models to estimate 

sub-populations, such as STRUCTURE and BAPS44,45. Whilst these models are extremely slow for 

large datasets, the use of probabilistic genetic models provides statistical support and a clearer 

biological interpretation. The STRUCTURE tool has also been adapted to investigate admixture 

between sub-populations44.  

1.1.3)  Genotype-phenotype analysis of bacteria 

Identifying genetic features correlated with a particular phenotype, such as virulence or resistance 

to antibiotics, provides valuable guidance for developing targeted control measures such as 

vaccines46. Therefore, statistical methods to identify these associations have gained a lot of 

interest in bacterial genomics. Genome-wide association study (GWAS) methods include a variety 

of different tools and techniques to investigate phenotypic associations across entire genomes30. 

At the finest scale, every polymorphic site may be tested as an independent genetic marker, 

allowing the identification of specific SNPs correlated with features of interest47. Both simple 

statistical tests (such as Fisher’s Exact test) and more advanced regression models have been 

widely used48,49. Large datasets increase the power of GWAS and predictive modelling, with the 

inclusion of more varied and representative data (e.g. more samples from different locations and 

environments) reducing sample bias and allowing the detection of smaller effects50.  

Adapting GWAS methods to bacteria has presented many challenges. Population structure has a 

stronger influence in bacterial GWAS, due to the broadly defined populations, the clonality of 

many lineages and the high potential for sampling bias22,51,52. Bacterial populations often include 

adapted lineages in which all isolates share features correlated with a phenotype due to ancestry. 

In addition to adaptive traits, genetic traits unrelated to adaptation may exist that are associated 
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by either drift or genetic hitch-hiking22. To separate these artefacts from causal effects, association 

methods must include an explicit control for population structure, which can be a set of defined 

clusters, a kinship matrix or a phylogeny using different approaches49,51,53. By testing for 

associations with the population structure, artefactual correlations can be identified and excluded, 

although this limits detection of causal features unique to certain lineages. The Treewas tool offers 

a more rigorous phylogenetic approach by comparing the observed phylogeny to evolutionary 

simulations, generating three different statistical tests to suggest whether significant hits are likely 

to be confounding effects51. Another, closely related problem is that chromosome-wide linkage 

affects the majority of the genome for many bacteria, creating strong correlations between 

features in the absence of recombination54. Bacterial pangenomes also present a major challenge. 

SNP-based methods rely on conserved sites and neglect causal variation in accessory regions, 

especially for species with high genome plasticity and frequent recombination. Numerous tools 

have been designed that can perform GWAS based on the presence and absence of genes but 

these methods neglect intergenic regions such as promoter regions that may also have causal 

associations with a phenotype48,55. To overcome this challenge, one of the major breakthroughs 

in bacterial GWAS was to use the frequency of k-mers (short DNA sequences of length k) as 

features, which both overlap with SNPs and account for the variable presence of sequences in 

genomes across the dataset56. K-mer datasets can include a much larger number of features than 

the number of genomes in analyses and the DBGWAS software further refined this method with 

the use of unitigs: sets of unique multi-mers in which the redundant overlap is removed by 

combining overlapping k-mers from De Bruijn graphs55.  

Recently, machine learning (ML) methods have emerged as another alternative to GWAS for 

investigating phenotypic associations. Using dimensionality reduction, a variety of ML methods 

can be applied that are more robust in dealing with correlated features. Complex models like 

support vector machines and artificial neural networks rely on very large sample sizes to avoid 

overfitting and generally lack the interpretability of simpler association methods like GWAS57. 



12 

 

Therefore, the simpler random forest algorithm remains a popular choice for bacterial analysis, 

due to its inherent weighting of features by the information gain that produces a clear 

interpretation to the strength of phenotype associations with different features57. Regularised 

linear regression can also be used to investigate phenotypic associations and has been shown to 

perform well for high-dimensional data with strong correlations58. However, this method has been 

less well explored than other ML approaches to date.  

1.1.4)  WGS and big data in outbreak and epidemiological investigations 

Compared to molecular methods, WGS data has a high resolution for epidemiological typing and 

can improve diagnostic accuracy39. Population structures inferred using WGS data can provide 

valuable information for epidemiological and outbreak investigations59, and phylogenetic trees 

can be used to infer transmission dynamics and to predict the origin of outbreaks and epidemics60–

62. The inferred ancestry of bacterial isolates may reveal critical information related to the 

emergence of clinically relevant traits, the extent of HGT within populations, the frequency of host 

switching events and the clinical importance of different subtypes, that have been used to guide 

appropriate outbreak prevention strategies63–66. The growing abundance of WGS data has better 

enabled the use of more complex statistical methods to investigate microbial infectious diseases 

and large representative genomic datasets now exist for many clinically important bacteria that 

enable in-depth analyses of their emergence and spread over various timeframes11,67,68.  

Nothing has better demonstrated the potential power of big data for genomic epidemiology than 

the COVID-19 pandemic, throughout which the largest genomic dataset in history has been used 

to provide real-time information on the spread of different variants69. Access to population-scale 

genomic data has been paramount in the discovery and monitoring of novel variants that posed a 

heightened public health concern, due to greater transmissibility, enhanced immune evasion, or 

increased virulence69,70. Understanding the bacterial genetic traits that determine infection 

potential among pathogen populations will likely inform global public health strategies in the 
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future71. However, challenges still remain for translating the potential of genomic epidemiological 

data into clinical practice72. 

The sheer size and scale of big data also presents new challenges for computational analysis. As 

of January 1st 2022, over one million bacterial draft genome assemblies and over 3.5 million sets 

of bacterial WGS reads have been uploaded to NCBI, spanning over 3500 different genera (Figure 

1.1). Exceeding Moore’s law, genomic data generation is expected to increase exponentially and 

already exceeds our capacity to store and curate it efficiently73. Many fundamental methods for 

investigating bacterial evolution, such as pangenome and maximum-likelihood phylogenetic 

estimations are NP-hard problems that scale inefficiently with the number of sequences 

analysed74,75. This is a particular problem for methods that produce results specific to the input 

data, meaning the analysis must be repeated to account for new genomes76. For example, the 

pangenome and core genome size of most bacterial taxa changes with the addition of new 

sequences and this can impact the utility of these methods in diagnostic typing as a part of 

outbreak investigations. New clinical cases that involve novel or emerging variants may be of 

particular interest in preventing disease outbreaks, with rapid analysis needed to ensure a timely 

response for implementing data-guided prevention strategies. To address these challenges, 

several recent tools and methods have been designed for more scalable analysis or with an 

emphasis on incorporating new data without needing to repeat analyses43,76,77. However, more 

work is needed to develop appropriate data storage and analysis pipelines in order to utilise big 

data in a meaningful timeframe for outbreak investigations.  
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Figure 1.1) The number of new genomic data records for bacteria added to NCBI databases each year 
since 2006. The number of WGS data records for bacteria added to the SRA (top) is shown in context with 
two other taxa and with the total number for context. Taxa were defined by their NCBI taxonomy ID, as 
indicated by the legend. The number of genome assemblies in Genbank (bottom) was collected from the 
NCBI bacterial genome assembly summary file described in Chapter 2 (section 2.2.1). 
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1.1.5)  Bacterial niche adaptation 

NGS and population genomic data have also greatly improved our understanding of bacterial 

adaptive evolution and the emergence of clinically important genotypes. The distinct features of 

prokaryotic genome evolution present unique analytical challenges, however. The typical 

organisation of bacterial DNA into single chromosomes means that genomic linkage can influence 

entire bacterial genomes, creating extensive linkage disequilibrium (non-random patterns of 

variation across the population)78,79. Without meiosis, recombination rates in bacteria are not 

linked to generation time and have been shown to vary dramatically for different bacterial species, 

ranging from panmictic (freely recombining) in Helicobacter pylori to nearly absent in 

Mycobacterium tuberculosis80,81. The high prevalence of recombination in some bacteria may 

allow beneficial alleles to sweep to fixation independently of linked mutations and may therefore 

lack a clear signature, making them more difficult to detect82. In addition, recent evidence 

indicates that recombination rates may be underestimated by current approaches, which define 

recombined regions with respect to the phylogenies of clonally inherited sequence33,83. This 

overlooks the potential for migration to overwrite patterns of clonal inheritance in highly 

conserved regions, which could partially explain observed patterns of core genome variation in 

some species33,84,85. 

Another unusual challenge in prokaryotes is the definition of a study population, which is 

necessary to evaluate evolutionary parameters such as the Ne of alleles. Most prokaryotic 

population genomic studies have been conducted at the single species level, but the prokaryotic 

species definition has been a matter of some debate22,86. Prokaryotes do not adhere to the 

biological species concept definition, which is based on sexual reproductive success87. Alternate 

definitions based on sequence similarity thresholds are complicated by the high variation in 

genetic diversity of different bacterial taxa86. Accessory genome variation is influenced by niche 

adaptation and habitat range, with patterns of gene gain and loss sometimes reflecting the 

selective requirements of particular environments and lifestyles27,82,88. On this basis, bacterial 
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populations have also been defined with respect to their niche-specialised gene pools89. However, 

the complex patterns of gene content in population genomic datasets for host-adapted bacterial 

species indicate that this definition is an oversimplification22. Another, more parsimonious species 

definition has also been proposed based on prokaryotic barriers to gene flow but currently these 

barriers are not well defined for many taxa and this definition has not yet been widely adopted87.  

The dynamics of prokaryotic pangenome evolution are still being debated, with contrasting 

evidence for whether neutral or adaptive evolution is the primary force shaping accessory genome 

content90. Prokaryotic niche specialisation is often correlated with a reduction in genome size and 

complexity and there is evidence that this also applies to the size and openness of bacterial 

pangenomes20,25. Species that are specialised to survive in a particular niche, such as obligate 

endosymbionts, typically have a much lower Ne and this is correlated with a reduction in the size 

and variability in pangenome content20,91. These observations suggest that there may be a 

selective pressure for niche-adapted bacteria to lose genes that don’t provide an advantage in 

their occupied niche92. In contrast, generalists may benefit from retaining genes to survive in a 

range of environments, leading to larger accessory genomes and Ne
20,91. Notably, this is the 

opposite of trends in eukaryotic genome complexity under the mutational-hazard hypothesis93. 

However, despite these challenges, population genomic studies have transformed our 

understanding of many bacterial pathogens and promises to reveal a more comprehensive picture 

for a wider range of pathogens as sufficient data becomes available22. 
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1.2)  Biology and clinical relevance of Legionella species 

1.2.1)  Legionella species distribution and ecology 

Legionella is a diverse and globally ubiquitous genus with more than 60 known species of Gram-

negative intracellular bacteria94. Legionella spp. exist naturally in aquatic environments worldwide, 

although typically in low abundance95. Legionella are endoparasitic and nearly all known species 

are generalists that have simultaneously coevolved with a diverse range of protozoal hosts96. New 

Legionella species are frequently discovered, and our knowledge of Legionella biology is biased 

towards model species94. Whilst freshwater reservoirs are the primary natural habitat for 

Legionella, they frequently colonise artificial water bodies, and together with host protozoa they 

are a common constituent of untreated drinking water97. Some species are more commonly found 

in soil or plant material and one candidatus species, Ca. Legionella polyplacis, has uniquely 

adapted to inhabit lice94,95,98. Whilst species in the Legionellales order have been widely sampled 

from oceans, the marine habitat of Legionella is poorly described and may be very restricted95. 

Legionella found in this environment may have coevolved with different hosts and may have 

unique adaptations99. Host adaptation has likely played a key role in Legionella evolution, yet little 

remains known about their natural host range, which may include many uncharacterised or even 

undiscovered species96,100. Nematodes have been proposed as natural hosts, although only 

indirect infections via protozoa have been demonstrated, suggesting an opportunistic mode of 

infection is more likely101. In addition to protozoa, at least half of the known Legionella species can 

infect mammalian alveolar macrophages using a similar mode of invasion and are opportunistic 

human respiratory pathogens94. 

Unlike other human pathogens in the same order, Legionella are considered facultative 

intracellular bacteria. They can survive extracellularly and may be able to replicate under specific 

conditions, although the evidence for this is limited102. It has been shown that they can acquire 

nutrients in biofilms using necrophagy, although growth with this method is severely impaired, 



18 

 

suggesting that if it does occur naturally, extracellular replication is unfavoured102. Intracellular 

replication offers many advantages, such as protection from environmental stresses and a more 

reliable nutrient source including seven essential metabolic amino acids for which Legionella have 

become auxotrophic. It also aids environmental persistence of Legionella, and growth inside 

amoebae has been shown to alter the physiology and biochemistry of Legionella pneumophila 

strains, as well as increase their virulence potential. The selective basis for extracellular growth is 

probably survival between hosts, which may be sparsely distributed in the environment or which 

can undergo encystment during nutrient depletion, limiting invasion by Legionella103,104. Legionella 

are known to exhibit complex pleomorphism depending on the nutrient availability of their 

environment, regulated by two-component systems and the stringent response105. Their shape 

varies with nutrient levels and may vary between hosts, with at least 14 different forms 

observed105. Of particular note, they can enter a virulent but nearly completely dormant phase 

called the mature intracellular form, which likely plays an important role in their persistence in 

artificial water systems105. Similarly, Legionella can continue to survive inside encysted protozoa, 

protecting them against a number of common control measures and making them hard to 

eradicate from water supplies103. Legionella can survive in multispecies biofilms in engineered 

water systems, which are a reservoir for potential host species, making these an important aspect 

of Legionella control measures. The biology and the ecology of Legionella species is likely to be 

strongly influenced by the community dynamics of these ecosystems106,107. 

1.2.2)  Legionellosis epidemiology 

Legionella species are the causative agents of legionellosis, which includes both Pontiac Fever (a 

mild, flu-like illness) and Legionnaires' disease (LD): an atypical, severe and potentially fatal form 

of pneumonia. Legionellosis places an appreciable burden on public health worldwide, with an 

incidence of 2.2 cases per 100,000 population in Europe and 3.04 cases per 100,000 population in 

the United States in 2018 (the most recent year not to be influenced by the covid-19 
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pandemic)108,109. The estimated mortality rate of LD ranges from 5% in the general population to 

80% for the most susceptible individuals110. With a single notable exception under highly unusual 

environmental conditions, Legionella have not been reported to be transmitted among people or 

animals111. Instead, human infections with Legionella typically occur after inhaling contaminated 

aerosols directly from the environment. Most legionellosis cases are sporadic and unrelated to 

other infections. However, in conducive environmental conditions, infection outbreaks may occur 

in which many people (and sometimes hundreds) are infected from a single, contaminated 

environmental reservoir over a short period of time112. Whilst legionellosis can occur in all people, 

they are more common in certain demographics. Age, smoking habits, compromised immunity 

and various other health conditions have all been shown to significantly influence the chances of 

contracting legionellosis113. There is evidence that the genotype of infecting Legionella may also 

influence the severity of disease, although this has not been investigated mechanistically 113. These 

various factors may also be influenced by other factors such as patient occupation and potential 

exposure to more likely infection reservoirs94. 

A wide variety of reservoirs have been linked to both sporadic infections and outbreaks. These 

include decorative water features, ice machines, plumbing, ventilation systems, and especially 

industrial cooling towers, which have near optimal temperatures for Legionella growth114. Notably, 

soil-borne Legionella such as Legionella longbeachae are commonly linked to different 

environmental reservoirs such as commercial compost98. Legionella have been detected in rain 

water and even commercial bottled water, highlighting that nearly any water source could be a 

potential reservoir115,116. However, only aerosols of a certain size can transmit Legionella and 

aerosolised water features such as showers and jet sprays are recognised to pose a higher 

risk114,117. Hospital plumbing systems are another key reservoir due to the heightened threat posed 

by nosocomial outbreaks. Hospitals are more likely to contain a high number of susceptible 

individuals and hospital-acquired cases tend to be more severe with higher estimates of 

mortality118. 
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Figure 1.2) A summary of important factors in Legionellosis epidemiology.  
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Epidemiological investigations of legionellosis cases aim to identify the source of sporadic 

infections or the common source of outbreaks. This involves comparison between the Legionella 

identified in patient clinical samples and in suspected environmental sources to determine 

relatedness (Figure 1.2). However, the source of infections cannot always be confidently 

identified. The wide range of potential reservoirs, low abundance and fastidious growth 

requirements for culture of Legionella all make source attribution more challenging119. In addition, 

the source of infections can be ambiguous if similar genotypes are detected in multiple 

reservoirs120. Using higher resolution methods improves the power for comparison and WGS 

methods have become widely used in outbreak investigations121. However, some studies have 

detected nearly identical genotypes in distinct but nearby environmental sources posing a 

challenge for even high resolution methods120. Cryptic relationships have been observed between 

the geography and population structure of Legionella isolates and there has been limited study of 

epidemiological relationships between Legionella isolates in context with their broader 

evolutionary relationships122,123. 

1.2.3)  The emergence of human pathogenic L. pneumophila  

There is strong evidence that some Legionella are more likely to cause human disease. A single 

species, Legionella pneumophila, accounts more than 90% of clinical isolates across most of the 

world94,124. By comparison, it has accounted for a much smaller fraction of the species detected in 

environmental samples from a variety of sources116,124,125. Despite the large number of known 

species that are capable of human infection, legionellosis caused by other species is rare, although 

it may be that these numbers are currently underestimated126. UAT (the most common method 

of LD diagnosis) can only detect L. pneumophila serogroup 1 and this has likely introduced a degree 

of bias, albeit unlikely to be major94,127. Notably, Australasia is an exception to the global trend, 

with L. longbeachae accounting for over half of LD cases in the region94 and L. pneumophila the 
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second most common cause of infections127. 

Intriguingly, the majority of cases in a global analysis in 2016 were linked to the same five broadly 

distributed L. pneumophila sequence types, most of which have been very rarely detected in 

environmental samples123. Time-measured phylogenetic analysis of the disease-associated ST37 

clone predicts its emergence in 1979 (with a 95% highest posterior density interval of 1968-1985) 

with an estimated evolutionary rate of 2.07x10−7 that was similar to a previous estimate for 

another L. pneumophila clone123,128. Applying these rate estimates to the observed genetic 

diversity within the other clones, they are each approximated to have emerged independently and 

recently (within the last 250 years), with the earliest estimate for ST1 (1851:1899)123. However, 

the mechanism of their wide dissemination across multiple continents in this timeframe, along 

with the factors leading to their independent pathogenic success, remain largely undetermined123. 

One factor that is likely to have contributed is HGT between these lineages129. Whilst they are 

estimated to have low rates of core genome evolution, extensive recombination between major 

clinically significant STs has been identified, and in the case of ST47, there is evidence that this was 

a major factor contributing to its emergence123,130. Potentially, these strains may have a shared 

pool of genes that includes factors relevant for human disease and there is strong evidence that 

this has occurred for at least one virulence-associated trait with a functionally determined role in 

human infection131. However, the gene pool of these lineages has not been well examined to date 

and the genetic basis for their emergence remains largely unknown.  

Strikingly, until the restrictions imposed during the COVID-19 pandemic, a steady increase was 

observed in the incidence of legionellosis cases in multiple continents, the causes of which are not 

yet established126,132,133. Some possible factors have been proposed, including aging populations 

and increased rates of testing, although these are not thought to be sufficient to explain the rise 

in the US132. Potentially, the recent emergence of disease-associated L. pneumophila STs may also 

be a relevant factor in this trend123. Without strong evidence of transmission, both humans and 

animals are considered an evolutionary dead-end for Legionella134, although the rapid, recent 
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emergence of human disease-associated STs has led some to dispute this123. Unrecognised 

transmissions between humans, either directly or indirectly via environmental reservoirs, have 

been postulated, which if true would make human adaptation a possibility123,131. Another 

explanation might be that indirect forms of adaptation may have acted on these STs, such as 

adaptation to a reduced host range or for survival in engineered environments. Some strains may 

be better adapted to colonise or proliferate in certain high-risk environments, which may lead to 

increased exposure and more opportunities to cause human infections. 

1.2.4)  Artificial reservoirs as an expanding environmental niche 

Legionella are capable of colonising the water distribution systems in public buildings and may 

persist in this environment after disinfection, sometimes for very long time periods135. They are 

one of several genera that are now recognised as opportunistic premise plumbing pathogens 

(OPPPs), temperature and disinfectant-resistant microbes that have adapted to public water 

systems and present an emerging public health issue106. The growth of Legionella in this 

environment is affected by a wide range of factors, including water temperature, water flow rate, 

pipe construction materials and the presence of trace elements136. However, OPPPs are also 

characterised by their growth in biofilm and this is a relatively underexplored factor that influences 

the growth and ecology of Legionella species. Growth in biofilm induces a change in Legionella 

morphology and differences have been observed in gene expression of planktonic and sessile 

biofilm-associated Legionella137. L. pneumophila that have grown in biofilms are much more 

resistant to certain chemical disinfectants and there is evidence that biofilm-associated Legionella 

may be more virulent138,139, and may exhibit enhanced innate immune evasion140. 

The community composition of multi-species biofilms in different environments is not well 

understood, although metagenomic sequencing and barcoding studies are starting to shed light 

on how this may impact Legionella evolution141. Whilst these biofilms may harbour diverse 

potential hosts and nutrients for Legionella, they can also contain predatory eukaryotes142. 
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Furthermore, Legionella may have to compete with other endoparasitic bacteria for hosts and 

nutrients, including competition with potentially antagonistic Legionella populations141. Diverse 

biofilm communities expose Legionella to bacteriophages and other MGEs, or predatory bacteria 

such as Bdellivibrio species143,144. Additionally, the ecology of Legionella in biofilms may be 

indirectly affected by the interactions of other members of these ecosystems107. Importantly, the 

composition of multispecies biofilms in artificial reservoirs may be very different from those in 

natural reservoirs, with different interactions driving distinct adaptation of strains. Biofilms in 

these environments may expose Legionella to other niche-adapted OPPPs that are not 

encountered in natural reservoirs, which could promote the horizontal genetic exchange of niche-

adapted traits that are of mutual benefit for the evolution of different OPPPs143. 
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1.3)  Legionella evolution and pathogenicity 

1.3.1)  Molecular pathogenesis of L. pneumophila  

The intracellular replication mechanism of L. pneumophila has been studied in detail and exhibits 

many characteristic features (Figure 1.3)145. In brief, macrophage-phagocytised Legionella secrete 

effector proteins that manipulate host cell processes to promote their prolonged survival inside a 

vacuole. This Legionella-containing vacuole is decoupled from the phagolysosomal maturation 

pathway and protected from targeting for degradation, providing a safe environment for the 

infecting bacteria to grow and replicate. Eventually, the host cell is ruptured and the free-floating 

bacteria are released to find new cells to invade145. Studies with different Legionella species and 

different natural and accidental hosts have demonstrated the same overall mechanism in a variety 

of systems, although much of our detailed understanding has been provided by studies on 

L. pneumophila in the same few hosts145,146.  

L. pneumophila has a large repertoire of genes with a predicted role in virulence compared to 

other bacterial pathogens146. During infection, they secrete large quantities of up to several 

hundred different effectors, including many molecular mimics of host proteins that perturb 

corresponding pathways147. Effectors have been identified that influence protein synthesis, cell 

signalling, cellular trafficking, lysosomal maturation, ubiquitination, proteasomal degradation and 

apoptosis, as well as some with roles in nutrient acquisition and many that regulate other 

effectors145,148,149. Additionally, some effectors have been shown to represent functionally 

redundant proteins that affect different aspects of the same pathway151. Furthermore, unique 

combinations of L. pneumophila effectors have been shown to achieve the same overall infection 

phenotype and different combinations are advantageous for invading different host species146,150. 

Legionella genomes frequently include effectors with paralogs, indicating a potential mechanism 

for host adaptation151. Theoretically, different Legionella species and strains may also be better 
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adapted to specific protozoal host species, and although empirical evidence for this remains 

limited, a recent study with 13 Legionella species in four diverse eukaryotic hosts provides strong 

support for this theory150.  

 

Figure 1.3) The Legionella pneumophila intracellular replication mechanism. Characteristic processes 
in the L. pneumophila host invasion mechanism are labelled in black. Organelles and structures are labelled 
in green or white in the case of the nucleus. 
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Legionella secrete effectors using characteristic Type IVB (dot/icm) Secretion Systems (T4BSSs), 

large multi-protein complexes that span the double membrane and control the transport of 

effectors into the host cytosol152. T4BSSs are highly conserved in the Legionella genus, 

demonstrating their importance for survival146,153. They are essential for virulence and mutations 

in their genes may reduce human infection efficacy154. Closely related systems are encoded by 

other obligate intracellular bacteria in the order Legionellales but they are less common and 

mostly plasmid-encoded in bacteria outside this order153,154. Notably, Legionella also utilise a Type 

II secretion system (T2SS), which promotes virulence in a murine infection model and is essential 

for the secretion of some effectors that are not secreted by T4BSSs155,156. This system has a very 

similar structure to the bacterial Type IV Pilus, although structural differences have been 

identified155. Apoptosis and outer membrane vesicles are also thought to mediate the transport 

of some effectors into new host cells during some infections, although their contribution appears 

to be less major157,158. 

There are also many factors that contribute towards L. pneumophila virulence in other ways. 

Distinct and sometimes unique forms of engulfment have been observed during phagocytosis of 

Legionella associated with different bacterial morphologies and by different host species159–161. 

There is also evidence that L. pneumophila may secrete factors that promote phagocytosis, which 

is speculated to encourage uptake of L. pneumophila  by at least two different host species162. As 

the physical contact interface with host cells, the cell surface of L. pneumophila mediates 

important interactions linked to virulence. For example, conjugative Type IV pilins are necessary 

for host cell adherence before invasion, and several proteins have a recognised role in attachment 

and entry into host cells, including EnhC, RtxA, Major Outer Membrane Protein (MOMP) and 

Hsp60163–167. The membrane itself is also important, with the surface Lipopolysaccharide (LPS) of 

L. pneumophila serogroup 1 possessing unusual chemical properties168. In a recent GWAS analysis, 

the LPS biosynthesis operon demonstrated a strong association with isolates from human 
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infections with the central significance located in the lag-1 gene. Subsequently, it was shown that 

lag-1, encoding an o-acetylase enzyme required for LPS modification, was involved in inhibition of 

complement-dependent phagocytosis of L. pneumophila by human neutrophils131. Potentially, the 

mapping of hits throughout the operon could indicate undetermined functional relationships with 

other genes involved in LPS biosynthesis. In addition, two membrane-associated phospholipases 

have been shown to influence host inflammation157.  

Regulation of virulence is largely co-ordinated by two-component systems in L. pneumophila, 

response regulators that initiate signal transduction pathways. The PmrAB, CpxRA and LqsRS 

systems have been shown to regulate effectors directly, whilst the LetAS system has an indirect 

effect on multiple virulence traits169–171. Similarly, the alternate RNA Polymerase sigma factor RpoS 

has also been shown to initiate expression of motility and virulence genes172.  

1.3.2)  AMR in L. pneumophila 

Antimicrobial resistance (AMR) is an urgent threat to human health173. Antibiotic-resistant strains 

have emerged throughout the bacterial phylogeny and the acquisition of new AMR mechanisms 

has been a key factor in the success of several host-adapted human pathogenic bacteria173,174. 

Consistent with generalist host adaptation, genomic studies have shown that AMR is rare in 

Legionella compared to many other bacterial pathogens. However, there have been reported 

failures for treating legionellosis with common antibiotics and some recent studies have identified 

resistant strains with an unknown genetic mechanism, indicating that AMR prevalence may be 

underestimated or that new mechanisms are emerging175,176. Rare mutations in several house-

keeping genes that may contribute to resistance have been identified as well as a variety of 

accessory genes that many have been transferred horizontally between taxa177. This includes 

genes encoding tetracycline reductases in L. longbeachae, which are located proximal to HGT 

signatures in studied genomes, in addition to genes encoding a multi-drug efflux pump (LpeAB) 

system present in diverse L. pneumophila strains from multiple studies176,178,179. The potential 
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introduction or spread of AMR mechanisms in Legionella could be a relevant factor in the clinical 

success of disease-associated STs. Notably, the spread of AMR phenotypes would only be 

expected to occur if Legionella were repeatedly exposed to antibiotics and this phenotype is 

usually selected for in transmissible pathogens180.  

1.3.3)  Mechanisms of horizontal gene transfer in Legionella 

MGEs often play a major role in pathogen evolution. Plasmids, phages and other common MGEs 

have been firmly linked to the rapid spread of virulence and antimicrobial resistance (AMR) traits 

in a number of pathogenic bacteria181. Multiple HGT mechanisms operate in Legionella and a 

variety of MGEs have been identified in Legionella genomes, although the dominant mechanism 

of transfer appears to be conjugation. In addition to the T4BSSs used for effector translocation, 

Legionella typically encode one or more T4ASSs that mediate environmental and conjugative DNA 

exchange182. This includes a unique family of GI-T4SSs associated with self-transmissible genomic 

islands called integrative and conjugative elements (ICEs)183. ICEs in Legionella species typically 

encode paralogous copies of the crsA master regulator gene, which provide several functions that 

are similar to genome-encoded crsA in other organisms184. Although ICEs are found in many 

bacteria, nearly all studied Legionella genomes contain one or more ICEs and are prevalent in the 

Legionella genus185. However, the biology of ICEs in Legionella and whether they influence the 

biology of their hosts is not well understood.  

Plasmids are common in Legionella and a recent study found evidence of extensive plasmid-

mediated HGT in L. longbeachae, both within the species and with other Legionella, likely 

contributing to its specific niche adaption186. Plasmids have not been widely studied in 

L. pneumophila to date though they are present in the genomes of many isolates from disease-

associated STs and a plasmid-meditated role in competence has been demonstrated187. Many 

L. pneumophila strains are naturally competent during the exponential growth phase and this is 

likely to be true for other Legionella species, although there is considerable variation in natural 
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transformability between studied strains187. In Legionella, natural transformability is regulated by 

a RocR, a genome-encoded sRNA that inhibits expression of the DNA uptake system188. The 

variation in this phenotype was recently elucidated, wherein a reciprocally-expressed, plasmid-

encoded RocR paralog was found to inhibit natural transformation in L. pneumophila in the 

absence of RocR proteins. Orthologues of this sRNA are encoded within conjugative systems of 

other Legionella187. Complete phage sequences have only very rarely been identified in Legionella 

genomes and transduction does not play a significant role in Legionella evolution189. However, the 

distribution of partial phage sequences around Legionella CRISPR-Cas systems indicate many 

historical encounters with phages and suggest that that phages targeting Legionella may be 

dominated by a specific family189. Hypothetically, there may be less well studied or unidentified 

mechanisms that also contribute to HGT. 

In L. pneumophila, recombination between major lineages was shown to have mediated the 

spread of the lag-1 gene between human disease-associated STs and may have contributed to the 

horizontal spread of other important virulence-associated traits131. Plasmids have been identified 

that encode paralogous copies of CRISPR-Cas systems, which appear to protect the host bacterium 

from CRISPR depletion via mass spacer deletion events190. Potentially, plasmids provide a 

mechanism by which Legionella may rapidly acquire new host-adaptive traits. In other species, 

plasmid-encoded paralogs have been shown to confer adaptation to multiple niches that 

fluctuate, suggesting that a similar mechanism may provide Legionella with adaptations for 

multiple hosts191. As demonstrated by the regulation of natural transformability, the evolution of 

new functions may also occur through changes to the expression of redundant paralogs. In the 

case of epigenetic effects, this may occur without the need to acquire any differences through 

mutation192. 

1.3.4)  Genomic diversity of Legionella genomes 

Legionella genomes are remarkably diverse. In a genomic study of 58 Legionella species and sub-
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species, the core genome included less than 6% of genes (based on COGs with as little as 30% 

identity)146. Of the more than 18,000 effector genes identified across the genus, only eight are 

found to be conserved, indicating convergent evolution of intracellular survival and their capacity 

to infect phagocytes146. The genomes of different Legionella species also varied markedly in size 

and GC content, with a lower GC content in larger genomes indicating a higher prevalence of 

recombinant regions (which typically have a high AT content)146,193. Even among L. pneumophila, 

genomes vary considerably between the major lineages and the species has an open pan-genome 

with a vast array of genes that are only present in a subset of strains194. L. pneumophila includes 

at least four distinct sub-species, which share between 90-95% average nucleotide identity (ANI) 

in pairwise comparisons195. In one of the seven loci used for Sequence Based Typing of 

L. pneumophila, orthologs in the different sub-species share as little as 62% sequence identity195. 

The largest subspecies (subsp. pneumophila) contains serogroup 1 and includes all the major 

disease-associated STs. It is also very diverse, comprising at least seven major distinct phylogroups 

and estimated to possess only 97.54% ANI on average between diverse pairs of isolates131,195. 

In other bacterial species, host specialization is correlated with a large reduction in genome size196. 

Of note, Ca. Legionella polyplacis has a highly reduced genome (reflecting its specific adaptation 

to lice) and the larger genome sizes of most other Legionella species reflect their generalist 

lifestyle and broad, diverse host range197. This is also reflected in the high numbers, variety and 

functional redundancy observed in their effectors146,151. L. pneumophila are estimated to have low 

rates of substitution relative to other bacterial pathogens, consistent with efficient operation of 

selection and large Ne
20,123,128. However, the substitution rate estimates differ for different 

lineages123. Environmental isolates in one L. pneumophila lineage (ST1 and closely related STs) 

have been shown to have larger and more diverse genomes than clinical isolates, an observation 

that has also been made for L. longbeachae from compost isolates in Scotland186,198. However, the 

analysis in L. pneumophila was limited to a single L. pneumophila phylogroup and this observation 

has not been explored across the species.  
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HGT and recombination play an important role in Legionella evolution129. L. pneumophila genomes 

demonstrate high plasticity and the gain of genes via duplication and diversification could be a 

central mechanism for the evolution of host-specific effectors199. For some Legionella effectors, 

their high sequence similarity with mimicked eukaryotic proteins has led to the suggestion that 

they have been acquired from eukaryotic hosts by inter-domain HGT. It has also been suggested 

that ‘dynamic re-shuffling’ of DNA via MGE may be common between members of endosymbiotic 

communities, with evidence of gene exchange between Legionella and co-endoparasitic 

mimiviridae in Acanthamoebae200. The total pairwise SNP variation between isolates in disease-

associated lineages is relatively low and HGT has likely been key to their recent and rapid 

emergence123,129. The strain-specific gene content of these L. pneumophila STs has not been 

explored in detail but potentially, the major STs associated with human disease may have niche-

adapted traits, such as unique effectors, that confer an advantage for macrophage invasion146. 
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1.4)  Summary and Aims: 

1.4.1)  Summary 

In the age of rapid, cost-effective WGS, explosive data generation has enabled to use of large, 

representative datasets for clinically relevant bacteria that offer an improved statistical power 

for population genomic analysis. Such analyses can provide deeper insights into their evolution, 

epidemiology and the emergence of pathogenic lineages. Legionellosis represents an emerging 

public health threat and the recent, independent emergence of disease-associated lineages of 

L. pneumophila (the primary causative agent) remains poorly understood. In this project, I aim 

to consolidate the publically available global WGS data to conduct a population-scale genomic 

analysis of L. pneumophila. I aim to use this data to investigate the historic epidemiology of 

legionellosis in Scotland and investigate the genomic factors that differentiate clinical and 

environmental isolates, which may be relevant for the emergence of disease-associated 

lineages of L. pneumophila. 

1.4.2)  Aims: 

- assemble a comprehensive WGS dataset that allows for large-scale, population-wide 

analysis 

- explore the epidemiological relationships in a 36-year historic collection of L. pneumophila 

Scottish isolates in context with global genomes 

- investigate the genetic basis for the emergence of clinically important L. pneumophila 

sequence types 
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2) Population-wide meta-analysis of 
L. pneumophila genomes from collective global 
WGS studies  
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2.1)  Introduction 

2.1.1)  How big data is changing bacterial comparative genomics 

As sequencing technology has evolved, diminishing costs have led to an exponential increase in 

publically available genomic data. This change has been pivotal for research on clinically important 

bacteria, which typically have small genomes that are cheap to sequence and provide a high-

resolution means of diagnostic typing201. As of 2022, the number of new bacterial genomes added 

to Genbank every year has already exceeded 25,000 and the number of new WGS records in SRA 

has reached nearly 0.6 million with a continued annual increase (Figure 1.1). With an exponential 

increase in the amount of data, the tools and methods used to analyse prokaryotic genomes are 

also changing rapidly to enable analyses on a larger scale37,77. The wide availability of genomic ‘big 

data’ through public databases has opened up many new research possibilities. Meta-analysis of 

entire pathogen populations can identify holistic trends in evolution and disease epidemiology 

that offer valuable information for targeted control measures202,203. In addition, better 

representative data can alleviate sources of bias that might influence results in a restricted 

dataset204.  

Public databases have enabled comprehensive searches for genes and other sequences over a 

much wider temporal, geographical or taxonomic range205. However, extracting WGS data for 

population genomic analysis remains challenging206. The majority of WGS data are only available 

as reads, meaning that sequences require independent assembly for re-use207. This may lead to 

inconsistent findings between projects that used different software for re-assembly. In addition, 

public databases are generated from user-submitted data, which may be inconsistent between 

users and is subject to human error207,208. Consequently, many population-level studies have been 

limited to complete assemblies in Genbank or high quality genomes in RefSeq. Studies that draw 

more comprehensively from this data have to perform extensive filtering, with increasing 

challenge and complexity for larger and more varied datasets68,185,202.  
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2.1.2)  The value of dedicated databases in big data analysis 

To date, the computationally intensive processing requirements and inconsistency of global WGS 

data have limited its utility in public health209. However, dedicated WGS databases for specific 

pathogens help to address these issues by providing better curated and more consistent data210–

212. Smaller, more focused databases are easier to filter, simpler to maintain, easier to keep up to 

date, and can be refined with features to improve usability. Dedicated databases can include 

specific information relevant to the biology and epidemiology of individual infectious disease 

agents without compromising the more general information. As an example, they can include 

taxonomic filtering based on strains and STs that would be hard to implement in databases like 

NCBI that also include diverse eukaryotes. In addition, several platforms have been developed that 

combine curated sequence datasets with scalable visualisation tools to explore high-level trends 

and monitor the evolution of clinically relevant strains, such as EnteroBase and 

MicroReact209,213,214. Tools like these can be used to predict important changes in the population 

dynamics of pathogens and guide public health practices. However, unique platforms are required 

for different pathogens, with their differences in biology and disease mechanisms requiring 

specific tools, methods and metadata for analysis209. As examples, differences in genomic 

diversity, evolutionary rates, recombination rates, mode (or vectors) of infection, mechanisms of 

HGT and clinical features may all guide choices of tools and parameters for analysis. 

At the time of analysis (18/03/2022), there is no active WGS database dedicated to Legionella spp., 

the causative agents of Legionnaires' disease. However, legionellosis cases are increasing 

globally215,216, and population-wide analysis of L. pneumophila has identified the recent 

emergence and dissemination of several major clones associated with disease123. The relative 

pathogenic success of these clones remains poorly understood and a large WGS dataset will 

enable more comprehensive investigation into potentially relevant factors, such as MGEs and AMR 

genes. In addition, large datasets increase the power of statistical methods such as GWAS and 

predictive modelling through the inclusion of more varied and representative data, which may 
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reduce sample bias and allow detection of smaller effects217.  

In this study, I aimed to assemble a comprehensive population genomic dataset from public 

databases and explore the temporal, geographical and source distribution patterns in the 

population to determine trends and potential sources of bias. 

2.1.3)  Aims 

- To generate a comprehensive WGS dataset for population genomic analysis of Legionella 

pneumophila 

- To explore the global sequence distribution with respect to the population structure  

- To establish the potential impact of sampling bias on population genomic analyses  
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2.2)  Methods 

2.2.1)  WGS Data Collection  

WGS data was collected from two sources: a Scottish reference isolate collection (1984-2014) and 

publically available genomic data downloaded from NCBI. The analysis included 474 Scottish 

reference isolate genomes that had been assembled from short reads as described previously131, 

as well as 23 more recent isolates (2015-2020) that were newly sequenced for the work presented 

here. A total of 5079 genomes were collected from NCBI, filtered from 5,700 available sets of 

reads (SRA, 20/05/2020) and 1052 draft assemblies (Genbank, 18/02/2020). Short reads were 

downloaded using sra-toolkit (v2.9.2) and long reads were downloaded and extracted from h5 

files using dextractor (v1.0p2). Reads were downloaded if they matched the search term 

‘Legionella’ or any of the prior names for three historically distinct genera (‘Tatlockia’, 

‘Fluoribacter’ and ‘Sarcobium’). The same terms were used to search a metadata table of available 

bacterial assemblies in GenBank 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt, accessed 18/02/2020). For 

this, a regex condition (regular expression condition: a programmatic method of pattern matching 

in text, where variable patterns are represented by combinations of symbols or characters) was 

used to exclude matches with other species within the groups ‘legionellales’ or ‘legionellaceae’. 

Matching assemblies were downloaded from NCBI via the links in the table using the rsync 

command. 

2.2.2)  Genome Assembly and Quality Control 

Scottish isolates from the reference collection were sequenced by SMiRL using the Illumina Miseq 

platform and assembled with the same pipeline as the reads from SRA. Long read data was 

assembled using wtdbg2 (v2.4) and short-read data was assembled with SPAdes (v3.13.0), using 

Trimmomatic (v0.36) to remove adapter sequence. FastQC (v0.11.7) was used to measure the 
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quality of the reads before and after adapter trimming and to select appropriate parameters for 

Trimmomatic. A list of adapter sequences was generated by combining those included with 

Trimmomatic (v0.36) with an additional list of adapters from an online source 

(https://github.com/BioInfoTools/BBMap/blob/master/resources/adapters.fa, accessed October 2018). 

FastQC outputs of the same read type and sequencer model were combined using MultiQC (v1.7). 

Following a manual inspection of the MultiQC output, reads generated with Ion torrent and LS454 

platforms were excluded from the data. The number of reads and average read length were 

recorded for each read set using the C2_fastq_qc_processing.sh script in the supplementary code 

repository and these data used to estimate the genome coverage in R (v3.5.1) using the 

C2_QC_Out_processing_ALL.R script. Genomes were not assembled for isolates with a different 

number of reads between paired read files, or with < 30x coverage estimated for a 4Mb genome. 

Kraken2 (v2.0.9-beta) was used to identify and exclude read sets in which the majority did not 

map to Legionella sequence. For this, a custom database was built including libraries for bacterial, 

archaeal, viral, human, protozoal, fungal, metagenome and plasmid sequences. In addition, 12 

assemblies were added for Legionella species that were not represented in the default database 

and which had fewer than 10 contigs, all with closest matches to Legionella sequences in the 

default database.  

The quality of completed draft assemblies was evaluated with QUAST (v5.0.2) using each of 10 

different reference genomes for alignment statistics. This included seven references that 

represent previously defined major phylogroups within the pneumophila sub-species, as well as 

one previously used reference for each minor sub-species (Philadelphia-1 [GCA_000008485.1], 

Paris [GCA_000048645.1], Lens [GCA_000048665.1], Corby [GCA_000092545.1], HL06041035 

[GCA_000306845.1], Lorraine [GCA_000306865.1], Pontiac [GCA_001677115.2], NY24 

[GCA_003003535.1], Lansing 3 [GCA_003003865.1] and U8W [GCA_003004115.1])131,195. 

Alignment statistics were measured against the reference with the highest genome fraction value 

and a genome fraction of less than 70% was used to delineate L. pneumophila and non-
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pneumophila species. Assemblies were filtered using a quality score based on a range of 

parameters (as shown in Results Table 2.2). This included the fraction of contigs matching 

Legionella sequence in the previously generated kraken database. Only the highest N50-valued 

assemblies were retained for each NCBI BioSample accession number to exclude technical 

replicates between databases. Five sequences were excluded on accident due to an incorrect file 

storage location. 

2.2.3)  Metadata Collection and Processing 

Sample metadata associated with sequences from NCBI was collected using e-utilities (v12.3) and 

processed in PYTHON (v3.6.5, the C2_process_BioSample_metadata_20200304.py script in the 

supplementary code repository). This script adopted a semi-automated approach to combine 

equivalent metadata attributes in response to user feedback, extracting only the metadata of 

interest. To achieve this, the script iterates through each unique attribute name in the metadata 

and prompts the user to assign it to one of nine overall categories (Project Details, Collection Date, 

Location, Latitude/longitude, Taxonomic or typing information, Isolation source, Experiment 

details, Host or patient information and an ‘other’ category). After all attributes are categorised, 

the script then combines the attribute values in the same category into a single attribute for each 

sequence and performs a number of cleaning steps to these final strings. Data assigned to no 

category is removed. The categorised sample metadata was then combined with the unique 

metadata from individual datasets (NCBI reads, NCBI assemblies and Scottish reference isolates), 

as well as the output from other analysis tools (QUAST,Kraken2,PopPUNK,SBT) using the 

C2_Combine_All_Metadata-2022.ipynb script in the supplementary code repository. Additional 

data for the collection date, isolation location and source of the sample was sourced from relevant 

literature39,111,120,123,128,130,178,195,195,218–225. To extract the overall source information (clinical or 

environmental), regex terms were used to search relevant attributes for matching values, with 

ambiguous matches left as unknown. Environmental isolates were further categorised with 
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additional terms, using the order of the searches to determine the category for isolates belonging 

to multiple categories. The order of these terms was decided manually based on the scale of the 

reservoir, such that isolates would be categorised into likely subset reservoirs by priority (Table 

2.1). The output metadata table from the script (listing all the data downloaded prior to any 

filtering) is included in the supplementary code repository 

(Legionella_metadata_SensitiveInfoRemived.tsv). 

Table 2.1) Categorisation of environmental isolates using regular expressions 
Order Reservoir to Match Category Regular Expression(s) 

1 cooling tower cooling tower 'cooling tower|^ct$| ct$' 

1 evaporative condenser cooling tower 'evaporative condenser' 

3 factory industrial/maritime 'factory' 

4 distillery industrial/maritime 'Distillery' 

5 wastewater treatment industrial/maritime 'wastewater' 

6 industry industrial/maritime 'Industr' 

7 hospital hospital 'hospital' 

8 lists of multiple reservoirs unknown 'mixed' 

9 Ship or oil rig industrial/maritime 'Ship|Cruise|boat|**|Oil rig|**' 

10 hotel commercial/residential 'Hotel|Bulgaria' 

11 healthcare facility commercial/residential*** 'healthcare' 

12 decorative feature unknown 'fountain' 

13 no specific information unknown 'feedwater|machine' 

14 commercial commercial/residential 'heater|occupational|shop' 

15 residential commercial/residential 'Residen|home|private|Domestic' 

16 premise plumbing/tap water commercial/residential 'Tap|Shower|Drinking water' 

17 freshwater biome natural reservoir 'Fresh|lake|river|creek|pond' 

18 hot spring natural reservoir 'Hot Spring' 

19 swimming pool unknown 'outdoor|pool' 

20 soil or compost natural reservoir 'Soil|Compost' 

** sensitive data (specific identifiable names) omitted | *** Due to a human categorisation error, 
genomes matching the term ‘healthcare’ (n=3) were categorised as ‘commercial/residential’ rather 
than ‘hospital’ (matches 3 assemblies). 
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2.2.4)  SBT Analysis 

ST was predicted from adapter-trimmed reads using the MLST programme (v2.19.0) and an 

archived copy of the SBT scheme from Public Health England 

(http://bioinformatics.phe.org.uk/legionella/legionella_sbt/php/sbt_homepage.php, accessed April 2016). 

Additional processing was conducted in PYTHON (v3.6.5, the C2_SBT.ipynb script in the 

supplementary code repository) to determine the closest ST for sequences that remained 

ambiguous, either due to missing genes, truncated genes, novel gene variants or paralogous hits 

(multiple sequences identified for the same gene). Of note, paralogs for one of the seven 

L. pneumophila SBT genes (mompS) are very frequent in the population, which may prevent 

accurate SBT of many strains, especially using bioinformatic methods226. To determine their 

closest ST, unresolved profiles were compared to STs in order of frequency across the dataset and 

classified as ‘ST-like’ for their most common SLV. Absence of a gene was treated as an allele and 

unique combinations of paralogous hits were each treated as separate alleles, whilst novel and 

truncated gene sequences were replaced by their most similar known variants (detected by MLST). 

The same analysis was performed for sequences with a rare ST (less than 30 sequences) in order 

to group similar STs together in analyses. ‘ST Groups’ were defined as the collection of exactly 

matching or ‘-like’ isolates for each ST. STs with the same novel combination of alleles were 

grouped as Potentially Novel Variants (PNVs) and numbered relative to their frequency, where 

lower numbers were given to more common PNVs. 

2.2.5)  Population Structure Analysis 

Population structure was analysed for the quality-filtered Legionella pneumophila assemblies 

chosen as described (see Results). Lineages were defined using the sketch distances between 

isolates as clusters in PopPUNK (v2.3.0). PopPUNK was run with a sketch size of 100,000 (pp-

sketchlib v1.6.2) and a k-mer step size of two, optimising for increased accuracy. A maximum 
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accessory distance of 0.65 was used to account for the diversity within the species. Comparisons 

were performed using 15-29 bp k-mers, with lower-length k-mers found to have a high chance of 

accidental matching in an initial run. The dbscan model was used to define clusters, refining the 

model fit as recommended for PopPUNK analysis of bacterial populations with high recombination 

rates43. (graph-tool v2.35). A list of genome assemblies in the PopPUNK analysis is included in the 

supplementary code repository (PopPUNK_genome_list.txt) 

2.2.6)  Statistical Analysis and Data Quality Management 

Quality filtering and visualisation of the data was conducted in RStusdio using the 

C2_Meta_filtering.R and C2_MetaAnalysis.R scripts in the supplementary code repository). 

Multiple versions of RStudio were used over the duration of the PhD, although the final version 

used for all scripts is recorded in the version_info folder of the supplementary code repository. 

Verification of scripts was conducted by visual inspection of the output throughout the script 

development process. The dimensions, attributes, and values of relevant data constructs were 

routinely printed on screen and inspected to ensure that their data matched the intended output. 

These verification outputs were not recorded, although some examples are written into the code 

for some scripts, as indicated by the script annotations. For the referenced scripts in the 

supplementary code repository, analysis parameters were hard-coded and can be inspected in the 

relevant scripts. For other analysis parameters that were specified for external software (and not 

run using a referenced script in the thesis text and supplementary code repository), these can be 

inspected in the ‘software_parameters.txt’ file in the ‘version_info’ folder of the supplementary 

code repository. 
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2.3)  Results 

2.3.1)  A standardised pipeline was developed to collect WGS data from the SRA  

As of 18/02/2020, only 128 completely assembled Legionella spp. genomes were available in 

Genbank and only 59 of these were included in RefSeq. To ensure a comprehensive coverage of 

the available WGS data for Legionella spp., I also downloaded all available draft assemblies (n=924) 

and all putative Legionella spp. reads in the NCBI SRA database (n=5700, 20/05/2020). Although 

the data were diverse with respect to biological material, library preparation, sequencing methods 

and sequence quality, I identified key factors accounting for most of this variation, which could be 

controlled in order to streamline such data processing in future work (Figure 2.1).  

In particular, I found that the initial categorisation of reads using their metadata was critical to 

select the appropriate processing methods for each, preventing errors in downstream analysis. Of 

the collected read sets, 16% (910/5700) were not from WGS experiments and could be initially 

excluded. A further 2% of the remaining read sets (113/4790) were long reads that required 

specific tools for download, extraction and assembly, whilst a further 4% (182/4596) were 

comprised of single-end reads that also required specific assembly parameters. By categorising 

these initially, a single pipeline could be automated to process each read type correctly and 

exclude inappropriate data for WGS analysis.  
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Figure 2.1) Pipeline used to extract high quality WGS-data for analysis. Black text is used to indicate 
input data sources and orange text is used to indicate data output, either data that were filtered out of analysis 
or the quality-filtered final output (bottom right). Orange arrows are used to indicate data processing and 
analysis steps that were carried out in this analysis, with blue text used to indicate the software used. Purple 
arrows and text are used to indicate steps that were not performed but which this analysis indicates could be 
performed to improve the pipeline. 
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2.3.2)  Read quality depended primarily on the sequencer model 

Short WGS reads were filtered by their estimated genome coverage to remove those likely to 

produce poor quality assemblies. In doing this, a close relationship was observed between the 

predicted coverage of reads and the sequencer used to generate them (Figure 2.2.a). On average, 

sequencers that produced shorter reads in greater numbers tended to achieve a higher coverage, 

with more of their sequences retained for downstream analysis (Figure 2.2.b). 

Quality reports were inspected manually to validate the quality of adapter-trimmed reads, using 

MultiQC to efficiently scale this analysis to the large dataset. Often, sets of reads generated with 

the same model of sequencer were similar by several metrics and grouping MultiQC analysis by 

the sequencer improved visualisation, expediting the low-quality read filtering (Figure 2.3.a-b). A 

similar result was observed for grouping MultiQC analysis by the read type. For example, 12 sets 

of reads originating from metagenomic analyses demonstrating a similar, unusual pattern in their 

GC content that warranted their exclusion (Figure 2.3.c). Notably, some metagenomic read sets 

had a high genome coverage with the majority of k-mers mapped to sequences from Legionella 

spp. using kraken, meaning such quality control could only have been performed through careful 

visual inspection.  

Collectively, these results indicate that dividing and filtering the reads based on their metadata, 

such as read type and sequencer model, is useful for optimising the extraction of large SRA 

datasets (Figure 2.1). 
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Figure 2.2) Visual Inspection of Read Quality Parameters A) The number and average length of 
untrimmed reads in each file for the short WGS reads downloaded from SRA. Colours indicate the model of 
sequencer that was used to generate them and lines are used to show thresholds below which reads were 
excluded from analysis. For the coverage threshold, the values needed to achieve a minimum 30x coverage 
using single or paired-end reads are plotted as continuous functions over the relevant data range. The 
number of reads is shown using a log scale (base 10). B) The average of the values in 2.1.2.A for each of 8 
sequencer models that were used to generate reads in at least 20 different sets. The proportion of sequences 
(%) that were above the coverage threshold are indicated for each sequencer. 

 

 

Figure 2.3) Sets of reads that were excluded from assembly after visual inspection with MultiQC. A) 
The mean quality score per base (Phred33) along the length of reads in read sets generated with LS454 
sequencers. B) The distribution of the mean quality scores for each read (Phred 33) in the same data as A). 
C) The GC content (%) distributions across 12 sets of metagenomic reads. 
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2.3.3)  Methods and limitations for removing spurious data that could skew 

downstream results 

In order to identify spurious outliers for exclusion, I conducted a visual analysis of assembled 

genomes, including the 4017 assemblies generated from SRA reads, 1052 draft assemblies from 

Genbank or Refseq and 496 assembled genomes from Scottish reference isolates. Spurious data 

were defined based on 10 different characteristics that may contribute bias or skew results in 

downstream analysis (Table 2.2).  

The analysis demonstrated substantial variation across a broad range of investigated parameters, 

indicating a large overlap between the quality metrics for spurious assemblies and legitimate 

biological outliers (Figure 2.4.a). However, for assemblies with confirmed spurious characteristics, 

many were found to be outliers in several parameters. Consequently, I filtered the data by a score 

that incorporated several quality metrics in combination, such that outliers in only one or two 

metrics would be retained (Table 2.3). In order to optimise the parameter thresholds for this score, 

the distribution of data was compared before and after filtering (Figure 2.4.a-b). 
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Table 2.2) Criteria used in the score-based quality control filtering analysis. 

       Condition (Quality Control Scoring) 

More than 25% of the assembled sequence was not aligned to the closest L. pneumophila reference 
genome (the reference with the most sequence aligned) 

Less than 70% of the closest L. pneumophila reference genome (bp) aligned to the assembly 

More than 5% of sequence length (bp) was not mapped to Legionella (KRAKEN) 

Less than 95% of sequence length (bp) was mapped to Legionella pneumophila (KRAKEN) 
GC Content was more than two SD from the mean GC content for the L. pneumophila sequences in 
RefSeq 
Assembly length (bp) was more than two SD from the mean length of L. pneumophila assemblies in 
RefSeq 

The assembly contained more than 500 contigs with length 500bp or greater 

The N50 statistic for the assembly was 100,000 or less 

The assembly had a QUAST duplication ratio statistic of less than 1 

The assembly had a QUAST duplication ratio statistic of greater than 1.3 
For each assembly, a score was generated equal to the number of criteria statements that were true. 

 

Table 2.3) Data characteristics defined as spurious, split into different categories (Type) to indicate 
how they might skew the data or generate bias. 

Spurious data characteristic Type Control method Controlled 
Truncated assemblies Low assembly quality score-based filter yes 

Highly fragmented assemblies Low assembly quality score-based filter yes 
Assemblies with artificial duplication Low assembly quality score-based filter yes 

Assemblies for incorrect taxa Incorrect organism score-based filter yes 
Sequencing of contaminated cultures Incorrect organism score-based filter partially 

Technical replicates Redundancy filter by strain identifier no 
Biological replicates Redundancy filter by strain identifier no 

Synthesized lab strains  
(e.g. gene deletion mutants) 

Incorrect organism 
and redundancy 

score-based filter and  
filter by identifier partially 

Reference lab strains Redundancy filter by strain identifier no 
Database replicates Redundancy filtering by BioSample yes 

The final two columns indicate whether the sequences matching each characteristic were possible to identify 
and exclude and how this exclusion was performed. 
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Figure 2.4) Visual Inspection of assembly quality parameters. Scatterplots of the GC content (%) and the total sequence length that was not aligned with the closest 
reference sequence (bp), shown for each WGS assembly in the data before (A.i) and after (B.i) quality filtering. Point sizes are scaled by the non-Legionella fraction (NLF, 
the fraction of contigs that matched non-Legionella sequence) and coloured proportional to the total assembly length (bp), with longer sequences shown in red. Separate 
Scatterplots are shown for the total sequence length excluding the sequence on contigs ≤ 10kbp and the number of contigs ≥1kbp that indicate the extent of fragmentation 
in the assemblies before (A.ii) and after (B.ii) quality filtering. Point sizes are scaled by the duplication ratio absolute difference (DRAD): the absolute difference of the 
duplication ratio (QUAST) from 1. Points are coloured proportional to the N50 value. 
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Importantly, redundant isolates could not be filtered by standard quality metrics and the data 

often lacked information for the strain name, isolate name, or patient identifiers that were 

necessary to match these, due to absence from the metadata, inconsistency in spelling and 

formatting, or complicated by the use of multiple equivalent names. In addition, the high 

variability and inconsistency of the data suggests there may be additional factors that were not 

recognised as spurious and therefore were not controlled, which could also skew downstream 

results. 

This analysis supported the previously established bias in the species distribution of isolated and 

cultured Legionella94. Based on the user-submitted taxonomic metadata, 4510/5061 (89.1%) 

assembled NCBI genomes submitted as Legionella were L. pneumophila and there were very few 

assemblies for other Legionella species individually, with only incomplete assemblies in many 

cases. Therefore, I restricted the meta-analysis to L. pneumophila. Accounting for potential user-

submitted taxonomic inaccuracy, I independently defined L. pneumophila and its sub-species 

based on alignment with reference genomes (see methods). By this definition, 4890/5565 (87.9%) 

of genomes in the assembled data were from L. pneumophila and 4605/4890 (94.2%) of these 

were from L. pneumophila subsp. pneumophila (Figure 2.5).  

Collectively, the analysis confirmed several major factors affecting the consistency of publically 

available data in NCBI and provided a framework that could be used to collect such data more 

quickly and effectively in future work. 
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Figure 2.5) A) Histograms of the genome fraction values (QUAST) for the closest reference sequence 
within all Legionella pneumophila and within L. pneumophila subsp. pneumophila specifically. 
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2.3.4)  Isolates from natural environmental reservoirs are underrepresented in 

global WGS efforts 

To place global infections into context, I explored the distribution of clinical and environmental 

L. pneumophila isolates with respect to the population structure. Due to the high genetic diversity 

and frequency of recombination in L. pneumophila, I used PopPUNK to define population clusters 

rather than phylogenetic analysis. In support of this decision, the distribution of PopPUNK core 

and accessory distances showed a ‘smear’ pattern indicative of frequent recombination events 

between strains (Fig.2.3.6.A). A neighbour-joining tree was constructed from the core genome to 

approximate the relationships between clusters (Fig.2.3.6.B).  

PopPUNK analysis revealed eight major clusters in the L. pneumophila population (> 100 

sequences) and 28 minor clusters (≤ 50 sequences), including 9 that were singletons. The minor 

clusters were located throughout the tree, although several appeared together in a sister clade of 

cluster 3. Notably, several minor clusters were situated on long branches, indicating that they 

represent very divergent lineages.  
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Figure 2.6) Population Structure Analysis. A) Scatterplot showing the distribution of core and accessory 
distances (as defined by PopPUNK) between each pair of isolates. The decision boundary used to distinguish 
pairs of isolates in the same and different clusters is indicated by a red dotted line. The distances between 
isolates in the same cluster are marked in blue and aquamarine colour is used to indicate distances between 
isolates in different clusters. Relevant parameters for the model fit refinement are indicated. B) A neighbour-
joining tree constructed from a core alignment and visualised in GrapeTree, with PopPUNK clusters indicated 
by distinct colours. Branches have been rotated around nodes to highlight the location of each distinct cluster. 
Branch lengths indicate the average number of nucleotide differences per site in the core alignment and a 
branch scale is shown in the centre. 
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To compare the distribution of isolates from different reservoirs, the isolation source data were 

divided into categories (Figure 2.7.a). For 58.1% of environmental isolates (1015/1748), no 

additional information was found for the isolation source, highlighting a major gap in the sequence 

data available through NCBI. I used Pearson’s Chi-squared tests to measure associations (Figure 

2.7.b), identifying three PopPUNK clusters with an unexpectedly high fraction of clinical isolates 

(3, 5 and 6). However, the analysis also revealed a high degree of sampling bias related to deep 

sequencing of specific locations that could skew the statistical significance. 

 In some cases, sample bias in the data could greatly impact interpretation. For example, although 

89.2% of the isolates from hospitals were in the two largest clusters, most of these (153/224) were 

sourced from the same three NCBI projects, two of which only included isolates from a single 

hospital. In comparison, 68 isolates that were from the Scottish reference database were collected 

from 11 different hospitals and distributed across five different clusters. This indicates that 

hospitals may be colonised by isolates from diverse lineages and that some have been sampled 

less frequently or less extensively (Table 2.4), biasing the representation of hospital isolates in 

publically available WGS data. When the distribution of isolates across major projects was 

investigated, I found similar evidence of sample bias affecting the distribution of isolates in other 

environmental reservoirs, which was often not identified from the NCBI metadata alone.  

Strikingly, even though less than 0.5% of the isolates were from sources categorised as natural 

reservoirs (Table 25), 7 of these (25.9%) were in minor clusters and 3 of them were among the 9 

singletons in the data. This result indicates that natural environments may be under-sampled 

relative to their diversity. However, this is subject to how natural reservoirs were defined, which 

was affected by data availability. For example, hot springs and ashiyu (public foot baths that are 

typically sourced from hot springs) may alternatively be sourced from artificial water supplies and 

this was not specified in the data available through NCBI.  
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Figure 2.7) Isolation Source bias across PopPUNK Clusters. A) Barplots showing the number of isolates from different clinical and environmental sources in each major 
(row 1) and minor (row 2) cluster. B) Correlation plot of the residual values from a Pearson’s Chi-squared test between the Source Category against the PopPUNK cluster. 
Positive correlations are indicated with blue shades and negative correlations are indicated with green shades. Minor clusters are grouped together as ‘minor’. Sequences 
for environmental isolates with no specific isolation source are grouped as ‘Unknown Reservoir’ and sequences without source information data are not shown.
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Table 2.4) The number of assembled genomes in each PopPUNK cluster for L. pneumophila isolated 
from hospitals included in the data for five different projects. 

WGS Project Cluster 1 Cluster 2 Cluster 4 Cluster 5 Cluster 8 

Scottish Isolates 37 31 8 7 12 
PRJEB13886 45 0 0 0 0 
PRJEB4355 3 0 0 0 0 

PRJEB5544 (SH) 38 0 0 0 0 

PRJNA453403 (SH) 3 67 0 0 0 
Clusters that contained no isolates known to be from hospital water samples are not shown. Projects in which 
all the isolates were collected from a single hospital (SH) are indicated. 

 

Table 2.5) The number of isolates from the six different isolation sources classified as natural 
environmental reservoirs that were in each cluster. 

Isolation Source Cluster Number 

Compost 5 1 
Compost singleton 1 

Creek 14 1 
Creek 8 2 
River 9 1 
River singleton 1 
Pond 8 1 

Ashiyu 8 2 
Ashiyu singleton 1 

Hot spring 4 2 
Hot spring 8 6 
Hot spring 7 4 
Hot spring 17 2 
Hot spring 1 2 
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2.3.5)  Geographical variation in L. pneumophila Sequence Type prevalence 

I also examined the temporal and geographical distribution of sequences to determine if the rise 

in global legionellosis cases was reflected in WGS data. Although there was a general increase in 

the number of clinical WGS of L. pneumophila over time, I identified large spikes in the number of 

genomes from certain years, which corresponded to individual investigations (Figure 2.8). 

The geographical distribution of data was highly uneven, with just four countries accounting for 

84.29% (2773/3290) of the sequences with isolation location data: The USA (n=1517), the United 

Kingdom (n=787), Australia (n=269) and France (n=200). In contrast, the data included only 114 

isolates from Asia, two sequences from Africa and none from South America. This result indicates 

that our current understanding of L. pneumophila evolution may be heavily influenced by 

geography.  

To investigate changes in the clinical prominence of major clones over time, I explored the 

temporal distribution of isolates from different STs across the three most widely sampled 

continents (North America, Europe and Oceania). The data highlights the global dominance of the 

disease-associated ST1 clone, which was consistently observed in high frequency over time in both 

clinical and environmental isolates from Europe, North America and more broadly. By comparison, 

three other disease-associated clones (ST37, ST47 and ST23) were observed very infrequently 

outside of Europe, reinforcing the hypothesis that these clones have a European origin123 (Table 

2.6).  
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Figure 2.8) Temporal distribution of isolates from the Scottish reference isolate collection and from 
the 28 NCBI projects with the most sequences. To indicate the density of data for each project and year, 
a small amount of random variation is added to the location of each point in both axes, using the maximum 
variation possible without the values of distinct categories overlapping. Distinct colours are used to 
differentiate the isolates from different projects more clearly and have no biological significance. 

 

Table 2.6) The number of WGS from four major disease-associated STs sources isolated from 
different continents. 

Continent ST1 ST47 ST37 ST23 
North America 523 5 11 3 
South America 0 0 0 0 

Europe 212 131 93 56 
Africa 1 0 0 0 
Asia 46 0 0 1 

Oceania 48 0 2 3 
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Figure 2.9) The number of clinical and environmental isolates per year from different grouped STs 
(see method for grouping description) in three well-represented continents in the data. A) North 
America B) Europe C) Oceania. Clinical isolate distributions are indicated by a maroon bar and environmental 
isolate distributions are indicated by a light chartreuse bar. ST groups are indicated with distinct colours and 
rare ST groups (< 20 sequences in the data. are grouped together and indicated in dark grey. Clinical Isolates 
with an associated metadata record of travel-associated infection are excluded.  
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These results highlight the potential impact of major outbreaks and outbreak response efforts in 

generating sample bias. A prominent spike can be observed in the number of clinical isolates of 

ST731 in the USA that corresponded to a major outbreak in 2015. Similar spikes are observed in 

the numbers of environmental isolates of PNV_1 [ST2518 in previous literature] in the US in 2016 

and ST36 in central Europe in 2017. Both of these spikes corresponded to wide environmental 

sampling efforts in distinct municipal areas to resolve the source of major outbreak-associated 

strains (Figure 2.9.a/2.9.b). Outbreaks are typically defined by a short time frame (up to six 

months227) but a geographical bias is also seen in the distribution of isolates over longer 

timeframes. For example, although the vast majority of clinical and environmental isolates from 

Australasia were from ST30, these were all from a single, longitudinal study in a refined municipal 

area of Australia and therefore may not reflect the broader distribution of isolates in the continent 

(Figure 2.9.c). 
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2.4)  Discussion 

In this study, I assembled a comprehensive, globally representative WGS dataset for 

L. pneumophila that provides a valuable resource for future work, enabling a population-wide 

meta-analysis to investigate broad spatial, temporal and taxonomic trends. This analysis identified 

several factors that together contribute a large degree of sample bias in publically available WGS 

data for Legionella and which should be taken into account when using this data in future work.  

The visual analysis of assembly quality highlighted the importance of combined quality metrics for 

data filtering, supporting similar approaches used in existing pipelines for WGS data extraction 

from NCBI207,209. Furthermore, I identified key sources of variation that could be controlled to 

improve visual analysis of read quality, building on previous work towards automating such 

pipelines207. Importantly, I identified sample redundancy as a key source of bias, with the lack of 

relevant metadata for strain and patient identifiers limiting the detection of redundant isolates. 

Large, curated WGS databases offer a solution to this, as they can be consistently updated and 

filtered for redundancy.  

The analysis revealed a highly uneven distribution of Legionella sequences across continents and 

across environmental reservoirs. Although L. pneumophila is thought to exist worldwide123, Africa 

and South America were essentially unrepresented in the data and the strain distribution in these 

continents remains unknown. Similarly, there were few isolates from Asia, even though the 

detection of rare and novel STs by molecular methods demonstrates the existence of unique 

native L. pneumophila228,229. I also found that there are very few L. pneumophila genomes for 

isolates from natural environmental reservoirs, despite abundant evidence to suggest a high 

prevalence of Legionella in natural environments230. PopPUNK analysis predicts that 

L. pneumophila from natural sources may be diverse and distantly related to major disease-

associated clones, suggesting that wider sampling of Legionella from these environments may 

provide valuable context for understanding the adaption of clinically relevant strains to human-
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linked environments.  

Despite the global increase in the number of annual Legionnaires' disease cases, I did not observe 

a consistent increase in the number of clinical L. pneumophila genomes each year215,216. This is 

likely due to the high proportion of infections that are only diagnosed by Urinary Antigen Testing, 

without culturing or sequencing causative strains216,231. By comparison, WGS has been applied 

extensively in Legionnaires' disease outbreak investigations to evaluate the source of infections, 

and these results highlight this discrepancy as a major source of sample bias in publically available 

data121,194,232. Outbreaks are estimated to comprise the minority of Legionnaires' disease cases215 

and often involve atypical strains in unusual circumstances233,234. In contrast, the global rise in 

infections has been primarily linked to a limited number of widely distributed strains123. I also 

identified a significant degree of sampling bias due to deep sequencing investigations of specific 

buildings218,219. Unlike the data in curated databases, very few publically available Legionella 

genomes had metadata to link them to a specific outbreak or a specific environmental reservoir, 

making it difficult to correct for these biases to apply current genomic statistical methods that 

benefit from large and representative datasets131.  

Taken together, this meta-analysis demonstrates a large degree of bias in the publically available 

WGS for L. pneumophila. Consequently, I propose that there is a critical need for a dedicated 

public WGS database for Legionella data to address the global rise in Legionella infections215,216. 

Through a global collaborative framework, such a database could be used to link WGS data with 

more comprehensive metadata, offering a valuable resource to implement modern genomic 

approaches in a public health context68,209.  
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3) Genomic epidemiological analysis of 
Legionnaires’ disease over 36 Years in 
Scotland 
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3.1)  Introduction 

WGS provides the ultimate resolution for epidemiological typing and the determination of 

epidemiological links. Therefore, WGS-based methods have been widely adopted in disease 

outbreak investigations, including LD outbreaks121. However, genomic epidemiology offers 

additional insight beyond just individual outbreak analysis. In combination, the high resolution of 

entire microbial genomes and the broader, more representative context of population genomic 

datasets can reveal important information about the spread of disease235.  

For example, high resolution WGS methods revealed that the seventh global cholera pandemic is 

caused by the spread of three closely related lineages, a finding that was not apparent using 

previous typing methods236. Furthermore, genomic epidemiological analysis of diverse global 

clinical and environmental V. cholerae isolates revealed human transmission as the major route of 

pandemic spread, with local cholera outbreaks from contaminated water sources only found to 

cause low levels of disease237. Large-scale genomic analysis of L. pneumophila has also shown 

complex spatial and temporal distribution patterns of different epidemiological types. However, 

the global dissemination of STs, including the recent, independent emergence of human disease-

associated L. pneumophila clones, remains poorly understood123.  

In this project, I aimed to utilise the population-scale genomic data collected in Chapter 1 to 

conduct a genomic epidemiological analysis of LD is Scotland in context with global isolates. The 

data include WGS from a historic, 36-year collection of Scottish L. pneumophila reference isolates, 

which included all culture-positive clinical isolates and diverse representative environmental 

isolates from a range of environmental reservoirs. Using a stratified, high resolution WGS-based 

clustering approach, I aimed to investigate the epidemiology of isolates in context with the 

evolution of causative strains. 
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3.2)  Manuscript  

The work presented in this chapter has been published in Lancet Microbe as “Epidemiological 

analysis of Legionnaires' disease in Scotland: a genomic study” and the manuscript is presented 

here. The paper is open access under a creative commons licence and the manuscript and 

supplementary data can also be found online using the following link: 

doi: https://doi.org/10.1016/S2666-5247(22)00231-2 

A table listing of the genomes included in the analysis and associated metadata can be found in 

the supplementary material, either at the link above or in the supplementary code repository 

Manuscript_Supplementary_2.xlsx). 
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Summary
Background Legionella pneumophila is the main cause of a severe pneumonic illness known as Legionnaires’ disease 
and is a global public health threat. Whole-genome sequencing (WGS) can be applied to trace environmental origins 
of L pneumophila infections, providing information to guide appropriate interventions. We aim to explore the 
evolutionary and epidemiological relationships in a 36-year Scottish L pneumophila reference isolate collection. 

Methods We investigated the genomic epidemiology of Legionnaires’ disease over 36 years in Scotland, comparing 
genome sequences for all clinical L pneumophila isolates (1984–2020) with a sequence dataset of 3211 local and globally 
representative isolates. We used a stratified clustering approach to capture epidemiological relationships by core 
genome Multi-locus Sequence Typing, followed by high-resolution phylogenetic analysis of clusters to measure 
diversity and evolutionary relatedness in context with epidemiological metadata.

Findings Clustering analysis showed that 111 (57∙5 %) of 193 of L pneumophila infections in Scotland were caused by 
ten endemic lineages with a wide temporal and geographical distribution. Phylogenetic analysis of L pneumophila 
identified hospital-associated sublineages that had been detected in the hospital environment up to 19 years. 
Furthermore, 12 (30·0%) of 40 community-associated infections (excluding a single, large outbreak) that occurred 
over a 13 year period (from 2000 to 2013) were caused by a single widely distributed endemic clone (ST37), consistent 
with enhanced human pathogenicity. Finally, our analysis revealed clusters linked by national or international travel 
to distinct geographical regions, indicating several previously unrecognised travel links between closely related 
isolates (fewer than five single nucleotide polymorphisms) connected by geography.

Interpretation Our analysis reveals the existence of previously undetected endemic clones of L pneumophila that 
existed for many years in hospital, community, and travel-associated environments. In light of these findings, we 
propose that cluster and outbreak definitions should be reconsidered, and propose WGS-based surveillance as a 
critical public health tool for real-time identification and mitigation of clinically important endemic clones.
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Council Precision Medicine Doctoral Training Programme, Wellcome Trust, and Medical Research Council (UK).

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
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Introduction
Legionella is a genus of globally ubiquitous, intracellular, 
freshwater bacteria that naturally coexists with protozoa. 
More than 30 Legionella species can invade immune cells 
and cause opportunistic human respiratory infections.1 
However, over 90% of infections are caused by a 
single species, Legionella pneumophila, which is typically 
inhaled from contaminated environmental aerosols.2 
Legionellosis varies from a mild flu (Pontiac fever) to 
Legionnaires’ disease, an atypical, often severe form of 
pneumonia with a 10% mortality rate.1 Most Legionnaires’ 
disease cases are sporadic and unlinked to other 
infections, with many acquired during travel. However, 
outbreaks of Legionnaires’ disease occur when a cluster 
of infections are linked to a common source such as 
plumbing, air-conditioning systems, or industrial cooling 
towers.3 Additionally, commercial compost or soil can be 
a reservoir for outbreaks of Legionnaires’ disease caused 
by Legionella longbeachae.4 L pneumophila bacteria are 

challenging to eradicate from environmental reservoirs 
and strains might persist in these environments, posing 
a threat to public health.5

To identify the source of outbreaks or sporadic infections, 
clinical and environmental isolates are compared on the 
basis of knowledge of possible exposures.3 Legionnaires’ 
disease cases are typically classified as either travel-asso-
ciated Legionnaires’ disease (TALD), hospital-associated 
Legionnaires’ disease (HALD), or community-acquired 
Legionnaires’ disease (CALD), depending on the patient’s 
history of potential exposure in the 10 days before disease 
onset.6 Although sequence-based typing is considered 
the current gold standard method for discrimination 
of L pneumophila,7 whole-genome sequencing (WGS) 
methods have a much higher level of resolution to 
distinguish closely related isolates and to determine the 
source of infections.7,8 Applied retrospectively, WGS has 
been used to resolve the source of Legionnaires’ disease 
outbreaks that remained ambiguous with standard 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2666-5247(22)00231-2&domain=pdf
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molecular methods, and provides enhanced resolution to 
cases affected by recent genet ic recombination events that 
complicate phylogenetic reconstruction.8,9

It has been observed that L pneumophila isolates from 
infections in distinct geographical locations or occurring 
years apart can have a nearly identical genotype.10,11 As 
such, the genetic similarity of epidemiologically related 
and unrelated isolates might overlap, presenting an 
ongoing challenge for source attribution.7 Conversely, 
L pneumophila associated with a single outbreak can 
represent multiple genotypes coexisting in an infection 
source or the result of strain diversification over time in 
the environment prior to the outbreak.11–13 Accordingly, 
definitive source attribution is not always possible but a 
high confidence of prediction may be achieved by WGS 
of extensive environmental samples.10,11

The frequency of Legionnaires’ disease infection is 
increasing and our understanding of the epidemiology of 
infections remain unclear,14 particularly the relationship 
between community-associated, hospital-associated, and 
travel-associated clinical and environmental L pneumophila. 
Although clustering of sporadic legionellosis cases in 
Scotland has been observed from epidemiological data, to 
date, only a single outbreak has been investigated using a 
WGS approach.12,15 Here, we aimed to examine the cause 
and environmental origins of historical episodes of 
Legionnaires’ disease in Scotland, using WGS of all clinical 

isolates and a selection of environmental L pneumophila 
isolates from 1984 to 2020, in combination with epide-
miological data provided by routine Legionnaires’ disease 
surveillance.

Methods
Culture collection and whole-genome sequencing
In total, we analysed quality-filtered genome 
sequences for 3397 L pneumophila isolates, including 
453 obtained from our reference isolate collection and 
2944 representative global isolates from 25 countries 
obtained from the National Center for Biotechnology 
Information (NCBI). Publicly available WGS reads for 
global isolates were downloaded (May 20, 2020) and 
assembled as described in appendix 1 (p 10). Previously 
assembled Legionella sequences in Genbank or RefSeq 
were also downloaded (Feb 18, 2020) and the collective 
data were passed through a quality-filtering pipeline 
(appendix 1 p 10) to remove highly divergent sequences, 
poor-quality assemblies, redundant copies (from different 
databases), and assemblies with a high proportion of 
sequences not from L pneumophila (evidence of culture 
contamination). A complete list of the quality-filtered 
isolates, with corresponding accession numbers and 
countries of isolation is included in appendix 2.

The reference collection isolates included all those 
collected from patients in Scotland with Legionnaires’ 

Research in context

Evidence before this study
We conducted a literature search with Google Scholar for 
genomic studies investigating the epidemiology of Legionnaires’ 
disease between Jan 1, 2010, and Jan 1, 2021, using the search 
terms “Legionella”, “epidemiology”, “WGS”, and “genomic”. 
No language restrictions were applied to this search. Since 2012, 
whole-genome sequencing (WGS) has been employed in 
numerous Legionnaires’ disease outbreak investigations to 
establish the most probable source of infections, including several 
that remained ambiguous with standard molecular methods. 
However, no studies within these dates had investigated the 
broader epidemiology of Legionnaires’ disease over extended 
timeframes or broad geographical areas, with large numbers of 
environmental isolates. Two studies compared WGS from 
separate outbreaks over long time periods but their analysis was 
limited to specific municipal areas. Another study investigated 
nosocomial infection by a single sequence type using a spatially 
and temporally varied dataset but only a small number of isolates 
from non-hospital environmental sources were included. We did 
not find any WGS studies comparing all historic infections on a 
national scale and no large-scale WGS studies investigating 
travel-associated cases.

Added value of this study
In this study, we conducted WGS analysis on a 36-year national 
collection of reference isolates that included isolates from all 

Scottish patients with Legionnaires’ disease from 1984 to 2020 
(n=193) and 229 environmental isolates from a range of 
environmental reservoirs. We also included 2944 genomes 
from global sources (The National Center for Biotechnology 
Information). To our knowledge, this is the largest dataset used 
for genomic epidemiological analysis of Legionnaires’ disease 
to date and includes a uniquely high number of environmental 
isolates that provide important context for investigating 
probable origins of infectious strains. This study provides new 
insights into the cause of Legionnaires’ disease, identifying the 
major Legionella pneumophila clones that have been sampled in 
hospital and municipal plumbing systems and other man-made 
water systems in Scotland, which have been the cause of a 
major proportion of Legionnaires’ disease for decades.

Implications of all the available evidence
Our analysis indicates the existence of previously unrecognised 
endemic clones of L pneumophila that existed for many years in 
Scottish hospital-associated, community-associated, and travel-
associated environments. In light of these findings, we propose 
that cluster and outbreak definitions should be reconsidered. 
Furthermore, we propose that routine regular environmental 
sampling should be used to facilitate near-real-time WGS-based 
identification of epidemiological links, attribution of outbreak 
sources, and to inform public health measures targeting 
endemic clones that are an ongoing threat to public health.

See Online for appendix 1

See Online for appendix 2
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disease between 1984 and 2020 (n=193) and 
229 environmental isolates from the Scottish reference 
laboratory archive over the same timeframe, which we 
selected to represent the breadth of spatial and temporal 
diversity of environmental isolates in the archive. The 
archive contains isolates that were collected as part of 
outbreak investigations, enhanced surveillance, and 
general submissions from Scottish water testing 
laboratories and included 16 isolates from ships or from 
outside Scotland. We previously sequenced 431 Scottish 
isolates (NCBI BioProject Accessions: PRJEB31628 
[n=395], PRJEB6631 [n=25], and PRJEB1828 [n=11]),16 
and 22 (5%) were newly sequenced for the current 
study, with reads uploaded to the NCBI Short Read 
Archive under the BioProject accession PRJEB50423.

Core-genome multilocus sequence typing (cgMLST) and 
cluster definition
Adapting a previously published cgMLST scheme for 
L pneumophila,17 profiles were assigned to the quality-
filtered data using ChewBBACA (v2.0.17.2),18 including 
appropriate controls for atypical gene calls such as 
missing loci (appendix 1 p 11). Genomes were clustered 
hierarchically by the number of core gene variants 
between cgMLST profiles in R (median-link, v3.6.3), 
inferred using 1469 loci present in at least 95% of the 
data (see gene list in appendix 2). cgMLST clusters were 
defined as clusters of isolates that differ at less than 
115 cgMLST loci, determined using the max-clade 
method of TreeCluster (v1.0.0).19 This conservative 
threshold was chosen to identify clusters of isolates that 
might have diverged over long timescales, informed by 
the findings of the outbreak in Edinburgh in 2012.12 This 
outbreak comprised a diverse infecting population of 
ST191 subtypes that had been persisting in the 
environment for a long time before the outbreak12 and 
contained strains that differed at up to 115 cgMLST loci. 
We then performed phylogenetic analysis of each 
cgMLST cluster to identify phylogenetic clades 
(subclusters), in which the majority of isolates shared 
epidemiological metadata.

Phylogenetic analysis
Maximum-likelihood core single-nucleotide polymor-
phism (SNP) phylogenies were constructed for each 
cluster containing at least one Scottish isolate, using the 
General Time Reversible model with 1000 bootstrap 
replicates. Phylogenies were generated from core SNP 
alignments with recombinant regions removed using 
Gubbins (v2.3.4; appendix 1 p 11), selecting the highest 
N50-valued assembly as a reference. Phylogenetic 
analysis of the entire dataset was performed using the 
same method but without removing recombinant SNPs 
and using the Philadelphia-1 reference genome to call 
variants (GenBank accession AE017354.1). For select 
clusters, rooted trees were constructed by the same 
method with the additional inclusion of an outgroup 

sequence chosen based on the location of clustered 
isolates in the whole-dataset phylogeny. Phylogenies 
were visualised using GrapeTree (v1.5.0)20 and the 
Interactive Tree of Life web visualisation tool (v6.5.7),21 
with additional formatting and details added using 
InkScape (v1.0). 

Patient metadata
Permission to access patient epidemiological data was 
sought and obtained from the electronic data research 
and innovation services (part of the Information Services 
Division of Public Health Scotland) through the public 
benefit and privacy panel for health and social care. We 
obtained epidemiological data on the Scottish population 
from 1984 to 2020. Limits were applied so that individual 
cases could not be identified. However, information on 
broad regions of home and travel were available, as well 
as age range, sex, whether patients smoked or had 
common symptoms, and whether the case was travel-
associated, community-associated, or hospital-associated. 
The project adhered to the ethical principles in the 
Research Governance Framework for Health and 
Community Care, Second Edition, 2006, and applicable 
legal and regulatory requirements. Associated metadata 
for the sequences downloaded from NCBI was collected 
using e-utilities (v12.3) and processed using an in-house 
pipeline. Sequence-based typing profiles were estimated 
with MLST (v2.19.0), using an archived copy of the 
sequence type profile information from Public Health 
England22 and resolving composite allele calls using 
Python (v3.6.5). Where the sequence type could not be 
determined due to the presence of novel or duplicated 
typing alleles, sequences were classified as undetermined. 
Additional metadata was sourced from the relevant 
scientific literature (appendix 1 pp 11–12). Unless 
otherwise stated, isolates with missing metadata were 
classified as unknown for the category in which data was 
unavailable.

Case definitions
In accordance with the European Centre for Disease 
Prevention and Control (ECDC) definition of an 
Legionnaires’ disease cluster,23 isolates were considered 
epidemiologically linked if they were in the same cluster 
and closely associated in space (eg, isolated from the same 
street or building) and time (within a 6-month timeframe). 
We defined isolates as probably related if they were from 
the same geographical region, differed by 16 SNPs or less, 
and differed by fewer SNPs than with other isolates 
unconnected in space. Infections were categorised 
following the definitions used by the ECDC. Patients were 
classified with TALD if they had stayed at or visited a 
commercial accommodation site in the 14 days before the 
onset of illness.24 Similarly, if patients were admitted to 
hospital 2–10 days before onset of illness, infections were 
classified as HALD.25 Community acquisition was assigned 
for cases in which the patient did not meet either the 

For more on InkScape see 
https://inkscape.org/

For more on e-utilities see 
https://github.com/Klortho/
edirect

For more on MLST see https://
github.com/tseemann/mlst

For more on Gubbins see 
https://github.com/
nickjcroucher/gubbins

https://github.com/nickjcroucher/gubbins
https://inkscape.org/
https://github.com/Klortho/edirect
https://github.com/tseemann/mlst
https://inkscape.org/
https://github.com/Klortho/edirect
https://github.com/Klortho/edirect
https://github.com/tseemann/mlst
https://github.com/tseemann/mlst
https://github.com/nickjcroucher/gubbins
https://github.com/nickjcroucher/gubbins
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criteria for HALD or TALD, and cases with insufficient 
data collected were classed as unknown. We defined 
sporadic cases as clinical isolates that did not cluster with 
other clinical isolates at the threshold analysed.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
From 1984 to 2020, there was a total of 1138 cases of 
Legionnaires’ disease identified in Scotland (appendix 1 
p 2). Of these, 193 (17·0%) were culture-positive for 
L pneumophila and were analysed in this study (table).

To investigate the epidemiological relationships 
between isolates, we performed high resolution WGS-
based clustering on isolates from all 193 patients with 
Legionnaires’ disease and 229 environmental isolates 
from our reference archive, as well as 2944 isolates from 
global sources in the NCBI. For isolates with 
computationally determined sequence types, the clusters 
identified by cgMLST were largely consistent with 
sequence-based typing (appendix p 7). We identified 
60 cgMLST clusters that contained at least one isolate 
from Scotland and only 29 (15·0%) of 193 Scottish 
clinical isolates did not cluster with other clinical isolates, 
indicative of sporadic cases by our definition (figure 1A). 
A further 13 Scottish clinical isolates clustered only with 
isolates from locations outside Scotland. Only ten 
clusters accounted for 111 (57·5%) Scottish clinical 
isolates and 57 (29·5%) Scottish clinical isolates belonged 
to one of three clusters that correspond to previously 
described sequence types known to be associated with 
human disease (ST1, ST37, and ST42; appendix 1 p 7). 
Within large clusters, we observed frequent overlap of 
clinical isolates from patients with HALD, CALD, and 
TALD and only four clusters containing three or more 
Scottish clinical isolates were restricted to a single 
infection category (figure 1B). Phylogenetic analysis of 
the entire dataset revealed that clusters containing 
HALD, CALD, and TALD patient isolates had emerged 
from diverse phylogenetic backgrounds across the 
species (figure 1C). The clusters identified often 
corresponded to paraphyletic groups, and we 
hypothesised that this reflected the effect of 
recombination on core gene profiles. To address this 
potential problem, recombination analysis (Gubbins) 
was performed on 43 clusters containing at least four 
isolates in total and including one or more Scottish 
isolates. Of these clusters, 33 (76·7%) contained regions of 
recombination representing more than 90% of SNPs 
identified (range 90·3–99·8%), potentially obscuring 
detection of both long-term and short-term epidemio-
logical linkage (appendix 1 p 8). Taken together, our 
analysis revealed a small number of endemic clones that 
were responsible for 111 historical Scottish infections 
from a mixture of hospital-associated, community-asso-
ciated, and travel-associated environments.

To investigate the relationship between Legionnaires’ 
disease and travel, we analysed the geographical relation-
ships in clusters containing TALD isolates. Only 
17 (16·7%) of 102 Scottish TALD isolates were singletons 
(ie, did not form clusters with other sequences in the 
dataset), and we identified 13 clusters that contained 
more than one TALD isolate, accounting for 64 (62·7%) 
TALD isolates in total. Scottish TALD isolates that 
clustered together were typically from patients sharing 
travel history to the same geographical region, often 
clustering with clinical or environmental isolates from 
those regions (figure 2). Of the 102 TALD patients, at 
least 85 (83·3%) had travelled to destinations outside 

People with Legionnaires’ disease 
(n=193)

Age

30–39 years 4 (2·1%)

40–49 years 26 (13·5%)

50–59 years 60 (31·3%)

60–69 years 59 (30·7%)

70–79 years 26 (13·5%)

80–89 years 4 (2·2%)

Unknown 14 (7.3%)

Sex

Male 134 (69·4%)

Female 51 (26·4%)

Unknown 8 (4·1%)

Legionnaires’ disease classification

TALD 102 (52·8%)

CALD 54 (28·0%)

HALD 18 (9·3%)

Unknown 19 (9·8%)

Smoking status

Unknown 92 (47·7%)

Smoker 72 (37·3%)

Non-smoker 29 (15·0%)

Symptoms

Pneumonia 190 (98·4%)

Cough 67 (34·7%)

Shortness of breath 58 (30·1%)

Increased temperature 54 (27·9%)

Diarrhoea 38 (19·7%)

Confusion 34 (17·6%)

Lethargy 30 (15·5%)

Myalgia 23 (11·9%)

Chest pain or consolidation 22 (11·4%)

Headache 17 (8·8%)

Data are n (%). CALD=community-acquired Legionnaires’ disease. 
HALD=Hospital-acquired Legionnaires disease. TALD=travel-acquired 
Legionnaires’ disease.

Table: Patients with culture-confirmed Legionnaires disease in Scotland 
between 1984 and 2020
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the UK, predominantly within Europe (n=68; 66·7%), 
and eight clusters containing TALD isolates reflected 
either travel within the UK or on ships (figure 2A, B). Of 
note, 11 clusters contained both international TALD 
isolates and non-TALD isolates or UK environmental 
isolates (figure 2B, D), making it plausible that travel 
infections within these clusters were acquired locally. 
Our analysis supported six epidemiological links that 
had previously been inferred in historical cases where 
the putative source of infection was identified 
(figure 2A–C). We also identified 12 TALD patient isolates 

that were probably related to other isolates associated 
with the same geographical regions, differing by fewer 
SNPs than with isolates from other geographical regions 
and by only 0–14 SNPs in total (figure 2D, E; 
appendix 1 p 8). In most cases, further epidemiological 
inference was limited by a lack of available metadata 
relating to a precise source of isolation. However, in two 
cases involving European TALD linked to hotels, the 
associated isolates were located in distinct phylogenetic 
clades within broader lineages of European isolates 
(figure 2C, D). Of note, we identified cases where 

Figure 1: Clustering (cgMLST) and phylogenetic analysis of Legionella pneumophila from Scotland in relation to isolates of global origin
A) Bar plot showing the number of Scottish isolates in each cgMLST cluster of L pneumophila (represented by distinctly coloured circles) that contained one or more 
isolates from Scotland. Bars are split into different colours to indicate the proportion of isolates classified as HALD, CALD, TALD, environmental, or unknown (clinical). 
Environmental isolates from ships are not included. Isolates that were not part of a cluster (singletons) are shown as a single bar on the left. For the three clusters that 
closely corresponded to major sequence types, the consensus sequence type of the clustered isolates for which a sequence type was determined (appendix 1 p 7) is 
shown in text above the bar. (B) A Venn diagram showing the number of clusters with Scottish clinical isolates that contained each possible overlap between infection 
categories. Infection category colours are consistent with figure 1A. Both the number and percentage of isolates in the clusters with each overlap are shown and 
singletons are included as separate, individual clusters. (C) A maximum likelihood core single-nucleotide polymorphism phylogeny of the entire dataset, with the 
cgMLST clusters containing one or more isolates from Scotland indicated by the same colours used for the circles in figure 1A. cgMLST=core-genome multilocus 
sequence typing. CALD=community-acquired Legionnaires’ disease. HALD=hospital-associated Legionnaires’ disease. TALD=travel-associated Legionnaires’ disease. 
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probably related isolates were collected 4–17 years apart  
(appendix 1 p 9). For example, a TALD isolate and 
environmental isolates from the same travel destination 
region differing by only 4–5 SNPs were collected 
14– 17 years apart, suggesting long-term persistence of an 
environmental clone with potential to cause TALD 
(figure 2E). To our knowledge, this is the first report of an 
international travel link between closely related isolates 
over such a long timeframe. Taken together, these data 

demonstrate the capacity for WGS to detect short-term 
and long-term epidemiological clusters associated with 
international travel.

To investigate the cause of HALD infections in Scotland, 
we examined the relatedness of previously defined HALD 
isolates to environmental isolates from nine different 
Scottish hospitals (denoted A–I). Isolates collected from 
seven hospitals belonged to more than one cluster, 
indicating the presence of multiple L pneumophila 

Figure 2: Identification of national and international TALD-associated clusters.
Maximum likelihood core single-nucleotide polymorphism phylogenies of five clusters containing TALD isolates (indicated by nodes with orange outlines), visualised 
using GrapeTree.20 Clusters were selected to exemplify the types of geographical connections referred to in the text. (A) An isolate from a patient with TALD in 
Scotland with a national travel history is in a distinct phylogenetic clade with an epidemiologically linked environmental isolate. (B) An isolate from a patient with 
TALD in Scotland with a travel history involving a ship is in a distinct phylogenetic clade with an epidemiologically linked environmental isolate. The cluster contains 
additional isolates from ships and other isolates from Scotland. (C) Several isolates from patients with TALD in Scotland with travel history to southern Europe are in 
a distinct phylogenetic clade with other isolates from southern and western Europe. An isolate from one patient with TALD in Scotland is located in a nested 
phylogenetic clade with an epidemiologically linked environmental isolate. (D) An isolate from a patient with TALD in Scotland with international travel history to 
southern Europe is located in a distinct phylogenetic clade with a probably related environmental isolate. The cluster contains additional isolates from southern 
Europe and other isolates from Scotland. (E) Several isolates from patients with TALD in Scotland with travel history to southern Europe are located in a cluster with 
other clinical and environmental isolates from southern and western Europe. The cluster includes a pair of isolates that are probably related. Branch lengths are drawn 
to scale, branches of length of less than 0·00015 are collapsed and node sizes drawn proportionally to the number of isolates. Nodes are coloured by geographical 
region, with pie charts used to indicate the geographical distribution of isolates at collapsed nodes. Environmental isolates and Scottish TALD isolates are indicated by 
node border colour. (F) A map of geographical regions used to analyse the data is provided. For patients with TALD with travel history to multiple geographical 
regions or with a history of international travel on ships, additional known travel destinations are indicated by text. CALD=community-acquired Legionnaires’ 
disease. TALD=travel-associated Legionnaires’ disease. 
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lineages. However, phylogenetic analysis revealed nine 
distinct hospital-associated clades (defined as clades in 
which most isolates, and at least four in total, 
were environmental isolates from the same hospital; 

appendix 1 pp 3–6). Of the 18 patients diagnosed with 
HALD, isolates from seven (38·9%) patients belonged to 
hospital-associated clades that were specific to an 
individual hospital (clades 4, 5, 7, and 9), consistent with 

Figure 3: Temporal and phylogenetic analysis reveals hospital-associated lineages of Legionella pneumophila
(A) The temporal distribution of hospital-associated Legionnaires’ disease and environmental isolates associated with different hospitals over the timeframe of the 
study. Individual hospitals are indicated by letters and hospitals with less than four environmental isolates are grouped together and labelled as other. Isolates are 
coloured by hospital-associated clade, with grey used to indicate isolates that were not part of a hospital-associated clade. Clinical isolates within close outgroups to 
hospital-associated clades are indicated by text. Bootstrap support values are shown for each clade that did not constitute an entire cluster (or an entire cluster 
excluding one isolate). (B) Maximum likelihood core SNP phylogeny of the cluster containing hospital clade 5, with the branch scale indicated. Near-monophyletic 
clades of Scottish isolates (allowing up to one exception) are indicated by blue branches, with the exceptions marked in grey to match the other parts of the tree. 
An outgroup was selected as described in the methods. The exact date range of the hospital-associated clades is indicated by bold text. (C) Maximum likelihood core 
SNP phylogeny of the cluster containing hospital clade 4, shown as in 3B. CALD=community-acquired Legionnaires’ disease. SNP=single-nucleotide polymorphism.
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their HALD classification based on epidemiological 
information. Another seven (38·9%) HALD isolates were 
within close outgroups to hospital-associated clades, 
differing by up to 25 non-recombinant SNPs from 
associated hospital isolates (2 and 8; appendix 1 pp 3–4). 
Importantly, temporal analysis showed that closely related 
clinical and environmental isolates associated with 
individual hospitals had been sampled over 1–19 years, 
between 1989 and 2008 (figure 3A). Our phylogenetic 
analysis indicated that L pneumophila populations in 
hospitals are often closely related to those in other 
environmental reservoirs, presenting a challenge for 
source attribution (figure 3B;  appendix pp 3–6). Hospital-

associated clades 2, 4, 5, and 7 had emerged from broader, 
diverse clades of Scottish isolates (with one exception in 
clade 4) that included isolates from a variety of 
environmental reservoirs (figure 3b, C; appendix 1 pp 3, 5). 
The hospital-associated clade 5 was closely related to 
Scottish CALD isolates from an outbreak more than 
30 km from hospital I (figure 3B). Even though the 
outbreak isolates were collected more than a decade 
earlier, they only differed from the hospital clade isolates 
by 6 to 18 core alleles. Similarly, the cluster containing 
hospital clade 4 also included two CALD isolates 
(figure 3C), which were spatially and temporally clustered 
with each other but were isolated more than 200 km from 

Figure 4: Identification of an Legionella pneumophila lineage responsible for numerous CALD cases over 13 years
Maximum-likelihood core SNP phylogeny of a single cluster (120 isolates, including 29 from Scotland) generated from non-recombinant SNPs and including the 
Philadelphia-1 reference genome as a closely related outgroup to root the tree. Three large clades containing no isolates from this study have been collapsed. 
A specific, predominantly Scottish clade (69% bootstrap support, described in text) is collapsed and shown separately (marked in blue). Isolates are labelled with the 
year of isolation. Bold text is used to indicate isolates from 12 historic CALD cases referred to in text. The infection category and isolation location countries are 
indicated by colour. Three epidemiologically linked pairs of isolates are indicated. CALD=community-acquired Legionnaires’ disease. SNP=single-nucleotide 
polymorphism. TALD=travel-associated Legionnaires’ disease. 
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the hospital. Despite their wide geographical range, the 
isolates in this cluster differed by less than 
50 non-recombinant SNPs, suggesting a relatively recent 
common ancestor. Collectively, these data indicate that 
clinically relevant Scottish endemic clones of 
L pneumophila might be geographically widespread in a 
variety of reservoirs. Furthermore, hospital-associated 
strains probably emerged following the introduction of 
more widely disseminated clones into hospital water 
systems, followed by persistence or regular re-seeding 
over a long timeframe.

Finally, to investigate the epidemiology of CALD in 
Scotland, we examined the epidemiological relationships 
in clusters containing CALD isolates. Excluding the 
Edinburgh outbreak in 2012, our data included single 
CALD isolates from each of 40 patients, of which 15 
(37·5%) sequences were located as singletons or in 
independent clusters. In contrast, isolates from 12 (30·0%) 
of 40 patients with CALD, collected over a 13 year time 
period (from 2000–13), belonged to a single cluster, which 
consisted of 120 global isolates of primarily ST37, including 
from nine (28·1%) of the 32 patients in the younger age 
range (<50–59 years; figure 1A). Nine CALD isolates in this 
cluster, collected over a 9-year period from locations up to 
35 km apart, were segregated in the same phylogenetic 
clade (69% bootstrap support), which also contained one 
Scottish clinical isolate of unknown provenance, three 
from the rest of the UK, and six associated with other 
European countries, either by isolation or travel (figure 4). 
Notably, at least seven of the eight environmental isolates 
in the clade were from a defined urban area within 
Scotland and six were from different private homes. 
Sequenced isolates from three of these patients with CALD 
were included in our dataset and segregated together with 
corresponding environmental isolates in the phylogeny 
(figure 4). Taken together, the data suggest that most CALD 
cases are sporadic and have a diverse clonal cause. 
However, we have revealed the existence of a single major 
lineage of L pneumophila responsible for at least 12 historic 
CALD cases in Scotland.

Discussion
In this study, we carried out a historical analysis of all 
clinical isolates of L pneumophila in Scotland spanning a 
36-year timeframe. Our genomic clustering and 
phylogenetic analysis revealed that many Scottish 
Legionnaires’ disease infections are caused by a small 
number of widely disseminated L pneumophila clones, 
found in the community, travel, and hospital environ-
ments. It has previously been demonstrated that some 
L pneumophila sequence types are more likely to cause 
human infections, which might reflect enhanced 
pathogenicity.26 In particular, we identified one lineage that 
contained a quarter of all community-associated infections 
in Scotland, spanning a 13-year timeframe within a fairly 
small, 35 km geographical area. All isolates in the lineage 
belonged to ST37, a major global disease-associated 

clone, and at least three cases had confirmed links to 
environmental isolates cultured from residential potable 
water isolates, suggesting that the lineage might have 
existed in Scottish drinking water. It should be pointed out 
that Legionella spp are ubiquitously found in water, but our 
findings highlight the potential for environmental 
screening to identify strains with increased pathogenicity.

Our analysis revealed the existence of specific 
sublineages of L pneumophila associated with repeated 
infections in Scotland over many years, and inclusion of 
clinical and environmental isolates from national and 
global sources revealed previously cryptic epidemiological 
relationships, such as closely related TALD isolates that 
were associated with similar European travel destinations. 
Consistent with previous analyses,5,10 we also found that 
specific lineages of L pneumophila were sampled from 
Scottish hospitals over many years. Phylogenetic analysis 
indicated that these hospital-associated strains had 
typically emerged from diverse, widely disseminated 
clones and that hospital plumbing might be colonised or 
re-seeded from integrated municipal systems with 
specific subtypes of L pneumophila. Of note, there have 
been no hospital cases of Legionnaires’ disease in 
Scotland in the last 10 years, probably due to improved 
water safety management and treatment regulations.27

Clustering of TALD cases in Europe has been reported 
previously but our findings indicate that such 
epidemiological links might exist over a much longer 
timeframe than previously appreciated.28 For most TALD 
cases, there was a scarcity of environmental isolates to 
make definitive links to the travel destination. However, 
for two confirmed cases of European TALD, environmental 
isolates formed close monophylies with clinical isolates 
and were nested within larger European clusters, 
highlighting the value of wide environmental surveillance 
sampling. In previous analysis of 64 environmental 
isolates from the same urban area, a clear geographical 
signature was observed, which provided sufficiently high 
genetic resolution to train predictive models for source 
attribution.11 However, culturing L pneumophila from water 
samples has a low rate of success29 and our analysis 
highlighted large gaps in the sampled diversity of 
environmental L pneumophila that should be addressed for 
more effective source attribution.

A limitation of L pneumophila WGS studies is that 
culture-positive cases account for only 10–20% of all 
clinical samples (17% in the current study). Theoretically, 
this low frequency of culture success could introduce a 
bias towards strains that are more easily cultured in vitro. 
However, previous studies have not identified differences 
in the culture success rate of different sequence types, 
resulting in similar distributions of sequence-based 
types among samples subjected to culture-depen-
dent and culture-independent typing.26,30 Accordingly, 
our sequenced clinical isolates probably represent a 
reasonable snapshot of historical Scottish clinical 
L pneumophila. Furthermore, our main discovery of 
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specific clones that are responsible for recurrent 
infections of Legionnaires’ disease over many years in 
Scotland would be unaffected by such a bias.

As with other studies,10,11 we often observed close 
genomic clustering of spatially and temporally unrelated 
isolates, presenting implications for outbreak investi-
gation. For many bacterial pathogens, there is a clear 
correlation between genomic and epidemiological 
relatedness, and genetic distances can be used to define 
clustering thresholds that capture epidemiological links.31 
However, studies in L pneumophila have shown a large 
overlap between the similarity of epidemiologically linked 
and unlinked isolates, owing to diverse routes of infection 
and complex biological factors.3,7,10 Importantly, depending 
on the environment, L pneumophila might either 
proliferate rapidly or undergo long periods of dormancy 
resulting in variable evolutionary rates of different 
populations.32 Accordingly, the appropriate genetic 
distance thresholds required to capture epidemiological 
links might be unclear, and will depend on the dynamics 
of individual outbreaks, as proposed for Salmonella.33

Accordingly, we propose the application of conservative 
distance thresholds that are informed by our understanding 
of the biology of Legionnaires’ disease outbreaks to capture 
epidemiological links, though definitive validation of 
proposed epidemiological links might then require deep 
environmental sampling and detailed epidemiological 
metadata analysis. Our data also highlight the importance 
of prospective sampling to inform appropriate preventive 
measures. For example, HALD isolates in two clusters, 
which were collected years before environmental isolates 
from the hospital were obtained, appeared as outliers of 
respective phylogenetic clades.10 The broad timeframe of 
up to 17 years for isolates within many clusters supports a 
recent proposal to re-evaluate the European Legionnaires’ 
Disease Surveillance Network cluster definition to consider 
accommodation sites associated with multiple cases 
regardless of the time elapsed between them.34 To support 
this proposal, we advocate the importance of ongoing 
environmental surveillance for L pneumophila in industrial 
and public water systems to support the rapid delineation 
of Legionnaires’ disease clinical cases and outbreaks. 
Taken together, our findings support the proposal that 
routine regular environmental sampling is required to 
facilitate the WGS-based identification of epidemiological 
links and the attribution of outbreak sources, and to 
inform public health measures targeting endemic clones 
that are an ongoing threat to public health.
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3.3)  Discussion 

In the published paper, I demonstrate the value of population-scale WGS data to investigate the 

epidemiology of LD. The analysis showed that distinct endemic clones were detected in hospital, 

community and travel-associated environments over long timeframes, providing supporting 

evidence for the re-evaluation of some epidemiological cluster definitions238. In addition, this work 

supports previous evidence that the genetic distances between epidemiologically related and 

unrelated distances may overlap depending on the nature of infections and the strains involved39. 

Based on this analysis, I conclude that the appropriate genetic distances to inform epidemiological 

investigations should vary depending on context. When considered together with the genomic 

diversity of L. pneumophila and the variation in genomic diversity between different lineages123, 

the use of lineage-specific typing methods and schemes may also be beneficial for epidemiological 

investigations and should be explored in future work. Whereas I excluded diverse strains from the 

analysis to avoid the loss of genomic resolution, this would also allow for the epidemiological 

investigation of more diverse Legionella strains as well as L. pneumophila subsp. pneumophila. 

My analysis revealed that a limited number of endemic clones had caused the majority of historic 

infections in Scotland, supporting previous evidence that some strains may be more likely to cause 

human infections123. To address this, I propose the use of routine, environmental surveillance and 

WGS as a part of public health to monitor the occurrence of clinically relevant strains. In addition, 

this would help to understand the occurrence of some highly similar genotypes in distinct 

environmental reservoirs over wide geographical areas and many years apart. In this analysis, I 

observed this for specific endemic clones that were detected in both hospital water systems and 

other environments. These observations support the conclusions of previous authors that WGS 

data may be insufficient to confirm the source of some infections without deep prospective 

sequencing of environmental strains120. 

Finally, I suggest that environmental surveillance through metagenomic sequencing may offer 
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several advantages over conventional sequencing. Firstly, this would prevent the need for 

culturing, which was identified as a potential source of bias in the distribution of clinical isolates 

across clusters239. Secondly, this may allow detection of Legionella in low abundance that are 

missed using other methods239. Lastly, this would also capture the distribution of other OPPPs and 

also native hosts, which could provide additional insight into the adaptations of Legionella to 

artificial reservoirs141.  
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4) Accessory genome variation in clinical and 
environmental L.pneumophila  
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4.1)  Introduction 

4.1.1)  Genotype-phenotype association methods to study infection potential 

across bacterial populations 

Comparative genomics has revolutionised research into infectious diseases, with the increasing 

wealth of genomic data allowing more powerful statistical approaches to understand the biology 

of infection240. Among these, GWAS and ML methods have been widely adopted for identifying 

genetic features correlated with bacterial virulence potential57. In association analysis, two major 

challenges are presented by population structure and genomic linkage between features, both of 

which can cause spurious, indirect correlations with a phenotype57. These problems are 

particularly relevant to bacteria, which have large, clonal populations and reproduce asexually, 

thereby lacking the regular meiotic recombination that breaks up chromosomal linkage 

disequilibrium in eukaryotes58. Furthermore, most GWAS methods test features independently, 

preventing detection of epistatic interactions and requiring stringent multiple testing corrections 

at the cost of further statistical power58. 

By comparison, many ML methods are robust to deal with highly correlated features, providing 

more information to detect smaller effects58,241. As with traditional GWAS approaches, these can 

model the entire pangenome (including SNPs and accessory genes) by using k-mers or unitigs as 

features58. This can be achieved by prioritising certain features using decision tree methods or 

using dimensionality reduction to condense correlated feature subsets58,241. It is also possible to 

capture feature correlations using regularised regression models such as elastic net and, unlike 

more complex ML methods, these have been shown to perform well for high dimensional data 

with fewer observations and including many correlated features242. Elastic net regression linearly 

combines the penalisation penalties of lasso and ridge regression (L1 + L2), which condenses 

correlated features (to give them similar model weights) and removes less important features 

(reducing small model weights to zero) to reduce model complexity and prevent overfitting243. 
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Since lineage effects introduce correlation between features, the elastic net typically condenses 

these in the same model fitting and will down-weight them, providing an inherent control for 

population structure58. In some cases, this leads to more accurate classification than providing an 

explicit control, although adding an explicit control has been shown to improve prediction 

accuracy on unseen data58. 

A recent PYTHON implementation of elastic net has been shown to perform favourably compared 

with simulated bacterial GWAS, although it has not yet been widely tested on real data58,244.  

4.1.2)  Variation between genomes from clinical and environmental L. pneumophila 

isolates 

Whilst comparative genomic methods have been used widely to explore the genetic basis for the 

variation in infection potential of bacterial pathogens, only a limited number of genomic studies 

have explored this phenotype in L. pneumophila. Legionella are diverse and their evolution is 

shaped by extensive recombination129. Their high genomic diversity reflects their generalist 

lifestyle and the potential to cause opportunistic human infections is thought to be an indirect 

consequence of adaption to a diverse host range134,142. However, even in the apparent absence of 

human adaptation, some strains appear to cause human infections more frequently. The vast 

majority of Legionnaires' disease cases are attributed to one serogroup of one sub-species, and 

within this group there is evidence that most infections are caused by a small number of recently 

emerged lineages123. Enigmatically, no differences have been observed in the infectivity of diverse 

clinical and environmental isolates in a previous study using in-vivo infection models and the 

factors leading to the clinical prevalence of certain genotypes remain poorly understood245. 

Bacterial pangenomes - the collective genomic code, including both universally shared core 

sequences and subset or genome-specific accessory sequences - can be characterised as either 

open or closed, depending on the rate of pangenome growth as more genomes are considered. 

In closed pangenomes, the rate rapidly plateaus, which is typically associated with low rates of 
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HGT and infrequent gene gain and loss. L. pneumophila has an open pangenome, with frequent 

HGT and genome plasticity, with a large accessory genome and a slow rate of plateauing growth 

as more genomes are considered129,246. Encoding the largest arsenal of molecular effectors in any 

studied bacterial species, specific L. pneumophila lineages may encode distinct virulence traits 

(features that improve their capacity to infect host cells). These may contribute towards variation 

in virulence potential146. Most L. pneumophila lineages are naturally transformable, potentially 

exposing them to a wide variety of foreign DNA both within their hosts and from other members 

of microbial biofilm communities187,200. Their genomes frequently include MGEs such as plasmids, 

ICEs and genomic islands that have contributed to their evolution and diversity183,187. Recently, a 

GWAS comparing L. pneumophila isolation sources identified a strong association of the lag-1 

gene with clinical isolates, which was subsequently shown to provide protection against 

complement-dependent killing by human phagocytes131. Whilst many features have been shown 

to promote L. pneumophila invasion, growth and survival inside host cells247, only lag-1 has been 

shown to clearly correlate with human infection. However, clinical and environmental isolates in 

the major disease-associated ST1 lineage have been shown to differ markedly in their genome 

content, with environmental isolates possessing larger, more diverse genomes with a higher 

average nucleotide diversity and enriched for genes with a role in conjugation or transposition198. 

A recent study also identified convergent mutations in unrelated clinical isolates at the same 

regions of select genes, suggesting that rapid selection within patients may lead to genetic 

diversification248.  

In this study, I aimed to identify additional genomic features that differentiate clinical and 

environmental isolates of L. pneumophila using regularised pangenome-spanning regressions (an 

ML approach) with the potential to capture small or correlated effects on the phenotype. I then 

aimed to evaluate these features by exploring their genomic location throughout the population 

using a pangenome synteny network. 
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4.1.3)  Aims 

- To define the pangenome of L. pneumophila and determine whether differences in size and 

homogeneity observed in ST1-like genomes are characteristic of the wider population 

- To identify a set of candidate genomic features that differentiate clinical and environmental 

isolates of L. pneumophila that may include features with small or correlated effects  

- To explore the genome location of features with respect to linkage and population structure 

- To identify enriched biological functions in the COGs mapped to these features 
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4.2)  Methods 

4.2.1)  Genome Assembly and Quality Control  

Genomes and associated metadata were collected as described in Chapter 2 (Methods 2.1-2.3). 

For the regression analysis, quality filtering was conducted using the score based filtering pipeline 

described in Chapter 2 (section 2.3.1) with an amended version of the same R script (the 

C4_ML_filtering.R script in the supplementary code repository). The same parameters were used 

to assign a score to each assembly (Table 2.3) and the same filtering was applied, with the addition 

of a single new filtering step to remove assemblies for which no binary source data (clinical or 

environmental) was available. In total, 3304 quality filtered genomes had sufficient available 

metadata and were included in the analysis. To keep the metadata consistent with the other 

analyses presented in this thesis, data for the pangenome analysis were selected by combining 

the non-redundant genomes used in other analyses (n=3652). Specifically, I included all the 

genome assemblies in the regression analysis (n=3304) and 348 additional assemblies that had 

insufficient source metadata for the regression but were included in the epidemiological study 

(Chapter 3). Notably, as described in the paper methods section in Chapter 3, the data for the 

epidemiological analysis were filtered using a slightly different set of criteria (using in the 

C3_Epi_filtering.R script in the supplementary code repository) and included a small number of 

genomes that would have been filtered using the parameters listed in Table 2.3. 

4.2.2)  Pangenome Analysis 

In total, 3652 L. pneumophila genomes were annotated with prokka (v1.14.0). A list of these 

genomes is included in the supplementary code repository 

(pangenome_analysis_Genome_list.txt). Clusters of orthologous genes (COGs) were identified at 

7 different BLAST protein identity thresholds using PIRATE (1.0.4). This generated a hierarchical 

structure in which the COGs defined at higher identity thresholds were grouped together into 
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larger COGs using more relaxed identity thresholds. COGs were annotated using the consensus 

annotation for constituent genes using the output from prokka, with COGs lacking a consensus 

annotation left as unknown. To better relate these results to the existing literature, I prioritised 

prokka annotations from the reference genomes that were used for QUAST analysis (Results 

section 1 methods) by compiling the Genbank flat format files for each reference (downloaded 

from NCBI with the fasta files) into a single file that was used as input for the `--proteins` flag. 

Annotations based on Legionella genomes were also prioritised using the `--genus` flag. In 

addition, I used the `--force` flag and several flags to provide consistent Genbank-style formatting: 

`--compliant`, ̀ --addgenes` ̀  --centre` set to ̀  UoE` and ̀ --mincontiglen` set to 200. PIRATE was run 

with diamond for faster homology searching and default settings for other parameters, including 

paralog splitting and homology clustering at seven different thresholds (50,60,70,80,90,95, and 

98% identity). GraPPLE (https://github.com/JDHarlingLee/GraPPLE, repo pulled July 29th 2021) 

was used to re-format the gene family presence/absence table and separate the data into the 

COGs at each threshold. To examine the population structure, a tree was constructed from mash 

distances using mashtree (v1.2.0), setting a genome size of to 3,500,000bp, a sketch size of 

100,000, and a minimum k-mer abundance (min-depth) of 0 to increase accuracy. Additional 

calculations, such as statistical tests, the number of accessory genes in each genome, and the 

mean length of genomes containing each COG, were performed in Rstudio (v4.0.3) using the 

C4_pangenome.R script in the supplementary code repository. The isolate metadata from Chapter 

2 was filtered to exclude sequences that were not in the analysis. For statistical analysis, data 

down-sampling was performed using the Jaccard distances that were used to generate the gene 

presence/absence network (below). All input files for the script are included in the “inputs” 

directory of the supplementary code repository. 

4.2.3)  Pangenome Network Visualisation 

GraPPLE (see above) was used to generate networks from the PIRATE output that could be 
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visualised in Graphia (v3.0). A COG presence-absence network was constructed from the binary 

table representing the presence or absence of each COG across genomes. Network edges were 

constructed between pairs of COGs based on the similarity of their distribution across genomes, 

which was measured as the Jaccard distance between the profile of genomes containing each 

COG. Edges were not constructed for Jaccard distances < 0.3. To investigate the gene order, a 

second ‘pangenome synteny network’ was generated in which the edges were constructed using 

their frequency of synteny (the frequency with which COGs occurred adjacent in the genomes) 

across the data. To reduce the analysis time, true core genes (present in 100% of isolates) and 

singletons (present in a single isolate) were omitted from Jaccard distance calculations and 

excluded from the presence/absence network. Singletons were also excluded from the synteny 

network on the same basis. All networks were constructed from the COGs defined by 60% protein 

BLAST identity, accounting for the diversity of SBT genes observed in different L. pneumophila sub-

species in a previous pangenome analysis195. 

Networks were visualised in Graphia (v3.0) and analysed using built-in transformation functions. 

To aid visualisation of the synteny network, Louvain clustering was also performed on the synteny 

network with a granularity setting of 0.5 and the network was separated by cluster. To identify 

clusters of genes shared by similar subsets of the population, Markov clustering was performed 

on the gene presence-absence network after filtering to include only the common accessory COGs 

(present in 5%-95% of isolates). Core genes (95%-100% of isolates), including those omitted from 

the network, were designated to a single, independent cluster. One very large cluster of common 

accessory genes (n=942) was further separated using the k-Nearest-Neighbours algorithm to 

remove edges, setting k = 7 to retain only the 7 strongest connections (lowest Jaccard distances) 

with other COGs. Sub-clusters were then defined using Louvain clustering with a granularity of 0.5. 

The clusters were saved to a file and added to the metadata for the synteny network. 

4.2.4)  Regression Analysis and Pangenome Hit Mapping 
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Regression analysis was performed by collaborators (B Rhodes and M. Gutmann) on a subset of 

3304 assemblies for which isolation source metadata was available at the time of initial quality 

control filtering (02/11/2020). A list of these genome assemblies is included in the supplementary 

code repository (ML_Analysis_genome_list.txt). Unitigs (unique non-overlapping extended k-

mers) for the dataset were determined using unitig counter (v 1.1.0), then a lasso and elastic net 

model were trained with the `--wg enet` parameter in pyseer (v 1.3.6) using the default 10-fold 

cross-validation. An alpha parameter of 0.0069 was used for the elastic net model and the Lasso 

model was run by setting alpha parameter to 1. Both models were unweighted (without an explicit 

control for population structure) and the `enet_predict_pyseer` script (packaged with pyseer) was 

used to determine the model accuracy on training and test data.  

The list of significant unitigs received was then filtered to exclude hits with a MAF <= 2% of isolates 

(n=66) or flagged with the term ‘bad-chisq’ (failing a built-in pyseer quality control flag). In addition 

to training a multiple regression model, the pyseer prediction pipeline also performs independent 

association tests on the hits to generate p-values, useful as a ranking criteria for further validation. 

Therefore, a bonferroni cut-off (for 95% confidence) was also applied to features with a slope > 0 

to correct for multiple testing. Significant hits were mapped to assemblies using the 

“annotate_hits_pyseer” script packaged with pyseer (v1.3.6), specifying 100% identity BLAST 

matches with each query sequence (unitig) and providing an ordered list of assemblies in which 

to prioritise mapping. The list was ordered by N50 value, with 7 reference sequences representing 

major subsp. Pneumophila lineages at the top of the list, to prioritise loci from well-studied 

genomes (in order: Paris [ASM4864v1], Philadephia-1 [ASM848v1], Lens [ASM4866v1], 

HL06041035 [ASM30684v1], Lorraine [ASM30686v1], Corby [ASM9254v1] and Pontiac 

[ASM167711v2]). The mapped loci were then matched to corresponding COGs and gene families 

(PIRATE) using a python script (the C4_PyseerHitMapping.py script in the supplementary code 

repository), which called an in-house GFF parser (the C4_GFF.py script in the supplementary code 

repository) and required a re-formatted version of the PIRATE loci_list.tab output file with 
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paralogs separated. This re-formatted table was generated using the 

C4_PIRATE_loci_table_generator.sh script in the supplementary code repository. To examine the 

effect of population structure on the data, the presence and absence of each hit was calculated 

with BLAST using the C4_unitig_PA_table_generator.sh script in the supplementary code 

repository. The output was then re-formatted as input for GrapeTree. 

4.2.5)  GO Enrichment Analysis  

Considering the high potential for functional variation within broadly defined COGs, a more 

stringent 90% similarity threshold was applied to define COGs for GO enrichment analysis. I used 

an in-house script (the C4_prepare_interproscan.sh in the supplementary code repository) to 

select a single representative locus per COG. The chosen representative alleles were then re-

annotated using InterProScan (v5.52-86.0) with pre-calculated match lookup disabled and 

including the appropriate flags to retrieve GO and KEGG pathway identifiers. The output was saved 

as a tab-delimited table and without residue annotations. The enrichment analysis was conducted 

using GO terms with the topGO BioConductor package in R (v2.42.0, downloaded via BiocManager 

v1.30.18) as a part of the C4_pangenome.R script in the supplementary code repository. This 

analysis was limited to the ontology for ‘Biological Processes’ and genes that did not match one or 

more of these terms were excluded. In addition, GO terms were excluded if they matched fewer 

than 15 genes to avoid significance estimates. Similarly, genes were excluded if they were present 

in less than 5% of genomes or were present in all genomes. Significance was determined using the 

Fisher’s test implemented within TopGO. 

4.2.6)  Data Quality Management 

Verification of scripts was conducted by visual inspection of the output throughout the script 

development process. The dimensions, attributes, and values of relevant data constructs were 

routinely printed on screen and inspected to ensure that their data matched the intended output. 

These verification outputs were not recorded, although some examples are written into the code 
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for some scripts, as indicated by the script annotations. For the referenced scripts in the 

supplementary code repository, analysis parameters were hard-coded and can be inspected in the 

relevant scripts. For other analysis parameters that were specified for external software (and not 

run using a referenced script in the thesis text and supplementary code repository), these can be 

inspected in the ‘software_parameters.txt’ file in the ‘version_info’ folder of the supplementary 

code repository. The Graphical parameters used in the Graphia network analyses were specified 

in the Graphia user interface and can be inspected in the network files themselves, which are 

provided in the “supplementary_data/Graphia_Networks” folder of the repository. 
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4.3)  Results 

4.3.1)  Variation in L. pneumophila genome size is more closely related to the 

population structure than the isolation source 

Pangenome analysis revealed 14,338 gene families (COGs using the most relaxed, 50% protein 

BLAST ID), which comprised 48,612 COGs at the highest similarity threshold analysed (98%). Using 

a more relaxed definition of core to account for the species diversity (presence in 95-100% of 

isolates), 2,426 gene families (16.9%) were identified as core, which was 80.7% of the average 

number of gene families per genome (3005.853). To visualise the distribution of COGs across 

clustering thresholds, the accessory genome was grouped into three categories: singletons 

(occurring in one isolate only), rare accessory genes (presence in > 1 and between 0% and 5% of 

isolates) and common accessory genes (presence in 5-95% of isolates). Consistent with current 

knowledge of pangenomes, the number of COGs per gene family increased at higher thresholds 

and a typical pattern of gene distribution was consistently observed, with the majority of COGs 

present in less than 5% or more than 95% of genomes (Figure 4.1).  

 

Figure 4.1) Frequency distribution of COGs in L. pneumophila at 7 BLAST similarity thresholds. The 
number of different COGs are shown at each BLAST threshold (percent identity) used in the PIRATE analysis, 
separated into categories that represent the different fractions of the population in which the COGs are found. 

  

0

5000

10000

15000

20000

25000

50
60
70
80
90
95
98

N
um

be
r o

f C
O

G
s

Gene Frequency 
S = Singleton 
R = Rare 
C = Common 
O = Core

BLAST Threshold  
(percent identity)

S C OR S C ORS C OR S C ORS C OR S C ORS C OR
Gene Frequency



92 

 

 

To investigate whether the previously identified larger genome size and heterogeneity of 

environmental ST1 and closely related isolates (with only one or two variants in their SBT genes) 

was a characteristic of all L. pneumophila198, I first measured the variation in accessory genome 

size across the population (Figure 4.2). This was strongly correlated with both the genome size 

and the total number of COGs (regression p-values < 2x10-16 and R2 > 0.95). I used COGs defined 

by 60% protein BLAST identity, accounting for the known diversity of L. pneumophila sub-

species195. I found that the accessory genome varied considerably in size between major lineages, 

accounting for an average of 21.6 % of the genome within the largest major lineage (PopPUNK 

Cluster 1, containing ST1 and ST1-like isolates) and only 16.6% within the second largest major 

lineage (PopPUNK Cluster 2). Despite high overall variation in the population, the fraction of 

accessory genes was visually more consistent within most lineages and remained almost constant 

in highly clonal lineages (characterised by monophyletic clades with very short branch lengths).  

  



93 

 

 

Figure 4.2) Variation in L. pneumophila accessory genome size across the population. A mash tree 
of genomes included in the PIRATE analysis. The 8 major PopPUNK clusters (Chapter 2 Section 2.3.4) 
are indicated by distinct clade colours on the inner ring. Minor PopPUNK clusters are not coloured. The 
isolation source is indicated by the middle ring colour and the outer ring is coloured by the fraction of genes 
in the accessory genome (<95% of isolates). Branches lengths represent the mash distances between 
isolates and are shown to the scale provided. 

  

PopPUNK Cluster (Inner)

1

2

3

4

5

6

7

8

Isolation Source (Middle)

Clinical

Environmental

No Data

Accessory Fraction (Outer)

10

12

14

16

18

20

22

24

26

28

30
Tree scale: 0.01



94 

 

 

The overrepresentation of highly clonal lineages with a nearly constant genome size could bias 

statistical tests. Therefore, to statistically compare the number of genes in clinical and 

environmental isolates, I down-sampled the data by removing one genome from every pair that 

were isolated from the same source (clinical or environmental) and with more than 98% similarity 

(Jaccard distance) in their gene presence/absence profiles. The total number of genes per genome 

was significantly higher in the down-sampled data for environmental isolates than for clinical 

isolates (Figure 4.3.a, Welch’s two sample t-test, p = 1.069x10-7) with significantly greater variance 

(F test, p = 3.329x10-5). The number of genes was also higher in environmental isolates from 

several different artificial environmental reservoirs, but not in the 14 genomes that were isolated 

from natural reservoirs (Figure 4.3.b). As the fraction of accessory genes differed greatly between 

major lineages, I also compared the number of genes in clinical and environmental isolates for 

each major lineage separately (Figure 4.3.c). Two lineages were heavily biased towards clinical 

isolates (> 90% of genomes, PopPUNK clusters 3 and 6) and in these lineages, the average number 

of genes was higher in clinical isolates. In contrast, in the five major lineages with the close to 

equal numbers of clinical and environmental isolates (PopPUNK clusters 1, 2, 4, 7 and 8), the 

average number of genes was higher in environmental isolates. Independent two-sided t-tests for 

each lineage revealed only three lineages with a significant difference and more than 99% 

confidence (Figure 4.3), which included the cluster containing ST1. 

 



95 

 

 

 

Figure 4.3) Variation in the number of genes in clinical and environmental isolates in different groups of L. pneumophila. Boxplots showing the distribution of the 
number of genes (COGs at 60% protein BLAST identity) per genome in different subsets of isolates in the down-sampled dataset (n = 1063). Violin plots are used to show 
the distribution of data and plot colours are used to indicate the isolation source. The number and fraction of isolates in each comparison is labelled beneath respective 
plots. Separate plots are shown for A) Clinical and environmental isolates B) Clinical isolates and environmental isolates from different types of location C) Clinical and 
environmental isolates separated by PopPUNK cluster, as indicated below the subplot for each cluster. Minor clusters are grouped together and subplot labels are coloured 
to match Figure 4.2 Plots are coloured with the same colours as a) but with the opacity reduced to indicate the level of bias towards one category (equivalent to the 
percentage values below each plot). The p values for Welch’s two sample t-tests are of each lineage are indicated above respective sub-plots. For PopPUNK lineage 4, p-
values are shown with and without the inclusion of ST87 isolates. Above each p-value, text is used to indicate whether the test was Non-Significant (NS), or significant at 
a 0.05 (*), 0.01 (*) or 0.001 (***) significance level. 
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Of note, the number of genes in environmental isolates had a bimodal distribution, which was 

especially prominent and in the genomes from residential or commercial water sources (Figure 

1.3b) in PopPUNK cluster 4 (that had the most significant difference in the number of genes per 

genomes) (Figure 4.3.c). I hypothesised that multiple peaks may result from sub-lineages with 

different ancestral genome sizes, which could have a biased representation towards isolates from 

one source. Upon closer inspection, I found that many isolates from this reservoir (categorised as 

residential or commercial) were collected from the same building. These included 28/35 isolates 

from ST87, a sub-lineage of PopPUNK Cluster 4 with only two clinical isolates, confirming a biased 

sample. To address this, statistical tests were repeated excluding the isolates from this building. 

The total number of genes was still significantly higher in environmental isolates (p = 5.80x10-4) 

across the data and still had greater variance (p = 3.57x10-3) but no longer for PopPUNK cluster 4, 

demonstrating the potential effect of unaccounted sampling bias in the data.  

Given the higher average nucleotide diversity previously observed in environmental isolates from 

ST1 and its close relatives198 and as the BLAST similarity threshold to cluster genes was increased 

(and as more distinct variants were included as separate COGs), I hypothesised that environmental 

isolates might contain proportionally more distinct gene variants. To investigate this, I used the 

down-sampled data to compare the fraction of clinical and environmental isolates that contained 

each COG at three different BLAST similarity thresholds (Figure 4.4.a).  

Overall, only minor differences were observed between clinical and environmental isolates with 

regard to numbers of accessory genes. There was a clear representational bias for many individual 

COGs that were present in a higher fraction of isolates from one source than the other. Rare COGs 

(<10% isolates) appeared to be more frequently present in a higher fraction of clinical isolates, 

which could be explained by the higher total number of clinical isolate genomes and the greater 

probability of any rare gene being in fewer environmental isolate genomes by chance. For 
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common accessory COGs (5%-95% of isolates), I observed a slight overall skew towards presence 

in environmental isolates (Figure 4.4.b). However, in contrast to my hypothesis, a slight decrease 

in this skew was observed at higher thresholds. I also analysed the data using pangenome 

rarefaction curves with similar results. Ultimately, the curves appeared to plateau slightly slower 

for environmental isolates (indicating a marginally larger accessory genome) but had a similar 

shape using alleles defined at the 98% and 60% thresholds (Figure 4.4.c).  

Taken together, the analysis reveals considerable variation in accessory genome size between 

different lineages of L. pneumophila and identified two lineages where the number of genes is 

greater in environmental isolates than in clinical isolates. However, the data suggests that this is 

not reflected across the whole population and sampling bias must be considered a potential 

confounding effect. 
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Figure 4.4) A comparison of the number of distinct COGs in clinical and environmental 
L. pneumophila isolates at different blast thresholds. A) Scatterplots comparing the fraction of 
environmental (x) and clinical (y) isolates containing COGs defined by three different BLAST identity 
thresholds (indicated above plots). Linear regression lines are shown in blue. Points are coloured relative to 
distance between fractions and the degree of bias towards a particular isolation source, with clinical isolates 
shown in red and environmental isolates shown in aquamarine, consistent with 1.3.a. B) Hexagon bin plots 
showing the density distribution of the data for common accessory COGs (5%-95% of isolates in a). Lines 
representing a perfect correlation are shown in black and linear regression lines are shown in blue. Data are 
split into 2500 bins (50 in either axes) and the number of points within the boundaries of each hexagon are 
shown are represented by shading to the scale shown on the right of respective plots. C) Pangenome 
rarefaction curves for clinical and environmental isolates (shown separately) using the data or two different 
BLAST identity thresholds. Lines represent the mean values from 30 repeats, with the line thickness showing 
the standard error of sampling at each point (with the addition of each new genome).  
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4.3.2)  Predicting unique variation in the core and accessory genomes of clinical 

and environmental L. pneumophila isolates using machine learning 

In order to identify fine-scale genetic features associated with clinical or environmental isolates, I 

worked with a collaborator (Benjamin Rhodes) to train a regularised elastic net regression model 

(L1+L2) to predict the isolation source of genomes from a feature set of their unitigs. To examine 

the information gained by including a greater number of correlated features, a separate lasso 

model (L1 only, optimised for sparsity) was also trained. Unitigs were generated from 3304 quality 

filtered genomes with available source data, which were then split into training data (90%) and 

testing data (10%) to measure classification accuracy. The lasso model was better supported, with 

a classification accuracy of 89.07% on the training data and 83.08% on the test data. Whilst the 

elastic net model achieved comparable accuracy for the training data (88.90%), it was slightly 

lower on the test data (80.97%), suggesting overfitting leading to a higher false positive rate. Of 

note, the models trained were unweighted and did not use an explicit control for population 

structure. This decision was based on the similar performance of weighted and unweighted 

models in early trials (data not shown) and the fact that the unweighted models performed 

comparatively well on test data when compared with previous work58. 

Table 4.1) The number of ML hits mapped to different locations in the pangenome. 
Number of Hits Lasso Elastic net Overlap 

Total (unfiltered) 527 16736 527 

Total (filtered) 228 8033 213 

Single CDS 176 6563 167 

Adjacent CDSs 3 141 3 

Paralogous CDSs 9 237 9 

Intergenic 31 789 26 
Unknown  
(contig end) 6 144 6 

Unknown (other) 3 159 2 
Two middle columns show the total number of lasso and elastic net hits, and the numbers mapping to different 
pangenome components. A third column shows the hits that were common to both models, which is reduced 
slightly after filtering (Results 1 Methods) due to the higher bonferroni cut-off value used for the elastic net 
(accounting for more independent tests). 
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After filtering (described in methods section 3), 228 significant lasso hits and 8033 significant 

elastic net hits were retained and were mapped to regions of the pangenome (Table 4.1). 

Consistent with the similarity of the two models, lasso hits were entirely a subset of those in the 

elastic net and mapped to a subset of the same features. In total, 82.46% of lasso hits and 86.41% 

of elastic net hits were at least partially mapped to coding regions, with 77.19% and 81.70% 

respectively mapped to regions that overlapped with a single CDS. Notably, some hits overlapped 

the boundaries between multiple CDSs and a small number were mapped to multiple CDSs due to 

the presence of paralogs sharing the unitig sequence. Accordingly, these hits were excluded from 

further analyses. I observed many hits mapping to the same CDSs or to genes in the same COGs 

and the collective set of genes with hits were members of 848 total gene families. By the relaxed 

definition used here, 472 of 848 gene families were core (55.66%) and 109 (12.87%) were core by 

a stringent definition (present in every genome).  

To identify hits of interest, I followed a previously employed strategy58 and analysed the slopes 

(model weights) of hits within each gene family in context with the number of hits, and the average 

MAF and p-values from independent association tests to identify significant associations (Figure 

4.5). Considering the diversity within gene families, I compared the maximum absolute value of 

slopes to highlight the contribution of variants with the largest slope. Of note, the lasso did not 

always include the hit with the most significant p-value from correlated groups, causing the 

minimum p-values for some gene families to differ between models.  
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Figure 4.5) Gene families compared by the number of mapped hits, maximum effect size, greatest 
significance of association and average MAF. Scatterplot of the maximum effect size and highest 
significance of lasso regression hits mapped to loci in each gene family (top) and COG (bottom) in the PIRATE 
analysis. Outliers are labelled with either the consensus gene annotation (prokka) or the gene family identifier 
(PIRATE) if the consensus was for unidentified genes. The number of hits are indicated by colour using a log 
scale (base 10) and the average MAF is indicated by shading of points and labels.  
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In both models, two gene families stood out on the basis of a large contribution supported by high 

p-values. Consistent with previous GWAS analysis, the lag-1 gene family had the highest 

significance value (1x10-91.12:1x10-92.27) and also had a large contribution in both models131. Another 

top hit was to a gene family annotated as the rtxA toxin (1x10-82.58:1x10-59.16). This family accounted 

for 484 elastic net hits (6.03%) and 37 Lasso hits (16.23%), which was (respectively) 4.65-6.17 

times higher than the number that mapped to any other individual gene family. Although the 

contribution of individual variants was consistently lower than for lag-1, the net contribution of 

hits in this family was by far the greatest of any in the model, suggesting that variation in this gene 

may also be relevant in human infection.  

In summary, I used a machine learning approach to determine a set of candidate genetic factors 

that were correlated with the source of L. pneumophila isolates, and which capture unique 

variation in both the core and accessory genome of clinical and environmental L. pneumophila. 

4.3.3)  Pangenome synteny networks provide more information for analysing 

complex genotype-phenotype association data 

To determine whether the effects of population structure and linkage disequilibrium were 

adequately controlled in the models, I investigated the location of hits in the pangenome (to 

detect linkage) and their distribution in the population (to detect lineage effects). I mapped the 

distribution of each significant unitig individually onto a neighbour joining tree and visually 

inspected patterns using GrapeTree (examples in Figure 4.6.a-b). The relevant files to view this 

data for all hits are included in the supplementary_data/GrapeTree folder in the supplementary code 

repository. The majority of hits appeared to have a paraphyletic distribution and were represented 

in multiple major lineages, providing no evidence of strong lineage effects that would affect their 

significance. The exceptions observed were mostly hits that occurred in only a small fraction of 

isolates (low MAF). To analyse the genomic location of hits, I initially constructed a Manhattan plot 
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against a well-studied reference genome (Figure 4.6.c).  

In bacterial GWAS, lineage effects may be observed as distinct ‘bands of significance’ in Manhattan 

plots, for which features throughout the genome have an equally significant effect on the 

phenotype due to population structure. The absence of these significance bands in Figure 4.6.c 

provides further evidence of the innately reduced effect of population structure on the 

significance of hits. Hits were also located throughout the genome and numerous prominent 

spikes in significance were observed, including two that corresponded to the lag-1 and rtxA2 

genes, respectively. However, not all gene families with highly significant hits in Figure 4.5 

corresponded to peaks in the Manhattan plot, due to the absence of genes or specific variants (in 

the reference genome) to which these hits mapped. Some significance spikes were spread over 

regions containing multiple genes, likely reflecting linkage disequilibrium in these regions. Given 

the diversity of L. pneumophila genomes, the fixed gene order in the Manhattan plot limited 

further interpretation.  

To overcome these limitations, I mapped the maximum p-values and slopes associated with each 

COG onto a pangenome synteny network (Methods 4.2.4), allowing me to visualise the frequency 

of genomic linkage between features across the population. To help navigate the convoluted 

network structure and highlight regions containing COGs of interest, I separated the network into 

Louvain clusters that preserve its overall structure. To include information on the frequency and 

distribution of COGs in the population, I constructed a second, separate network from the COG 

presence/absence profiles across genomes in the data. Using this second network, I identified 243 

clusters of accessory COGs found in a similar subset of the population, as well as 8371 COGs that 

were singletons. Core COGs were assigned to an independent cluster. Mapping these clusters onto 

the synteny network revealed stretches of adjacent COGs that were present in a similar subset of 

genomes (indicating shared ancestry), which I call Pangenome Synteny Regions (PSRs). Syntenic 

connections throughout these regions indicates a consensus gene order, which were used to 

predict features in strong linkage disequilibrium.  
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Figure 4.6) The effects of population structure and linkage disequilibrium on the significance of 
unitigs associated with clinical or environmental isolates of L. pneumophila. A-B) A neighbour-joining 
tree of genomes in the data showing the distribution of two exemplar significant hits across the population. 
Examples are selected to represent a unitig demonstrating some correlation with the population structure and 
a hit demonstrating no correlation with the population structure. C) Location of elastic net hits in the 
Philadelphia-1 reference genome. Manhattan plot showing the location of elastic net hits (red) in the 
Philadelphia-1 reference genome (ASM848v1). Maximum inverse p-values (-log10) are shown on the y axis. 
The genome position is indicated at the top of the plot, with the positions of CDSs shown by boxes. The most 
significant p-values for with hits mapping to the lag-1 and rtxA genes are indicated with text above 
corresponding points. The approximate co-ordinates of equivalent hits in the lasso model are indicated by 
points in blue. This plot was generated using Phandango (v1.3.0) and colours and scale were adjusted using 
Inkscape (v1). 
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Unitig hits were mapped across 35 of 39 Louvain clusters with at least 20 COGs, consistent with a 

broad pangenome distribution. Lasso regression retained fewer features from only 25 clusters and 

generally included more distant loci, consistent with a greater reduction of correlated features 

(Figure 4.6.c). Hits were frequently located in close proximity to highly variable regions, identified 

by complex connections between PSRs around one or more multifurcate nodes. Among these, a 

single cluster contained 15 COGs with associated p-values below 1x10-50, including the COGs for 

lag-1 and rtxA (Figure 4.7.a). Most of the highly significant hits in this cluster were located in the 

same core regions that indicated linkage may be affecting their significance. In particular, a large 

difference was observed in significance between genes adjacent to rtxA depending on their 

syntenic frequency. Importantly, lag-1 and rtxA themselves were only connected via rare, indirect 

synteny with genes in other PSRs, suggesting that neither would strongly affect the significance of 

the other. I also observed similar evidence of linkage effects in many other clusters. For example, 

one cluster was comprised mostly of a single core PSR that contained 495 elastic net hits 

overlapping 48 COGs (Figure 4.7.b). The region contained multiple ‘spikes’ in significance of 

adjacent COGs with the elastic net, whilst the lasso model included only 9 hits from 7 COGs, 6 of 

which were confined to the same short, central region. Notably, I also identified very significant 

intergenic hits in this region. 
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Figure 4.7) Pangenome synteny analysis of COGs associated with clinical or environmental 
L. pneumophila isolates using regularised regression models. Analysis of four Louvain clusters 
described in text that were used to evaluate and compare models: A) A cluster containing both the lag-1 and 
rtxA genes, which contained the elastic net hits with the lowest p-values B) a cluster of core genes that were 
located downstream of an intergenic region with a prominent significance spike in Figure 4.6.c C) A cluster 
containing the lvh T4ASS, in which multiple genes may contribute towards an effect. D) A cluster containing 
genes from a genomic fitness island, which includes three with lasso hits that had very low p-values. In each 
network diagram, COGs are represented by nodes. Edges are shown between COGs that are adjacently 
located in 10 or more genomes, with no biological significance to the edge length. Each diagram is separated 
into three panels that separately show: i) PSRs, with the gene clusters defined by presence/absence each 
shown in a different random colour. Core genes are shown consistently in brown (#744d3d). Edge thickness 
is scaled relative to the frequency with which COGs are adjacently located in genomes in the data. Node 
sizes are scaled relative to the frequency of COGs, using the four sizes are defined in Figure 4.1. Larger 
node sizes indicate higher frequencies. Ii) The average absolute effect size of elastic net hits in each COG, 
indicated by green shading relative to the maximum value for any COG in the data (0.051). Shading is 
darkened for COGs with 0-30% of this value (0-0.153), then a consistent shade is applied to COGs with >30% 
of this value). Nodes sizes are scaled relative to the inverse p-value for each COG and pangenome synteny 
network. Edge sizes are not scaled. Iii) The average absolute effect size of lasso hits in each COG, indicated 
by green shading relative to the maximum value for any COG in the data (0.7). Shading is darkened for COGs 
with 0-30% of this value (0-0.021), then a consistent shade is applied to COGs with >30% of this value). 
Nodes sizes are scaled relative to the average MAF of hits in each COG. Edge sizes are not scaled. 
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I hypothesised that elastic net regression could be used to identify features with smaller, epistatic 

effects and I identified two examples to explore this possibility further. Firstly, I investigated the 

region comprising the lvh T4ASS, which has a known role in virulence and has been used to identify 

environmental strains with the potential to infect humans249,250. The region consists of 16 genes 

(lpg1244-lpg1259 in Philadelphia-1) located on a mobile element, sometimes in an 

extrachromosomal form, that is inserted between different loci in different genomes251. Whilst 

the lasso model identified one hit mapping to the region, 61 hits were mapped to 10 COGs with 

the elastic net, each with a very low significance that could potentially represent small epistatic 

effects on the phenotype (Figure 4.7.c). However, the close proximity of the genes and their 

shared ancestry indicate that these small effects could also be caused by linkage. A similar 

challenge was presented by other examples. I found multiple highly significant hits (p < 1x10-50) 

were mapped to a genomic fitness island region (lpg0983-lpg1000 in Philadelphia-1), for which at 

least two paralogous copies existed across approximately half of the genomes in the data. 

Specifically, at least two paralogous copies of 14 of the 17 gene families with genes located in the 

island were present in 1755.4 (rounded to one decimal place) out of 3304 genomes on average 

(48.1%, variance = 463.3). Both copies were segregated in the same Louvain cluster, constituting 

separate PSRs with only rare syntenic connections to other genes (Figure 4.7.d). The elastic net 

model included unitigs with small effects from 34 of 73 COGs in the cluster, located across both 

copies. In comparison, the lasso model included only four, three of which were in the rarer 

paralogous region. These examples highlight the fact that distinguishing epistatic effects from the 

effects of linkage disequilibrium still remains challenging with regularised regression, similar to 

other GWAS methods. 

In summary, the analysis indicates that strong correlation between features in linkage 

disequilibrium may have a large impact on their contribution in elastic net regression models, 

limiting detection of epistatic effects. Therefore, sparser models might perform better for 
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genotype-phenotype association analysis in some cases, even for complex phenotypes, depending 

on the intended outcome. The analysis also demonstrates how synteny network analysis can 

provide additional pangenome context when mapping the location of hits, offering a useful 

alternative to a single reference genome.  

4.3.4)  GO enrichment analysis reveals pathways associated with the pangenome 

of clinical or environmental L. pneumophila isolates 

In addition to the variation in genome size and heterogeneity, it has been shown that the unique 

accessory genes of environmental L. pneumophila ST1 (and closely related isolates) are enriched 

for GO terms related to conjugal DNA transfer and transposition198. To investigate this further, I 

conducted my own GO enrichment analyses of COGs with a representational bias in genomes from 

different sources or genomes of different sizes in the down-sampled data. My pangenome analysis 

revealed that many accessory COGs, and especially those in an intermediate fraction of genomes, 

were overrepresented in isolates from a particular source (Figure 4.4.a). Therefore, I defined the 

source bias as the difference between the fractions of clinical and environmental isolates 

containing each COG, conducting two separate GO enrichment analyses of COGs with a source 

bias value above and below the mean (overrepresented in clinical or environmental isolate 

genomes respectively). To investigate the correlation between accessory gene content and 

genome length, I calculated the average length of the genomes containing each COG and 

conducted a separate GO enrichment analysis of the genes more common in longer or shorter 

than average genomes respectively (Figure 4.8).  
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Figure 4.8) Representational bias of COGs in longer or shorter than average genomes. The number 
and average length (Mbp) of genomes containing each COG in the down-sampled data, shown in a 
scatterplot. The average genome length for all genomes is indicated by a Horizontal red line. Vertical black 
lines indicate the 5% and 95% presence thresholds used to define rare accessory and core genes. Point 
sizes are scaled relative to the p-value magnitude of for the most significant mapped hits in the elastic net 
model, with the points for genes without mapped hits left unscaled. Point saturation (colour difference from 
grey) is scaled relative to the difference between the fraction of clinical and environmental isolates in which 
they are present. Red shading is used to indicate points in a greater fraction of clinical isolates and teal 
shading is used to indicate points in a greater fraction of environmental isolates. 
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The COGs that were overrepresented in environmental isolates and the COGs that were 

overrepresented in longer than average genomes were respectively enriched for 17 of the same 

GO terms (Figure 4.9). Consistent with previous analysis, these included terms for conjugation, 

DNA recombination, DNA integration and transposition, which all contribute towards horizontal 

genetic exchange that would directly affect the genome length (Table 4.2, Table 4.3). Similarly, 

22/26 enriched GO terms overlapped for the COGs that were overrepresented in clinical isolates 

and the COGs that were overrepresented in shorter than average genomes. These included a 

number of terms related to metabolic processes and included terms for RNA processing and 

translation.  

 

Figure 4.9) Overlap in enriched biological processes in COGs that are overrepresented in genomes 
with different sizes and isolation sources. Venn diagrams showing the number biological processes (GO 
terms) that were enriched in different subsets of COGs and the overlap between enriched terms. In each 
diagram, the top two circles include enriched terms in COGs with a better representation in either clinical or 
environmental isolates respectively. The bottom circles include enriched terms in COGs with a better 
representation in either longer than average or shorter than average genomes. 
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Table 4.2: Biological processes significantly enriched in Overrepresented COGs in longer or shorter 
than average genomes. 

GO ID Biological Process Total Obs. Exp. p-value 
GO:0019752 carboxylic acid metabolic process 125 119 94.78 1.20E-09 

GO:0043436 oxoacid metabolic process 125 119 94.78 1.20E-09 

GO:0006082 organic acid metabolic process 128 120 97.06 2.00E-08 

GO:0043604 amide biosynthetic process 62 61 47.01 4.60E-07 

GO:0006412 translation 46 46 34.88 2.20E-06 

GO:0006520 cellular amino acid metabolic process 75 71 56.87 8.90E-06 

GO:0016053 organic acid biosynthetic process 65 62 49.29 1.70E-05 

GO:0046394 carboxylic acid biosynthetic process 65 62 49.29 1.70E-05 

GO:1901564 organonitrogen compound metabolic process 307 259 232.79 1.90E-05 

GO:0043043 peptide biosynthetic process 48 47 36.4 2.10E-05 

*GO:0009058 biosynthetic process 385 319 291.93 3.90E-05 

GO:0034660 ncRNA metabolic process 44 43 33.36 6.20E-05 

GO:0043603 cellular amide metabolic process 80 74 60.66 6.40E-05 

GO:0044085 cellular component biogenesis 50 48 37.91 0.00011 

GO:1901605 alpha-amino acid metabolic process 48 46 36.4 0.00018 

*GO:1901576 organic substance biosynthetic process 366 301 277.52 0.00027 

GO:1901566 organonitrogen compound biosynthetic process 172 148 130.42 0.00028 

GO:0044281 small molecule metabolic process 234 197 177.43 0.00038 

*GO:0034470 ncRNA processing 28 28 21.23 0.00039 

GO:0006396 RNA processing 37 36 28.06 0.00039 

*GO:0044249 cellular biosynthetic process 339 278 257.05 0.00083 

*GO:0006399 tRNA metabolic process 33 32 25.02 0.00111 

*GO:0019538 protein metabolic process 121 105 91.75 0.00132 

*GO:0009072 aromatic amino acid family metabolic process 23 23 17.44 0.0016 

GO:0032787 monocarboxylic acid metabolic process 38 36 28.81 0.00202 

GO:0006518 peptide metabolic process 61 55 46.25 0.00326 

GO:0044282 small molecule catabolic process 20 20 15.17 0.00374 

GO:0044283 small molecule biosynthetic process 103 89 78.1 0.00432 

*GO:0006629 lipid metabolic process 70 62 53.08 0.00503 

*GO:0008652 cellular amino acid biosynthetic process 33 31 25.02 0.00647 

GO:0022607 cellular component assembly 33 31 25.02 0.00647 

*GO:0008033 tRNA processing 17 17 12.89 0.00872 

*GO:0016054 organic acid catabolic process 17 17 12.89 0.00872 

*GO:0046395 carboxylic acid catabolic process 17 17 12.89 0.00872* 

GO:0000746 conjugation 27 25 6.53 3.50E-14 

GO:0044764 multi-organism cellular process 35 29 8.46 1.60E-13 

GO:0051704 multi-organism process 35 29 8.46 1.60E-13 

GO:0006259 DNA metabolic process 135 68 32.63 1.40E-12 

GO:0006310 DNA recombination 72 43 17.41 2.70E-11 

GO:0090304 nucleic acid metabolic process 295 108 71.31 1.40E-08 

GO:0006139 nucleobase-containing compound metabolic process 382 130 92.34 4.50E-08 

GO:0044260 cellular macromolecule metabolic process 350 120 84.61 1.50E-07 

GO:0006313 transposition (DNA-mediated) 35 21 8.46 0.96544 
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Cell colour is used to indicate enrichment in shorter than average (red) or longer than average (blue) 
genomes. Biological processes are listed by their corresponding GO ID along with their description in the GO 
database (Biological Process). Additional columns (left to right) show the total number of COGs annotated 
with the term, the number of COGs that were annotated with the term, the number expected by chance and 
the corresponding p-value (Fisher’s test). P-values are filtered to include only those less than 0.001. Asterisks 
(*) are used to indicate terms that were also enriched in the COGs with a biased representation in genomes 
from a particular isolation source. 

  

GO:0032196 transposition 35 21 8.46 4.60E-06 

GO:0046483 heterocycle metabolic process 439 138 106.12 5.20E-06 

GO:0006725 cellular aromatic compound metabolic process 432 136 104.43 6.00E-06 

GO:1901360 organic cyclic compound metabolic process 448 138 108.3 2.10E-05 

*GO:0015672 monovalent inorganic cation transport 25 16 6.04 2.20E-05 

GO:0015074 DNA integration 35 20 8.46 2.20E-05 

*GO:0010629 negative regulation of gene expression 15 11 3.63 7.40E-05 

*GO:0034641 cellular nitrogen compound metabolic process 485 144 117.24 0.00013 

*GO:0009892 negative regulation of metabolic process 16 11 3.87 0.00018 

*GO:0010605 negative regulation of macromolecule metabolic 
process 

16 11 3.87 0.00018 

*GO:0048519 negative regulation of biological process 16 11 3.87 0.00018 

*GO:0006304 DNA modification 15 10 3.63 0.00055 

*GO:0044265 cellular macromolecule catabolic process 15 10 3.63 0.00055 

*GO:0009057 macromolecule catabolic process 18 11 4.35 0.00083 

*GO:0009987 cellular process 959 248 231.83 0.00136 

GO:0080090 regulation of primary metabolic process 106 39 25.62 0.00156 

GO:0010468 regulation of gene expression 103 38 24.9 0.0017 

*GO:0065007 biological regulation 159 54 38.44 0.00173 

GO:0019222 regulation of metabolic process 107 39 25.87 0.00192 

*GO:0009141 regulation of macromolecule metabolic process 107 39 25.87 0.00192 

GO:0098655 cation transmembrane transport 17 10 4.11 0.00219 

GO:0098660 inorganic ion transmembrane transport 17 10 4.11 0.00219 

GO:0098662 inorganic cation transmembrane transport 17 10 4.11 0.00219 

*GO:0043170 macromolecule metabolic process 432 125 104.43 0.00228 

*GO:0006812 cation transport 50 21 12.09 0.0034 

*GO:0050789 regulation of biological process 149 50 36.02 0.00354 

*GO:0034655 nucleobase-containing compound catabolic process 21 11 5.08 0.00451 

GO:0034220 ion transmembrane transport 19 10 4.59 0.00649 

*GO:0043414 macromolecule methylation 22 11 5.32 0.00712 

*GO:0051276 chromosome organization 17 9 4.11 0.00936 
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Table 4.3) Biological processes significantly enriched in COGs with a biased representation in 
genomes from a particular isolation source. 

GO ID Biological Process Total Obs. Exp. p-value 
GO:0019752 carboxylic acid metabolic process 125 117 98.91 2.80E-06 

GO:0043436 oxoacid metabolic process 125 117 98.91 2.80E-06 

GO:0043604 amide biosynthetic process 62 61 49.06 5.90E-06 

*GO:0071840 cellular component organization or biogenesis 72 70 56.97 6.00E-06 

GO:0044085 cellular component biogenesis 50 50 39.57 6.20E-06 

GO:0006082 organic acid metabolic process 128 119 101.29 6.30E-06 

GO:0043603 cellular amide metabolic process 80 76 63.3 4.40E-05 

GO:0043043 peptide biosynthetic process 48 47 37.98 1.40E-04 

*GO:0016043 cellular component organization 56 54 44.31 1.90E-04 

GO:0006412 translation 46 45 36.4 2.30E-04 

GO:0022607 cellular component assembly 33 33 26.11 3.90E-04 

GO:1901564 organonitrogen compound metabolic process 307 263 242.93 4.90E-04 

GO:1901566 organonitrogen compound biosynthetic process 172 152 136.1 5.00E-04 

GO:0006520 cellular amino acid metabolic process 75 70 59.35 0.00051 

GO:0044281 small molecule metabolic process 234 203 185.17 0.0006 

GO:0032787 monocarboxylic acid metabolic process 38 37 30.07 0.00133 

GO:0006518 peptide metabolic process 61 57 48.27 0.0017 

GO:0034660 ncRNA metabolic process 44 42 34.82 0.0023 

GO:0044283 small molecule biosynthetic process 103 92 81.5 0.0036 

GO:1901605 alpha-amino acid metabolic process 48 45 37.98 0.00472 

GO:0044282 small molecule catabolic process 20 20 15.83 0.00887 

GO:0016053 organic acid biosynthetic process 65 59 51.43 0.00892 

GO:0046394 carboxylic acid biosynthetic process 65 59 51.43 0.00892 

GO:0006396 RNA processing 37 35 29.28 0.00905 

*GO:0006790 sulfur compound metabolic process 29 28 22.95 0.00911 

GO:0000746 conjugation 27 19 5.63 2.80E-08 

GO:0006310 DNA recombination 72 34 15.03 2.00E-07 

GO:0006259 DNA metabolic process 135 51 28.17 1.10E-06 

GO:0015074 DNA integration 35 20 7.3 1.90E-06 

GO:0044764 multi-organism cellular process 35 19 7.3 9.90E-06 

GO:0051704 multi-organism process 35 19 7.3 9.90E-06 

GO:0006139 nucleobase-containing compound metabolic 
process 

382 107 79.72 2.40E-05 

GO:0090304 nucleic acid metabolic process 295 87 61.57 2.60E-05 

GO:0044260 cellular macromolecule metabolic process 350 99 73.04 2.80E-08 

GO:0006313 transposition (DNA-mediated) 35 18 7.3 4.60E-05 

GO:0032196 transposition 35 18 7.3 4.60E-05 

GO:0098655 cation transmembrane transport 17 10 3.55 6.40E-04 

GO:0098660 inorganic ion transmembrane transport 17 10 3.55 6.40E-04 

GO:0098662 inorganic cation transmembrane transport 17 10 3.55 6.40E-04 

GO:0046483 heterocycle metabolic process 439 113 91.62 9.80E-04 

GO:0006725 cellular aromatic compound metabolic process 432 111 90.16 1.24E-03 

GO:1901360 organic cyclic compound metabolic process 448 114 93.5 1.55E-03 

GO:0034220 ion transmembrane transport 19 10 3.97 0.00203 
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GO:0080090 regulation of primary metabolic process 106 34 22.12 3.05E-03 

GO:0010468 regulation of gene expression 103 33 21.5 3.60E-03 

GO:0019222 regulation of metabolic process 107 34 22.33 3.64E-03 

GO:0060255 regulation of macromolecule metabolic process 107 34 22.33 3.64E-03 

*GO:0034654 nucleobase-containing compound biosynthetic 
process 

153 44 31.93 8.04E-03 

*GO:0009152 purine ribonucleotide biosynthetic process 19 9 3.97 8.37E-03 

*GO:0019219 regulation of nucleobase-containing compound 
metabolic process 

93 29 19.41 9.76E-03 

*GO:0031323 regulation of cellular metabolic process 93 29 19.41 0.00976 

Cell colour is used to indicate enrichment in COGs that were overrepresented in clinical (red) or 
environmental (aquamarine) genomes. Biological processes are listed by their corresponding GO ID along 
with their description in the GO database (Biological Process). Additional columns (left to right) show the total 
number of COGs annotated with the term, the number of COGs that were annotated with the term, the number 
expected by chance and the corresponding p-value (Fisher’s test). P-values are filtered to include only those 
less than 0.01. Asterisks (*) are used to indicate terms that were not enriched in the overrepresented COGs 
in either longer or shorter than average genomes.  

 

Finally, to evaluate whether these overrepresented processes were distinctive features of clinical 

or environmental isolates, I conducted a GO enrichment analysis of the COGs with mapped hits in 

the regression analysis to identify overrepresented terms. This analysis revealed 13 biological 

processes that were significantly enriched (≥ 99% confidence) among the COGs with mapped 

elastic net hits (Table 4.4). Of the four most significant processes, three represented distinct 

biosynthetic processes. Overall, 11 of 13 biological processes enriched in COGs with mapped hits 

were also enriched among the overrepresented COGs in either longer than average (5) or shorter 

than average (6) genomes (Table 4.4), and the majority of these also overlapped with the results 

of the source bias analysis. However, these did not include any of the 10 most significantly 

enriched processes for overrepresented genes in either longer or shorter than average genomes. 

Potentially, the lack of overall concordance between the enriched terms for genes with significant 

hits and overrepresented in the other subsets could result from methodological differences, such 

as the control for population structure by down-sampling versus innate control in the regression 

model. 
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Table 4.4) Biological processes significantly enriched among COGs with mapped elastic net hits. 
GO ID Biological Process Total Obs. Exp. p-value 

GO:0016053 organic acid biosynthetic process 65 24 12.49 0.00044 

GO:0046394 carboxylic acid biosynthetic process 65 24 12.49 0.00044 

*GO:0006304 DNA modification 15 9 2.88 0.00052 

GO:1901607 alpha-amino acid biosynthetic process 28 13 5.38 0.00084 

GO:0044281 small molecule metabolic process 234 62 44.97 0.00138 

GO:0098655 cation transmembrane transport 17 9 3.27 0.00177 

GO:0098660 inorganic ion transmembrane transport 17 9 3.27 0.00177 

GO:0098662 inorganic cation transmembrane transport 17 9 3.27 0.00177 

GO:1901605 alpha-amino acid metabolic process 48 18 9.22 0.00194 

GO:0044283 small molecule biosynthetic process 103 31 19.79 0.00361 

GO:0034220 ion transmembrane transport 19 9 3.65 0.0047 

*GO:0008652 cellular amino acid biosynthetic process 33 13 6.34 0.00513 

GO:0006793 phosphorus metabolic process 119 34 22.87 0.0059 

Processes are listed by their corresponding GO ID along with their description in the GO database (‘Biological 
Process’). Additional columns (left to right) indicate the total number of COGs annotated with the term, the 
number of COGs with hits that were annotated with the term, the number expected by chance and the 
corresponding p-value (Fisher’s test). P-values are filtered to include only those less than 0.001. Row shading 
and asterisks (*) are used consistently with Table 4.2. Absence of row shading (or white colouring) is used to 
indicate terms that were not enriched in other analysis.  
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Notably, there are two confounding effects that may have influenced the results of our GO 

enrichment analysis. Firstly, due to time constraints, I annotated the GO terms using a single 

representative gene for each COG, and these annotations may inaccurately attribute certain 

processes to divergent genes in these same COGs. Secondly, the overlap between enriched terms 

for the overrepresented COGs in genomes of different sizes and from different isolation sources 

could be partly explained by COGs in lineages with extreme genome sizes and a biased 

representation towards isolates from one source. 

In conclusion, these enrichment analyses indicate that the pangenome of clinical and 

environmental L. pneumophila isolates may be enriched for genes involved in certain biological 

processes, providing further evidence of a link between the genome size and isolation source of 

L. pneumophila. However, due to the restrictions of the analysis, a more in-depth investigation is 

needed to validate this finding and to rule out potentially confounding effects. 
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4.4)  Discussion 

In this project, I combined a pangenome analysis with a machine learning approach to explore the 

genomic features that differentiate clinical and environmental isolates of L. pneumophila. This 

analysis provided additional support for the lag-1 gene as the feature most significantly correlated 

with human infection potential131. I also identified several other features significantly correlated 

with pathogenicity, including the gene encoding the RtxA toxin that mediates adherence and entry 

to host cells, which has been previously used to predict the infection potential of environmental 

strains250,252. Notably, the data revealed many rtxA gene variants with small effects, which may be 

hard to detect using a typical GWAS approach58. By including a higher number of correlated 

variants, I hypothesised that elastic net regression could identify variants with epistatic effects. 

However, I found that a sparser model performed better as a classifier, with less evidence of 

overfitting to the training data. This may be explained by the fact that elastic net regression 

included many more features in close genomic proximity (revealed by pangenome analysis), likely 

to be in strong linkage disequilibrium.  

Notably, the design of this analysis imposes important limitations for the interpretation of results. 

In particular, the biological delineation between clinical and environmental isolates is not clean 

cut. Diverse L. pneumophila isolates are capable of human infection and the analysis equally 

included both clinical isolates responsible for rare infections and outbreaks in unusual 

circumstances as well as those from disease associated STs that cause high numbers of 

infections198,245. Similarly, many of the environmental isolates used in the analysis were collected 

from artificial reservoirs linked to human infections, which may harbor environmental populations 

of Legionella with an enhanced potential to infect humans228,250. Therefore, the differences 

observed are likely not all attributed to variation in infection potential and could be influenced by 

other environmental factors that would be hard to disentangle. To address this in future work, 

one possibility might be to compare these results with a separate association analysis of features 
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associated with isolates from disease-associated STs. Exploring the overlap between these two 

approaches may help to more confidently establish important factors leading to their clinical 

success of these STs relative to other clones. 

One of the unique challenges facing bacterial GWAS is high frequency of gene gain and gene loss. 

In bacteria, large numbers of genes may be unique to particular lineages, strains or even isolates26. 

This is especially true for highly plastic genomes like those of L. pneumophila, where gene order 

may vary considerably between individuals253. Using k-mers or unitigs as features allows the 

incorporation of the entire pangenome in association analyses, providing a solution to this 

problem55. However, a similar caveat still remains in the use of Manhattan plots to visualise 

significant results, which are biased by the choice of reference. In diverse species such as 

L. pneumophila, the choice of reference can markedly influence analyses254. As an alternative, this 

analysis demonstrates a promising solution to this problem in the form of pangenome synteny 

networks, which can be visualised using Graphia255. My analysis shows the added value of this 

method for identifying non-causally linked features and for providing a pangenome context to the 

location of features that may help to explain their correlation. I also identified a notable caveat to 

this method, in that it does not capture highly significant features in intergenic regions. However, 

these could be identified by subsequent fine mapping. 

GO enrichment analysis indicated a potential functional overlap between the overrepresented 

COGs in clinical or environmental isolates and in shorter or longer than average genomes 

respectively. In L. pneumophila ST1, environmental isolates have a larger accessory genome than 

clinical isolates, enriched for genes with a role in DNA acquisition198. Overall, our analysis is 

consistent with these findings and shows that environmental isolates have a larger genome than 

clinical isolates in at least one other major lineage198. However, I found that this was not the case 

for all major lineages and there was no statistical difference in PopPUNK cluster 2 (containing 

ST36), despite a large and evenly distributed sample set. This is also reflected by the overall size 

difference in their accessory genome, with PopPUNK cluster 2 having a much smaller accessory 
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genome than PopPUNK cluster 1 (including ST1). One potential explanation for this variation is 

differences in natural transformability, which is rare in ST36 but constitutive during the transition 

between exponential and stationary phase during growth of ST1187. PopPUNK cluster (3), which 

includes ST23 and ST62, had wide fluctuations in accessory genome size, which is also consistent 

with the variation in transformability of these STs187. 

Natural transformation is also linked to some of the most significant hits in the association analysis. 

In L. pneumophila, the ability to uptake foreign DNA from the environment is regulated by quorum 

sensing molecules LqsS and LqsT, which operate in an antagonistic fashion256. Like lqsS deletion 

mutants, lqsT deletion mutants are highly competent but have a severely reduced virulence 

phenotype, with impaired phagocytic uptake and intracellular growth256. However, 95 genes that 

are upregulated in the absence of LqsS are instead downregulated in the absence of LqsT including 

mip, LvrA/B, and 41 genes in two genomic fitness islands that both included multiple top hits in 

the analysis256,257. The genes in these fitness islands are not expressed in wild-type strains, 

indicating a close relationship with this pathway. The lqsT gene itself also had significant hits in the 

analysis, although only with the elastic net model. I also identified highly significant hits close to 

the recX/recA recombination repair genes, which control DNA damage repair and are essential for 

the natural transformability phenotype of L. pneumophila258. In addition to regulating natural 

transformation, lqsS and lqsT have a role in biofilm formation, which is an essential part of 

L. pneumophila growth and survival in artificial environmental reservoirs104,259. 

In conclusion, my analysis identified unique variation in the genomes of clinical and environmental 

isolates, which supported the key role of the lag-1 gene in human infection and also identified 

several other associated features that may play an important role in clinical disease. In particular, 

the results of my pangenome, ML and GO enrichment analyses all suggest that human infection 

potential is influenced by the natural transformability of strains and the uptake of extracellular 

DNA. This is discussed in more detail in the general discussion (Chapter 5, section 5.1.6), 

elaborating on how this may work mechanistically. 



124 

 

 



125 

 

5) General Discussion 
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5.1.1)  Assembling a comprehensive, population-scale WGS dataset for Legionella 

Affordable, high-throughput sequencing technologies have revolutionised infectious disease 

research. Larger and better representative population genomic datasets have greatly improved 

our knowledge of the underlying evolutionary processes that shape different pathogen 

populations, enabling more robust evolutionary hypothesis testing and empowering complex 

statistical methods of analysis30. In the extreme case, all publically available sequence data for a 

given pathogen can offer maximum possible scale, but data from different studies must be 

carefully combined, organised and cleaned for re-use, with the increasing size and variability of 

big data presenting a growing challenge260. Although large, curated, publically available databases 

have alleviated this problem for some specific pathogens, the challenges of developing and 

maintaining these resources has so far been prohibitive for many others209. However, as the rate 

of WGS data generation is expected to continue in an exponential manner, there is a critical need 

to develop appropriate tools and infrastructure that can leverage the power of big data for all 

pathogens, particularly with regard to implementation in public health71. 
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Figure 5.1) A schematic summary of the analysis conducted in this thesis  
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In this project, I assembled the largest Legionella genomic dataset to date, combining WGS from 

a historic Scottish reference isolate collection (1984-2020) with the collective publically available 

WGS data for Legionella stored in NCBI (up to at least 18/02/2020). I used this data to define a 

cgMLST scheme, enabling an investigation of the genomic epidemiology of LD over 36 years in 

Scotland in context with the sampled global genomic diversity. I then used the data to investigate 

the genomic features associated with either clinical and environmental isolates, using a machine 

learning association analysis approach, together with a pangenome analysis. This work 

demonstrates the power of big data to explore the epidemiology of LD and the evolution of 

clinically relevant lineages. Additionally, this analysis revealed a number of genomic factors 

correlated with isolates from human infections, which may be important for the evolution of 

human disease-associated lineages of L. pneumophila. Finally, my work expands on existing 

knowledge of the appropriate tools, methods and limitations for WGS analysis of Legionella and 

provide initial groundwork to aid the development of a database resource for Legionella research. 

5.1.2)  Current limitations for population-scale WGS analysis of Legionella 

There are several core limitations to this study, which are also important considerations for future 

genomic studies investigating Legionella using WGS data. Firstly, due to the extreme diversity of 

Legionella and the limited availability of data for most species, I limited the analysis to 

L. pneumophila genomes and L. pneumophila subsp. pneumophila genomes in the case of my 

epidemiological analysis. The inclusion of rare, highly divergent taxa would reduce the length of 

comparable genetic sequence and therefore the resolution and would lead to strong lineage 

effects in association analyses58. However, the over-representation of L. pneumophila in clinical 

cases126 indicates that a comparison with non-pneumophila species may provide important clues 

about the pathogenic success of certain lineages, which should be explored in future work.  

Secondly, most NGS methods require cultured isolates and Legionella have a low culture success 
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rate126. Potentially, Legionella STs may vary in culturability, which could introduce ascertainment 

bias into distribution patterns inferred from WGS data126. In addition, the most widely used 

culture-free diagnostic method (UAT) is only capable of detecting L. pneumophila serogroup 1, 

which could introduce further bias into our understanding of disease trends94,126. The extent of 

bias due to testing methods and culturability has not been well examined and I suggest that future 

work should include a global meta-analysis to compare WGS, UAT and PCR data to provide an 

evaluation of the extent of this bias. 

Finally, my meta-analysis of the data revealed extensive sampling bias that was difficult or 

impossible to control without better publically available metadata records. Outbreak 

investigations and deep sequencing are integral to disease prevention strategies but are 

inherently biased towards specific environment reservoirs and these limitations rarely come to 

light in metadata records120. A similar problem existed for redundant assemblies, such as re-

sequenced genomes from the same reference isolate or multiple isolates from the same patient. 

This information could generally be acquired from the source literature but this included hundreds 

of papers across the entire dataset and is not a sustainable solution if data continues to expand as 

predicted. Without the metadata to filter on these criteria directly, alternate methods were 

needed to account for sampling bias in the data, which may have limited the power of some 

analyses.  

5.1.3)  New insights for epidemiological analysis of L. pneumophila 

My epidemiological analysis demonstrates how population-scale WGS data can help to investigate 

the source and route of infection and how it could be used to detect and monitor clinically relevant 

genotypes. In Europe, most sporadic LD cases are travel-associated and clusters of travel-

associated infections in both space and time have been reported126,238. The analysis demonstrates 

how WGS data can support the detection of such clusters and suggests that they may sometimes 

exist over longer time periods than previously recognised without WGS data. There is evidence of 
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a strong geographical signal in the population structure of environmental isolates collected for 

routine surveillence225. My analysis included a large, representative national collection of 

environmental isolates and the availability of specific metadata, such as hospital or hotel locations, 

provided a clear additional benefit for evaluating geographical and epidemiological links. Although 

other recent studies have included national collections of environmental isolates122,198, only 

limited metadata is made publically available, which may be restricted by national regulations for 

data privacy and protection261. I propose that WGS of routine environmental surveillance of 

environmental isolates in other locations may reveal similar geographical patterns in the 

distributions of different STs. In the future, I envision that the combined data from routine national 

surveillance and WGS across multiple countries might elucidate complex geographical structuring 

for different epidemiological ‘types’ , with large sample sizes enabling a more robust statistical 

investigation of infection origins.  

Consistent with other recent genomic analyses, the analysis revealed close evolutionary 

relationships between epidemiologically unrelated Legionella isolates collected over broad 

timeframes or wide geographical areas122,225. The same genotypes were often observed in distinct 

environmental reservoirs in close geographical proximity, such as one genotype belonging to ST37 

associated with recurrent sporadic infections over many years, primarily in the same urban area. 

In the presence of natural protozoal hosts, Legionella are ubiquitous in engineered water systems 

and are a common constituent of municipal water supplies97. Therefore, based on these findings, 

I hypothesise that these water supplies play a key role in the ongoing transport of native endemic 

Legionella clones into distinct environmental reservoirs, providing new opportunities for 

colonisation. Their ability to survive disinfection procedures, either independently or within 

encysted hosts, may allow Legionella to persist at low levels in the water supply262,263. There are 

two potential scenarios for how this might lead to the observed geographical and temporal 

patterns and they are not mutually exclusive. In the first scenario, a variety of native endemic 

clones may remain in constant circulation, potentially at undetectable levels, leading to recurrent 
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colonisation or recolonization events. Successful colonisers may then proliferate under conducive 

conditions, which could lead to human infections. In the alternate scenario, Legionella might be 

essentially removed from municipal water supplies by disinfection but in the rare case that some 

survive and colonise a new reservoir, they persist in this reservoir over a long timeframe. Notably, 

the same genotypes were frequently detected in water systems of the same hospital many years 

apart, which is more easily explained by the second theory. Biofilms may enhance persistence and 

Legionella growth in engineered environments is improved by stagnant water conducive to biofilm 

formation106,264. Similar to an observation from a previous study, the same genotypes were 

frequently observed in hospital water systems and other nearby environmental reservoirs, which 

could affect source attribution in epidemiological investigations120. Therefore, in order to address 

this, I propose that future studies investigating nosocomial infections should also test temporally 

equivalent community-associated environmental sources connected to the same water supplies.  

5.1.4)  Progress towards a curated public WGS database for Legionella 

Based on these findings, I propose that a curated WGS database for Legionella would be a highly 

valuable resource in public health and should be an important focus of future work. This should 

incorporate information on redundancy with existing isolates in the database and links to 

outbreaks or deep sequencing, which would greatly improve data filtering and allow for better 

representation. Additionally, more consistent and comprehensive metadata would improve the 

detection of epidemiological connections between isolates and could allow us to understand the 

broad patterns of dissemination of many clones. These data could be readily linked to common 

analysis pipelines and tools. For example, the development of a universal epidemiological typing 

scheme for scalable and portable analysis between research groups has been an ongoing target 

of previous Legionella studies39,220. Epidemiological typing of L. pneumophila has remained 

challenging because of the low nucleotide diversity observed within major disease-associated STs, 

which means they require a high resolution for optimal epidemiological typing at the expense of 
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overall epidemiological concordance39. A central public database for Legionella research would 

provide a location for storage and testing of different typing schemes. 

Notably, the work presented here indicates that epidemiological typing thresholds may be a 

greater challenge that previously anticipated, with the potential that the genetic distances 

between pairs of epidemiologically related and unrelated isolates may overlap considerably. This 

may be partly explained by the diversity of L. pneumophila. At least two distinct phylogroups of 

L. pneumophila have been estimated to have different rates of substitution and homologous 

recombination rates have been shown to differ between several groups123,128,129. Based on the 

distribution of SNPs I observed in epidemiological clusters, I hypothesise that evolutionary rates 

and the relative effects of both mutation and recombination may vary considerably within the 

L. pneumophila population. Accordingly, appropriate thresholds to determine epidemiological 

types may need to be calculated differently for different lineages.  

My work also reinforces the use of k-mer based methods that capture variation throughout the 

pangenome to determine population structure and identify genotype-phenotype 

associations131,198. Whilst SNP-based methods have the highest resolution to differentiate 

L. pneumophila isolates, SNPs called using distantly related references introduce bias into analyses 

and the high frequency of recombination and variation in gene content of L. pneumophila prevents 

alignment for diverse groups39,254. My PopPUNK analysis indicated that although several major 

lineages contained the majority of isolates, there are also many rare, divergent lineages that differ 

considerably in both core and accessory genome content. Similarly, I found that a Manhattan plot 

against a single reference genome did not capture all of the significant associations predicted by 

regression models used for the genotype-phenotype association analysis. As an alternative, I 

demonstrated the use of a network-based visualisation method, which was better able to show 

the variation in pangenome-wide gene order and genome structure when evaluating linkage 

disequilibrium. However, this method also has limitations, particularly its inability to identify 

intergenic hits. Based on these observations, I suggest that a curated set of reference genomes 
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would be an important feature to include in a database and should represent the diversity of 

known lineages in the population that are already included in the database.  

5.1.5)  The emergence of Pathogenic Legionella 

Evolution of the Legionella genus and adaptation to protozoan hosts is an ancient phenomenon 

spanning billions of years and potentially, opportunistic infections with Legionella may have 

occurred throughout human history153. LD was first discovered in 1976, after hundreds of people 

contracted a severe pneumonia at an American Legionnaires’ convention in Philadelphia. 

However, Legionella have since been identified as the cause of many pneumonic infections that 

pre-date this convention, including some that have been cultured and sequenced, suggesting that 

legionellosis may have been misidentified in prior years265,266. Legionella are broadly adapted for 

generalism and the leading theory on the emergence of human pathogenicity is that they are have 

adapted to a broad and diverse host range, including adaptations to mammalian phagocytes as an 

accidental consequence200. The large pangenome, high number of virulence factors, and evidence 

of extensive redundancy all support this theory, with the potential for unique combinations of 

factors to confer the same infection phenotype in different hosts146,151. Generalism is often 

associated with a larger genome, with selection acting to maintain a variety of genes that are 

beneficial in multiple niches. Overall, the size and structure of the L. pneumophila pangenome 

calculated in the analysis supports this theory and no significant difference was observed in the 

average genome size of clinical and environmental isolates for most major lineages. Notably, 

diverse environmental isolates have been shown to be equally capable of macrophage invasion245 

and a key potential limitation of this analysis is the fact that comparison between clinical and 

environmental isolates may not reflect any difference in human infection potential. 

By comparison, recent trends tell a slightly different story. Legionellosis cases are increasing 

worldwide and the recent, independent emergence of major disease-associated STs of 



134 

 

L. pneumophila could be a factor contributing towards this rise123. In support of this, my 

epidemiological analysis provides further evidence that specific clones are overrepresented 

among clinical isolates. Although these patterns could be influenced by testing methods and the 

varied success for culturing L. pneumophila strains, similar patterns have been observed in 

analyses using PCR methods267. My association analysis revealed a number of genomic features 

that were significantly associated with either clinical or environmental isolates and provided 

further support that the lag-1 gene is strongly associated with isolates from human infections. 

Although it may have ancient evolutionary origins, the complement system has not been identified 

in protozoa and has a primitive function outside of higher vertebrates268. There is only limited 

evidence for a role of lag-1 in infections of amoeba, suggesting it either has an alternate, unknown 

function in amoeba or that it is a specific human-adapted trait131,269. Consistent with this theory, 

the horizontal spread of lag-1 between L. pneumophila strains indicates that it may have been an 

important factor in the emergence of disease-associated lineages131. This analysis identified a 

number of other features that were associated with clinical or environmental isolates. However, 

one limitation of this analysis is that regularised regression has a high false positive rate, indicating 

that the difference may be inflated58. To address this, I suggest that more work is needed to 

validate these associations and to further evaluate and refine regularised regressions for 

association analysis.  

5.1.6)  Are L. pneumophila adapting towards specialism? 

As a possible explanation for the emergence of disease-associated STs, it has been suggested that 

Legionella may be adapting towards a human host association, either through undiagnosed 

transmission between infected humans or through indirect transmission between humans via 

environmental reservoirs123. For many epidemiological investigations, detection of the same 

genotype in patient isolates and environmental reservoirs has validated an environmental source 

and there is a lack of similar cases to provide support for human transmission. However, I propose 
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one possible cause for this could be a high frequency of asymptomatic carriage obscuring potential 

infection routes through humans and leading them not to be considered. It is also unclear how 

humans could transmit aerosolised Legionella of the right size, although the single recorded 

human transmission provides some evidence that this is possible111,270. By comparison, the limited 

evidence for extracellular replication and growth of Legionella might make the latter scenario less 

likely without an intermediate environmental host, although adaptation by this mechanism may 

still occur. Another possibility is rather than direct adaptation towards a human host, Legionella 

may be adapting in other ways that simply increase their chances of causing human infections. 

Artificial environments are a relatively recent niche, tied to human evolution, expansion and 

globalisation. It is therefore tempting to hypothesise that the emergence of disease-associated 

L. pneumophila lineages may be related to the adaptation of specific clones to colonise this niche. 

Engineered water systems exist in close proximity with human activity and may cause an increase 

in the number of infections by lineages that have adapted to this niche. Importantly, meta-analysis 

revealed a bias towards environmental isolates from artificial reservoirs and increased sampling 

and WGS of Legionella from natural reservoirs may be important for understanding how they may 

have adapted to man-made systems. 

Notably, the results of my pangenome, ML and GO enrichment analyses suggest that human 

infection potential is influenced by the natural transformability of strains and the uptake of 

extracellular DNA. A number of significant hits in the ML analysis were in genes regulated by LqsS 

and LqsT, antagonistic sensor histidine kinases of the Lqs two-component system, which also 

regulates natural transformation in L. pneumophila256. This system has been shown to regulate the 

growth phase switch, bacterial motility, biofilm architecture, virulence and host cell motility, with 

a key role demonstrated in adherence to A. castelanii and migration through L. pneumophila 

biofilms271. Finally, the system also plays a role in communication via quorum sensing, mediating 

communication within and between Legionella species and even with eukaryotic hots272. 

Therefore, I hypothesise that regulation of this pathway may be centrally important for HGT and 
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the adaptation of Legionella to artificial reservoirs and multi-species biofilms in these reservoirs. 

Under neutral evolutionary theory, the acquisition of new genetic material is likely to be 

deleterious9. However, maintaining a high natural competence at the start of the stationary phase 

(when the population is large) will increase the chances of Legionella acquiring rare beneficial 

traits. Multi-species biofilms in artificial reservoirs may increase these chances further by bringing 

Legionella into closer proximity with each other, with other OPPPs and with natural hosts, which 

could also provide more opportunity for rare HGT across taxonomic boundaries. This could explain 

the high frequency of naturally competent ST1 clone in environmental isolates worldwide. In 

contrast, having a more specialised genome may be advantageous for causing human infections, 

which could explain the smaller average genome size of ST1 isolates from clinical patients. This 

could also explain why ST47, which lacks this competence phenotype, is rare in environmental 

samples but is a common cause of human infections.  

5.1.7)  Conclusions 

In summary, by conducting the largest population-scale genomic analysis of L. pneumophila 

isolates to date, I unravelled previously cryptic aspects of LD epidemiology in Scotland and 

identified several genomic features that differentiate L. pneumophila isolates from human 

patients and other environments. This work demonstrates the potential value of large scale 

genomic data to better understand the emergence of human disease-associated lineages, which 

may play an important factor in globally increasing legionellosis incidence. My work provides 

further evidence for that some lineages cause human disease more frequently and suggests that 

adaptation to artificial reservoirs may be an important factor. This work has broad implications for 

public health policy and for epidemiological typing strategies and limitations. Of particular note, 

this work supports the critical need for a curated database for L. pneumophila WGS data to reduce 

ascertainment bias and better leverage the power of increasingly abundant global WGS efforts in 

the future.  
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