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Lay Summary

Gamma ray bursts (GRBs) are flashes of gamma ray radiation, first observed in the
late 1960s by a US military satellite program designed to monitor for gamma ray
signatures of nuclear weapons testing. With only a handful of observations initially,
the source of the bursts was poorly understood and dozens of different theories
for their origin were proposed. Over the following decades, further observations
by purpose-built gamma ray telescopes revealed that such events occur on a daily
basis and that they originate from highly energetic events in other galaxies. This
new information narrowed the range of likely theories and eventually a prominent
theory emerged, which suggested that some GRBs could be produced by the
collision of two neutron stars. In 2017, the observation of gravitational waves from
a neutron star merger that coincided with a GRB [Abbott et al., 2017a] provided
the first direct evidence in support of this, but the details of what conditions are
required in a merger in order for it to produce a GRB are still not fully understood.

Neutron star mergers involve extreme physical conditions that are far beyond
what can be recreated in a laboratory, therefore in order to study them we use
numerical simulations. In this work we created simulations of neutron star mergers
to examine what effect the initial magnetic field of the neutron stars has on the
ability of the merger to produce a GRB. In a second project we also created
simulations of a black hole and magnetized accretion disc, which can be used
to study the remnant of a neutron star merger. Our simulations use Newtonian
physics with corrections in order to replicate relativistic effects, as this is much
less computationally expensive then using a fully relativistic treatment. In both
projects we compare our non-relativistic simulations with fully relativistic results
in order to see to what extent these lower computational cost simulations can be
used to explore effects and parameters that would be otherwise too expensive to
investigate.
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Abstract

In this thesis, we present simulations of merging binary neutron stars, carried out
using the publicly available FLASH code framework. These are 3D Newtonian
magnetohydrodynamic simulations, in which we have included gravitational wave
effects through the use of a source term. We trial different implementations of this
source term and discuss the results. We then use this model to investigate the
role of magnetic fields in binary neutron star mergers. We endow each neutron
star with a dipolar magnetic field and examine how the orientation of the dipole
affects the strength and structure of the magnetic field during the merger. This
has important implications for the ability of the merger remnant to produce a
short gamma ray burst jet.

In a second project, we simulate a magnetized accretion torus surrounding a
black hole. We implement a model black hole in the FLASH code framework using
a Pseudo-Newtonian potential to reproduce features, such as the innermost stable
circular orbit, which are important to accretion disc studies. We compare the
results of our magnetized accretion disc simulations with similar studies, finding
broad agreement with accretion rates and the general structure of the magnetic
field.
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Chapter 1

Introduction

1.1 Gamma Ray Bursts (GRBs) and neutron

star mergers

Gamma ray bursts (GRBs) are flashes of gamma ray radiation, first observed
in the late 1960s. These initial observations were made by the Vela satellites, a
US military program designed to monitor for gamma ray signatures of nuclear
weapons testing. With only a handful of events, relatively little could be learned
from these early observations and a wide range of theories were posited for their
origin in the following two decades. The launch of the Compton gamma-ray obser-
vatory in 1991, which carried the Burst and Transient Source Explorer (BATSE)
instrument vastly increased the number of observed bursts and as well as giving
on-sky positions for the observed bursts. This crucially showed that the burst
distribution on the sky was isotropic, strongly suggesting a cosmological rather
than galactic origin for the sources and narrowing the range of possible progenitor
systems. Further to this, the BATSE data showed that the distribution of the
duration of GRBs is bimodal, with peaks at 0.2s and 20s and a separation line
between the two at around 2s [Kouveliotou et al., 1993]. The duration of the
burst is described by the quantity T90, which is defined as the interval between the
times at which 5% and 95% of the total gamma ray fluence is detected. This lead
to the identification of two subclasses: short GRBs (sGRBs) with T90 <2s and
long GRBs with T90 >2s. A further distinction between the classes is that short
bursts have typically have harder spectra than long bursts [Kouveliotou et al.,
1993], meaning that more of the power emitted in the burst is at higher energies.

Long GRBs have been found to be associated with Type Ic supernovae, sug-
gesting that they are generated in the collapse of a massive star alongside the
supernova [Hjorth et al., 2003], whereas sGRBs showed no such associations.
Further to this, the identification of bursts with their host galaxies showed that
lGRBs were found to occur in late-type, star-forming galaxies, supporting the
connection to supernovae of young massive stars [Bloom et al., 2002] [Fruchter
et al., 2006]. On the other hand, sGRBs are found in both early and late-type
galaxies and can occur at a much greater distance from their host galaxy than
lGRBs [Fong and Berger, 2013]. Merging binary neutron stars and black holes
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emerged as a possible progenitor for sGRBs, as they are expected to be less
strongly associated with star forming regions. Furthermore, during the formation
of the binary, velocity kicks from the supernovae that form the neutron stars could
eject the whole binary from its host galaxy, providing an explanation for the large
distance offsets observed. Finally, the very rapid variability seen in sGRBs limits
the size of the emitting object through causality, therefore the small physical scale
of a merger provided further support to the theory. This link between binary
neutron star mergers and sGRBs was finally solidified by the coincident detection
of a gravitational wave signal from merging binary NSs (GW170817) [Abbott
et al., 2017a] and the sGRB 170817a [Abbott et al., 2017b].

In providing extremely valuable data, this gravitational wave event also opened
up a host of new avenues to investigate the details of how sGRBs and other
electromagnetic emission is produced during the merger. Neutron star mergers
are extremely complex systems, combining strong gravity, magnetic fields and the
nuclear physics of extremely dense matter. As such they are all but impossible
to study in a purely theoretical way, therefore we must turn to numerical simu-
lations in order to gain better understanding of questions such as how they can
produce GRBs. For this in particular, magnetic fields are a crucial feature, since
they provide the most promising avenue for the production of a sGRB jet. It is
theorised that a strong magnetic field can extract the rotational energy of the
merger remnant, launching a relativistic outflow along the system’s rotation axis.
This requires extremely strong fields with a large scale poloidal structure, and
producing a model to investigate how exactly these conditions can be met is the
subject of this work.

1.2 Summary of thesis

This thesis is organised as follows. Chapter 2 discusses the astrophysical context of
neutron star mergers, covering both the observational and theoretical background.
Chapter 3 covers the fundamentals of numerical hydrodynamics and a survey of
the available public hydrodynamics codes used for modelling astrophysical fluids.
Chapter 4 presents our binary neutron star merger model using the FLASH code
framework and the results of simulations exploring the effect of different magnetic
field configurations. Finally Chapter 5 describes inclusion of a black hole into
the FLASH code and presents some accretion disc simulations used to assess its
behaviour.
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Chapter 2

Astrophysical Background

The study of neutron star mergers and their related observable events (sGRBs,
gravitational waves, neutrinos, kilonovae, etc.) has spanned over 30 years and
produce a vast array of results. In this chapter we summarize some of the main
features of observable events such as GRBs, gravitational waves and kilonovae that
are related to neutron star mergers. We also present some of the key theoretical
insights into mergers, and describe some of the current questions and challenges
in this area.

2.1 Observations

The study of NS mergers was initially prompted by the observations of gamma
ray bursts (GRBs), and the proposal that they could be responsible for cer-
tain types of GRB. Further to this, their strength as a source of gravitational
waves meant that they were also of interest for the first generations of gravi-
tational wave detectors. Here we review the current understanding of observa-
tions relevant to the study of NS mergers, including the multimessenger event
GW170817/GRB170817a/AT2017gfo, which provided the first ‘smoking gun’
evidence for the link between BNS mergers and short-GRBs.

2.1.1 Gamma Ray Bursts (GRBs)

The main observed burst of a GRB is referred to as the prompt emission. This
length of this emission is used to categorise a burst as short or long, depending on
whether the value of T90 is shorter or longer than 2s respectively. More recently
it was discovered that the prompt emission can also be preceded by a period of
precursor emission and/or followed by an afterglow. Each stage of emission has
different characteristics and through studying them we can build a broader picture
of the environment both before and after the main burst itself.

Prompt emission

The lightcurves of the GRB prompt emission are highly varied, with few overall
trends in their structure. Some appear to be comprised of many shorter bursts of
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emission, whereas others have a single fast-rise-exponential-decay profile. Further-
more, some sGRBs show extended gamma ray emission at lower energies following
the main peak that can last for tens of seconds [Lazzati et al., 2001]. It was
suggested that bursts with extended emission represented a separate population
of sGRBs produced by different progenitors [Troja et al., 2008], however the lack
of other differences between the two populations suggests that the progenitors
are still quite similar. [Metzger et al., 2008] suggest that the progenitor for
bursts with extended emission could be a binary NS merger, which then forms a
proto-magnetar. The prompt emission would then be produced by accretion onto
the magnetar and the extended emission by a relativistic wind that extracts the
magnetar’s rotational energy.

The spectrum of the prompt emission is primarily non-thermal and can be fitted
with a Band function [Band et al., 1993], which consists of a power law with
an exponential cut-off at low energies and a steeper power law component at
high energies. However, in many GRBs a thermal component can be identified
[Ryde, 2005], suggesting multiple sources of emission at work in the burst. The
prompt emission photons are thought to be produced in internal shocks within
the relativistic jet, where shells of matter travelling at different speeds collide
[Rees and Meszaros, 1994]. The majority of this emission is observed at sub-MeV
energies, however a handful bursts have been observed to produce photons at
much higher energies [MAGIC Collaboration et al., 2019]. The dominant emission
mechanism is thought to be synchrotron radiation produced by electrons that have
been accelerated in the shock. If we consider the magnetic and kinetic energies to
be close to equipartition within the shock, we expect the magnetic field strength
at the radius of emission from the central engine to be of the order B ≈ 103G
[Daigne and Mochkovitch, 1998]. The peak synchrotron photon energy can then
be approximated to be

Epeak =
ℏeB
mec

Γ2
eΓbulk ≈ 500keV

(
Γe

100

)2(
B

1000G

)(
Γbulk

100

)
(2.1)

where Γe is the Lorentz factor of the electrons themselves and Γbulk is the bulk
Lorentz factor of the material with respect to the observer. We see that for Lorentz
factors of order 100, the synchrotron emission peaks in the expected range.

A relativistic jet was proposed as the main source of prompt GRB emission
as it provided a solution to what is known as the compactness problem. The
timescales on which GRBs vary are very short, implying the emitting area must
be very small because the whole region must be in causal contact. Taken naively,
the density implied by the GRB energies and these small scales would make the
emitting region optically thick, which would result in the photons being trapped
and thermalized, which does not correspond with the non-thermal spectra we
typically see [Cavallo and Rees, 1978]. The contradiction is resolved by invoking
the jet theory, as if the emitting region is travelling towards the observer at
relativistic velocities, the relativistic beaming effect acts to focus the emitted
radiation along the direction of the jet’s motion. This means that the emitting
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area then appears much smaller than it actually is.

Pre-cursor emission

Prior to the main emission peak, in some GRBs a burst of precursor emission is
observed. This appears to be more common for long GRBs, with around 20% of
bursts showing precursors [Lazzati, 2005]. For short GRBs, studies with different
instruments have detected precursors for 1-10% of bursts [Troja et al., 2010] [Wang
et al., 2020]. The precursor emission is fainter than the main burst and often
has a different spectrum [Wang et al., 2020], suggesting there is some significant
difference in the emission mechanism for the two components. Further to this, the
spectra of different precursors also vary, which could imply multiple progenitors
for precursor signals. The time delay between the precursor and main burst is
mostly of the same order as the duration of the burst itself [Wang et al., 2020],
but can be up to around 100s [Troja et al., 2010].

In long GRBs, there are two main models for precursor production: the shock
breakout and fireball photosphere models. These are also both possible mech-
anisms for post-merger precursor emissions in sGRBs. In the shock breakout
scenario, the precursor emission is generated by the breakout of the main GRB jet
from surrounding matter, either the remnants of the massive star in the case of
an lGRB or ejecta from the merging NSs in the sGRB case. As the jet propagates
through the surrounding matter it deposits energy, creating a hot cocoon of
matter, which may then be capable of producing soft gamma ray emission when
it breaks out of the cooler matter [Bromberg et al., 2017]. In the context of
GRBs a fireball is a radiation-dominated outflow from the central engine. The
fireball photosphere model proposes that the precursor emission is generated by
the fireball transitioning from optically thick to thin, allowing photons initially
trapped within to escape [Li, 2007].

Further precursor emission mechanisms have been proposed for sGRBs produced
in NS mergers, where the emission is generated in an event prior to the merging
of the two stars. For example, in the final stages of the star’s inspiral, tidal
distortions will cause the crust of the stars to rupture. This is expected to trigger
restructuring of the magnetic field, which could generate a reconnection flare
that is then detected as the precursor emission [Thompson and Duncan, 1995].
Alternatively, interactions between the magnetospheres of the two neutron stars
are expected to be capable of producing electromagnetic transients at a variety
of energy scales prior to merger, including those that could be consistent with
precursor gamma-ray emission [Troja et al., 2010] [Hansen and Lyutikov, 2001].

Afterglow

Many GRBs show significant afterglow emission that lasts for ∼1000 s, primarily
in x-rays but in a smaller number of cases optical and radio emission also. This
emission is thought to be generated by the external shock as the GRB jet collides
with the surrounding interstellar medium. The afterglow emission for lGRBs
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is substantially brighter than for sGRBs, suggesting that they are either more
energetic or that the surrounding matter density is different for the two systems
[Margutti et al., 2012]. The emission is characterised by an initial steeply decaying
component, which is thought to be associated with the prompt emission, followed
by a more slowly declining phase [Nousek et al., 2006].

To summarize, the main component of an sGRB is now broadly accepted to
be produced by a relativistic jet launched from the remnant of a NS-NS or po-
tentially NS-BH merger. Questions however remain about what conditions are
required to produce such a jet, which we will discuss in more detail in Section 2.2,
however further observations of spectra and lightcurves are refining our theories
in this area. In contrast the emission mechanism for pre-cursors, particularly in
sGRBs, is less well defined, but has the potential to tell us a great deal about
the earliest stages of a merger, including insights into the tidal deformability and
magnetospheres of the neutron stars. Finally, the afterglow emission can be used
to infer features of the merger environment, helping to answer larger questions
about binary populations, location and merger rates.

2.1.2 Kilonovae

Kilonovae are supernova-like transient events observed primarily in the optical
and near-infrared. Their spectra are thermal and they reach peak luminosities of
around 1040 − 1042 erg s−1. These events were first proposed theoretically in an
attempt to understand where the elements heavier than iron were produced in the
universe, with the emission observed being produced by the decay of radioactive
heavy isotopes [Li and Paczyński, 1998]. These elements are created by the rapid
capture of free neutrons by a heavy seed nucleus, which is known as the r-process.
This only occurs when the neutron capture timescale is shorter than the beta decay
timescale, therefore it requires a very neutron-rich and high entropy environment.

Initially, the two most prominent theories for sites where these conditions occur
are in the neutrino driven winds from core-collapse supernovae [Mathews et al.,
1992] and the ejecta from NS-NS or NS-BH mergers [Lattimer and Schramm, 1974]
[Symbalisty and Schramm, 1982]. However, at present simulations of core-collapse
supernovae have shown that the very high neutrino fluxes mean that β interac-
tions reduce the neutron fraction of the matter so rapidly that the conditions
for the r-process are not reached for any substantial amount of time [Thompson
et al., 2001] [Arcones et al., 2006] [Mart́ınez-Pinedo et al., 2012]. At present it is
still unclear from observations which of the two sites is the dominant source of
r-process elements in the universe. Studies of the r-process element abundances
in our galaxy [Wallner et al., 2015] and the dwarf Reticulum galaxy favour an
r-process source with consists of rare, high yield events rather the frequent low
yield ones [Ji et al., 2016]. This favours the NS merger model as they are both
less frequent than core-collapse supernovae and expected to produce a higher
r-process yield. However, the potential for natal kicks to eject NS binaries from
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their formation sites poses a problem, as the r-process enriched material from the
merger is unable to pollute the next generation of stars forming if the merger
occurs too far away [Bonetti et al., 2019]. Furthermore, galactic chemical evolution
studies have suggested that binary populations appear too low for mergers to be
capable of reproducing galactic abundances of Europium [Côté et al., 2017], and
so this remains an open question.

The basic model for kilonova emission consists of ejected, optically thick matter
expanding outward from the central engine. It cools as it expands, and the optical
depth lowers until it becomes transparent to radiation. The timescale for this
transition from optically thick to thin determines the timescale on with the peak
luminosity is reached, typically of the order days to weeks depending on the
specific model. Since matter is likely ejected at a range of velocities, this leads to
the luminosity from the faster matter peaking earlier than that from the slower
ejecta. Further to this, kilonova emission can be divided into two components, blue
and red, based on the composition of the matter they originate from. The blue
component comes from ejecta which has higher electron fraction (corresponding
to a lower neutron count) and so is unable to form many of the heaviest elements
like Lanthanides, which gives it a light curve peaking at shorter wavelengths. In
the case of NS mergers, this ejecta is likely to be produced along the rotation
axis by ejection of matter from the interface between the two stars or from the
post-merger accretion disc winds. The red component is generated by the ejecta
components with the lowest electron fractions, which are rich in Lanthanides
[Metzger and Fernández, 2014]. These are expected to be located in the tidal
ejecta and low latitude disc winds. As a result of the distribution of the different
components, kilonova may be observed with both components present, or only
one depending on the viewing angle [Kasen et al., 2015].

To date there have been relatively few kilonova observations, particularly when
compared with sGRBs. This is largely a result of them being much fainter, which
therefore limits the distances at which they are visible. Further to this, efforts
to search for kilonovae by follow-up optical and IR observations after sGRBs are
hampered by the fact that if a GRB afterglow is present, it is typically much
brighter and obscures the kilonova signal. [Tanvir et al., 2013] and [Berger et al.,
2013] both observed an excess of near IR emission following GRB130603b, the
light curve of which matched predictions for the red component of a kilono-
vae. More concretely, broadband electromagnetic follow-up of the GW170817
and GRB170817a event discovered a counterpart (referred to as AT2017gfo) at
a full range of wavelengths from UV to radio [Abbott et al., 2017c]. The ob-
servations showed a UV-optical component that was brightest hours after the
initial GW detection and decayed rapidly over the following two days, and a
near-IR component that peaked in brightness later and faded over the course of a
week. This optical follow-up also allowed for the identification of the host galaxy
as NGC 4993 [Coulter et al., 2017]. Modelling of the lightcurve also predicted
that the total mass of the ejected material was around 0.04 M⊙ [Perego et al., 2017].

How much mass is ejected and where it comes from within the merger are key
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to understanding the source of heavy elements in the universe. This depends
on many parameters in a merger (total masses, spins, magnetic fields, EOS to
name a few) and so further direct observational constraints, like those provided
by AT2017gfo, will be important for understanding the relative impact of all the
effects at work.

2.1.3 Gravitational Waves

In the first three observing campaigns by the Advanced LIGO-VIRGO gravitational
wave detector collaboration, there have been two confirmed detections of compact
object mergers with masses consistent with binary NSs and another two that are
believed to be NS-BH mergers [Abbott et al., 2021]. The first of these events,
the binary NS observation known as GW170817 is as yet the only event to have
been observed in both gravitational waves and electromagnetic signals. In the
case of the two NS-BH mergers, the mass ratios for both systems were relatively
small (around 0.2) and so the NSs would have been swallowed by the BH before
tidal disruption could occur, meaning it not expected that their would be an
observable electromagnetic counterpart [Abbott et al., 2021]. The GW190425
event is believed to have been a binary NS merger as the component masses
were within the range 1.5 - 1.9 M⊙. However, with a total mass of 3.4 M⊙, this
system appears to be substantially different from the population of binary NSs
within our galaxy that have been observed [Abbott et al., 2020]. This suggests
that this system formed via a different channel to the galactic binaries. As there
was no electromagnetic counterpart observation and no tidal signature in the
gravitational wave signal, it cannot be ruled out that both objects were BHs,
however a non-standard evolutionary channel would again be required to explain
the formation of a binary BH system with these observed properties [Abbott et al.,
2020].

2.1.4 GW170817

As the only binary NS merger observed in both gravitational waves and the electro-
magnetic spectrum, GW170817 has provided the most observational information
to date on binary NS mergers. The gravitational wave signal gave the component
masses to be in the range 1.1-1.9M⊙, with a total mass of 2.74M⊙ [Abbott et al.,
2019]. Further to this, the gravitational wave signal was also used to place con-
straints on the radii of the neutron stars and the equation of state more broadly
[Abbott et al., 2018]. The extent of the tidal deformation of the two neutron stars
can be extracted from the gravitational waveform, since the tidal deformation
increases the inspiral rate of the stars, which is measurable as a change in the rate
of change of the gravitational wave frequency. This measured tidal deformation can
then be used to estimate the radius of the neutron star [Maselli et al., 2013], which
in the case of GW170817 gave radii 11.9±1.4km for both stars [Abbott et al., 2018].

Prior to this, the only major constraints possible came from calculations of
the mass of neutron stars in binary orbits. This allowed equation of state mod-
els which predict maximum masses below the most massive stars observed (for
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example the millisecond pulsar J0740+6620 [Cromartie et al., 2020] has one of
the largest well measured masses to date at around 2.14M⊙) to be ruled out.
GW170817 also provided a tentative upper limit on the maximum NS mass,
through the follow-up electromagnetic observations. Using the total mass of the
binary, which can be determined from the gravitational wave signal along with a
variety of theoretical models for the remnant, estimates for an upper bound on
the maximum non-rotating neutron mass of between 2.15 M⊙ and 2.3 M⊙ have
been obtained [Margalit and Metzger, 2017] [Shibata et al., 2017].

Most significantly, the localisation of the gravitational wave (GW) signal and
coincident detection of the gamma ray signal GRB170817a provided the first
direct evidence for sGRBs being produced in binary NS mergers. The GRB was
detected around 2 seconds after the peak GW signal by both Fermi GBM and
INTEGRAL [Abbott et al., 2017b]. Although the signal is consistent with a sGRB,
it is several orders of magnitude fainter than any previously observed sGRB. This
combined with long-term observations of the afterglow suggest that the GRB jet
was observed 15-30◦ off-axis, meaning that only the surrounding mildly relativistic
outflow was observed [Abbott et al., 2017b] [Margutti et al., 2017] [Alexander
et al., 2018].

Further to this, in the days following the GW detection of the merger, opti-
cal and near infrared emission from the resulting kilonova was detected [Arcavi
et al., 2017], with an initial peak in the UV which evolved over the following
days to peak in the IR lasting around a week. This two component structure
agreed well with predicted behaviour for kilonova emission [Metzger et al., 2010].
Comparison of the spectra and light curves to models predicted ejecta masses
of 0.02 M⊙ [Nicholl et al., 2017] and 0.04 M⊙ [Kasen et al., 2017] for the blue
and red components respectively. In addition, over the following weeks a full
range of counterparts, from gamma rays to radio were identified [Abbott et al.,
2017c]. In x-ray and radio, the afterglow emission from the sGRB was detected
around 9 days after the initial gravitational wave detection [Troja et al., 2017]
[Alexander et al., 2017]. This again was consistent with a sGRB generated by a
highly relativistic jet viewed off-axis.

Gravitational waves have been key in establishing the link between electromagnetic
transients, such as GRBs, and mergers. As more NS-NS mergers are detected, this
will provide constraints on the merger rate and the population of binaries in the
universe, furthering our understanding of the role of mergers in the production of
r-process elements. In the future it is hoped that more sensitive detectors will be
able to observe deviations in the inspiral waveform from the point mass solution,
providing insights into the neutron star equation of state. Additionally, a clearer
picture of the signal during and after the merger could tell us a great deal about
the mass distribution during the merger and in the remnant.
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2.2 Theoretical background of mergers

2.2.1 Binary formation and evolution

The first binary neutron star was discovered in 1974 [Hulse and Taylor, 1975],
known as the Hulse-Taylor pulsar it is comprised of a radio pulsar and a neutron
star. Precise measurements of the pulse arrival times from the pulsar allowed
the orbital motion of the two stars to be tightly constrained, providing stringent
tests of general relativity and giving the first indirect evidence for the existence of
gravitational waves [Taylor et al., 1979]. General relativity predicts that acceler-
ating masses will produce gravitational waves, in a similar way to accelerating
charges producing electromagnetic waves in electromagnetism. Therefore, a pair
of masses orbiting one another will radiate away some amount of their orbital
energy, causing them to fall inward and eventually collide. The main properties
of the gravitational wave emission from a system depend on the system’s mass
quadrupole moment. The quadrupole moment of a continuous matter distribution
is defined as

Qij =

∫
ρ

(
rirj −

1

3
δijrkrk

)
dV (2.2)

where ρ = ρ(r, t) is the matter density. For a system of point masses this becomes

Qij =
∑
l

ml

(
rilrjl −

r2

3

)
(2.3)

where ri is the ith component of a particle’s position and m is it’s mass. For
a circular two-body orbit, the position of each body is described by rl =
rl (cos(ωt)x̂+ sin(ωt)ŷ), where ω is the orbital frequency of the binary and rl is
the distance from the particle to the center of mass of the system. Using this, the
quadrupole moment of the binary can be written as,

Qij =
µr2

2

cos 2ωt+ 1
3

sin 2ωt 0
sin 2ωt 1

3
− cos 2ωt 0

0 0 −2
3

 (2.4)

where µ = m1m2/(m1 + m2) is the reduced mass of the system and r is the
separation of the two masses. Assuming spacetime to be approximately flat and
that the gravitational waves are a small perturbation to this, the gravitational
wave strain hij can be estimated using the quadrupole moment as

hij =
2G

c4dL
Q̈ij (2.5)

where dL is the luminosity distance to the observer [Einstein, 1918]. Combining
this with the quadrupole moment for a two-body system we can see that the
frequency of the emitted gravitational waves is twice the orbital frequency.

Continuing to use this approximation, the energy radiated from the binary by
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gravitational waves is given by

dEGW

dt
=

G

5c5
...
Q ij

...
Q ij. (2.6)

Once again, we substitute the quadrupole moment for the 2-body circular orbit in
to Equation 2.6 to obtain

dEGW

dt
=

32G

5c5
ω6µ2r4 (2.7)

Using Kepler’s third law, we may eliminate ω to give

dEGW

dt
=

32G4

5c5
M3µ2

r5
(2.8)

where M is the total mass of the binary. We can then equate this with the change
in the orbital energy ĖOrb = GMµṙ/2r2, to give a differential equation for the
orbital separation of the form

ṙr3 =
64G3M2µ

5c5
(2.9)

Integrating this, we rewrite the resulting equation to find the merger time (r(TM ) =
0) in terms of the initial separation r0 as

TM =
5c5r40

256G3M2µ
(2.10)

The strong dependence on separation means that the initial separation of binaries
is an important factor in determining expected merger rates.

There are two main channels through which neutron star binaries are expected
to form. The first (and most dominant) is from a high mass binary in which
both companions undergo a supernova explosions that do not break the binary
orbit. The heavier companion undergoes the standard evolution for a high mass
star, eventually exploding in a supernova and forming the first compact object.
Upon the secondary reaching its red giant phase, the binary undergoes a common
envelope phase, where the red giant expands to cover the orbit of the compact
object companion. This stage is vital to the formation of a merging binary, as the
dynamical friction generated by the common envelope shrinks the orbit, giving
a much tighter binary orbit when the secondary companion finally becomes the
second compact object in a supernova [Bhattacharya and van den Heuvel, 1991].

The second formation channel is the dynamical formation of a binary compact
object in a dense stellar environment. This involves preexisting compact objects
forming a binary as a result of a dynamical encounter, which requires a very dense
stellar environment such as a globular cluster or the galactic center to ensure the
probability of interactions is high enough for there to be a reasonable chance of a
binary forming. As a result, this channel is expected to produce substantially fewer
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NS binaries, for example [Grindlay et al., 2006] found that dynamical binaries may
account for only 10-30% of merging NS binaries. These estimates however rely on
parameters such as the initial mass fraction of dense clusters which are poorly
constrained. In contrast, black hole binaries, which may in principle be formed
through the same two channels, are expected to be formed far more efficiently
through dynamical encounters [Portegies Zwart et al., 1999]. This leads to the
expected binary BH population to be dominated instead by dynamically formed
binaries [Sadowski et al., 2008].

During the inspiral phase, the system emits gravitational waves at twice the
orbital frequency, which increases as the orbit shrinks. The luminosity also grows
with the decay of the orbit, and these combine to give the characteristic ‘chirp’
signal for mergers. In addition, tidal deformations of the stars as they get closer
will alter the waveforms, and the form these changes take will allow us to probe the
neutron star’s tidal deformability and equation of state. Finally, the post-merger
signal depends on what object is formed initially. For a NS-BH this is just a black
hole, but in the NS-NS case this could be a supra- or hypermassive NS which may
then collapse to a BH some time later [Blanchet, 2006]. This remnant system is
the expected central engine, which produces a relativistic jet, which is observed
as an sGRB. The dominant theory for this currently requires the presence of a
strong magnetic field, which interacts with the central object to produce the jet
in a process known as the Blandford-Znajek mechanism.

2.2.2 The Blandford-Znajek Mechanism

The Blandford-Znajek mechanism [Blandford and Znajek, 1977] is a process by
which a black hole’s rotational energy is extracted through interactions with
a surrounding magnetic field to power a jet. It was originally developed as a
theory for how AGN jets are produced by supermassive black holes, but the same
principle can apply with a smaller system such as the remnant stellar mass black
hole and disc following a NS-NS or NS-BH merger.

The mechanism is most intuitively understood using the membrane paradigm set
out in [Thorne et al., 1986]. This is a theoretical framework developed for studying
black holes from an astrophysical viewpoint. It describes a way of modelling black
holes which captures the important relativistic effects near the black hole, whilst
removing some of the near horizon physics that does not play an important role
in astrophysical phenomena.

In the membrane paradigm, we split 4D spacetime into 3D spacelike hypersurfaces
before collapsing these into a single 3D space with a global time coordinate.
Physical measurements are made by a set of fiducial observers (FIDOs), which are
defined as observers who are ‘at rest’ at a given position in space, i.e. their worldline
in 4D spacetime is orthogonal to hypersurfaces of constant time. In the spacetime
around a rotating black hole this means the observers must lie at fixed radius and
angle from the spin axis, and will be orbiting the black hole with speed determined
by their distance from it. FIDOs make physical measurements using their own
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local time, which is related to a global time coordinate by the ‘lapse function’, α.
Near the surface of a black hole, a falling observer’s clock runs arbitrarily slower
the closer to the horizon we get. As a result, the motion of electromagnetic fields
near the horizon becomes ‘sluggish’, when lines further from the horizon move,
those closer in drag behind them. This leads to the build up of ‘fossilised’ fields
around the BH’s horizon, containing a complete record of the history of the fields
motion around the BH. These fossil fields however have very little impact on field
behaviour further out from the hole. The membrane paradigm shows that the in-
teractions of the field can be well described by introducing a conducting membrane
a small distance outside the BH horizon, which will hide these complex fossil fields.

In the case of a merger remnant, a large scale external magnetic field is pro-
vided by the accretion disc and this interacts with the conducting membrane
around the black hole. The overall shape of the field is expected to be roughly
poloidal, however at smaller scales the field will be more tangled and chaotic. As
the field is pulled with the accreting matter onto the black hole, eddy currents
generated in the conducting membrane will dissipate the energy of the smaller
scale fields structures, as the membrane can be shown to have non zero resistivity
[Thorne et al., 1986]. Larger structures will remain as the currents are unable to
dissipate them, which leads to the field being ‘cleaned’ by the membrane. Further
to this, the rotation of the membrane and surrounding ergosphere will drag field
lines around with the black hole’s rotation, twisting the field lines to produce a
magnetic funnel about the hole’s rotation axis. Plasma will then be accelerated
out along this funnel of field lines at highly relativistic speeds, producing a jet
which then can power a GRB.

2.3 Numerical hydrodynamics studies

Whilst analytic models can provide insight into the inspiral and post-merger
phases of a merger, the complicated dynamics present in the merger itself restrict
the usefulness of such simplified models. In this phase of the merger, numerical
hydrodynamics simulations have been employed to study the evolution of the
system. The early simulations (dating mostly throughout the 1990s) of NS-NS
mergers were performed in Newtonian and Pseudo-Newtonian gravity, using a
variety of both Eulerian and SPH codes [Oohara and Nakamura, 1989] [Ruffert
et al., 1996] [Zhuge et al., 1994] [Ruffert et al., 1997b] [Shibata et al., 1992].
Gravitational wave emission and its backreaction on the fluid was approximated
using a variety of methods, as fully relativistic simulations were not possible.
There is general agreement across the different codes on the broad features of
the merger: the neutron stars are generally tidally disrupted, producing tails
which become spiral arms that wind around a dense core. This core is initially
highly non-axisymmetric, transitioning from a pair of cores, through a dumbbell or
bar-like phase before eventually settling into an axisymmetric remnant surrounded
by a disc. The lack of general relativity meant that the resulting remnant was
unable to collapse to a black hole, leaving a long-lived neutron star in all cases
and predicting large amounts of mass loss from this remnant to the disk. The
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predicted gravitational wave emission from these simulations generally gave an
accurate description of the overall GW signal: a rising frequency and amplitude
‘chirp’ followed by the ringdown of the central remnant, however the finer details
and exact wavetrain would require a fully relativistic treatment.

Following breakthroughs in numerical general relativity (GR), which led to the
first stable simulations of black holes [Pretorius, 2005] [Baker et al., 2006], the
vast majority of recent merger simulations have been performed with varying
forms of relativistic gravity. Whilst the major phenomenological features of the
mergers are broadly similar, GR simulations predict much lower disk masses due
to lower mass loss rates from the central remnant [Shibata and Uryū, 2000]. Using
a relativistic gravity formalism also allows for a more accurate description of the
GW emission during the merger and the remnant ringdown.

The inclusion of GR allows for the remnant to collapse to form a black hole,
and so relativistic simulations have been used extensively to probe how the final
product of the merger depends on the initial system parameters [Kiuchi et al.,
2009]. Broadly there are three possible scenarios for the final product of a merger:
a long-lived NS, a short lived hypermassive NS that is supported against collapse
only temporarily by rotation and a prompt collapse to a black hole. [Kiuchi
et al., 2009], for example, investigated several different initial mass configurations
and showed that the merger resulted in a prompt collapse for systems with total
masses greater than 2.9 M⊙ irrespective of mass ratio. Further work has examined
the impact of the equation of state (EOS) on the collapse timescales [Hotokezaka
et al., 2011] for the central remnant, broadly finding that for a stiffer equation of
state, a higher total system mass is required for prompt collapse.

Further improvements to simulations have come from the inclusion of additional
microphysics. This includes the use of nuclear EOSs, neutrino emission schemes
and magnetic fields. A very large range of nuclear physics derived equations of
state have been used in simulations, including in early Newtonian simulations
[Ruffert et al., 1996]. The lack of detectable tidal deformation signatures in
the GW170817 signal placed an upper bound on the tidal deformability and by
extension the EOS, however this EOS is still poorly constrained. The lack of
data combined with large theoretical uncertainty about the underlying physics
has led to the wide variety of potential EOSs and an extensive study of the effect
they have on mergers, in an attempt to find predictions that would allow future
observations to further narrow the range of possibilities [Hotokezaka et al., 2011]
[East et al., 2016] [Bauswein et al., 2020] [Bauswein et al., 2012].

Additionally, neutrino leakage schemes have been used to simulate the emis-
sion of neutrinos from merging NSs, in both early Newtonian simulations [Ruffert
et al., 1997a] and more recently in fully relativistic simulations [Bauswein et al.,
2012] [Deaton et al., 2013] [Perego et al., 2014] [Cipolletta et al., 2021] [Sun et al.,
2022] [Radice et al., 2022]. [Ruffert et al., 1997a] explored the possibility that neu-
trino emission in NS mergers could power a GRB, finding that a ν−ν annihilation
driven fireball would be a factor 10-1000 too low in energy to match the energies
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of observed GRBs. Their simulations showed that the neutrino luminosity grew
from around 1050erg/s during the merger itself, to a peak of around 1053 erg/s
following the formation of the hot accretion torus around the central remnant.
Whilst the remnant in this Newtonian simulation cannot collapse to a BH, it
was speculated here that the collapse of the remnant will reduce the mass of
the disc substantially, further lowering the expected neutrino emission. Neutrino
emission in the disc also produced a wind, resulting in the loss of 10−2 - 10−4

M⊙ of neutron-rich matter from the disc. This neutron-rich disc wind ejecta will
likely be a source of r-process elements, contributing to the kilonova emission.
Whilst these simulations show it is unlikely that neutrinos alone can produce a
GRB, recent work [Mösta et al., 2020] [Sun et al., 2022] has demonstrated that
neutrinos can be instrumental in clearing baryonic matter away from the poles
of the merger remnant. This provides a solution to the baryon-loading problem,
in which a magnetically powered GRB jet must overcome the ram pressure of
the baryonic matter above the remnant’s poles. In this way, the combination of
initially neutrino powered outflows, followed by a magnetically powered relativistic
jet is providing a promising model for sGRB generation in mergers.

2.3.1 MHD studies

A final direction in which improvements have been made to BNS merger sim-
ulations is through the inclusion of magnetic fields in simulations. The first
simulations that included both GR and MHD [Anderson et al., 2008a] used very
large magnetic fields (around 1015G) and found that the magnetic field had very
little impact on the inspiral of the stars, but it did delay the merger slightly in
comparison with an unmagnetized case. They also found that for irrotational
binaries, the shear layer that forms when the two stars meet is Kelvin-Helmholtz
unstable, and so turbulence along this interface amplifies the magnetic field. Fur-
ther field amplification occurred in the differentially rotating HMNS remnant, and
that the activation of the magnetorotational instability (MRI) in the remnant
transported angular momentum outward. This reduces the differential rotation
of the HMNS, which causes it to collapse quicker than in a non-magnetized case
[Giacomazzo et al., 2011].

Other studies have probed the production of a magnetically driven jet, which
could power a GRB, like that proposed by the Blandford-Znajek mechanism.
Long duration simulations of a merger remnant [Rezzolla et al., 2011] showed
that a large-scale poloidal field could form around the remnant black hole, as is
required by the Blandford-Znajek process. Further to this [Etienne et al., 2012]
have performed a suite of GRMHD simulations, covering both BH-NS and NS-NS
mergers. They have demonstrated that in both BH-NS [Paschalidis et al., 2015b]
and NS-NS mergers [Ruiz et al., 2016], a large-scale poloidal field is produced and
this drives a mildly-relativistic outflow (referred to as an ‘incipient jet’), which is
expected to be consistent with the early stages of the more strongly relativistic
jet required to produce a GRB. They investigate the effect of endowing the NS
with both an internal field, and one that extends beyond the surface of the star
as expected for a pulsar, finding that in the BH-NS case a jet is only launched
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when a external field is present [Paschalidis et al., 2015b]. In contrast, for binary
NS mergers they find that both internal and external field cases are capable of
launching jets [Ruiz et al., 2016]. Further to this, they examine the effect of
the orientation of the initial dipole field applied to the neutron star [Ruiz et al.,
2020]. They find that it has a strong impact on the lifetime of the HMNS, the
time taken for a jet to be launched and the amount of matter ejected from the
system. Specifically, the HMNS survives longer and the amount of matter ejected
is suppressed if one or both of the initial dipoles is perpendicular to the orbital
spin axis of the system, rather than being aligned with it.

Whilst current simulations have shown that the formation of a magnetically
powered outflow is possible, there are still some issues with our understanding
of this scenario. For example, current simulations need to use unphysically large
initial magnetic fields in order to produce jets. It is known that turbulence,
such as that generated along the contact interface between the two stars via
the Kelvin-Helmholtz instability, amplifies the initial field [Kiuchi et al., 2015],
however current simulations are unable to resolve the turbulence to the required
degree to see this. It is therefore not clear whether using an initially strong field
will lead to the same outcome as the expected amplification of the field during
the merger. Furthermore, the strength and structure of the magnetic field within
the neutron star is very poorly constrained due to the potential for the crust of
the star to shield an inner field that is much larger or smaller than the external
field, which could have further consequences for the production of jets.
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Chapter 3

Numerical Hydrodynamics

Numerical hydrodynamics is the basis of all numerical simulations of neutron star
mergers. In this chapter, we discuss the mathematical and computational proce-
dures which allow us to numerically solve the equations of hydrodynamics and
magnetohydrodynamics (MHD). We also survey some of the existing numerical
hydrodynamics codes, commenting on their features and how applicable they are
to neutron star mergers.

The Euler equations describe the dynamics of an adiabatic fluid with zero viscosity,
and are a simplified form of the Navier-Stokes equations. In three dimensions, the
equations are

∂ρ

∂t
+
∂ρvj
∂xj

= 0 (3.1)

∂ρvi
∂t

+
∂ρvivj
∂xj

= −∂P
∂xi

(3.2)

∂ρE

∂t
+
∂ρEvj
∂xj

= −P ∂vj
∂xj

(3.3)

The equations can also be written in a conservative form as

Ut + F (U)x +G (U)y +H (U)z = 0 (3.4)

where U is the vector of conserved variables and F, G and H are the fluxes in the
x, y and z directions respectively. The subscript notation here indicates a partial
derivative of the vector with respect to the variable in the subscript. The variable
and flux vectors are given by

U =


ρ
ρvx
ρvy
ρvz
E

 , F =


ρvx

ρv2x + P
ρvxvy
ρvxvz

vx(E + P )

 , G =


ρvy
ρvxvy
ρv2y + P
ρvyvz

vy(E + P )

 , H =


ρvz
ρvxvz
ρvyvz
ρv2z + P
vz(E + P )

 (3.5)

where ρ is the density, v the velocity, P the pressure and E the total energy
of the fluid. The total energy is the sum of the kinetic and internal energies,
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E = ρ(1
2
v2 + e), and the internal energy is given as a function of ρ and P by an

equation of state, which closes the system of equations.

It is common to use the Euler equations rather than the full Navier-Stokes
equations to model neutron stars due to the relatively negligible effects of viscosity
expected from mergers. There are two main approaches to solving the equations
of hydrodynamics numerically: grid-based and smoothed particle hydrodynamics
(SPH). SPH codes simulate the fluid using particles whose mass is ‘smeared’ out
in order to reconstruct the density distribution of the fluid. This is a Lagrangian
approach, formulating the equations in a frame of reference that follows the flow.
On the other hand, grid-based schemes solve the equations, by discretizing the
fluid variables on a grid that is spatially fixed with respect to the flow. Here we
shall focus on the grid based approach, as this is the basis of the methods used in
our simulations.

3.1 Conservation Laws

A general system of conservation laws in 1D can be written as

Ut + F(U)x = 0 (3.6)

By applying the chain rule, these equations can be rewritten in quasi-linear form
as

Ut +AUx = 0 (3.7)

where the matrix A = ∂F/∂U is the Jacobian matrix. A system is said to be
hyperbolic if its Jacobian matrix has m real eigenvalues λ1, ..., λm and a set of
corresponding linearly independent eigenvectors K1, ...,Km. The Euler equations
are hyperbolic and we can therefore express the matrix A as

A = KΛK−1 (3.8)

where the diagonal elements of Λ are the eigenvalues of A and the columns of K are
the corresponding right eigenvectors of A. Using the matrix K−1 we can define a
new set of variables, known as characteristic variables (or often primitive/physical
variables), as

W = K−1U. (3.9)

This transformation allows us to rewrite the system of equations as

Wt +ΛWx = 0. (3.10)

3.1.1 The Riemann Problem

A Riemann problem consists of a system of conservation equations with piecewise
constant initial conditions, where two constant states are separated by a single
discontinuity (as shown in the bottom panel of Figure 3.1). We can find a solutions
to Riemann problems using the method of characteristics [Toro, 2013] (Chapter
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2). Characteristics are defined as curves in the x− t plane along which a PDE
becomes an ODE. The rate of change of the solution u(t) along a path x(t) is
given by

du

dt
=
∂u

∂t
+
dx

dt

∂u

∂x
(3.11)

Comparing this with a single conservation law in primitive form,

∂u

∂t
+ λ(u)

∂u

∂x
= 0 (3.12)

and applying the condition that the solution is not time varying along a charac-
teristic (du/dt = 0), we see that the characteristics are given by

dx

dt
= λ(u) (3.13)

Integrating this gives
x(t) = x0 + λ(u0(x0))t (3.14)

showing that the solution at a given point (x, t) can be found by tracing the
characteristic it lies on back to find the initial condition it originated from:

u(x, t) = u0(x− λ(u0(x0))t). (3.15)

The diagram in Figure 3.1 shows a schematic of the result of this applying this
method to a Riemann problem. The left and right initial states produce two sets
of characteristics, and along the line on which they meet we get a shock front,
where the solution changes discontinuously.

As the slope of the characteristics generally depends on the solution itself, how
the discontinuity between the two initial constant states propagates depends
on the difference in behaviour between the two sets of characteristics. If the
characteristics are converging, a shock wave across which the solution changes
discontinuously propagates through the domain at a speed S ̸= λ1,2, as shown in
Figure 3.1. If the characteristics diverge, a rarefaction fan fills the gap between
the two states, across which the solution changes continuously. In the case of
equal characteristics, the original discontinuity simply propagates through the
domain with speed λ, which is known as a contact discontinuity. Generalising
this to system of m conservation equations, we find a set of m discontinuities
propagating with speeds Sm separating m+ 1 regions of the solution, and so to
fully determine the solution, we need to find which kind of discontinuity each
wave represents.
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Figure 3.1: The upper panels shows an example of characteristics produced by a
Riemann problem in the x− t plane, while the lower shows the initial conditions
for the Riemann problem. The left initial condition produces characteristics of
slope λ1 and the right λ2. The bold line marks where the characteristics meet,
and represents a shock wave travelling with speed S.

3.1.2 Numerical Conservation laws

To solve a system of conservation laws using a grid based approach we must
first discretize the system, so that it describes the evolution of variables that
are averaged over finite grid cells rather than continuous functions of space. A
conservation law can be written in integral form as∮

(udx− f(u)dt) = 0 (3.16)

where u(x, t) is the solution and f(u) is the flux as seen in the differential form
(Equation 3.6) [Toro, 2013] (Section 2.4.1). Here we will discuss a single equation
in 1D, the extension to multiple equations in more dimensions is straightforward
and is summarised in Section 3.2.1. Choosing the spatial limits of our domain
to be (x1, x2), we can use the integral form of the conservation law to find an
equation for the solution at a given time, t2, from the value at a previous one, t1,
as∫ x2

x1

u(x, t2)dx =

∫ x2

x1

u(x, t1)dx+

∫ t2

t1

f(u(x1, t))dt−
∫ t2

t1

f(u(x2, t))dt (3.17)
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This approach can be applied to find a method for evolving the solution of the
equations on a whole domain in time by discretizing the domain into cells of
size ∆x. We specify the cell’s position using an index i, where the position xi
corresponds to the center of the ith cell and xi− 1

2
refers to the boundary between

the xi−1 and xi cells, as shown in Figure 3.2.

xixi−1 xi+1

xi+ 1
2

xi− 1
2

∆x

Figure 3.2: A schematic of how a 1D domain is discretized.

The solution within each cell is defined as the spatial average of the solution across
the cell, uni =

∫ x
i+1

2
x
i− 1

2

u(x, tn)dx. Using this definition we can find a formula for the

value of the solution a time ∆t later by using Equation 3.17 and our definition of
the cell-averaged solution,

un+1
i = uni +

∆t

∆x

(
fi− 1

2
− fi+ 1

2

)
(3.18)

where uni is the solution in the ith cell at a time tn = n∆t and fi− 1
2
is the time

averaged flux evaluated at the left interface of the ith zone. In order to advance
the solution in time, we then need a method of calculating these inter-cell fluxes.

3.2 Godunov’s Method

Godunov’s method [Godunov, 1959] applies the solution of Riemann problems
to find the inter-cell fluxes in Equation 3.18, allowing us to numerically solve a
system of conservation laws, like the Euler equations. In this method, the inter-cell
fluxes are defined as

fi− 1
2
=

1

∆t

∫ ∆t

0

f(ũ(xi− 1
2
, t))dt (3.19)

where ũ is the exact solution to the Riemann problem defined at the cell interface
by the cell solution values ui and ui−1. In the local coordinates of the Riemann
problem ũ is the solution on the t-axis, and so is often written as ui− 1

2
(0). By

solving these Riemann problems at the cell interfaces, we can calculate the inter-
cell fluxes, to be used in Equation 3.18 to advance the solution in each cell to
the next timestep. This method relies on neighbouring Riemann problems not
interacting, which means that the wave from a given problem should not travel
more than the width of a zone in the chosen timestep, ∆t. We can define a
parameter, known as the Courant number,

Ccfl =
∆t|Sn

max|
∆x

(3.20)
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where Sn
max is the maximum wave speed present in the system at time tn. Therefore,

the above condition requires that ∆t is chosen such that

0 < Ccfl < 1

in order for the method to remain stable.

3.2.1 Higher dimensions

Whilst we have presented this method in only one dimension and for a single
equation, it is straightforward to extend it to a system of equations in higher
dimensions. Firstly, as discussed at the end of Section 3.1.1, having multiple
equations produces multiple waves, which splits the solution into several regions,
therefore in solving for the inter-cell fluxes, we just need to determine which of
these regions the t axis lies in and find the solution there.

In higher dimensions, we can see from the Euler equations in 3.4 that there
are now flux terms corresponding to each spatial dimension. To advance the
solution in time we solve Riemann problems on the cell interfaces in each direction
to find the fluxes across all the faces, before summing their contributions to the
total change in the cell’s solution value:

un+1
i = uni +

∆t

∆x

(
fi− 1

2
− fi+ 1

2

)
+

∆t

∆y

(
gj− 1

2
− gj+ 1

2

)
+

∆t

∆z

(
hk− 1

2
− hk+ 1

2

)
(3.21)

Broadly, this can be approached in two ways, referred to as dimensionally split or
unsplit. In a dimensionally split algorithm, the contributions from each direction
are included individually in a series of single dimension passes. This means that
the x direction update is performed for the entire domain, then the y dimension
update is performed using the result of that first pass and so on. This has the
advantage of being simple to implement, easy to extend from a one-dimensional
code and easy to parallelise. However, this approach encounters issues when
applied to MHD, due to the multidimensional nature of the magnetic field terms
and the requirement that the ∇ · B = 0 condition be maintained. Therefore
unsplit schemes, which perform the directional updates from all directions at once,
are generally favoured for solving the MHD equations. This is discussed in Section
3.3.

3.2.2 Higher order Godunov-type methods

The initial version of Godunov’s method using only the cell averaged values as
the left and right states for the Riemann problems gives us only first order spatial
accuracy for our solution. To improve on this, there are many schemes which
instead reconstruct an approximation to the function within the cell, in order to
obtain more accurate values for the left and right Riemann states. For example,
the Monotone Upwind-centered Scheme for Conservation Laws (MUSCL) [van
Leer, 1974] is a collection of second order methods that use a linear approximation
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to the function to obtain the left and right edge states for the Riemann problems.
This scheme has three main steps:

1. The cell averaged values for the solution variables are replaced with linear
functions of the form

uni (x) = uni +
(x− xi)

∆x
∆i

where ∆i controls the gradient of the solution, and is defined differently in
various sub-models of the MUSCL scheme. These reconstructions are then
used to obtain the cell edge values of the solution variables, un

i− 1
2

and un
i+ 1

2

.

2. The edge states of each cell are advanced by a half timestep using

u
n+ 1

2

i− 1
2

= un
i− 1

2
+

∆t

2∆x

(
F (un

i− 1
2
)− F (un

i+ 1
2
)
)

3. The half timestep edge states are used as the initial conditions in a Riemann
problem, which is used to calculate the inter-cell fluxes at the half timestep.
These are used to perform the full timestep update to the cell average values
as described by the original Godunov method.

3.3 Extending to MHD

3.3.1 The equations of ideal MHD

The equations of magnetohydrodynamics (MHD) are an extension of the hydro-
dynamics that govern the motion of a fluid endowed with a magnetic field. More
specifically the ideal MHD equations describe a non-viscous, perfectly conducting
fluid [Alfvén, 1943]. The addition of the magnetic field requires us to include
terms in the momentum and energy equations that account for the effect of the
magnetic field on the flow and introduce a new equation for the evolution of the
magnetic field itself.

To derive an equation for the evolution of the magnetic field, we consider the
Maxwell equations

4πj+
∂E

∂t
= c∇×B (3.22a)

∂B

∂t
= −c∇× E (3.22b)

∇ · E = 4πσ (3.22c)

∇ ·B = 0 (3.22d)

The Faraday equation 3.22b describes the change in the magnetic field with time,
so we use this as the basis for our evolution equation. In a perfectly conducting
fluid, the electric field in the fluid vanishes from the point of view of an observer
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moving with the fluid, as in the presence of a non-zero electric field, arbitrarily
large currents would form to neutralise any separation of charge. In frames where
the fluid is moving relative to the observer however, there will be a non-zero
electric field component perpendicular to the motion as described by the Lorentz
transform:

E
′

⊥ = γ(E⊥ + v ×B/c). (3.23)

Therefore, the only electric fields present in the fluid is that given by Lorentz
transform in Equation 3.23, and so we can rewrite Equation (3.22b) as

∂B

∂t
= ∇× (v ×B). (3.24)

This is the MHD induction equation, and governs how the magnetic field in the
fluid changes with the fluid’s motion. By taking the divergence of 3.24 we find

∂

∂t
(∇ ·B) = 0, (3.25)

ensuring that the condition in (3.22d) is maintained automatically, provided it is
satisfied by the initial conditions. Therefore (3.22d) is a constraint on our initial
conditions in MHD, rather than part of the system of equations we must solve.
Further to this Equation (3.22c) becomes unnecessary, as our fluid is electrically
neutral and perfectly conducting, so there are no non-zero charge densities or
electric fields.

The magnetic field introduces a Lorentz force to the momentum equation of
the form

FL =
1

c
j×B (3.26)

where j is the current density. As described above, in a perfectly conducting fluid
there can be no separation of charge and therefore no currents, and so the only
contributions to this current density are due to the relative motion of one fluid
parcel with respect to another. Therefore, we can rewrite this force in terms of
the magnetic field and fluid velocity only. We can rewrite the Ampere-Maxwell
law (3.22a) without the electric field, using the Lorentz transform in (3.23),

4πj+
∂

∂t
(v ×B) /c = c∇×B.

Restricting to non-relativistic fluid velocities (v << c), we consider the flow to
have length scale L and timescale T and define typical velocity V = L/T . The
displacement current term then has typical magnitude

| ∂
∂t

(v ×B) /c| ≈ (BV )/(cT ) ≈ B(V/c)(V/L),
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whereas the RHS term has magnitude Bc/L. Using the Lorentz transform in
Equation (3.23), in the equivalent transform for the magnetic field,

B
′

⊥ = γ(B⊥ − v × E/c),

we see that changes in the magnetic field with frame of reference vanish to second
order in v/c. Comparing the magnitude of the two terms in the Ampere-Maxwell
law, we see that the displacement current is a factor of (v/c)2 smaller than the
RHS, and therefore we may reduce (3.22a) to

j =
c

4π
∇×B. (3.27)

We can use this equation to rewrite the Lorentz force term in the momentum
equation as

FL =
1

4π
(∇×B)×B (3.28)

Finally, the total conserved energy now includes the energy of the magnetic field
B2/2µ0, and this introduces a Poynting flux term into the energy equation,

1

µ0

(E×B) =
1

µ0

(v ×B)×B.

With these additions, we can write the full ideal MHD equations in conservative
form as

∂ρ

∂t
+∇ · (ρv) = 0 (3.29a)

∂ρv

∂t
+∇ · (ρvv −BB) +∇ptot = ρg (3.29b)

∂ρE

∂t
+∇ · (v(ρE + ptot)−B(v ·B)) = ρg · v (3.29c)

∂B

∂t
+∇ · (vB−Bv) = 0 (3.29d)

3.3.2 Numerical MHD

Solving the MHD equations numerically proves to be more difficult than for hy-
drodynamics primarily because of the constraint ∇ ·B = 0. Whilst this condition
is conserved analytically, it is not necessarily maintained by a finite difference
approach. This can produce unphysical forces parallel to the magnetic field if
not controlled for. Many different methods have been developed for dealing with
this issue. An early approach [Brackbill and Barnes, 1980], showed that rewriting
the momentum equation in a non-conservative form substantially reduced the
errors caused by unphysical forces, but fails to correct the unphysical behaviour
of the magnetic field itself. A different approach is to evolve the magnetic vector
potential A and then calculate B from this, since the identity ∇ · (∇×A) = 0,
ensures that the divergence constraint is satisfied. However, this method requires
the calculation of second derivatives of the vector potential (in the Lorentz force
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term in Equation 3.29b), which can lead to a substantial loss of accuracy, as each
derivative reduces the order of accuracy. Therefore, this method requires the
vector potential to be calculated to very high order accuracy in order to retain a
reasonable order of accuracy in the solution as a whole.

If instead we want to evolve the magnetic fields directly, there are two main
approaches that have been used extensively: divergence cleaning and constrained
transport. Divergence cleaning methods evolve the magnetic field like any other
fluid variable, and then remove the unphysical, rotational part of the field
[Ramshaw, 1983]. There many approaches to calculating and removing this
rotational component, one of the simplest involves solving the following Poisson
equation

∇ ·B = −∇2ϕ.

The gradient of the potential ϕ is then used to correct the magnetic field. This
can be extended to treat the potential as a vector rather than a scalar quantity
[Balsara, 1998].

Constrained transport [Evans and Hawley, 1988] on the other hand, involves
constructing a finite-difference scheme for the induction equation such that ∇ ·B
is conserved. The key feature of this method is the use of a staggered grid, where
the majority of the fluid variables are calculated at the cell center positions, but
the magnetic field variables are calculated on the cell faces, as shown in Figure 3.3.

With the fields defined on cell surfaces, the magnetic flux through a face is
simply given by Φx,i− 1

2
= Bx,i− 1

2
∆y∆z (for the x direction lower face, and sim-

ilarly for all other faces). The total flux across the surface of the cell can be
calculated by summing up the fluxes for each of the six faces, and it can be shown
via Gauss’ theorem that this total must be zero in the case that ∇ ·B = 0. The
magnetic flux across a face can be evolved using the integral of the electromotive
force (EMF) around the edge of the face. Therefore, we define the EMF values to
be centered on the cell edges, and the rate of change of the flux across the face is

1

∆t

(
Φn+1

i− 1
2

− Φn
i− 1

2

)
= −(ϵi− 1

2
,j− 1

2
,k + ϵi− 1

2
,j,k+ 1

2
− ϵi− 1

2
,j+ 1

2
,k − ϵi− 1

2
,j,k− 1

2
) (3.30)

where the signs of the ϵ terms are determined by the anticlockwise direction of
integration. Summing up this across all six faces of the cell will give the total
change in flux across the surface of the cell. The direction of integration on each
face means that each edge EMF appears twice but with opposing signs, meaning
the total change in flux with time is always zero. Therefore, using the relation
Φx,i− 1

2
= Bx,i− 1

2
∆y∆z in Equation 3.30, and calculating the EMF as defined on

the RHS of the induction equation 3.24 we can evolve the magnetic fields in such
a way that ∇ ·B remains constant to machine precision. With this, we only need
to ensure that ∇ ·B = 0 in our initial conditions and it will remain so throughout
the simulation.
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Figure 3.3: 2D schematic of the staggered grid structure. Hydrodynamic variables,
V , are defined at the center of cell i, j. The magnetic field component normal to
each cell face is defined on that face. The EMF, ϵ, from which the magnetic field
is calculated is evaluated at the cell edges.

[Balsara and Kim, 2004] compared the performance of several divergence cleaning
schemes with a staggered grid approach, finding that the divergence cleaning
methods are prone to spikes in the magnetic energy which are not observed in the
staggered grid approach. Further to this, the structure of the fields was different
between the two types of method. These deficiencies are particularly pronounced
for turbulent flows, and as such staggered mesh methods like constrained transport
are preferred for their better accuracy in these situations.

3.4 Public HD/MHD codes

The early stages of this work involved finding a suitable hydrodynamics code with
which to create our simulations. As part of this we surveyed many of the publicly
available hydrodynamics codes, with a specific view to which were well suited
for our work. The main requirement was the inclusion of an MHD solver and
self-gravity. On top of this, as we expected to need to make significant additions
to the model, it was important to see how easily adaptable the codes were. Here
we summarize the results of this survey of codes, noting the main features of each
and evaluating their suitability to our application.

The large array of available hydrodynamics simulations can be separated broadly
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into three categories based on the capabilities of the central hydrodynamics solver:
hydrodynamics (HD) only, MHD and general relativistic MHD (GRMHD). The
first group of codes have only hydrodynamics solvers (at the time of the survey in
late 2018). These include cosmology focused codes such as GANDALF [Hubber
et al., 2018] and RAMSES [Teyssier, 2002], which implement other physical effects,
such as coupling to N-body gravity solvers. Other codes in this category include
those with more complex approaches to the basic hydrodynamical solver, for
example the AREPO code [Springel, 2011], which uses a moving mesh approach
to combine the advantages of Eulerian and Lagrangian methods. Ultimately, this
codes were of limited applicability to this work due to the lack of magnetic fields.

The next and largest group of codes are those with MHD solvers. There are
several codes in this category designed for a broad range of applications, including
ATHENA/++ [White et al., 2016], FLASH [Fryxell et al., 2000] and PLUTO
[Mignone et al., 2012]. They commonly have a range of different physical effects
implemented, which can be easily swapped out allowing a user to easily select
the required physics. Whilst it is easy to make use of physical effects already
implemented, there is some variability in how difficult it is to incorporate further
physics manually into these codes. Further to this, there are again codes written
with more specific intended uses, including ENZO [Bryan et al., 2014] which is
primarily used for cosmological simulations and PHANTOM [Price et al., 2018]
which is an SPH code designed for accretion flows.

Finally, the last category includes codes with general relativistic HD/MHD solvers.
The mostly widely used of these is the EinsteinToolkit [Löffler et al., 2012], which
is a collection of several GRHD and GRMHD models created using the Cactus
framework [Goodale et al., 2003], but others include Spritz [Cipolletta et al.,
2020] and WhiskyTHC [Radice and Rezzolla, 2012]. These codes have all been
used extensively to study mergers and as such they contain much of the relevant
additional physics, including nuclear equations of state and neutrino emission.
However, solving the equations of MHD in a fully relativistic form is substantially
more computationally intensive than Newtonian calculations.

After reviewing a large range of codes, we chose to work with the FLASH code
framework [Fryxell et al., 2000]. This was due to its relatively large range of
included physics that was of interest to us, including MHD and self-gravity. Fur-
ther to this, while we did not use them in this work, the inclusion of neutrino
emission and nuclear equations of state were also of interest as these effects could
then be relatively easily included future work. Another consideration was also
how easy it would be to include a gravitational wave emission scheme in the code.
FLASH’s modular structure and relatively extensive documentation suggested
that it would be somewhat easier to make the additions required than some other
comparable codes, which seemed less well structured for additions by the user.
Finally, whilst using a GR code would have removed the need to introduce an
approximate gravitational wave solver, it also increases the computational cost of
the simulations. We therefore decided to work with a Newtonian code, as this
would allow us to dedicate more of our available CPU time to producing higher
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resolution simulations. This is because the focus of our study is the amplification
of magnetic field by turbulence, which is very sensitive to resolution.
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Chapter 4

NS-NS mergers with FLASH

The FLASH code framework [Fryxell et al., 2000] is a publicly available hydrody-
namics code, designed to be adaptable to many different physical applications. Its
primary application was to astrophysical systems, but it has since been used in
other areas, such as laser and condensed matter physics. We chose it also because
it is structured such that the different physics units can be easily added to a
simulation by the use, making it easier to add in the extra physics we need. It
is a grid-based code, with Adaptive Mesh Refinement (AMR) provided by the
Paramesh package [Olson et al., 1999] and is fully MPI parallelized.

4.1 Simulation physics

4.1.1 MHD with the USM algorithm

The FLASH code framework [Fryxell et al., 2000] contains multiple solvers for
both hydro and magnetohydrodynamics, including dimensionally split and unsplit
methods. The basis for all our models is the Unsplit Staggered Mesh scheme
(USM), which we describe briefly here. Further details can be found in [Lee and
Deane, 2009].

The algorithm follows a similar structure to most other Gondunov type meth-
ods, the fluid variables in each cell are defined at the cell centers and evolved
through the solution of Riemann problems (see Chapter 3). The magnetic fields
are defined on cell faces and must be treated differently in order to maintain the
divergence-free condition. First we perform a reconstruction-evolution step, where
the cell-centered variables are reconstructed to give the values at the cell faces and
are evolved by a half timestep. For the fluid variables and the components of the
magnetic field transverse to the cell face, this is done using a MUSCL-Hancock
type TVD (Total Variation Diminishing) method. This is a linear (2nd order)
reconstruction method designed to reduce spurious oscillations that can be gener-
ated near sharp changes in the solution variables, and the details are described
in [Lee and Deane, 2009]. It is important to note that the normal component
of the magnetic field is treated separately, as applying this TVD reconstruction
could lead to the introduction of divergence to the field. The calculated face
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states for the cell centered variables are then used to solve a Riemann problem
and the resulting fluxes are used to update the face-centered normal field by a
half-timestep. With the edge states for all variables now known at timestep n+ 1

2
,

a further Riemann problem is solved to obtain the fluxes used to update the
cell-centered values to timestep n+1. Finally, the normal fields are updated using
the induction equations as described in section 3.3.2, by integrating the electric
fields (equivalent to the normal flux terms in the MHD equations) around the cell
edges. The required edge-centered electric fields can be calculated by averaging
the face centered fluxes from the four adjoining faces or FLASH also includes a
method that uses higher derivatives of the electric fields in the construction, in
order to increase the accuracy of the construction.

To summarize, this scheme uses higher order Godunov-type methods to evolve the
fluid and transverse field variables, whilst applying a CT-type method to normal
fields in order to maintain the ∇ · B = 0 condition. Since the introduction of
this method to the code, third order PPM and fifth order WENO reconstruction
methods have been included in the algorithm, further improving the accuracy of
the method.

4.1.2 Self-gravity

FLASH contains several different solvers for including Newtonian self-gravity in a
simulation, which solve the Poisson equation,

∇2ϕ = −4πGρ, (4.1)

for the gravitational potential ϕ, and then calculate the gravitational acceleration
from this. There are three main methods: the multipole solver, the multigrid
solver and the Barnes-Hut tree solver.

The multipole solver [Couch et al., 2013] calculates the gravitational potential
using an expansion in the mass multipole moments of the density distribution.
The angular resolution of this expansion depends on the number of moments
used and the memory usage and computational cost scale as the number of multi-
pole moments squared. Therefore, it is best-suited to spherical or approximately
spherical distributions, since the number of moments required to reach acceptable
resolution will be lower in these cases.

The multigrid solver [Ricker, 2008] uses Fourier transforms to solve the Pois-
son equation for the potential and is therefore suitable for use with general source
distributions. Due to the periodic nature of Fourier expansions the boundaries of
non-periodic domains require special handling, and this can sometimes lead to
unphysical behaviour near such boundaries. It is therefore important to make sure
that the boundaries are sufficiently far from the region of the simulation domain
that is of interest when using such solvers.

Finally the Barnes-Hut tree solver [Barnes and Hut, 1986] constructs an oct-
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tree by recursively dividing cells into eight zones (in 3D) of half the side length,
beginning from a single zone covering the entire domain and terminating once
the actual grid resolution is reached. At each level of the tree, the mass of this
pseudo-cell is given by the sum of the mass in cell and is located at the center of
mass of the cell. When calculating the contribution to a given cell’s potential, the
largest pseudo-cell in the tree for which

S

D
< θBH

where S is the side length of the pseudo-cell and D is the distance between the
psuedo-cell and the point we are calculating the potential at. The opening angle
θBH is a parameter which controls the accuracy of the calculation, a narrower
angle will increase the accuracy but require us to use more highly resolved cells
for each calculation. The version of this algorithm used in FLASH is detailed in
[Wünsch et al., 2018] and includes more sophisticated error criteria for determining
which nodes should contribute.

In our simulations we chose to use the BH tree solver for self gravity, as our
matter distribution is substantially non-spherical and therefore the multipole
solver would be more computationally expensive in achieving the same accuracy.
Whilst we could also have used the Multigrid solver, attempts to include it re-
sulted in technical issues and it is not more accurate the BH tree solver for similar
computational costs, we did not pursue these issues further.

4.1.3 Equation of State

For all the simulations presented in this work we use a constant-Γ equation of
state. This models an ideal fluid with constant heat capacity ratio Γ = Cv/Cp.
In our implementation, the density and internal energy are calculated by solving
the hydrodynamic equations, and in the case of internal energy subtracting the
kinetic component from the total energy. These are then used to calculate the
remaining thermodynamic variables: pressure and temperature. The pressure is
related to the density and internal energy through

P = (1− Γ)ρϵ (4.2)

where ϵ is the specific internal energy. The temperature is given by

T =
1

Γ− 1

Nak

Ā
ϵ (4.3)

where Na is Avogadro’s number, k the Boltzmann constant and Ā the average
atomic mass of the matter. This temperature is calculated assuming we are
modelling an ideal, thermal-pressure supported gas and as such is not physically
meaningful for neutron star matter, but as it does not contribute to the calcula-
tions in any way this does not cause any issues.
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For our simulations we choose a value of Γ = 2, in line with many similar
studies of neutron star mergers (for example [Shibata et al., 1992] [Giacomazzo
et al., 2011] and [Anderson et al., 2008b]). Whilst the equation is idealised, it
provides a good first approximation to a relatively stiff equation of state for
neutron stars. This analytical equation of state also has a very low computational
load relative to more physical equations of state, most of which use tables of
pre-calculated values and therefore need to read and interpolate values from these
tables each time the equation of state is used.

4.2 Gravitational waves

Gravitational waves are necessary for the simulation of compact object mergers. It
is this gravitational radiation which carries away energy and angular momentum
from the binary system that allows the objects to merge. As a general relativistic
effect we need to manually include them in FLASH’s Newtonian hydrodynamics
solver. Therefore we have created a new source term module in FLASH designed
to reproduce the main effects of gravitational wave emission on the dynamics of
mergers.

In Section 2.2.1, we showed that the luminosity emitted in gravitational waves
can be calculated from a matter distribution’s mass quadrupole moment as

dEGW

dt
=

1

5

G

c5
...
Q ij

...
Q ij (4.4)

and that for a circular two-body orbit this becomes

dEGW

dt
=

32G4

5c5
(M1 +M2)M

2
1M

2
2

r5
(4.5)

where here we have replaced the total mass M and reduced mass µ with their
definitions in terms of the masses of the two bodies M1,2.

The source term method we have implemented in FLASH calculates the en-
ergy lost by the domain using, optionally, one of the above formulas, and reduces
the orbital velocity of the stars such that the drop in kinetic energy is equal to
this value. The first stage of the calculation is therefore to calculate the energy
loss via either the quadrupole moment formula or the point mass formula. When
using the quadrupole moment formula, we wish to maintain numerical accuracy
by avoiding performing many numerical time derivatives of the quadrupole tensor.
Therefore we can instead rewrite the third time derivative of the quadrupole
moment in terms of fluid variables and first order derivatives of these. This is
done by substituting for time derivatives of density and velocity using the mass
and momentum conservation equations and then applying integration by parts to
reduce the number of spatial derivatives further. The full derivation is detailed in
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Appendix A, where we show that we can write the quadrupole moment as

...
Q ij = STF

[
2

∫
dV

(
2P

∂vi
∂xj

+
∂ψ

∂xj

(
ri
∂ρvk

∂xk
− 3ρvi

)
− ρri

∂ψ̇

∂xj

)]
, (4.6)

where ψ is the Newtonian gravitational potential, P is the pressure and vi is the
ith component of the velocity [Blanchet et al., 1990]. In this way we reduce the
numerical inaccuracy associated with taking multiple approximate time derivatives,
only needing to calculate one for the gravitational potential rather than three.
Using this in Equation 4.4, we calculate the total energy in gravitational waves
leaving the binary system in a given timestep.

The energy losses must then be distributed across the grid in a way which produces
approximately the correct rate of inspiral for the two objects. My approach is
inspired by that of [Zhuge et al., 1994], in which the total energy lost by the
system is used to define a friction force acting on the centre of mass of each of
the two neutron stars. As their simulation uses smoothed particle hydrodynamics,
they apply a constant acceleration to all particles inside each star. Instead of
subtracting a fixed amount from velocities in zones deemed to be part of the stars,
I reduce the velocities inside the stars by a fixed scale factor, avoiding any issues
where the fluid’s momentum could be reversed unphysically. This scale factor is
calculated by equating the change in total orbital kinetic energy with the energy
lost to gravitational waves in a single timestep, ∆EGW = LGW∆t. In terms of the
scaling factor this change is given by

∆EGW = Eorb − Eorb,new

=
1

2
v2orb(1− A2

v)

= Eorb(1− A2
v)

where Eorb is the orbital kinetic energy of the two stars before reductions are
made. Therefore, the scaling factor is calculated from the total orbital energy and
the energy lost due to gravitational wave emission using

Av =

√
1− ∆E

Eorb

(4.7)

The orbital kinetic energy is given by sum of the contribution to the kinetic
energies in all zones within the stars (determined by a density threshold) that
come from the velocity component parallel to the orbital velocity of the star
(taken to be the velocity of the centre of mass of the star). This component of
the velocity is then reduced by the scaling factor, slowing of the star’s orbital
motion which then gives rise to the required inspiral. It should be noted that
in this approximation we assume the stars are of equal mass and therefore the
scaling is the same for both stars, so the treatment would need to be revised in
the case of an unequal mass binary.
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4.3 Initial Conditions

The initial conditions for each neutron star are given by polytropes, which are
density-radius relations that describe self-gravitating spheres of fluid. The relations
are derived from a system of two first order differential equations,

dP

dr
= −GMr

r2
ρ (4.8)

dMr

dr
= 4πr2ρ, (4.9)

where Mr is the mass contained within a radius r and P and ρ are the pressure
and density at r respectively. Equation 4.8 describes the hydrostatic equilibrium
of the star, while Equation 4.9 describes how the mass contained within a radius r
changes within the star. As described in Section 4.1.3, we use an ideal gas equation
of state. For these initial conditions only, we then additionally assume that the
fluid is adiabatic, allowing pressure and density to be related by P = κρΓ. Using
this relation, the two differential equations can be combined into a single second
order equation, known as the Lane-Emden equation [Lane, 1870]. This equation
has a family of solutions parameterized by the polytropic index n = 1/(1−Γ), with
the only analytic solutions at n = 0, 1, 5. Taking Γ = 2, this gives a polytropic
index of n = 1 and the initial density as a function of radius is therefore described
by,

ρ(r) = ρc
sin ξ

ξ
(4.10)

where ρc = πMNS/4R
3
NS is the central density of the star (determined by the

choice of neutron star mass and radius) and ξ = πr/RNS is the ratio of r to the
neutron star radius, RNS. The constant κ used to calculate the pressure is given
by κ = 2GR2

NS/π, and therefore determined by our choice of neutron star radius.

Outside the neutron star the fluid is set to a constant density of 107 g cm−3,
which is around 10−7 times lower than the maximum neutron star density initially.
Between the star and this lower density exterior, a ‘patching’ region must be
employed for numerical stability, as the steep density gradient at the outer edge
of the polytrope solution otherwise leads to unphysical spikes in energy in the
zones nearby which eventually cause the code to crash. This patching region is
set so that the reduction in density between adjacent zones does not exceed an
order of magnitude per 3 zones, and so in most simulations this corresponds a
physical extension of the surface of the star by approximately 500-1000m at the
resolutions we use.

Each of our binary neutron star merger simulations consist of two 1.4M⊙ neutron
stars with radii of 14.3km. The grid for this simulation 150km wide in all directions
and the stars begin at a separation of 45km. The stars are irrotational and so
the velocity of each star given by the Keplerian orbital velocity, with a radial
correction due to the emission of gravitational waves calculated from the point
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mass formula,

vr = −64

5

G3

c5
M

d3
r̂. (4.11)

4.3.1 Initial magnetic field

We endow each neutron star with a magnetic field that is confined to the interior
of the star. The internal field configuration is generated from a vector potential
of the form

Aϕ = Abω
2max(P − Pcut, 0) (4.12)

where ω2 = (x− xc)
2 − (y − yc)

2 is the radius in cylindrical coordinates centered
on the star, Ab is a parameter which sets the maximum field strength and Pcut is
a threshold pressure value, below which the magnetic field is set to zero. Figure
4.1 shows the resulting field applied to two stars, one of which is rotated 90◦ out
of alignment with the other.

Figure 4.1: Density in the y = 0 plane overplotted with the magnetic field lines
for model IntT at time 1.5ms when the field is initially seeded.

As the magnetic fields are not dynamically important during the inspiral of the
stars, we initially evolve unmagnetized stars and then seed them with the desired
magnetic fields just before significant tidal disruption occurs.
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4.4 Model tests and stability

In order to maintain numerical stability in our models, we reduce the velocity of
gas in the low density medium surrounding the stars to zero in regions where the
gas density is below 108 gcm−3. This cut off is low enough that it does not affect
the motion of gas within the stars, but does stop the infall of gas onto the stars
due to gravity, which left unchecked leads to steepening of the density gradient at
the star’s surface to such a degree that the simulation becomes unstable. Further
to this, to avoid spurious heating of the low density atmosphere gas, which can
again lead to large energy gradients that destabilise the simulation, we limit the
pressure in this atmosphere to a range of 0.5Pp < P < 10Pp, where Pp is the
polytropic pressure Pp = κρΓ for gas with density ρ. This limiting is applied to
all atmosphere gas below ρ = 1010 gcm−3, which is again low enough that it does
not affect matter within the stars, but does prevent unphysical spikes in energy
from forming at the star’s surface.

4.4.1 Stability of an isolated neutron star

The single, unmagnetized neutron star is constructed using the initial conditions
described in Section 4.3 and evolved for many dynamical times, to assess how
stationary it remained. The neutron star has mass MNS = 1.4M⊙ and a radius
of 14.3km. The grid has width of 50km, and utilises 3 levels of adaptive mesh
refinement (AMR). This allows the resolution in the constant density surrounding
to remain low whilst giving the finest zones a width of 390m which is comparable
to the finest grid resolution in our merger simulations.

Figure 4.2: Slices density in the x− y plane at several times during the simulation.

Figure 4.2 shows that the star expands slightly over the course of the simulation
and that the surface oscillates slightly as it does so. Figure 4.3 shows that the
ratio of kinetic to internal energy remains low and approximately constant over
many dynamical times, following an initial period of increase. The dynamical time
is defined as the free-fall time for the star, given by tdyn =

√
R3

NS/2GMNS. This
demonstrates that after an initial relaxation, the star remains in an approximately
steady state. It continues to oscillate slightly as we would expect due to the
discrete nature of the grid making perfect hydrostatic equilibrium impossible.

45



Figure 4.3: Ratio of the total kinetic and internal energy of the isolated neutron
star simulation.

Figure 4.4: Total energy (sum of kinetic, internal and gravitational potential
energies) in the isolated NS Etot normalized by the initial total energy, plotted
against dynamical time for the duration of the simulation.

Figure 4.4 shows that the total energy (Etot = Ekin + Eint + Egrav) over 50
dynamical times falls by around 2.5%. This is due to the controls on the atmo-
sphere, which leach energy out of the simulation over time, although the magnitude
of this effect remains relatively small and only affects zones outside the stars
themselves.
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4.5 Unmagnetized neutron star mergers

Table 4.1 summarizes the parameters for the unmagnetized merger simulations.
Our central model is Quad7, and this is the one that will be discussed in detail in
the following sections. Quad6 is a lower resolution run using the same gravitational
wave solver and Pmass7 uses the alternative point mass gravitational wave solver.
In all cases the neutron stars have equal mass and are irrotational. The main
model, Quad7 required approximately 150,000 CPUh for a 15ms simulation. The
magnetized cases presented in Section 4.6 required approximately twice as much
CPU time per ms of simulation time.

Model No. re-
finement
levels

∆xmin

(km)
GW
solver

MNS

(M⊙)
RNS

(km)
D0 (km)

Quad7 7 0.29 Quad 1.4 14.3 45
Quad6 6 0.58 Quad 1.4 14.3 45
Pmass7 7 0.29 Point

Mass
1.4 14.3 45

Table 4.1: The parameters used in the unmagnetized neutron star mergers.

4.5.1 Results

Figure 4.5 shows the densities in the x− y plane at several times throughout the
merger, for model Quad7. At t = 2ms we see that the stars have become elongated
by tidal forces and have made contact with one another. From the right panel
of Figure 4.6, which shows that the magnitude of the vorticity (the curl of the
velocity vector), we can see that the shear motion along the interface between the
two stars is driving turbulent motion. This is generated by the Kelvin-Helmholtz
instability, which is activated by the shearing along this contact plane. At the
edges of the this interface see the curls of two larger vorticies forming at the edges
of the interface between the two stars, and such vorticies appear and vanish as
the two stars continue to merge.

By t = 6ms the stars are fully tidally disrupted, the central object appears
bar-like and tidal tails trail from its ends. The shear plane between the matter
of the two stars is still present, leaving a narrow band of lower density between
the two stars. The bar shape then develops into a more spherical central object,
although there are still two distinct density cores. A large part of the initial
tidal tails visible in the 6 and 7ms plots are ejected from the grid, with what
remains winding up around the remnant and beginning to form a disc around
the central density core. We see that in the final plot at 20ms there are still two
distinct density cores remaining, surrounded by a disc with prominent spiral waves
eminating from the central object.
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Figure 4.5: Density in the x− y plane of the the binary at t =0, 2, 6, 7, 10 and
20ms. The initial orbital period of the binary is around 3ms.
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Figure 4.6: Density and vorticity magnitude (left and right respectively) in the
orbital plane of the binary at t = 2.05ms (top) t = 6ms (middle) and t = 7ms
(bottom).
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Figure 4.7 shows the evolution of the total energy (including the energy emitted
as gravitational waves) and mass normalised by their respective initial values
throughout the simulation. We see that over the course of the merger about 5%
of the original total energy is lost through the controls on low density atmosphere
and the loss of mass off the grid. Between 6 and 7ms there is a plateau in the
energy loss, which is due to the spreading of the tidal tails. This temporarily raises
the density in a large part of the grid above the levels at which the atmosphere
controls would kick in, thereby reducing the energy loss. Following this, there is a
short period of more rapid energy loss that corresponds with the only significant
period of mass loss, which is due to the initial tidal tails leaving the edge of the
grid.

Figure 4.7: The total energy and mass on the grid plotted with time and normalised
by their initial values.

Figure 4.8 shows the evolution of the totals of each of the energy components
during the simulation. We see that the internal energy falls and the kinetic energy
rises in the initial inspiral, reaching a minimum and maximum respectively at the
point of merger. This drop in internal energy is due to the tidal stretching of the
stars during the inspiral, while the rising kinetic energy simply comes from the
stars inward spiral trajectory, which leads to an increase in the orbital speed as
the orbit’s radius falls. This is also evident in the increase gravitational potential
energy (becoming more negative) up to the point of merging. Post-merger there is
a much shallower rise in internal energy and fall in kinetic energy, as shock heating
in the merger remnant converts kinetic to internal energy. The gravitational
potential energy remains roughly constant as the mass distribution begins to settle
into its final disc and central object configuration.
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Figure 4.8: The total internal, kinetic, gravitational wave and gravitational
potential energies and the overall total energy (the sum of these components) in
the simulation volume for the duration of the simulation.

The evolution of the maximum density in the simulation is shown in Figure
4.9, for models Quad6 and Quad7. We see that both initially decline, reaching
a minimum that occurs at the merger time, before recovering slightly. In both
models, the minimum of the density maxima coincides with the point at which
the stars are at their most tidally stretched, resulting in the bar-like shape we
see in the lower panels of Figure 4.6. Following this, the tidal tails continue to
expand whilst the inner remnants of the stars collapse to become more spherical
again, causing the density to grow again. The initial decrease is more rapid in
the lower resolution (Quad6) model, as the merger precedes more rapidly in this
case. It also leads to a lower minimum and recovers to a lower value. Further-
more, in both cases the maximum density appears to be declining slightly in the
post-merger phase. Neither case produces a higher maximum density post-merger
than the initial value, although we do see a peak in the Quad7 value at 6ms which
corresponds to a minimum in the separation of the density cores.
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Figure 4.9: The evolution of the maximum density in the simulation volume, for
the two different maximum grid resolutions.

Comparing Figure 4.9 with Figure 15 of [Baiotti et al., 2008], which corresponds to
a model with the same equation of state, similar initial masses and separations but
uses a fully relativistic hydrodynamics solver, we see a drop in ρmax immediately
before merger of similar magnitude. Their peak density at the merger time is
substantially higher, becoming briefly around 10% higher than the initial maxi-
mum. The difference in the height of these peaks is likely related to simulation
resolution, since the finest grid resolution in [Baiotti et al., 2008] is approximately
twice ours and we see no peak at all in our lower resolution run. The lower grid
resolution will smooth over the contact interface between the stars, where the
fluid is compressed to produce the peak. Additionally, the post-merger density
maximum in [Baiotti et al., 2008] recovers to approximately the same as the
pre-merger value, whereas ours recovers slightly but then steadily declines. This
is likely a result of our gravitational wave treatment, since their fully relativistic
treatment includes gravitational wave emission throughout the merger whereas
we neglect the gravitational back reaction after 5ms into the simulation. To assess
this, Figure 4.10 shows the maximum density for simulations in which we turn off
the gravitational wave backreaction at different times. We see that in the case
where the backreaction remains switched on throughout the post-merger evolution,
the maximum density begins to recover over similar timescales to those in [Baiotti
et al., 2008]. This is because the gravitational wave backreaction extracts angu-
lar momentum from the remnant, causing it to contract and become more compact.

Whilst continuing to include the backreaction improves this aspect of the simula-
tions in comparison with a fully relativistic model, the method by which we reduce
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the velocities relies on being able to distinguish the two stars. Once the stars have
merged, continuing to apply the backreaction leads to unphysical asymmetries
in the remnant, since the mixing of the matter from the two stars can cause the
reduction in the velocities to be applied erroneously.

Figure 4.10: The evolution of the maximum density in the simulation volume, for
models in which we switch off the gravitational wave backreaction at different
times. Note that the 5ms switch off corresponds to our Quad7 model.

4.5.2 Gravitational wave solvers

To examine the effectiveness of our included gravitational wave solvers we show
the gravitational wave luminosity for all three unmagnetized simulations in Figure
4.11. The luminosity in the point mass model very rapidly becomes large as a
result of its limited validity once the stars begin become tidally deformed. The
tidal deformation causes the stars to fall inward quicker than a pair of point
masses would, which drives the point mass luminosity to grow rapidly as it scales
with the star’s separation as 1/d5. This further drives the star’s infall, creating a
feedback loop that very quickly drives the luminosity to unphysically high values.
As such this solver is only useful in the very early stages of this simulation, as the
stars become significantly tidally deformed during the first 3ms of the simulation
given our initial separation.

The large-scale shape of the signal for the quadrupolar solver is broadly as
expected, there is a large initial peak that coincides with the rapid decline in
orbital separation and complete tidal disruption of the two stars. Following this
there are several smaller peaks which in turn correspond to periods in with the
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remaining cores of the stars have ‘bounced’ apart before pulling closer together
again. The signal is however very noisy, with strong oscillations the amplitude of
which is correlated with the luminosity itself. The frequency of these oscillations
is around four times the orbital frequency of the binary, indicating a link with the
orbital motion of the binary.

Figure 4.11: The evolution of the gravitational wave luminosities for models
Quad6, Quad7 and Pmass7. The dashed line shows the analytic solution for a
pair of point masses of equivalent mass and initial separation.

There is a substantial difference between the luminosities for the two quadrupo-
lar simulations, the Quad6 model peaks around 1.6ms earlier and only has two
smaller peaks following the initial maximum. The Quad7 model in contrast shows
many more peaks with larger sizes relative to the main peak that are still present
by the end of the simulation. This is due the stronger quadrupolar structure
in the post-merger Quad7 model, which we can see by comparing the density
distributions for the two simulations in Figure 4.12. The higher resolution case
obviously shows more structural detail in the both remnant and surrounding spiral
structure at all times. Further to this, we see that whilst both models still have
a double-core structure in their centers even in the 15ms panels (bottom), the
surrounding material in the Quad6 case is more uniformly distributed and spreads
more widely in the orbital plane.
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Figure 4.12: Density in the x − y plane of the binary for models Quad7 (left)
and Quad6 (right) at several times throughout each simulation. In the first two
rows we show the Quad7 densities 1.5ms later than the Quad6, as this is the
separation between the gravitational wave luminosity maxima and so the density
distributions are more comparable at these shifted times.
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To see more clearly the underlying signal in the gravitational wave luminosi-
ties, we apply a low-pass Butterworth filter to the data in order to remove the
oscillations. This filters out frequencies in the signal above a specified threshold,
which we choose to be between the frequency of the large scale structure in the
signal and the oscillations we wished to remove. We also time-shift the Quad6
data by 1.62ms to align the luminosity maxima, the results of which are shown
in Figure 4.13. We see that the main peaks are quite similar, they have similar
width and height, although there is a slower initial growth in the Quad7 case that
leads to the time offset. Following this, the subsequent peaks in the Quad7 case
have a shorter period and are much larger than the corresponding features in the
Quad6 signal.

Figure 4.13: The evolution of the gravitational wave luminosities for models Quad6
and Quad7, filtered with a low-pass filter and time shifted by 1.62ms such that
the maximum luminosities match.

To examine the source of the oscillatory behaviour in the quadrupolar mod-
els, we show the contribution of each term in Equation 4.6 to the components of
the

...
Q ij tensor in Figure 4.14. We see oscillatory behaviour is present in all the

terms and the total for both the diagonal and off-diagonal terms. In particular,
the oscillations of the total agree with what we would expect from the point
mass case described by the third derivative of Equation 2.4, the diagonal terms
are roughly sinusoidal and the off-diagonals are cosines. The contributions from
the individual terms appear to come in pairs that almost but don’t fully cancel
with each other. The amplitude of the 2nd and 4th terms is much larger than
that of the 1st and 3rd terms, but both pairs contribute relatively equally to the
oscillations in the total, although which pair is dominant varies during the cycle.

56



As the point mass case suggests that the total components should still exhibit
oscillations however, we don’t expect that these terms should fully cancel to give
a constant signal.

Figure 4.14: The contributions to the
...
Qxx (top) and

...
Qxy (bottom) components

from each term in Equation 4.6.

In Figure 4.15 we show the non-zero components of the
...
Q

2

ij tensor. We see
that the off-diagonal and diagonal terms oscillate with opposite phase, but that
there is some variation in the diagonal terms leading to incomplete cancelling
and therefore oscillations in the total. We know from the derivation in Section
2.2.1 that in the point mass limit these pairs of terms should cancel exactly.
This incomplete cancelling we see is therefore the source of the oscillations in
the gravitational wave signal. The causes of this appear to be twofold. Firstly,
since we begin our simulations with the stars quite close together, they become
tidally deformed almost immediately. The deformation is additionally quite asym-
metric, resulting in a teardrop like shape which can be seen in the 2ms panel of
Figure 4.6. This produces a mismatch between the

...
Qxx and

...
Qyy components,

which leads to the oscillatory deviations from the point mass signal. In addition,
there was a small error in the application of the traceless condition within our
model which exacerbated this effect. By reconstructing the corrected luminosity
we see that this increased the amplitude of the oscillations around a third to a half.
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Figure 4.15: The non-zero components of the
...
Q

2

ij tensor, the sum of which gives
the gravitational wave luminosity (absent the constant factors). Note that the
symmetry of the tensor means that Qxy = Qyx. The Qzz term and all others not
shown remain roughly constant and close to zero.

Figure 4.16 shows the separation of the density maxima for the Quad6, Quad7
and Pmass7 models. A short section of data between 2 and 4.5 ms for Quad7
and the Pmass7 separations are given instead by the centre of mass of the star,
due to data loss. This is calculated using all mass above a threshold of 1011g
cm−3 which is assigned to a given star by being closer to the previous timestep’s
center of mass for that star than for the other star. This agrees very well with the
density maximum location during this early stage of the calculation but becomes
an unreliable measure of the separation between the density cores of the stars once
they are tidally disrupted. We see that in all cases there is an initial period of
slow decline followed by a rapid fall. For the quadrupolar models this is followed
by a long period in which the separation slowly decays but with some oscillations
present. The peaks of these oscillations correspond quite clearly to the peaks in
the post-merger gravitational wave signal, and to the density cores in the center
of the remnant appearing to ‘bounce’ off one another moving apart and pulling
closer together again. This widening of the separation corresponds to an increase
in the quadrupole moment, which is why we then see the increase in gravitational
wave luminosity. Although the onset of the merger is more rapid in the Quad6
case, the Quad7 separation shows a more prominent decline in the post-merger
phase, suggesting the final merging of the density cores will occur faster in the
Quad7 model.
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Figure 4.16: The evolution of the separation of the density maxima for models
Quad6 and Quad7

4.5.3 Discussion

We performed this unmagnetized merger to examine the dynamics of the merger
without magnetic fields and to assess how well our approximate treatment of
gravitational wave emission recreates the inspiral and merging of the neutron stars.
The gravitational wave scheme we use was inspired by the similar scheme used in
[Zhuge et al., 1994], and the work of [Ruffert et al., 1997b] also ran a model with
similar parameters to compare the effects of the different numerical schemes. Our
results are broadly similar to those presented for model ZCM in [Ruffert et al.,
1997b] and Run 2 of [Zhuge et al., 1994]. The qualitative features of the density
in the orbital plane (Figure 1 of [Ruffert et al., 1997b] and Figure 4.5) are similar,
showing the same tidal disruption into an elongated central object with trailing
tidal tails followed by collapse to a remnant with a double-core structure. The
evolution of the total energy components in Figure 4.8 are also in good agreement
with those in Figure 2 of [Ruffert et al., 1997b], showing very similar trends for
each component.

Further to this, the gravitational wave luminosity has a similar overall struc-
ture, however here there are some differences. Firstly, the models of [Zhuge et al.,
1994] and [Ruffert et al., 1997b] are not subject to the same oscillations as our
models, since [Zhuge et al., 1994] use a point mass luminosity formula and [Ruffert
et al., 1997b] use a Post-Newtonian approximation to apply the gravitational wave
back reaction as source terms directly in the energy and momentum equations.
Models Quad6 and ZCM show the greatest similarity, with all three visible peaks of
similar height in both simulations, whereas in Quad7, the later peaks in luminosity
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are much larger relative to the initial maximum and more numerous. In contrast,
Run 2 of [Zhuge et al., 1994] shows a similar initial peak but much lower subsequent
peaks than Quad6 and ZCM. It is suggested in [Ruffert et al., 1997b] that this
discrepancy could due to the lower resolution used in [Zhuge et al., 1994], since the
increased numerical viscosity at lower resolution will act to damp out oscillations
in the remnant, driving it towards a spherically symmetric configuration more
rapidly. This is supported by our results, which show comparatively larger later
peaks in the higher resolution case. Further to this, the ZCM model includes a full
gravitational wave backreaction in the post-merger phase whereas our simulations
do not. This gravitational wave emission will act the damp the oscillations of
the remnant, which further explains why we see stronger secondary peaks in the
gravitational wave luminosity.

The total energy emitted in gravitational waves over the course of the ZCM
model (around 8ms) is reported as 2×1052erg, which our Quad7 model agrees with.
The Quad6 model shows a slightly lower overall emission of around 1.7×1052erg.
Finally, the models of ZCM predicts a much earlier merger than either of our
models ( Run 2 of [Zhuge et al., 1994] begins with a larger initial separation,
meaning we do not have a direct comparison for this), the maximum of the
gravitational wave luminosity comes at around 2ms, whereas in models Quad6
and Quad7 it is at 3ms and 5ms respectively. This could again be a feature of our
greater resolution and therefore lower numerical viscosity (Quad6 is approximately
twice the resolution of ZCM at its finest AMR level).

When compared with more recent, fully relativistic models, the dynamics of
our merger are qualitatively very similar (for example Figure 11 of [Thierfelder
et al., 2011], Figure 7 of [Baiotti et al., 2008], Figure 2 of [Bauswein and Stergioulas,
2015] and Figures 6 and 9 of [Espino et al., 2022]). We see similar tidal disruption
and evolution of the remnant immediately post-merger, which we would expect as
this stage of the evolution is driven mainly by hydrodynamic effects. In particular,
the double-core structure remaining in our remnant is seen in other simulations
[Bauswein and Stergioulas, 2015] [Paschalidis et al., 2015a], which also show the
cores ‘bouncing’ apart and together several times before they eventually merge.
Obviously our Newtonian code is unable to replicate the collapse of the remnant
into a black hole however, for the Γ = 2 ideal fluid equation of state and initial
star masses of 1.4M⊙, [Baiotti et al., 2008] do not see a collapse until 20ms into
the simulation. Therefore in this early stage of the post-merger evolution our
results appear to be comparable to what we expect from GR codes.

Comparing the separation of the density maxima in our simulation to those
in Figure 4 in [Baiotti et al., 2008], we again see similar features in the early
evolution. Both show a slight kink in the shallow part of the inspiral, followed
by the rapid decline as the stars plunge inward. Following this they then see
short period of oscillations as the double cores in the remnant bounce before
collapsing to a black hole. This particular figure corresponds to a higher mass
binary, however they report that the initial inspiral and onset of the merger are
largely the same apart from the longer timescale for collapse to a black hole.
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Figure 1 in [Bernuzzi, 2020] shows the gravitational wave signals for various merger
remnant scenarios. We see that although the shape is very different (with our
simplified emission model this is very much expected), the relative magnitude of
the post-merger emission to the main peak is comparable to our results for the
short-lived remnant case, which is what we would expect based on our initial NS
masses and EOS.

To summarize, the results of our simulations show good agreement with those
of various others, including both Newtonian and fully relativistic calculations,
within the bounds of what we expect from our physical approximations and CPUh
constraints. We find that resolution has a strong impact on merger times and the
evolution of the remnant in the short-term, as the heightened numerical viscosity
causes the merger to proceed more rapidly. This reduces the lifetime of the
non-axisymmetric remnant, thereby decreasing the predicted gravitational wave
emission, and has also been observed in other studies both Newtonian [Ruffert
et al., 1997b] and relativistic [Yamamoto et al., 2008].

4.6 Magnetic field orientation in BNS mergers

To examine the effect magnetic fields of different orientations have on a neutron
star merger, we perform two initial simulations with different magnetic field
configurations. The first model, referred to as IntA, represents the standard
configuration used in most magnetized merger simulations, with the two stars
endowed with dipolar fields aligned with the orbital angular momentum and with
maximum field strength of 1015G, the construction of which is described in Section
4.3.1. The second model, IntT, has one star with it’s field aligned to the orbital
angular momentum while the second is rotated so that it is initially aligned with
the line connecting the two stars (although since the stars are irrotational, this
does not remain true as they orbit) and the same field strength, which while
physically very large was chosen for comparison with other simulations. The
simulations are otherwise identical to the unmagnetized Quad7 model and for
computational efficiency the stars are only seeded with the magnetic field 1.5ms
into the simulation, which is around a quarter orbit before they make contact.

Technical problems and a shortage of time meant that we were unable to evolve
these models for as long as intended, with each model only reaching about half
the runtime of the Quad7 run described in the previous section. Therefore, we
can only comment so far on the field behaviour in the initial stages of the merger.
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4.6.1 Results

The density in the orbital plane at several times is shown for models IntA and
Quad7 in Figure 4.17. Whilst the main features of the two are mostly the same,
we see that in the magnetized case the merger happens more rapidly. Further to
this, the tidal tails are wider in the magnetized case. This is more easily seen
in Figure 4.18, where we compare the density in the equatorial plane for IntA
with those in Quad7 around 0.25ms later, so that the mergers are more closely
matched in progress. We see here also that the region of lower density along the
plane of contact between material from the two stars is wider in the magnetized
case. This is due to stronger mixing along this shear interface where the two stars
meet, the initial thin interface evolves into multiple vorticies which merge into a
larger central one just before 6ms to produce the larger region of lower density
seen in Figure 4.18. This is the case in for both magnetic field variants, although
there is some small difference in the location of the vorticies.
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Figure 4.17: Density in the x− y plane of the the binary at t =2, 6, and 7ms, for
the IntA and Quad7 simulations on the left and right respectively. The initial
orbital period of the binary is around 3ms.
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Figure 4.18: Density in the x − y plane models IntT (left), IntA (middle) and
Quad7(right) at 5.9ms for the magnetized models and 6.1ms for the unmagnetized
case.

Figure 4.19 shows the density, magnetic field strength and vorticity magnitude in
the orbital plane for model IntA. We see that along the shear interface at 5ms
there is high vorticity as the Kelvin-Helmholtz instability activates, which in turn
drives the magnetic field growth through the twisting of field lines. This evolves
into a zone between the two density cores where there is some turbulent mixing.
There is also strong field growth along the leading edge of each star visible at
both 3 and 5ms, as tidal disruption causes the leading edge of the star to become
stretched out compared to the trailing one. This bends the field lines along the
the leading edge, causing energy to be converted from kinetic to magnetic energy
by the magnetic tension force. By 7ms the field surrounding the density cores is
now stronger than the field within them, whereas initially the maximum of the
field was at the center of each star.

Figure 4.20 shows the same variables but for model IntT at 3, 5 and 7ms into
the simulation. The only large differences are in the magnetic field strength, we
see the asymmetry in the orbital plane field strength due the the different field
configurations in each star. The field in the tilted star appears stronger in this
plane from the outset, however this is a feature of the viewing angle, since the
circular minima we see in the angular momentum aligned star is simply rotated
out of the plane. Due to this different orientation, the growth in field strength
along the leading edge of the star is less pronounced. It is not visible at all in the
3ms panel and is difficult to distinguish still in the 5ms panel.
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Figure 4.19: Density, magnetic field strength and vorticity magnitude (left, middle
and right respectively) in the orbital plane of model IntA at t = 3ms (top) and
t = 5ms (middle) and t = 7ms (bottom).
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Figure 4.20: Density, magnetic field strength and vorticity magnitude (left, middle
and right respectively) in the orbital plane of model IntT at t = 3ms (top) and
t = 5ms (middle) and t = 7ms (bottom).

Figure 4.21 shows how the overall magnetic energies compare between mod-
els IntA and IntT. We see that whilst the initial energies are equal, the total
magnetic energy initially grows more rapidly in model IntA. The growth is
temporarily halted at around 6ms, before growing again to a peak and finally
falling off. In contrast, the initial growth of the total energy is slower in model
IntT, however instead of reaching a peak it continues to grow at a shallower
rate, appearing to plateau towards the end of the simulation. The peak energy
reached during the simulation is around 10% higher in the IntT case than the IntA.

In both models the energy in poloidal and toroidal components (defined as the
azimuthal and radial plus polar components respectively in spherical coordinates
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centered on the binary center of mass) grow at the same rate until around 5-6ms
into the simulation (at which point the tidal tails are forming). In model IntA
the toroidal component is initially weaker, but grows larger than the poloidal
component and reaches its peak slightly later. In model IntT, the initial com-
ponents oscillate, due to the field on one of the stars lying in the orbital plane,
meaning its field contributes to different components predominantly depending on
where in its orbit it is. Following the onset of tidal disruption the growth in the
poloidal component becomes shallower, whilst the toroidal component’s growth
goes through phases of more and less rapid growth before seemingly reaching a
peak at around 10ms.

Figure 4.21: The poloidal (dashed), toroidal (dotted) and total (solid) magnetic
energies for models IntA and IntT.

4.6.2 Discussion

The dynamics of both magnetic field cases are similar to those of the unmagnetized
case, however for both initial field configurations the merger precedes more quickly,
happening around 0.5ms earlier for our initial conditions. We believe that this is
a result of the magnetic pressure causing the stars to expand slightly in the early
stages of the simulation, exaggerating the effects of the tidal distortions. This can
be seen in Figure 4.22, where the magnetized simulations show a slightly larger
tidal elongation of the stars along with more diffuse matter around the surface of
the stars. Such effects are due to the exceptionally high magnetic field strength,
and simulations at similar field strengths [Ruiz et al., 2019] also see this slight
decrease in the merger time. [Giacomazzo et al., 2009] further demonstrate that
the magnetic field only impacts the inspiral of the stars when it is above 1014G.
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As a result, we would not expect this delay in merging to be a feature of observed
binaries since the initial field strengths required are highly unlikely to be present
initially in the merger.

Figure 4.22: Density in the x − y plane models IntT (left), IntA (middle) and
Quad7(right) at 3.95ms for the magnetized models and 4.05ms for the unmagne-
tized case.

The growth of the magnetic field strength due to shear instabilities and tidal
distortion of the stars during the merger is qualitatively similar to that observed in
other simulations [Price and Rosswog, 2006] [Kiuchi et al., 2015]. For model IntA,
the total magnetic energy increases by a factor of 8 during the disruption and
initial merger of the stars, reaching its initial peak at around 6.5 ms, although as
the merger precedes we would expect to see further amplification, particularly once
a differentially rotating remnant has formed as this is when the magnetorotational
instability (MRI) will activate. Starting with similar field strengths, [Ruiz et al.,
2019] see an increase in the total magnetic energy by around a factor of 15 by the
time the dense cores in the remnant merge, which appears within the bounds of
what we may expect also from our simulations.

The amplification in our simulations so far comes primarily from turbulent motions
along the contact interface between the two stars, but also from tidal elongation
of the leading edge of the star. The IntT model shows slower growth than the
IntA model, as a result of the tidal disruption happening parallel to the field
lines in one of the stars. Since the magnetic tension force acts to resist curvature
of field lines, this stretching parallel to field lines produces less field strength
growth than stretching which acts perpendicular to the field lines and so acts
to bend them. At this intermediate stage in the merger, the magnetic energy
both models is evenly split between poloidal and toroidal components, however
longer simulations are required to see whether this persists in the final remnant.
Furthermore, Figure 4.23 shows the magnetic energy spectrum at several times
throughout model IntT’s evolution. We can see that initially the majority of the
energy is at wavenumbers of around 4-5 × 10−7. This corresponds to scales of
around 10-20km, which is approximately the size of the neutron stars and therefore
the scale of the initial field as we would expect. At later times much more of the
energy is recorded at smaller physical scales, and the dominance of the initial peak
is greatly diminished. This increase in small scale magnetic energy is characteristic
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of turbulent amplification of the field, as the vorticies twist up the field lines,
increasing the strength of the field through the magnetic tension but also giving
the field more small scale structure. Furthermore, the small scale turbulence at
5ms follows quite closely a Kolmogorov −5/3 power law [Kolmogorov, 1941], a
theoretical model that describes the cascade of energy from large scales to small
ones in turbulent flows. Although formulated for a highly idealized system, this
power law is often observed in experimental studies of turbulence, and here it is a
further indication of the turbulent mixing that occurs along the contact interface
between the two stars at around 5ms. The apparent increase at large wavenumber
at all times is an artifact, which results from our domain being non-periodic.

Figure 4.23: The magnetic energy spectrum for model IntT at t = 3, 5, 6, 8 and
9ms. The black dotted line represents a Kolmogorov spectrum, which is a −5/3
power law.

To summarize, our simulations show that the inclusion of a very large magnetic
field causes the stars to merge earlier than in a non-magnetised case. During
the initial tidal disruption and early merging stages we see close to a factor 10
increase in the total magnetic energy in the simulation for the case where both
fields are aligned with the orbital angular momentum (IntA). The growth of the
field in the case where one star’s field is rotated so that it’s axis lies in the orbital
plane (IntT) is slower but grows eventually to larger strengths, as a result of the
tidal amplification of the field being less effective when the field is parallel to the
direction of stretching. To get a full picture of how the field configuration affects
the merger however, we need to continue these simulations to examine the later
stages of the merger.

69



Chapter 5

Black Holes in FLASH

The second part of this thesis work has been to create a model black hole (BH) in
the FLASH code framework. This was achieved in large part by building upon
the model accretion disc simulations [Hawley, 2000] that are included with the
FLASH distribution.

5.1 Accretion discs

Accretion discs are found throughout astrophysics, in a range of environments and
at various scales from protoplanetary discs to active galactic nuclei (AGN). They
are also expected to be a part of NS-NS merger remnants, with the properties of
such a disk determined by the properties of the original merging system. As such,
they have been studied extensively, and we will here present a few key results of
interest to this work.

Early studies of accretion physics were focussed on one main problem: how
does accretion from the disc onto the central object actually occur? In order for
matter to fall inward and be accreted it must lose angular momentum. However
as the total angular momentum of the disc must be conserved, this means there
must be corresponding increase in angular momentum in the outer regions of the
disc. The stresses due to the gas’ viscosity alone are far insufficient to provide the
observed accretion rates, and so identifying a process which would produce this
outward angular momentum transport took several decades to achieve. Shakura
and Sunyaev [Shakura and Sunyaev, 1973] made major progress on the problem
with the realization that turbulence within the disc could enhance the viscosity
to the required levels. They found that for subsonic turbulence, assuming the
disc’s scale height z0 to be the maximum eddy scale allows the viscosity from
turbulence in the disc to be given as ν = αcsz0, where cs is the sound speed and
α is a free parameter. Equations of the disc structure in terms of the parameter
α can then be constructed. The model’s main advantage is that it can be easily
compared with observations, allowing constraints to be placed on the value of
α in different astrophysical settings [Hartmann et al., 1998] [King et al., 2007],
however it provides no explanation for the source of the turbulence in the disc.
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It was initially hoped that due to the high Reynold’s number of the flows, the dif-
ferential rotation of the disc would generate turbulence through shearing [Shakura
and Sunyaev, 1973]. This is the case in planar shear flows, however in a rotating
flow such as an accretion disc the Coriolis force acts as to stabilize disc, preventing
the onset of turbulence. However, it was later found that the presence of even a
weak magnetic field could generate turbulence in the disc very rapidly through
the magnetorotational instability (MRI) [Balbus and Hawley, 1991].

5.1.1 The Magnetorotational Instability (MRI)

The MRI was first discovered in 1960 [Chandrasekhar, 1960], but its relevance
to accretion discs was only realised in the early 1990s [Balbus and Hawley, 1991].
The instability can be understood in terms of a toy model, where we think of two
fluid parcels at different radii in a magnetized disc as two masses connected by
a spring. Due to the differential rotation of the disc, the inner mass is rotating
faster and so moves ahead of the outer one. However the spring pulls back on
the inner mass, slowing it down whilst speeding up the outer element. The inner
mass then moves further inward, the cycle repeats and drives the process to a
runaway instability.

The spring-like behaviour of the magnetic field was demonstrated by [Balbus
and Hawley, 1991] in a simple case where we assume the disc is threaded by
a constant vertical magnetic field. If we displace a fluid element by ξ, which
has spatial dependence of eikz and lies within the plane of the disc, then the
corresponding change in the magnetic field is found from the induction equation
to be δB = ikBξ. The force exerted by the magnetic field in ideal MHD is given
as F = (∇×B)×B. By applying a vector calculus identity we can write this as

FB = −∇
(
B2

2

)
+ (B · ∇)B. (5.1)

The first term is a magnetic pressure, which in the specific case we consider here
only acts in the vertical direction and therefore does not contribute to forces in the
plane of the disc. The second term however describes tension along magnetic field
lines and does act in the disc plane. Substituting in our magnetic field (B+ δB)
the leading order term in δB is

FB = B
∂

∂z
(ikBξ) = −k2B2ξ (5.2)

This tension force therefore scales linearly with the displacement, acting as a
spring force would. Continuing this analysis it can be shown [Balbus and Hawley,
1991] that in order for a magnetized disc to remain stable, its angular velocity, Ω,
must satisfy

dΩ2

dR
≥ 0. (5.3)

This condition is not met in the vast majority of astrophysical systems (for
example, a Keplerian rotation profile has Ω ∝ R−3/2) and so the MRI is likely
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to be active in them. Examinations of other initial field geometries beyond a
simple vertical field have revealed complex fully three dimensional instabilities
in the disc. For example, a toroidal field component is also unstable to the MRI,
producing low wavenumber, non-axisymmetric spiral structures in a disc [Acheson
and Acheson, 1978]. This means that simulations of discs in with and without
axisymmetry produce quite different results [Hawley, 2000]. The destabilisation of
the disc by the magnetic field in turn affects the magnetic field itself, as in the
weak field regime of ideal MHD the field is ‘frozen’ into the fluid. This stretches
an initially vertical field in both the azimuthal and radial directions, and in doing
the tension force converts some of the fluid’s kinetic energy into magnetic energy.

5.2 The Accretion torus simulation

The simulations here consist of an accretion torus around a central black hole.
The fluid is not subject to self gravity as it is assumed that the gravitational
potential of the black hole dominates. It is modelled with an ideal fluid equation
of state, with Γ = 5/3. The initial condition for the simulation is an axisymmetric
equilibrium torus with constant specific angular momentum, the construction of
which is detailed in Section 5.2.1. Such tori are widely used in numerical studies
of accretion discs because they are initially stable and have finite extent, meaning
they can be contained completely inside the simulation domain which reduces
the importance of boundary effects. Throughout this section we use units where
GM = 1, used to simplify the simulation units since the model i

5.2.1 Disc initial conditions

To derive an equation for the initial density profile of our torus, we follow the
methods set out in [Papaloizou and Pringle, 1984]. Here we use cylindrical
coordinates (although the simulation is performed with Cartesian coordinates),
with the axis of the disc’s rotation aligned with the z-axis and the black hole
located at the origin. A fluid flow in equilibrium is described by the steady state
Euler momentum equation,

(ρv · ∇)v = −∇P − ρ∇ψg (5.4)

where v = vϕϕ̂ is the fluid velocity, P is pressure, ρ the density and ψg is the
gravitational potential of the central black hole. We assume that the only non-zero
velocity component is in the azimuthal direction and that the disc is axisymmetric,
therefore the first term in 5.4 can be rewritten as −ρΩ2rr̂ where Ω = vϕ/r is the
angular velocity of the fluid. For a constant angular momentum torus with an
equation of state of the form P = P (ρ), such as a polytrope, it can be shown that
∂Ω/∂z = 0 (Chapter 4 of [Tassoul, 1978]). Therefore we can rewrite this once
more in terms of a rotational potential ∂ψrot/∂r = −Ω2r giving

∇ψrot +
∇P
ρ

+∇ψg = 0 (5.5)

72



Finally, using the polytropic relation P = κρΓ and applying the chain rule, we
can rewrite the equation as

∇
(
ψrot + ψg +

Γ

Γ− 1

P

ρ

)
= 0. (5.6)

Integrating this gives

ψrot + ψg +
Γ

Γ− 1

P

ρ
= C, (5.7)

where C is an integration constant that is defined by the boundary of the torus,
at which P = ρ = 0.

For the specific angular momentum of the torus to remain constant with ra-
dius, the angular velocity will be given by Ω = l/r2, where l is the specific angular
momentum. Substituting into the definition for the rotational potential and
integrating we find

ψrot =
l2

2r2
(5.8)

where the integration constant is set to zero by assuming that the rotational
potential is zero in the limit of infinite radius. Finally, we use the Pseudo-
Newtonian Paczyńsky-Wiita potential for the black hole [Paczyńsky and Wiita,
1980] (described further in Section 5.2.2), which gives

P

ρ
=

Γ− 1

Γ

(
GM

R−Rg

− l2

2r2
+ C

)
(5.9)

where M is the mass of the black hole, R is the spherical coordinate radius and
the parameter Rg = 2GM/c2 is given by the Schwarzschild radius of the black hole.

Equation 5.9 and the polytropic relation give us a description of the initial
density distribution for a general torus with constant angular momentum, and the
values of the constants κ, l and C can then be used to describe the specific case
we wish to simulate. As these parameters don’t describe the physical extent of
the torus clearly, we instead specify our system in terms of the torus’ inner radius
rin, the radius of maximum density rmax and the maximum density itself, ρmax.
These new parameters relate to the original ones as follows:

• The specific angular momentum is chosen to be given by the Keplerian
angular momentum at the maximum density radius, which is

lk =
(GMRmax)

1
2Rmax

Rmax −Rg

(5.10)

where Rmax =
√
r2max + z2 is the spherical coordinate radius of the density

maximum.
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• Choosing the inner radius of the torus to be the boundary at which P = ρ = 0,
the constant C is then

C =
GM

Rin −Rg

+
l2

2r2in
. (5.11)

• Using the two above conditions and the polytropic relation in Equation
5.9, we use the value of the maximum density to calculate the polytropic
constant κ as

κ =
Γ− 1

Γ

(
GM

Rmax −Rg

− l2k
2r2max

+ C

)
1

ρΓ−1
max

(5.12)

With the density distribution in the torus fully defined, the pressure and tempera-
ture are calculated through the equation of state and the azimuthal velocities are
given by lk/r.

Finally, in magnetized cases, the torus is endowed with a poloidal magnetic
field, whose vector potential is given by

Aϕ = B0max(ρ− ρc, 0) (5.13)

where B0 describes the maximum field strength and ρc is a cut-off density below
which the magnetic field is zero. The parameter B0 is set by specifying a target
plasma beta β0 to by reached at the maximum density, which gives it a value of
B0 =

√
2κρΓmax/β0/ρmax.

Outside the torus, the simulation domain is filled with a constant low den-
sity atmosphere that is around 2-3 orders of magnitude lower than the density
within the torus. This is chosen so that it does not impact the dynamics of the
torus significantly, provided the boundaries of the simulation domain are located
suitably.

5.2.2 Black hole model

In these simulations, the black hole is situated at the coordinate origin. As these
are Newtonian simulations, we must directly implement several features of the
black hole manually, in order to obtain an approximation to the behaviour of the
hole in relativity. Firstly, the gravitational potential of the BH is modelled using
a Paczyńsky-Wiita potential [Paczyńsky and Wiita, 1980], which is given by

ψG =
−GMBH

R−Rg

(5.14)

where MBH is the mass of the black hole and Rg = 2GM/c2 is the ‘gravitational’
radius, which corresponds to the Schwarzchild radius of the black hole. This
potential simulates some of the features of a Schwarzschild black hole that are
important in the study of accretion discs, including replicating the correct posi-
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tions of both the innermost stable circular orbit (ISCO), RISCO = 3Rg, and the
marginally bound orbit, Rmb = 2Rg. It has also been shown to produce similar
accretion efficiencies to a general relativistic Schwarzschild solution [Paczyńsky
and Wiita, 1980].

On the simulation domain, the black hole is a region of radius RBH = 1.1Rg

within which the hydrodynamic variables are not evolved. The radius is set to be
slightly larger than Rg to avoid the singularity in the gravitational potential at
Rg, but close enough that the large potential values drive a supersonic inflow into
the hole in area around it. The black hole region is filled with a low density (5
orders of magnitude lower than the minimum density of the evolved fluid) cold fluid.

The biggest challenge in this work has been setting conditions on the boundary of
the black hole which both ensure supersonic inflow into the hole and maintain
numerical stability. Whilst enforcing inflow-only conditions across the cell bound-
aries is relatively simple it is more difficult to then ensure that zones on the edges
of the hole do not develop very high velocities and very low densities, which lead
to the timestep becoming unfeasibly small. Our solution uses a general boundary
condition that works well for the majority of zones on the boundary and then
applies small stability fixes to problem zones as they arise.

At the boundaries of the black hole region, we apply a diode condition, where
the velocity in boundary cells is copied from the velocity in the final zone if it is
directed into the black hole (and so out of the simulation domain) and is set to
zero if the velocities are directed out of the black hole. This ensures that matter
cannot flow out of the hole. In practice, the steep acceleration gradient produced
by the gravitational potential ensures supersonic and super-Alfvénic inflow in the
zones immediately surrounding the hole, however without the additional inflow
condition we found that occasionally a single zone may develop a spurious, large
outward velocity. This is a result of the surface of the the black hole region being
stepped due to the Cartesian nature of the grid. The problem develops in zones
where there is an interface with the black hole in a direction that was close to
perpendicular to the gravitational acceleration from the black hole and for whom
the inward direction across this interface was the opposite sense to the rotation of
the torus (as shown in Figure 5.1). This meant that the gravitational acceleration
across this particular face was not strong enough to enforce inflow and the rotation
of the material was driving a flow past this face that pointed outward from the
face, leading to this cell gaining an outward velocity. Left unchecked this could
cause the simulation to fail therefore to maintain the stability of the simulation
we set these spurious velocities to zero. As this occurred in only a very small
number of zones (around 10 out of more than 5000 BH face zones) it does not
affect the simulation at large.
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Figure 5.1: Schematic showing the location of zones in which spurious velocities
develop. The shaded region is the black hole interior, we show here a slice in
the x-y plane. The gravitation acceleration, g, and torus orbital velocity, Ω, are
oriented such that the velocity in the problem zone is likely to develop a spurious
outward component in the y direction, across the face marked with an ‘x’.

In magnetized simulations we also force the magnetic field to remain zero on the
surface of and within the black hole. This ensures that no spurious magnetic
fields develop near the hole as a result of the low densities and temperatures of
the interior of the hole. We also zero fields in the small number of zones which
develop spurious velocities, again to maintain the simulation’s stability.

5.3 Results

Table 5.1 summarizes the parameters for the different torus simulations performed.
We first performed a selection of non-magnetized cases at different grid sizes
and resolution to assess the effects of changing these. With an optimal grid
configuration chosen, we then performed a non-magnetized and a magnetized
simulation, in order to compare the effects of adding the magnetic fields. The
torus parameters are chosen for comparison with similar models used by [Hawley,
2000].
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Model Grid
width

No. re-
finement
levels

∆xmin rin rmax β0

HD-SG 20 6 0.08 3.0 4.7 0.0
HD-LG 40 7 0.08 3.0 4.7 0.0
HD 30 7 0.06 3.0 4.7 0.0
MHD 30 7 0.06 3.0 4.7 350

Table 5.1: A summary of the parameters used in the accretion torus simulations.
∆xmin is the side length of the smallest grid cell in the simulation, rin is the inner
radius of the torus, rmax is the radius at which the density is at its maximum,
ρmax is the maximum density and β0 is the plasma-β (β = Pgas/(B

2/2)) at the
density maximum. All distances are in units of Rg.

5.3.1 HD models

Figure 5.2 shows the torus density at several times throughout the HD simulation.
Note that in the time units of the simulation, the orbital periods at the inner and
outer edge of the torus are 21 and 112 respectively and the orbital period at the
density maximum Pmax = 50.

At the start of the simulation, the relaxation of the initial conditions causes
matter from the inner edge of the torus falls inward towards the BH in a narrow
accretion stream. The torus also oscillates slightly, which can be seen in the
difference in shape between the t = 200 and t = 300 panels in Figure 5.2. The
x = 0 slices on the left-hand sides show that the torus becomes more elongated
radially between t =0 and 200, and then contracts to return to a shape more like
the initial condition at t = 300.
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Figure 5.2: Slices of density taken along the x = 0 and z = 0 planes in the left
and right panels respectively, at times 0, 200, 300. The orbital period at the inner,
density maximum and outer edges of the torus are 21, 50 and 112 respectively.
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The vertically and azimuthally averaged density profiles in Figure 5.3 show that
after the relaxation of the torus, which raises the density slightly in the central
regions, the density distribution remains constant throughout the simulation.
Further to this, Figure 5.4 shows the radial angular momentum distribution of
the torus at various times throughout the simulation.

Figure 5.3: Radial density profiles for model HD at times 0, 200, 300, 350. The
initial onset of accretion raises the density slightly at the inner boundary of the
torus, but once this is established the profile remains the same for the rest of the
simulation.

We see again that the initial relaxation raises the angular momentum slightly both
within the inner edge of the torus and outside it. After this initial change however,
the distributions of both density and angular momentum remain constant. This
is as expected for a torus without magnetic fields, since there is no mechanism by
which angular momentum can be transported.
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Figure 5.4: Radial specific angular momentum profiles for model HD at times 0,
200, 300, 350.

Testing the black hole model

The accretion rate onto the black hole for model HD is shown in Figure 5.5. There
is an initial spike in accretion as the relaxation of the torus occurs, since the inner
edge of the torus is at the rISCO and so the matter that moves inward during the
relaxation is accreted. Following this the accretion rate returns to a lower value
with a much smaller, steady increase across the rest of the simulation. This steady
increase is as a result of the infall of the non-rotating atmosphere gas, which grows
slowly over the course of the simulation under the gravitational acceleration from
the black hole.

In Figure 5.6 we plot the total conserved mass, which is the total gas mass
on the grid at each timestep combined with the cumulative mass accreted by the
black hole and the total mass gained/lost through the grid’s outer boundary. This
shows that mass is conserved to within 10−6 of the total initial gas mass on the
grid, implying that our measurements of the black hole accretion rate are sound.
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Figure 5.5: Mass accretion rate as a fraction of the total torus mass for model
HD.

Figure 5.6: Total gas mass plus the total mass accreted by the black hole and the
total mass gained/lost at the outer boundary.
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Effect of boundary size

In model HD-SG, we used a smaller simulation volume, with a domain side length
of 20rg rather than the 30rg used in model HD. The effects of using a smaller
domain are quite large in this case. Figure 5.7 shows that the torus surface be-
comes unstable after several orbits in this model. The inner disc becomes warped
bending up and down alternately out of the z = 0 plane, creating a many armed
spiral appearance in the slices along the equatorial plane. This instability emerges
after around 4 orbits and persists for several more before the inner accretion
stream is completely disrupted. The velocity vectors in Figure 5.7 show the inflow
of the low density background, driven by the black hole’s gravitational potential,
which builds over the course of the simulation to give a steady inflow along the
disk’s axis. Further from the axis, interactions with the disk prevent such a flow
from forming, but eventually the deflection of the inflowing matter by the denser
torus leads to outflows across the surface of the torus. This generates streams of
matter that flow outward from the torus’ surface.

The increased strength of the atmosphere inflow is a result of the boundary
conditions. The gravitational acceleration from the black hole falls off as 1/r2,
however at the boundary of the simulation domain we apply a zero gradient
outflow. This assumes that the fluid variables outside the grid are the same as
those in the final zone of the grid, therefore they simply grow with time like
the velocity in the final zone of the grid does under the black hole’s constant
acceleration. As such, if the boundary is too small, it causes the atmospheric
velocity to grow very large within the simulation time, and these large velocities
disrupt the otherwise stable torus.
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Figure 5.7: Slices of density taken along the x = 0 and z = 0 planes in the left
and right panels respectively, at times 0, 200, 300. The orbital period at the inner,
density maximum and outer edges of the torus are 21, 50 and 112 respectively.
The velocity vectors in the plane are marked with arrows.
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5.3.2 MHD model

To examine the performance of our MHD boundary conditions, we endowed the
initial torus with a weak poloidal magnetic field of the form described in Equation
5.13. We again evolved the torus for around 7 orbits at the pressure maximum
(Rmax = 4.7rg, Pmax = 50), Figure 5.8 shows density slices at several points during
the simulation. The slices at t =200 (4Pmax) show turbulent ‘rolls’ across the
surface of the torus, which begin to arise after only 1-2 orbits. By t =300, the
torus has become fully turbulent, and the slice in the x− y plane shows that it is
also losing its axisymmetry.
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Figure 5.8: Slices of density taken along the x = 0 and z = 0 planes in the left
and right panels respectively, at times 0, 200, 300. The orbital period at the inner,
density maximum and outer edges of the torus are 21, 50 and 112 respectively.
The velocity vectors in the plane are marked with arrows.
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Figure 5.9 shows a low-wavenumber spiral wave structure visible in the inner disc.
Such features appear and are disrupted periodically throughout the simulation
starting from around orbit 3. The plasma-β is defined as β = Pgas/(B

2/2) and is a
measure of whether the flow is dominated by hydrodynamic (high β) or magnetic
forces (low β). The right hand panels of Figure 5.9 show that the magnetic field
is most dominant in the inner regions of the torus above and below the equatorial
plane. The initial peak of the magnetic field strength was already located radially
between the density maximum and the inner edge of the torus, however the initial
β was still quite high. The shearing of magnetic field lines by differential rotation
occurs throughout the disc, however in this region there is additional shearing in
the radial direction due to accretion, which drives stronger field growth. Figure
5.9 also demonstrates how the disk turbulence has affected the vertical magnetic
field structure within the torus, which is also shown by the field lines in Figure
5.10. We see that the initially poloidal field is dragged along by the rotation,
gaining a growing toroidal component. The vertical structure is disrupted by
the overturning fluid cells within the torus, creating distorted loops which are
approximately, but not exactly, symmetric across the equatorial plane.

Figure 5.9: Slices of density, magnetic pressure and plasma beta taken along the
x = 0 and z = 0 planes in the upper and lower panels respectively, at t =225,
where Pmax = 50.
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Figure 5.10: Slices of density taken along the x and z-axes in the left and right
panels respectively, at times 0, 200, 300, where Pmax = 50. The magnetic field lines
in the plane are overplotted, coloured according to the magnetic field strength.
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Figures 5.11 and 5.12 show the vertically and azimuthally averaged density
and specific angular momentum as functions of radius. In contrast to the HD
cases, they show significant spreading of the the torus’ mass and greater angular
momentum transport. The density in the inner regions of the torus is much higher,
indicating that a stronger accretion flow is present. The angular momentum
profile appears to be moving from the initial constant distribution to one that
is increasing with radius, as the MRI induced turbulence transports momentum
outward. Once the accretion stream in the inner region of the disc forms, the
angular momentum profile in that region remains roughly constant and has a
slope that is slightly shallower than the Keplerian profile. The profile in the outer
regions of the disc meanwhile is still changing quite substantially, as the disc
is spreading radially outward and the angular momentum increase with radius
steepens. At later times, if this trend continues we may expect the disc to become
thinner and the angular momentum distribution to steepen until it becomes close
to Keplerian, as observed in [Hawley, 2000] however longer simulations need to be
undertaken to probe this.

Figure 5.11: Radial density profiles for model MHD at times 0, 200, 300, 350.
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Figure 5.12: Radial specific angular momentum profiles for model MHD at times
0, 200, 300, 350. The dotted line marks a Keplerian angular momentum profile.

Figures 5.13 and 5.14 show the total poloidal and toroidal magnetic energies
and the ratio of these components as functions of time. We can see that shearing
due to the differential rotation in the torus causes the toroidal component to
grow linearly during the first two orbits, surpassing the weak, initial poloidal
field very quickly. The difference between the two components peaks at around
2.5 orbits in, after which the toroidal component falls slightly and the poloidal
field begins to grow. This corresponds roughly with the first appearance of the
turbulent ‘rolls’ visible in the vertical slices through the torus. These rolls show
that circulation in the vertical direction is occurring within the torus, which is
driving the growth of the poloidal field. The 3D rendering of the magnetic field
lines after approximately 4 orbits in Figure 5.15 further shows the dominance of
the toroidal field, with none of the original poloidal structure visible by this stage.
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Figure 5.13: Toroidal and poloidal components of magnetic energy with time.

Figure 5.14: Ratio of toroidal and poloidal magnetic energies with time.
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Figure 5.15: A 3D visualisation of the magnetic field lines at t = 0 and t = 225,
overplotted onto a volume rendering of the density.

Testing the black hole

Figure 5.16 compares the mass accretion rate for the HD and MHD cases. We
see that for the first orbit these are very similar, both showing the same initial
peak in accretion. Following this, while the HD case falls to a low and relatively
constant value for the remainder of the simulation, accretion in the MHD case
grows rapidly over the following two orbits. The rate peaks at around 5 orbits,
coinciding with the onset of major turbulence in the torus. The field lines in
Figure 5.10 show that at the black hole boundary, the field maintains the same
direction as in the inflowing gas around it. The x− y plane plots show that the
field does not end up anchored to the horizon, as in that case we would see the
spiral in the field lines tightening with time. The plasma β slices in Figure 5.9 do
show a peak in the regions immediately surrounding the hole, which is due to the
zeroing of the magnetic field required in zones a step outside the hole. There is
no evidence of any larger scale anomalous behaviour in the field near the hole.
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Figure 5.16: Mass accretion rate across the black hole boundary, for both the HD
and MHD models.

5.4 Discussion

The primary function of these simulations was to set up and test a model black
hole in FLASH. Previous Newtonian disc studies use cylindrical or spherical
coordinates, where the black hole is represented via the inner radial boundary
condition, which is not possible on a Cartesian grid. We developed this black
hole model instead to be used in the future to simulate BH-NS mergers and the
remnant of NS-NS mergers, for which a Cartesian grid is more appropriate due to
the lack of spherical or axial symmetry.

The parameters of our magnetized disc closely resemble case GT1 from [Hawley,
2000], the only parameter difference being that we use a slightly weaker field
(β =350 compared with β = 100). Those simulations are carried out in cylindrical
coordinates, with an angular coordinate range of 0 ≤ ϕ ≤ π/2, and extend for
about twice the time of our simulations. Qualitatively, the two simulations show
much similarity, they both exhibit the emergence of non-axisymmetric spiral
waves and eventual turbulent disruption of the disc. The evolution of the radial
density and angular momentum distributions are also very similar. The onset of
turbulence happens earlier in [Hawley, 2000] as the stronger magnetic field drives
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more rapid growth of the instabilities. As the magnetic Maxwell stress is the
dominant stress in the disc, a magnetic alpha value αm = BrBϕ/4πPB can be
considered to be a more relevant parameter to consider than the more general α of
Shakura and Sunyaev. For comparison with [Hawley, 2000] we calculate a volume
averaged value for αm, which is shown in Figure 5.17 as a function of time.

Figure 5.17: The volume averaged αm as a function of time.

Comparing this with Figure 7 in [Hawley, 2000], we see that the two simulations
converge to the same value αm=0.4, however ours shows much lower amplitude
variance in the early stages of the simulation. Their initial peak reaches around
0.7, whereas ours is only 0.5, and we do not see the drop to 0.2 following this
peak.

Figure 5.16 shows that the accretion rates we record are comparable with those
of [Hawley, 2000] (Figure 5), although they are slightly smaller, likely as a re-
sult of the weaker magnetic field. The time variability in our results is less
pronounced and we do not see as prominent an initial spike, but the broad fea-
tures, periods of growth in the accretion rate separated by short plateaus during
which there is some variability in the early stages, are common to both simulations.

Examining the magnetic field structure near the hole, we find that field lines drawn
into contact with the horizon do not exhibit any anomalous behaviour, giving us
confidence in our approach here. The field is advected with the gas into the hole,
and our boundary conditions terminate any normal fields on the horizon. This is
broadly in agreement with what we may expect from the theory of magnetic field
interactions with black holes described in the membrane paradigm [Thorne et al.,
1986], which models the horizon as behaving as a conducting membrane. In such
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a case, normal field lines are terminated on the horizon, and these fields are free
to move across the surface, i.e. they do not remain tethered to point at which
they make contact.

To summarize, these simulations serve a test of the black hole model we have in-
troduced to the FLASH framework. They demonstrate that the magnetized torus
simulations are stable and behave as expected with this new feature. We show
our measured accretion rates to be consistent with other comparable work, and
that the behaviour of the magnetic field around the horizon is broadly consistent
with what we expect for a non-spinning black hole. Following this work, there are
further features which we intend to include, such as including a black hole in a
simulation with self-gravitating fluid, allowing the black hole mass and horizon
radius to change as mass is accreted and finally allowing the black hole to move
on the grid, to facilitate the simulation of BH-NS mergers.
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Chapter 6

Conclusions and Outlook

In this thesis we present the creation of binary neutron star merger models using
the FLASH code framework. We implement an approximate gravitational wave
emission scheme, based on calculating the gravitational wave luminosity using
the quadrupole moment of the mass distribution and extracting this energy by
applying a friction-like force to the stars during their orbit. We find that for an
unmagnetized merger, this scheme replicates the expected inspiral trajectory to
give broad agreement with comparable works within the limits of our physical
approximations. We then apply this model to study the effects of magnetic field
configuration on the merger. We find that the amplification of the magnetic field
is stronger in the case where the star’s initial fields where one of the star’s has its
magnetic axis parallel to the orbital plane and the other is aligned with the orbital
angular momentum. In both cases we observe strengthening of the magnetic field
along the shear interface where the two stars first meet, which continues long after
the initial contact as a region of turbulent mixing between the two stars.

Due to time constraints we were only able to study the early stages of the
merger. As such we cannot yet comment on how far the field is amplified over
the course of the whole merger, therefore continuing these simulations to the
completion of the merger is the next stage of this work. Further to this, it is of
particular interest to investigate how much of the high magnetic energy generated
at small scales by turbulence can be transferred to the larger scale field. This is
because in order for a merger remnant to successfully form an sGRB jet, there
needs to be a very strong large scale field present in the remnant. Simulations of
binary neutron star mergers which have successfully produced jets [Ruiz et al.,
2016], have used very large initial neutron star magnetic fields. This is to due
to current computational limits, which prevent us from resolving turbulence well
enough to see amplification of magnetic fields to the large values required for jet
production. As such, it remains unclear whether turbulence during the merger
and in a HMNS remnant will produce the same strong, large scale fields seen
in these simulations. Furthermore, other processes such as neutrino emission
are expected to play important roles in jet production, for example by clearing
matter from above the remnant poles which makes it easier for a highly relativistic
magnetic outflow to form. Therefore detailed studies including these effects are
also required to build a fuller picture of mergers which we could then test against
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observations of events including sGRBs, kilonovae and gravitational wave signals.

The second part of this work was to create a model black hole in the Newtonian
FLASH code framework. Doing so on a Cartesian grid proved to be challenging
as the uneven surface of the resulting hole created many issues with stability,
where a problem that occurred in only a handful of zones could crash the entire
simulation if not dealt with. We built and tested this model using simulations
of both magntized and unmagnetized accretion tori, and found that our scheme
produced accretion rates for the magnetized model similar in magnitude to other
comparable works, and that the schemes designed to maintain the model’s stability
were only active in a very small fraction (0.002% on average) of zones on the black
hole boundary.

The two projects presented here both apply Newtonian hydrodynamics to relativis-
tic compact objects, using simplified models to approximate the dynamics of the
fully relativistic systems. Using such simplified models allows us to simulate these
systems with much lower computational costs, which allows for the exploration of
a greater range of model parameters or for focussing computational power toward
increased resolution and included additional physics. The next stages for this
project would be to combine the two individual components into a more complete
set of tools capable of modelling black hole - neutron star merger simulations and
other similar systems. This would be achieved primarily by further developing the
model black hole by allowing the black hole to move on the grid and updating its
Schwarzchild radius as mass is accreted during the simulation. Further refinements
could also be made to the gravitational wave solver, for example by adapting the
general Poisson solvers in FLASH to implement a more complete Post-Newtonian
gravitational wave backreaction similar to those used in [Ruffert et al., 1996] and
[Shibata et al., 1992].
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Appendix A

Derivation of quadrupole moment
time derivatives

The quadrupole moment of a mass distribution with density ρ(r, t) is given by

Qij =

∫
ρ

(
rirj −

1

3
δijrkrk

)
dV (A.1)

where ρ is the matter density and ri is the ith component of the position vec-
tor. The gravitational wave luminosity produced by a given matter distribution
depends on the third time derivative of Qij, as shown in Equation 2.6. To cal-
culate this luminosity numerically in our simulations we seek to minimise the
number of numerical derivatives we must perform as these reduce the accuracy
of our calculation. Therefore, we choose to rewrite the time derivatives of the
quadrupole moment in terms of fluid quantities we already have available to us in
our simulation. To simplify these calculations, we will rewrite the symmetric and
trace free definition of the quadrupole moment tensor in Equation A.1 as

Qij = STF

[∫
ρrirjdV

]
(A.2)

where the operator STF denotes

STF [Aij] =
1

2
Aij +

1

2
Aji −

1

3
δijAkk

Taking the first time derivative of Equation A.2 and applying the product rule we
find

Q̇ij = STF

[∫
dV (ρ̇rirj + ρ(virj + rivj))

]
(A.3)

where vi is the ith component of the velocity vector v(r, t). We can rewrite the
first term using the continuity equation (Equation 3.1) and then apply integration
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by parts to give∫
dV ρ̇rirj = −

∫
dV

∂(ρvk)

∂xk
rirj

= −
∫
ρrirjvkdS

k +

∫
dV ρvk

(
∂(ri)

∂xk
rj +

∂(rj)

∂xk
ri

)
=

∫
dV ρ (virj + rivj)

Since we are integrating over all space, the surface terms must be zero on the
boundary at infinity. Therefore, the first time derivative of the quadrupole moment
is

Q̇ij = STF

[∫
2ρ(virj)dV

]
(A.4)

where we use the symmetry of the tensor enforced by the STF transform to
equate the virj and vjri terms.

Taking the second time derivative we find

Q̈ij = STF

[
2

∫
(ρ̇virj + ρvivj + ρv̇irj) dV

]
. (A.5)

For the first term, we can repeat the procedure of using the continuity equation
to substitute for ρ̇ and applying integration by parts to rewrite this as∫

ρ̇virjdV =

∫
ρ

(
vk
∂vi
∂xk

rj + vivj

)
dV.

The term containing v̇ can be rewritten in a similar way, by substituting in the
momentum conservation equation (Equation 3.2) to give∫

ρv̇irjdV =

∫
ρxj

(
− ∂ψ

∂xi
− vk

∂vi
∂xk

− 1

ρ

∂P

∂xi

)
,

where ψ is the gravitational potential and P is the pressure. We can then apply
integration by parts to the final term to remove the derivative of pressure giving∫

ρv̇irjdV =

∫ (
ρxj

(
− ∂ψ

∂xi
− vk

∂vi
∂xk

)
+ Pδij

)
dV.

Considering the trace-free condition, the pressure term can now be neglected since
it will vanish under the STF transform. Gathering together the remaining terms
we find

Q̈ij = STF

[
2

∫ (
2ρvivj − ρri

∂ψ

∂xj

)
dV

]
(A.6)
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Finally, taking the third time derivative of this, we obtain

...
Q ij = STF

[
2

∫ (
2ρ̇vivj︸ ︷︷ ︸

A

+2ρ(v̇ivj︸ ︷︷ ︸
B

+viv̇j)

− ρ̇ri
∂ψ

∂xj︸ ︷︷ ︸
C

−ρ

(
vi
∂ψ

∂xj
+ ri

∂ψ̇

∂xj

))
dV

]

To simplify this, we again substitute for ρ̇ and v̇ using the continuity and momen-
tum equations respectively. For term A, substituting the continuity equation and
applying integration by parts gives

A = 2

∫
ρvk

(
∂vi
∂xk

vj +
∂vj
∂xk

vi

)
dV

For B we substitute for v̇ using the momentum equation and then integrate the
pressure term by parts as we did before to get

B = −2

∫ (
ρvj

(
∂ψ

∂xi
+ vk

∂vi
∂xk

)
+ P

∂vj
∂xi

)
dV.

Finally, for term C we substitute for ρ̇ to give

C =

∫ (
∂(ρvk)

∂xk
ri
∂ψ

∂xj

)
dV.

Putting these terms together and applying the symmetries enforced by the STF
transform we find

...
Q ij = STF

[
2

∫ (
2P

∂vi
∂xj

+
∂ψ

∂xi

(
rj
∂(ρvk)

∂xk
− 3ρvj

)
− ρri

∂ψ̇

∂xj

)
dV

]
(A.7)
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