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Abstract 

Unmanned aircraft vehicles (UAVs)-enabled mobile edge computing (MEC) can enable 
Internet of Things devices (IoTD) to offload computing tasks to them. Considering this, 
we study how multiple aerial service providers (ASPs) compete with each other to pro-
vide edge computing services to multiple ground network operators (GNOs). An ASP 
owning multiple UAVs aims to achieve the maximum profit from providing MEC service 
to the GNOs, while a GNO operating multiple IoTDs aims to seek the computing service 
of a certain ASP to meet its performance requirements. To this end, we first quantify the 
conflicting interests of the ASPs and GNOs by using different profit functions. Then, the 
UAV scheduling and resource allocation is formulated as a multi-objective optimiza-
tion problem. To address this problem, we first solve the UAV trajectory planning and 
resource allocation problem between one ASP and one GNO by using the Lagrange 
relaxation and successive convex optimization (SCA) methods. Based on the obtained 
results, the GNOs and ASPs are then associated in the framework based on the match-
ing theory, which results in a weak Pareto optimality. Simulation results show that the 
proposed method achieves the considerable performance.

Keywords: Unmanned aerial vehicle, Mobile edge computing, Internet of Things, 
Matching theory

1 Introduction
With the rapid development of Internet of Things (IoT), the network terminals or user 
equipment is expected to deal with a large number of computational-intensive and 
delay-sensitive applications in the future [1]. To solve the problem of computing power 
shortage of IoT devices (IoTDs), mobile edge computing (MEC) [2] has been proposed 
to make IoTDs to offload part of the computing tasks to the high-performance com-
puting servers in network edge, such as base stations. However, in some areas (such as 
farms, pastures and forests), the lack of power and communication infrastructure leads 
to deployment of edge servers difficult [3]. In recent years, small UAV [4] has been 
applied to carry microbase station or edge servers to help provide service to the above-
mentioned areas.
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Most of existing works [3, 5, 6] regard UAVs as the components of ground networks, such 
as maximizing network throughput [5], minimizing task completion time [6], or reducing 
the energy consumption of IoTDs [3, 7]. However, few paper considered the business model 
of the UAVs, which may be run by different organizations or companies. For example, an air 
service provider (ASP) may focus on offering services to ground network operators (GNOs) 
to maximize its profit, while a GNO operating an IoT network may need to buy the service 
from an ASP to achieve their goals. However, ASPs and GNOs have different targets, which 
may form a conflict of interest environment.

From the above perspective, this paper investigates the UAV scheduling and resource 
allocation between multiple ASPs and GNOs. Each of the GNOs deploys multiple IoTDs 
to cover a specific area. The IoTDs generates computing tasks at a certain time interval and 
can offload part of the tasks to reduce energy consumption and task completion time. Each 
of the ASPs operates one UAV to provide computing service to a GNO during a schedul-
ing cycle. The aim of this paper is to coordinate the resource demand and supply between 
the ASPs and GNOs. To this end, we use price as a signal to associate the GNOs and ASPs 
in the framework based on the matching theory [8]. This leads to a weak Pareto optimality 
and obtains the UAV flight trajectory, UAV-and-IoTD association, as well as communica-
tion and computational resource allocation that achieve the benefits of both the GNOS and 
ASPs. The main contribution of this paper is summarized as follows. 

1 By quantifying the conflicting interests of the ASPs and GNOs as different profit 
functions, the UAV scheduling and resource allocation is formulated as a multi-
objective optimization problem, where an ASP aims to reap the most profits from 
providing computing service to the GNOs, while a GNO aims to seek the service of a 
certain ASP to meet its performance requirements.

2 The formulated problem is a mixed-integer nonlinear multi-objective optimization 
problem, which is difficult to solve by traditional methods. To address this difficulty, 
we decompose it into multiple one-GNO to one-ASP problems and solve them by 
using the Lagrange relaxation and successive convex optimization (SCA) methods.

3 Based on the results of the one-to-one problem, the GNOs and ASPs are associated 
in the framework of the matching theory, which results in a weak Pareto optimality. 
Simulation results show that the proposed method achieves the considerable perfor-
mance.

The remainder of this paper is organized as follows. Section 2 presents the related works. 
Section 3 describes the system model. Section 4 introduces the proposed multi-objective 
optimization problem. Section 5 gives the algorithm to solve the one-to-one UAV trajec-
tory planning and resource allocation problem. Section 6 addresses the association of the 
GNOs with the ASPs in the framework of the matching theory. The simulation results are 
reported in Sect. 7. Finally, conclusions are made in Sect. 8.

2  Related works
Recently, UAVs have been widely used in the wireless power transfer (WPT) [9], IoT 
data collection [10], MEC [6, 11], and mobile crowd sensing (MCS) [12]. The authors 
in [9] presented a UAV-assisted WPT to ensure the sufficient energy of IoTDs that 
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supports their basic operation. Zhan and Zeng [10] minimized the task completion 
time of a multi-UAV system by jointly optimizing the UAV trajectory and the wake-
up scheduling of the IoTDs. Hu et  al. [6] proposed a UAV-assisted MEC system in 
which a set of UAVs work together to minimize the overall task completion time of 
the ground users by jointly optimizing the ratio of offloaded tasks, the trajectories 
of the UAVs, and the user scheduling strategies. Xu et al. [11] studied UAV-assisted 
MEC systems from the perspective of the physical layer security, where the minimum 
security computing capacity maximization problem for both time division multiple 
access (TDMA) and non-orthogonal multiple access (NOMA) schemes was solved by 
optimizing the computation and communication resources as well as the trajectories 
of the UAVs. Zhou et al. [12] investigated the joint task assignment and route plan-
ning problem in UAV-aided MCS systems from an energy efficiency perspective.

However, all the above works consider the overall system performance optimiza-
tion, but without considering the UAV scheduling and resource allocation in the pres-
ence of a conflict of interest between the ASPs and the GNOs.

3  System model
As shown in Fig. 1, the considered UAV-assisted MEC consists of a set N  of N ASPs 
and a set M of M GNOs. We assume that each ASP having one rotary wing UAV, 
and each GNO covers a specific ground service area (GSA). Here we use ASP and 
UAV, as well as GNO and GSA interchangeably. A set Km of Km IoTDs are distributed 
in GSA m, ∀m ∈ M , and the GSAs do not overlap with each other. The IoTDs are 
fixed on the ground, and the coordinate of IoTD km (∀km ∈ Km) in GSA m is given as 
wkm = xkm , ykm , zkm = 0 .

A discrete-time model is considered, and the duration of a time slot is represented 
by τ . The scheduling of the UAVs is performed in a periodic manner, and each period 
is defined as a mission cycle lasting for a set T  of T consecutive time slots. In the mis-
sion cycle, each UAV can serve only one GSA, and each GSA can be served by only 
one UAV. Let θn,m ∈ {0, 1} denote the association between UAV n ( ∀n ∈ N  ) and GSA 
m, where θn,m = 1 represents UAV n is associated with GSA m. Otherwise, θn,m = 0 . 
Therefore, we have the following association constraints for the UAVs and GSAs.

Fig. 1 UAV-assisted MEC in IoT
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and

Suppose that the UAV n is scheduled to serve GSA m in a mission cycle. The computing 
task of IoTD km is represented as 

(

Lkm ,Ckm

)

 , where Lkm (in bits) denotes the size of the 
task input data, and Ckm (in CPU cycles/bit) denotes the number of CPU cycles required 
for computing 1 bit of the data. During any slot t, ∀t ∈ T  in the mission cycle, the coor-
dinate of UAV n is given by qn,m[t] =

(

xn,m[t], yn,m[t], zn,m[t] = H
)

 , where H > 0 is the 
flight altitude of the UAV. Then, the flight trajectory of the UAV during the mission cycle 
is given by Qn,m =

{

qn,m[1], . . . , qn,m[t], . . . , qn,m[T ]
}

.

3.1  Communication model

In order to offload part of the computing task to a UAV for remote execution, an IoTD 
should first upload the task input data to the UAV via wireless links. Since there exists a 
strong line-of-sight (LoS) link, the channel gain from IoTD km to UAV n in slot t is given by 
gn,km [t] =

g0
�qn,m[t]−wkm�2

 [13], where g0 represents the received power at the reference dis-

tance of 1 m.
Let B and pkm denote the channel bandwidth and transmission power of IoTD km , respec-

tively. The transmission rate from IoTD km to UAV n in slot t is given as [13]

where σ 2 is the noise power at the receiver of a UAV.

3.2  Local computing model

The IoTD can perform the remaining task by using its local computing power, whereas it 
can offload part of the computing task to a UAV for remote execution. Let lkm [t] (in bits) 
denote the size of the task data being processed by IoTD km locally in slot t. Let fkm [t] 
denote the CPU frequency of IoTD km to process the lkm [t] task bits in slot t. Then we have

Assuming that the dynamic voltage and frequency scaling (DVFS) technique [3] is used 
to improve the energy efficiency of the IoTDs. The energy consumption of IoTD km in 
slot t for local computing is given by [3]

where γm is the coefficient depending on the chip architecture. Denote the maximum 
CPU frequency of IoTD km by f max

km
 . The following maximum computing power con-

straints should be satisfied by IoTD km in any slot t.

(1)
∑

m∈M

θn,m = 1, ∀ n ∈ N ,

(2)
∑

n∈N

θn,m = 1, ∀ m ∈ M.

(3)Rn,km [t] = B log2

(

1+
gn,km [t]pkm

σ 2

)

, ∀ t ∈ T .

(4)lkm [t] =
fkm [t]τ

Ckm

, ∀ t ∈ T .

(5)EC
km
[t] = γm

(

fkm [t]
)3
τ , ∀ t ∈ T .
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3.3  Edge computing model

When a large number of IoTDs simultaneously offload their computing tasks to a UAV, 
the UAV-carried server can work in parallel (in a assembly line manner) to reduce the 
overall task completion time. That is, after receiving the task data of an IoTD in any slot 
t, 1 ≤ t ≤ T − 1 , the UAV can perform the task on behalf of the IoTD in any slot (t + i) , 
1 ≤ i ≤ T − t , as shown in Fig. 2.

The task offloading from IoTD km in GSA m to UAV n will span the following two 
phases. 

1 Phase 1 (Task uploading): In any slot t, UAV n assigns a portion αn,km [t] ≤ 1 of the 
slot to IoTD km for task uploading. Then, the following time-integrity constraints 
should be satisfied by UAV n in any slot t. 

 The amount of task data that IoTD km can upload to the UAV is given by 

(6)0 ≤ fkm [t] ≤ f max
km

, ∀ t ∈ T .

(7)
∑

km∈Km

αn,km [t] ≤ 1, 1 ≤ t ≤ T − 1.

(8)bn,km [t] = αn,km [t]τRn,km [t], 1 ≤ t ≤ T − 1.

Fig. 2 The workflow of the assembly line work of UAVs
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 The resultant energy consumption of IoTD km is obtained as 

2 Phase 2 (Task execution): After receiving the data of an IoTD in slot t, 1 ≤ t ≤ T − 1 , 
the UAV can perform the task in the subsequent slot (t + i) , 1 ≤ i ≤ T − t . Let 
0 ≤ βn,km [t] ≤ 1 denote the ratio of slot t allocated to IoTD km for task execution. 
The following time-integrity constraint should be satisfied by UAV n in any slot t. 

 Let cn,km [t] (in bits) denote the size of task data that UAV n performs for IoTD km in 
slot t. Let fn[t] denote the CPU frequency of UAV n in slot t. Then we have 

 Assuming that the DVFS technique is also used by the UAVs, the energy consumed 
by UAV n for executing the task of IoTD km in slot t is given by 

 where γn is the coefficient depending on the chip architecture. Denote the maxi-
mum CPU frequency allowed by UAV n as f max

n  . The following maximum comput-
ing power constraints should be met by any nth UAV in any tth slot 

Furthermore, the following two constraints need to be considered when adopting the 
assembly line working mode. 

1 Information-causality constraints: A UAV can process the computing task of an IoTD 
only after receiving the corresponding task data. Therefore, the following informa-
tion-causality constraints should be met. 

 and 

 It is worth noting that the storage capacity of the lightweight edge servers is about 
a few hundred Gb to a few Tb, while the program size uploaded by IoTDs is mostly 
several Mb. Therefore, the storage capacity limit of edge servers can be ignored.

2 Task-integrity constraints: To ensure that the tasks are fully executed (either locally or 
on a UAV), the following task-integrity constraints should be met. 

(9)ETx
n,km

[t] = pkmαn,km [t]τ , 1 ≤ t ≤ T − 1.

(10)
∑

km∈Km

βn,km [t] ≤ 1, 2 ≤ t ≤ T .

(11)cn,km [t] =
βn,km [t]τ fn[t]

Cn
, 2 ≤ t ≤ T .

(12)EC
n,km

[t] = γnτ (fn[t])
3βn,km [t], 2 ≤ t ≤ T .

(13)0 ≤ fn[t] ≤ f max
n , 2 ≤ t ≤ T .

(14)cn,km [1] = 0, βn,km [1] = 0, and fn[1] = 0,

(15)bn,km [T ] = 0 and αn,km [T ] = 0,

(16)
t−1
∑

i=1

bn,km [i] ≥

t
∑

i=2

cn,km [i], 2 ≤ t ≤ T , ∀km ∈ Km.
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3.4  Mechanical energy consumption of UAVs

The energy consumed by the propulsion system of a UAV is far more than that con-
sumed for task computing, and it depends mainly on the flight trajectory and veloc-
ity of the UAV. Then, assuming that the duration of a time slot τ is small enough, the 
flight trajectory of a UAV during each slot can be considered as a uniformly linear 
function. Therefore the flight velocity of a UAV in any slot t is determined by its posi-
tion in slot (t + 1) and its position in slot t, which is given by

The maximum velocity constraints on a UAV is given as

Using Eq. (19), the energy consumed by the propulsion system of UAV n in any slot t is 
given by

where ς is relevant to the payload of the UAV n [6].

4  Problem formulation
In the studied UAV-enabled MEC system, the goals of each ASP and each GNO are as 
follows. 

1 The goal of a GNO: In addition to exploit the limited energy and computing resources 
of the IoTDs, a GNO needs to purchase the computing service offered by an ASP to 
achieve its performance requirement, such as minimizing the overall task comple-
tion time, reducing the total energy consumption of the IoTDs, or achieving a com-
promise between both.

2 The goal of an ASP: The UAVs of different ASPs may have different mechanical prop-
erties (e.g., flying velocity, acceleration, and energy consumption) and computing 
power. In each scheduling cycle, the goal of an ASP is to select a specific service area 
and leverage the potential of the UAV to maximize its benefit.

In this section, we first define the profit functions for the ASPs and the GNOs, which 
separately describe their targets in the MEC system. Then, we formulate the UAV 
scheduling and communication-and-computation resource allocation problem as a 
multi-objective optimization problem. Finally, we present the main method to solve 
the problem.

(17)
T
∑

t=2

cn,km [t] +

T
∑

t=1

lkm [t] ≥ Lkm , ∀ km ∈ Km.

(18)vn[t] =
qn,m[t + 1] − qn,m[t]

τ
, ∀n ∈ N , ∀m ∈ M.

(19)�vn[t]� ≤ vmax
n , ∀ t ∈ T .

(20)EF
n[t] = 0.5ς� vn[t] �

2τ , ∀ t ∈ T ,
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4.1  Profit function of GNOs

When a GSA m is served by UAV n, the total energy consumption of the IoTDs in GSA 
m is given by

Let Emax
km

 denote the maximum available energy of IoTD km . Based on eqs. (5) and (9), 
the following maximum available energy constraints for the IoTDs should be satisfied.

Therefore, a performance-adjustable profit function for a GNO is defined as

where ε1m and ε2m ( 0 ≤ ε1m, ε
2
m ≤ 1 and ε1m + ε2m = 1 ) are the weight parameters.

4.2  Profit function for ASPs

Let ρn denote the pricing of UAV n for performing 1-bit of computing tasks. When UAV 
n serves GSA m, the profit function of the UAV affiliated ASP is defined as

Let Emax
n  denote the maximum available energy of UAV n. Based on eqs. (12) and (20), 

the following maximum available energy constraints for the UAVs should be satisfied.

The profit function of an ASP reflects the fact that its goal is to maximize its own benefit 
rather than improve the performance of the GNOs. In such a seller market situation with 
N < M , a UAV will choose the GNO with the highest bid for its service to serve.

4.3  System problem

A UAV aims to reap the most profits from providing MEC to the GSAs, while a GSA 
aims to seek the service of a UAV to meet its performance requirements. This can be for-
mulated as a multi-objective optimization problem as given in the following problem P1. 
The variables to be optimized are as follows: 

1 � �
{

θn,m
}

 : The association between the UAVs and GSAs.
2 A �

{

αn,km [t]
}

 : The transmission time assigned by a UAV to the IoTDs in each time 
slot.

3 B �
{

βn,km [t]
}

 : The executing time assigned by a UAV to the IoTDs in each time 
slot.

4 F �
{

fn[t]
}

 : The computing power set by a UAV in each time slot.

(21)EGSA
n,m =

∑

km∈Km

∑

t∈T

(

EC
km
[t] + ETx

n,km
[t]

)

, ∀m ∈ M, ∀ n ∈ N .

(22)
∑

t∈T

(

EC
km
[t] + ETx

n,km
[t]

)

≤ Emax
km

, ∀ km ∈ Km, ∀ m ∈ M.

(23)Gn,m = ε1mT + ε2mE
GSA
n,m , ∀m ∈ M, ∀ n ∈ N ,

(24)Wn,m = ρn
∑

km∈Km

∑

t∈T

cn,km [t], ∀ m ∈ M, ∀ n ∈ N .

(25)
∑

t∈T

EF
n[t] +

∑

t∈T

∑

km∈Km

EC
n,km

[t] ≤ Emax
n , ∀ n ∈ N .
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5 J � {fkm [t]} : The computing power set by an IoTD in each time slot.
6 Q �

{

Qn,m

}

 : The flight trajectory of a UAV.

where constraints (26.1) and (26.2) (introduced in Sec. III-A) are the association con-
straints for the UAVs and the GSAs, respectively, constraints (26.3 and (26.4) (introduced 
in Sec. III-B and Sec. III-C, respectively) are the maximum computing power constraints 
on a UAV and an IoTD, respectively, constraints (26.5) and (26.6) (introduced in Sec. III-
B) are the time-integrity constraints for each of the UAVs, constraints (26.7), (26.8), and 
(26.9) (introduced in Sec. III-B) are the information-causality constraints caused by the 
used of the assembly line working mode, constraint (26.10) (introduced in Sec. III-B) is 
the task-integrity constraint for each of the IoTDs, constraint (26.11) indicates that at the 
end of a mission cycle a UAV must return to its starting point for charging and mainte-
nance operations, constraint (26.12) (introduced in Sec. III-C) is the maximum velocity 
constraint on each of the UAVs, and constraints (26.14) and (26.13) (introduced in Sec. 
IV-A and Sec. IV-B, respectively) are the maximum available energy constraints on the 
UAVs and IoTDs, respectively.

4.4  The decomposition of Problem P1
It is obvious that problem P1 is a mixed-integer nonlinear multi-objective optimization 
problem which is difficult to solve. To address this problem, we propose the following 
approach.

Step 1: Solve the following one-to-one resource allocation problem P2.

(P1) max�,A,B,F,J,Q,T

∑

n∈N

∑

m∈M θn,mWn,m (26a)

min�,A,B,F,J,Q

∑

n∈N ,T

∑

m∈M θn,mGn,m (26b)

s.t.
∑

m∈M θn,m = 1, ∀ n ∈ N , (26.1)
∑

n∈N θn,m = 1, ∀ m ∈ M, (26.2)

0 ≤ fkm [t] ≤ f max
km

, ∀ t ∈ T , (26.3)

0 ≤ fn[t] ≤ f max
n , ∀ t ∈ T , (26.4)

∑

km∈Km
αn,km [t] ≤ 1, 0 ≤ αn,km [t] ≤ 1,∀t ∈ T , (26.5)

∑

km∈Km
βn,km [t] ≤ 1, 0 ≤ βn,km [t] ≤ 1, ∀t ∈ T , (26.6)

cn,km [1] = 0, βn,km [1] = 0, fn[1] = 0, ∀ km ∈ Km, (26.7)

bn,km [T ] = 0 and αn,km [T ] = 0, ∀ km ∈ Km, (26.8)

∑t−1
i=1 bn,km [i] ≥

∑t
i=2 cn,km [i], 2 ≤ t ≤ T , ∀km ∈ Km, (26.9)

∑T
t=2 cn,km [t] +

∑T
t=1 lkm [t] ≥ Lkm , ∀ km ∈ Km, (26.10)

qn,m[T ] = qn,m[1], ∀ n ∈ N , (26.11)

� vn[t] �≤ vmax
n , ∀ t ∈ T , (26.12)

∑

t∈T

(

EC
km
[t] + ETx

n,km
[t]

)

≤ Emax
km

, ∀km ∈ Km, ∀ m ∈ M, (26.13)

∑

t∈T EF
n[t] +

∑

t∈T

∑

km∈Km
EC
n,km

[t] ≤ Emax
n , ∀n ∈ N . (26.14)
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We first ignore the association between the UAVs and the GSAs, and assume that GSA 
m is served by UAV n. Therefore, parameter � and the corresponding constraints in 
problem P1 can be removed. Problem P1 is simplified into the following form

By solving problem P2, we can obtain the optimal flight trajectory of UAV n and the 
optimal resource allocation for the IoTDs in GSA m.

Step 2: Schedule the UAVs to the GSAs by solving the following problem P3.
Based on the obtained profits and performance of the UAVs and GSAs by solving 

problem P2, we can simplify problem P1 into the following form

Problem P3 addresses the issue of how to schedule the finite UAVs to the GSAs by opti-
mizing parameter � , so as to achieve the goals of UAVs and GSAs. In what follows, we 
address problems P2 and P3 sequentially.

5  Solving problem P2
Problem P2 remains a multi-objective optimization problem. We use the weighted-sum 
approach [14] to transform it into a single-objective optimization problem as follows.

where µ1 and µ2 are the weighting factors. The objective function of problem P4 is 
expanded as

where T is an integer variable to be optimized. Next we propose a Binary Search Algo-
rithm (BSA)-based method to solve problem P4. 

1 Step 1: With any given T = T̂  , each GSA minimizes the difference between the 
amount of completed tasks and the target one. Let η represent the difference. We get 
the following problem P5. 
 
 

(P2) maxAn,m,Bn,m,Fn,m,Jn,m,Qn,m,T Wn,m (27a)
minAn,m,Bn,m,Fn,m,Jn,m,Qn,m,T Gn,m (27b)

s.t. (26.3), (26.5), (26.6), (26.7), (26.8), (26.9), (26.10), (26.11), (26.12),
(26.13), (26.14). (27.1)

(P3) max�
∑

n∈N

∑

m∈M θn,mWn,m (28a)
min�

∑

n∈N

∑

m∈M θn,mGn,m (28b)
s.t. (26.1), (26.2). (28.1)

(P4) minAn,m,Bn,m,Fn,m,Jn,m,Qn,m,T µ1Gn,m − µ2Wn,m (29)
s.t. (26.12), (26.5), (26.6), (26.3), (26.9),

(26.10), (26.7), (26.8), (26.11), (26.13), (26.14). (29.1)

(26)

µ1Gn,m − µ2Wn,m = µ1ε
1
mT + µ1ε

2
m

∑

k∈Km

T
∑

t=1

(

γkm(fkm [t])
3τ + pkmαn,km [t]τ

)

− µ2ρn
∑

k∈Km

T
∑

t=2

βn,km [t]τ fn[t]

Cn
,
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We introduce a new variable η in the objective function (), which converts constraint 
(26.10) into constraint (31.2) for problem P5.

2 Step 2: After obtaining the solution of problem P5, one can determine the next oper-
ation according to the value of η . If η ≤ 0 , which means that the amount of the com-
pleted tasks is greater than the target one, the current T̂  is feasible to P5. Otherwise, 
one has to find a new feasible T̂  by using the BSA method.

The main difficulty to address problem P5 is the non-convex objective function and con-
straint (26.9). We decompose problem P5 into the following three subproblems P5.1, 
P5.2 and P5.3 and solve them sequentially. 

1 In problem P5.1, the UAV trajectory Qn,m , the computing resource allocation Fn,m 
and Jn,m are assumed to be known. The objective is to optimize the time allocation 
An,m and Bn,m.

2 After obtaining the time allocation An,m and Bn,m , the computing resource allocation 
Fn,m and Jn,m will be optimized in problem P5.2 with the given UAV trajectory Qn,m.

3 Once the time allocation An,m and Bn,m and the computing resource allocation Fn,m 
and Jn,m were known, the UAV trajectory Qn,m is to be optimized in problem P5.3.

Next, we solve problems P5.1, P5.2, and P5.3, respectively.

5.1  The solution to problem P5.1
With the known Qn,m , Fn,m , Jn,m and η , problem P5 is simplified to P5.1 as follows.

Since the objective and all the constraints are convex, problem P5.1 is a linear program 
(LP) problem, which can be readily solved by applying classical optimization methods.

5.2  Solve problem P5.2
After solving problem P5.1, the time allocation An,m and Bn,m are known. With the same 
Qn,m and η , the computing resource allocation Fn,m and Jn,m is further optimized in the 
following problem P5.2

(P5) minAn,m ,Bn,m ,Fn,m ,Jn,m ,Qn,m ,η µ1

(

ε1mT̂ + ε2m
∑

k∈Km

∑T̂
t=1

(

γkm (fkm [t])
3τ + pkmαn,km [t]τ

)

)

− µ2ρn
∑

k∈Km

∑T̂
t=2

βn,km [t]τ fn[t]

Cn
+ η (31)

s.t. (26.11), (26.12), (26.4), (26.3), (26.5), (26.6), (26.7), (26.8), (26.9),

(26.13), (26.14), (31.1)
∑T̂

t=2

βn,km [t]τ fn[t]

Cn
+

∑T̂
t=1

fkm [t]τ

Ckm
+ η ≥ Lkm , ∀km ∈ Km. (31.2)

(P5.1) minAn,m,Bn,m µ1

(

ε1mT̂+ε2m
∑

k∈Km

∑T̂
t=1 (γkm(fkm [t])

3τ + pkmαn,km [t]τ )

)

−µ2ρn
∑

k∈Km

∑T̂
t=2

βn,km [t]τ fn[t]

Cn
+ η (32)

s.t. (26.5), (26.6), (26.7), (26.8), (26.9), (26.13), (26.14), (31.2). (32.1)

(P5.2) minFn,m,Jn,m µ1(ε
1
mT̂ + ε2m

∑

k∈Km

∑T̂
t=1 (γkm(fkm [t])

3τ + pkmαn,km [t]τ))

−µ2ρn
∑

k∈Km

∑T̂
t=2

βn,km [t]τ fn[t]

Cn
+ η (33)

s.t. (26.4), (26.3), (26.7), (26.9), (26.13), (26.14), (31.2). (33.1)
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Since the objective and all the constraints of problem P5.2 are convex with respect to 
Fn,m or Jn,m , problem P5.2 is a convex optimization problem. One can prove that prob-
lem P5.2 satisfies the Karush–Kuhn–Tucker (KKT) conditions [15]. Next, we leverage 
the Lagrange method to solve it.

The Lagrangian function of problem P5.2 is given by

where �,ϑ = {ϑkm}km∈Km
 , ϕ = {ϕkm,t}km∈Km,2≤t≤T̂

 , and ξ = {ξkm}km∈Km
 are the non-

negative Lagrange multipliers associated with constraints (26.14), (26.13), (26.9), (26.10), 
respectively.

The Lagrangian dual function of problem P5.2 is given by

According to the KKT conditions [15], the solution of problem P5.2 can be obtained by 
solving the Lagrangian function and the Lagrangian dual function iteratively.

Letting the derivations of the Lagrangian function L(Fn,m, Jn,m) with respect to Fn,m 
and Jn,m equal to zero, respectively, we can obtain the solution as

where [x]+ denotes the operation max(x, 0) , and [f ∗]f
max

0  denotes the operation 
min

(

max(f ∗, 0), f max
)

.
We can substitute the obtained f ∗n [t] and f ∗km [t] into Lagrangian dual function (28) 

and rewrite it as

Because dual problem (29) is convex, we can use the subgradient method to solve it.

(27)

L(Fn,m, Jn,m, �,ϑ ,ϕ, ξ)

=µ1(ε
1
mT̂ + ε2m

�

k∈Km

T̂
�

t=1

(γkm(fkm [t])
3τ + pkmαn,km [t]τ))−µ2ρn

�

k∈Km

T̂
�

t=2

βn,km [t]τ fn[t]

Cn
+ η

+ �





T̂
�

t=1

EF
n[t] +

T̂
�

t=1

�

km∈Km

EC
n,km

[t] − Emax
n





+
�

km∈Km

ϑkm





T̂
�

t=1

�

EC
km
[t] + ETx

n,km
[t]

�

− Emax
km





+
�

km∈Km

T̂
�

t=2

ϕkm,t(
βn,km [t]τ fn[t]

Cn
− bn,km [t])

+
�

km∈Km

ξkm(Lkm −

T̂
�

t=2

βn,km [t]τ fn[t]

Cn
−

T̂
�

t=1

fkm [t]τ

Ckm

− η),

(28)
D(�,ϑ ,ϕ, ξ) = min

Fn,m,Jn,m
L(Fn,m, Jn,m, �,ϑ ,ϕ, ξ)

s.t.(26.4), (26.3), (26.7).

f ∗n [t] =

[
√

∑

km∈Km
([µ2ε

2
m+ξkm−ϕkm ,t ]

+)βkm [t]

3�γnCn
∑

km∈Km
βkm [t]

]f max
n

0

, 2 ≤ t ≤ T̂ , (36.1)

f ∗km [t] =

[√

ξkm
3Ckmγkm (µ1ε

2
m+ϑkm )

]f max
km

0

, 1 ≤ t ≤ T̂ . (36.2)

(29)max
�,ϑ ,ϕ,ξ

D(�,ϑ ,ϕ, ξ)
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Let l = 1, 2, · · · denotes the index of the number of iterations. According to ref. [16], 
the dual variables are updated via iterations as

where s(l)
�

 , s(l)ϑ  , s(l)ϕ  and s(l)ξ  denote the step sizes of the lth iteration, and ��
(l) , �ϑ

(l)
km

 , �ϕ
(l)
km,t

 
and �ξ

(l)
km

 are the subgradients of the dual function D(l)(�,ϑ ,ϕ, ξ) with respect to � , ϑ , ϕ 
and ξ in the lth iteration [16], respectively, which are given as

Let ϒ > 0 . The step sizes are configured as s
(l)
�

= ϒ/���
(l)� , s

(l)
ϑ = ϒ/��ϑ

(l)
km
� , 

s(l)ϕ = ϒ/��ϕ
(l)
km,t

� and s(l)ξ = ϒ/��ξ
(l)
km
� , respectively. The iterative algorithm to solve 

problem P5.2 is summarized in following Algorithm 1.

In the algorithm, ̟ ≥ 0 is defined as the threshold for judging the convergence of the 
iteration. When |D∗ −D(l)| ≤ ̟ , the algorithm terminates.

5.3  Solving problem P5.3
Now, the time resource allocation An,m and Bn,m , and the computing resource allocation 
Fn,m and Jn,m are known; we can further optimize η and Qn,m by solving the following 
problem.

�
(l+1) =

[

�
(l) − s

(l)
�
��

(l)
]+

, ∀km ∈ Km, (38.1)

ϑ
(l+1)
km

=
[

ϑ
(l)
km

− s
(l)
ϑ �ϑ

(l)
km

]+
, ∀km ∈ Km, (38.2)

ϕ
(l+1)
km,t

=
[

ϕ
(l)
km,t

− s(l)ϕ �ϕ
(l)
km,t

]+
, ∀km ∈ Km, 2 ≤ t ≤ T̂ , (38.3)

ξ
(l+1)
km

=
[

ξ
(l)
km

− s
(l)
ξ �ξ

(l)
km

]+
, ∀km ∈ Km, (38.4)

��
(l) =

∑T̂
t=1 E

F
n[t] +

∑T̂
t=1

∑

km∈Km
EC
n,km

[t] − Emax
n , (39.1)

�ϑ
(l)
km

=
∑T̂

t=1

(

EC
km
[t] + ETx

n,km
[t]

)

− Emax
km

, (39.2)

�ϕ
(l)
km,t

=
βn,km [t]τ fn[t]

Cn
− bn,km [t], (39.3)

�ξ
(l)
km

= Lkm −
∑T̂

t=2
βn,km [t]τ fn[t]

Cn
−

∑T̂
t=1

fkm [t]τ

Ckm
− η. (39.4)

(P5.3) minQn,m,η µ1(ε
1
mT̂ + ε2m

∑

k∈Km

∑T̂
t=1 (γkm(fkm [t])

3τ + pkmαn,km [t]τ))

−µ2ρn
∑

k∈Km

∑T̂
t=2

βn,km [t]τ fn[t]

Cn
+ η (40)

s.t. (26.9), (26.11), (26.12), (26.14), (31.2). (40.1)
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Because constraints (26.9), (26.11), (26.12), and (26.14) are related only to Qn,m the tra-
jectory of the UAV but not to the objective function (), we decompose problem P5.3 into 
the following two subproblems.

First subproblem P5.4 given below is to optimize the introduced variable η under con-
straint (31.2).

This is a linear programming (LP) problem.
Because Qn,m the trajectory of the UAV has no effect on the objective function (), we 

only need to find a feasible solution of Qn,m satisfying constraints (26.9), (26.11), (26.12), 
and (26.14). To minimize the energy consumption of an UAV to complete a mission, we 
get problem P5.5, i.e., the second subproblem of problem P5.3 as follows.

It is noted that constraint (26.9) is non-convex with respect to Qn,m . Next, we address 
this difficulty by using the successive convex approximation (SCA) method. We first 
convert constraint (26.9) into the following form.

During any slot t, the coordinate of UAV n is given by qn,m[t] =
(

xn,m[t], yn,m[t],H
)

 . We 
can get the first derivatives of Zn,km [t] with respect to xn,m[t] and yn,m[t] as

and

respectively.

Lemma 1 ▽xn,m[t]Zn,km [t] and ▽yn,m[t]Zn,km [t] are Lipschitz continuous on xn,m[t] and 
yn,m[t] with Lx and Ly , respectively, where Lx and Ly are the Lipschitz constants.

1  Proof
Please refer to Appendix A. �

(P5.4) minη µ1

(

ε1mT̂ + ε2m
∑

k∈Km

∑T̂
t=1 (γkm(fkm [t])

3τ + pkmαn,km [t]τ )
)

−µ2ρn
∑

k∈Km

∑T̂
t=2

βn,km [t]τ fn[t]

Cn
+ η, (41)

s.t.
∑T̂

t=2
βn,km [t]τ fn[t]

Cn
+

∑T̂
t=1

fkm [t]τ

Ckm
+ η ≥ Lkm , ∀km ∈ Km. (41.1)

(P5.5) minQn,m

∑

t∈T EF
n[t], E

F
n[t] = 0.5ς� vn[t] �

2τ , (42)
s.t. (26.9), (26.11), (26.12), (26.14). (42.1)

(30)Zn,km [t] =

T̂
∑

i=2

cn,km [i] −

T̂−1
∑

i=1

αn,km [i]τRn,km [i] ≤ 0.

(31)▽xn,m[t]Zn,km [t] =
2Bτg0pkm/σ

2

�qn,m[t] − ωkm�
2 ln 2

αn,km [t]
(

xn,m[t] − xkm
)

�qn,m[t] − ωkm�
2 + g0pkm/σ

2
,

(32)▽yn,m[t]Zn,km [t] =
2Bτg0pkm/σ

2

�qn,m[t] − ωkm�
2 ln 2

αn,km [t]
(

yn,m[t] − ykm
)

�qn,m[t] − ωkm�
2 + g0pkm/σ

2
,



Page 15 of 29Zhang et al. J Wireless Com Network         (2023) 2023:53  

According to ref. [17], if the first derivative of a non-convex function is Lipschitz continu-
ous on the variables with the corresponding Lipschitz constants and each variable is non-
empty, closed, and convex, then, the non-convex function can be converted to a convex one 
by using the SCA method. Lemma 1 indicates that constraint (26.9) meets this rule and 
thus can be converted to a convex one by using the SCA method. The specific conversion 
steps are as follows.

Let l = 1, 2, · · · denote the index of iterations. For the resource allocation after iteration 
l in slot t, the location of UAV n is represented as q(l)n,m[t] and the transmission rate from 
IoTD km to UAV n is represented as R(l)

n,km
[t] . Let �q

(l)
n,m denote the change in the position of 

UAV n between iterations l and l + 1 . After iteration l + 1 , the location of UAV n is given by

and the transmission rate from IoTD km to the nth UAV is given by

Lemma 2 With the given q(l)n,m , the definite lower bound for R(l+1)
n,km

[t] is given by

where U (l)
n,km

[t] =
2Bτg0pkm/ ln 2

�qn,m[t]−ωkm�2
(

�qn,m[t]−ωkm�2+g0pkm/σ 2
) , and operation T represents taking 

the transposing of a matrix.

1  Proof
Please refer to Appendix B. �

According to ref. [18], a strong convex function to approximate constraint (26.9) can be 
constructed as

By replacing constraint (26.9) with constraint (36), problem P5.5 can be converted to a 
convex one as follows.

This problem can be solved by using convex optimization tools, e.g., CVX [19]. The 
detail of the SCA algorithm is presented in following Algorithm 2.

(33)q(l+1)
n,m [t] = q(l)n,m[t] +�q(l)n,m,

(34)R
(l+1)
n,km

[t] = B log2



1+
g0pkm

�q
(l)
n,m[t] +�q

(l)
n,m − wkm�

2
σ 2



.

(35)
Rlb
n,km

[t] � R
(l)
n,km

[t] −U
(l)
n,km

[t]
(

2(q(n,ml)[t] − ωkm)

)(

�q(l)n,m[t]
)T

+�q(l)n,m[t]
(

�q(l)n,m[t]
)T

.

(36)
t

∑

i=2

cn,km [i] −

t−1
∑

i=1

αn,km [t]τR
lb
n,km

[t] ≤ 0, 2 ≤ t ≤ T̂ .

(P5.6) minQn,m

∑

t∈T EF
n[t], E

F
n[t] = 0.5ς� vn[t] �

2τ , (50)
s.t. (26.11), (26.12), (26.14), (49). (50.1)
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5.4  Overall algorithm for solving problem P2
The overall algorithm for solving problem P5 is summarized in following 
Algorithm 3.

As problem P2 is equivalent to problem P4, the overall algorithm for solving prob-
lem P2/P4 is summarized in following Algorithm 4.
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6  Solving problem P3
Given that UAV n were assigned to GSA m, the profit Gm,n for the GSA and the profit 
Wn,m for the UAV can be obtained by using proposed Algorithm 4. When all the pos-
sible profit combinations 

{

Gn,m,Wn,m

}

 , ∀n ∈ N , ∀m ∈ M were known, we can further 
solve problem P3, which aims to schedule the finite UAVs to the GSAs by optimizing 
parameter � . Recall that � �

{

θn,m
}

 represents the association matrix of the UAVs 
and GSAs.

Problem P3 is a multi-objective optimization problem, where an GSA wants to get 
better service with less budget by hiring a more suitable UAV, while a UAV wants to 
get higher profit by choosing an GSA to serve. Since the association between the UAVs 
and GSAs determines the profits of both parties, the social welfare resource alloca-
tion should be considered. In what follows, we map problem P3 into a stable marriage 
matching problem and a weak Pareto optimal matching result can be obtained.

6.1  Matching problem modeling

The stable marriage problem is one of the classical models in two-side matching theory, 
where a set of men propose to their preferred women in order of preference, and a set 
of women decide whether to accept the proposal. The aim is to find a stable matching 
between the two sets of elements given an ordering of preferences for each element.

In problem P3, the UAV set and the GSA set are two separated sets of rational and 
selfish participants who care about only their own profits. For any UAV n, the profit 
Wn,m represents the preference of UAV n to GSA m, and, for any GSA m, the profit Gn,m 
represents the preference of the GSA m to UAV n. Note that all the preference values 
Wn,m and Gn,m ( ∀n ∈ N , ∀m ∈ M ) can be obtained by performing Algorithm 4. A GSA 
first sends its service request to the UAVs, and then each of the UAVs decides whether to 
serve it or not. The mutual choice � �

{

θn,m
}

 between the UAVs and GSAs depends on 
the preference values Wn,m and Gn,m.

According to the above analysis, we can transfer problem P3 into a two-sided match-
ing problem as �N ,M,≻n,≻m� , where ≻n and ≻m denote the comparison of preferences. 
For instance, m1 ≻n m2 ( ∀m1,m2 ∈ M and m1  = m2 ) represents that UAV n prefers 
GSA m1 to GSA m2 , which means

Similarly, n1 ≻m n2 ( ∀n1, n2 ∈ N  and n1  = n2 ) represents that GSA m prefers UAV n1 to 
UAV n2 , which means

6.2  Algorithm designing

Based on the obtained preference values Wn,m and Gn,m ( ∀n ∈ N  and ∀m ∈ M ), any 
UAV n (or GSA m) can define the preference list as PLU

n =
{

W
(y)
n,m|1 ≤ y ≤ M,m ∈ M

}

 

(or PLG
m =

{

G
(z)
n,m|1 ≤ z ≤ N , n ∈ N

}

 ), where y (in descending order) and z (in ascend-

ing order) represent the ranking of the preference values. In addition to social 

(37)m1 ≻n m2 ⇔ Wn,m1 > Wn,m2 .

(38)n1 ≻m n2 ⇔ Gn2,m > Gn1,m.
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optimality, stability is also an important measure of two-sided matching results. Accord-
ing to [12], the one-to-one stable matching is defined as follows.

Definition 1 If there exists two pair (n1,m1) and (n2,m2) , which satisfy n1 ≻m2 n2 and 
m2 ≻n1 m1 , i.e., n1 and m2 have the motivation to leave their current partner and form a 
new pair with each other, (n1,m2) form a blocking pair. A two-sided matching without 
blocking pairs is a two-sided stable matching.

Definition 1 gives the stability condition of a matching, which also indicates the 
weak Pareto optimality, since no one can be better off by deviating to another choice 
under stability condition [20]. By applying the Gale-Shapley (GS) algorithm, an effective 
method to achieve the stability and weak Pareto optimality (which are ensured following 
the proofs in [20]) for the proposed matching problem is given in following Algorithm 5. 
In the algorithm, lines 1 to 7 obtain the preference lists PLU

n  and PLG
m for the UAVs and 

GSAs by performing proposed Algorithm  4. Then the GS algorithm in lines 10 to 24 
builds a stable one-to-one match based on PLU

n  and PLG
m . In lines 10 to 12, each GSA m 

sends a service request to the most preferred UAV according to the preference list PLG
m . 

Then, in lines 14 to 24, each UAV n chooses to accept or reject the GSA according to the 
preference list PLU

n  . Finally, when set M is empty, a stable one-to-one matching/asso-
ciation � �

{

θn,m
}

 between the UAVs and GSAs is obtained.

6.3  Computational complexity of the overall algorithm

The overall algorithm to solve P1 is Algorithm 5. We analyze its computational complex-
ity as follows: 

1 The first part of Algorithm 5 is to obtain preference lists of the UAVs and GSAs by 
executing Algorithm  4, and Algorithm  4 is essentially a binary search algorithm 
(BSA) which is implemented by repeatedly executing Algorithm 3. 

(a) The first step of Algorithm 3 is to solve the linear programming problem P5.1 
by using the standard optimization solvers such as CVX. The complexity is 
O(K 3

mT
3) [21].

(b) The second step of Algorithm  3 is to solve problem P5.2 by using Lagrange 
method. Let υ ≥ 0 denote the ordered accuracy of the subgradient method. 
The complexity is O(1/υ2) [7].

(c) The third step of Algorithm 3 is to solve problem P5.3 by using the SCA. Let l 
denote the number of iterations. The complexity is O(lT 3) [22].

(d) Since the time complexity of BSA is O(logTmax) , the time complexity of 
Algorithm  4 is given as O(K 3

mT
3 log Tmax) . In order to obtain the prefer-

ence lists of all the UAVs and GSAs, Algorithm  4 needs to be repeated NM 
times. Therefore, the complexity of the first part of Algorithm  5 is given as 
O(NMK 3

mT
3 log Tmax).

2 The second part of Algorithm  5 is based on the GS algorithm. The complexity is 
given by as O(NM) [23].
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Based on the above analysis, the computational complexity of Algorithm 5 is given as 
O(NMK 3

mT
3 log Tmax) . Finally, we analyze the convergence of Algorithm 5 as follows: 

1 In line 4 of Algorithm  5, Algorithm  4 based on the BSA can converge when 
(Tmax − Tmin) ≤ 1.

2 In Algorithm 4, Algorithm 3 is performed repeatedly to find the lower bound of the 
objective function of problem P5. It decreases monotonically as the iterative number 
l increases.

According to the above analysis, the convergence of the overall algorithm Algorithm 5 
can be guaranteed.

7  Results and discussion
The performance of the proposed algorithms is evaluated from the following two 
aspects. Firstly, we show the impact of the task load change of GSAs on the system 
performance, while the flight speed and computing power of the UAVS are fixed. 
Then, we fix the task load of the GSAs and show the impact of the UAV power on 
the system performance. To illustrate the superiority of the proposed algorithm, the 
following two schemes are also simulated. The first is termed as the fixed time alloca-
tion scheme where the value of αn,km [t] and βn,km [t] is fixed to τ/Km [24]. The second 
is termed as the full offload scheme where each GSA offloads all the task data to a 
UAV for remote computing [24]. The basic simulation parameters are listed in Table 1 
unless specified otherwise.
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7.1  Effect of task load of GSAs on the system performance

A one-UAV and one-GSA system is simulated. In the GSA, six IoTDs are randomly dis-
tributed in an area of 100m× 100m . The size of the task input data of an IoTD is initial-
ized to 1 Mb, and 1.2k CPU cycles are required to execute per data bit. The transmission 
power of each IoTD is set to 30 dBm. The computing power of the UAV is 1.3 GHz, 
its maximum velocity vmax

n = 20 m/s, the flight height H = 15 m, and the start and end 
points (100m, 100m). The task load of each IoTD is increased at a step of 0.5 Mb. Fig-
ure 3 shows the time required for each of the schemes to complete all the computing 
tasks of the system, Fig. 4 shows the energy consumption of the IoTDs in each of the 
schemes, Fig. 5 shows the profit obtained by the UAV in the proposed scheme, and Fig. 6 
shows the task loads undertaken by the UAV and the IoTDs in the proposed scheme, 
respectively.

From Figs.  3 and 4, we see that as the task load of the IoTDs grows, the time and 
energy required for the IoTDs to complete the computing tasks increases. In all cases, 

Table 1 Simulation parameters

Parameter Symbol Value

The channel bandwidth B 30 MHz

The coefficient depending on the chip architecture γkm , γn 10−28

The noise power at the receiver of a UAV σ 2 -60dBm

The received power at the reference distance of 1 m g0 -30dB

Duration of a time slot τ 1s

Number of CPU cycles required for UAV Cn 1000 ∼ 1200 cycles/bits

Number of CPU cycles required for IoTDs Ck 1000 ∼ 1200 cycles/bits

The flight altitude of the UAV H 15 ∼ 30 m

Maximum velocity of UAV n vmax
n 15 ∼ 40 m/s

The transmission power of IoTD km pkm 20 ∼ 40 dBm

1 1.5 2 2.5 3 3.5 4
Task load of each IoTD (Mbits)

8

10

12

14

16

18

20

22

24

26

28

Th
e 

nu
m

be
r o

f t
he

 ti
m

e 
sl

ot
s

Proposed scheme
Fixed time allocation scheme
Full offload scheme

Fig. 3 The variation of required time to complete the computing tasks of the IoTDs
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the proposed scheme outperforms the other two schemes. Because the proposed scheme 
can flexibly allocate the computing task load to the UAVs and the IoTDs, it outperforms 
the full offload scheme. Furthermore, the proposed scheme can also flexibly adjust the 
time length assignment of the UAVs according to their current computing load, so it out-
performs the fixed time allocation scheme. From Fig. 5, we see that the profit obtained 
by the UAV increases with the added task load of the IoTDs. This indicates that as 
the task load grows, the GSA requires the UAV to process more tasks and thus has to 
pay more payment to the UAV, which incentives the UAV to provide more computing 
resource. As shown in Fig. 6, this is attributed to proposed Algorithm 4 to assign more 
task load to the UAV when the overall task load of the GSA increases.
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Fig. 4 The variation of energy consumption of the IoTDs
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7.2  Effect of computing power of IoTDs on the system performance

To show the effect of the computing power of IoTDs on the system performance, we 
initialize the CPU frequency of the IoTDs to 0.1 GHz, and keep the task load of the 
IoTDs at 4 Mb, and increase the computing power of each IoTD at a step of 0.5 GHz. 
Figures 7 and 8 show the time and energy required for the GSA to complete all the 
computing tasks of the IoTDs by using the proposed scheme and the fixed time allo-
cation scheme, respectively. Figure 9 shows the profit earned by the UAV, and Fig. 10 
shows the task load allocated separately to the UAV and the IoTDs.

As shown in Figs.  7 and 8, as the computing power of the IoTDs increases, the 
time required for completing the computing tasks and the profit earned by the UAV 
decreases. It indicates that as the computing power of the IoTDs increases, the GSA 
needs less computing resource of the UAV, thus reducing the payment for the UAV. 
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Again, the proposed scheme outperforms the fixed time allocation scheme in all the 
cases as it can flexibly adjust the time allocation of each UAV according to the cur-
rent computing load. From Fig. 10, we can also see that as the computing power of the 
IoTDs increases, the task load assigned to the UAV decreases gradually.

From Fig. 8, we see that as the computing power of the IoTDs increases, the energy 
consumed by the IoTDs decreases first and then increases. At the beginning, the com-
puting power of the IoTDs is weak, and the energy is mostly consumed for transmitting 
task data to the UAV. As the computing power of the IoTDs increases, to save costs, they 
tend to process the computing tasks locally rather than offload to the UAV. Therefore, 
the local energy consumption of the IoTDs increases gradually. The above simulation 
results show that proposed Algorithm 4 is able to make a reasonable distribution of the 
task load between the UAV and the IoTDs according to the computing power the IoTDs.

7.3  Effect of UAV performance on the system performance

We randomly placed 6 IoTDs in an area of 100 m2 and flew one UAV to complete the 
computing tasks generated by the IoTDs. A total of six experiments were performed. 
In each of the experiments, the flight velocity of the UAV was set to {15, 20, 25, 30, 35, 
40} m/s, respectively. The optimized flight trajectory of the UAV by using Algorithm 4 
is shown in Fig.  11a–f, and the task completion time with different flight velocities is 
shown in Fig. 12.
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From Figs. 11 and 12, we see that for the same task load of the GSA, the higher the 
flight velocity of the UAV, the shorter the range and time to complete the mission. 
This indicates that a GNO has an incentive to hire high-performance UAV to serve the 
IoTDs, and an ASP also has the possibility to make more revenue by employing high-
performance UAVs.

7.4  Matching between the UAVs and the GSAs

We divide a 200m× 200m area into 5 GSAs. The numbers of IoTDs in GSAs 1 ∼ 5 are 
set to {5, 4, 5, 3, 6}, respectively. Each of the IoTDs has the same amount of task load. 
Five UAVs (owned by different ASPs) are to be dispatched to serve the GSAs. The veloci-
ties of the UAVs 1 ∼ 5 are set to {20, 25, 20, 25, 20} m/s, respectively, and the computing 
power of the UAVs 1 ∼ 5 is set to {1, 0.9, 1.3, 1.1, 1.2} GHz, respectively. Figure 13 shows 
the profit that each UAV/GSA can achieve when matched to different GSAs/UAVs by 
performing Algorithm 4. Figure 14 shows the matching result and the flight trajectories 
of the UAVs obtained by performing Algorithm 5.

8  Conclusion
In this paper, we studied the scheduling and resource allocation problems between mul-
tiple UAVs and multiple GSAs in the presence of a conflict of interest between the ASPs 
and the GNOs. We formulated the competition game among the ASPs and GNOs as a 
multi-objective optimization problems and solved it in the framework of the matching 
theory. Simulation results verified that the proposed algorithms achieved the system-
wide optimal scheduling of computing resources.

9  Methods/experimental
The purpose of this study is to develop a matching theory-based algorithm to solve the 
system-wide scheduling and resource allocation problem. The system consists of mul-
tiple ASPs and GNOs. Each ASP owns a rotary wing UAV, while each GNO operates a 
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Fig. 13 The profits obtained by the UAVs/GSAs when matching to different GSAs/UAVs by performing 
Algorithm 4
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GSA. Each GSA consists of multiple fixed location IoTDs. The proposed algorithm is 
applied to optimize the association of UAVs and GSAs, resource allocation, and trajec-
tory of UAV. Then, the performance of the algorithm is analyzed experimentally.

Appendix A: The proof of Lemma 1
For easy expression, we define x = xn,m[t] and H(x) = ▽xn,m[t]Zn,km [t] . Let [x, x] denote 
the range of x. Let xmin and xmax denote the value of x, at which H(x) takes the mini-
mum and maximum values, respectively. From Eq. (30), we know that H(x) is contin-
uously differentiable and its first derivative is bounded within x ∈ [x, x] . Then we have

and

Let △x = x − x . Since |x1 − x2| ≤ △x , we can get

where Lx =
H(xmax)−H

(

xmin
)

△x  is the Lipschitz constant of H(x).

(39)H
(

xmin
)

≤ H(x) ≤ H
(

xmax
)

,

(40)|H(x1)−H(x2)| ≤ H
(

xmax
)

−H
(

xmin
)

, ∀x1, x2 ∈ [x, x].

(41)|H(x1)−H(x2)| ≤ Lx△x,
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Fig. 14 The matching results between the UAVs and GSAs by performing Algorithm 5
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Thus, we proved that ▽xn,m[t]Zn,km [t] is Lipschitz continuous on xn,m[t] with the Lip-
schitz constant Lx . The Lipschitz continuity of ▽yn,m[t]Zn,km [t] can be proved in a simi-
lar way which is omitted here.

Appendix B: The proof of Lemma 2
For easy expression, we define a = �q

(l)
n,m[t] − wkm�

2
 , b =

g0pkm
σ 2  and 

x = �q
(l+1)
n,m [t] − wkm�

2
− �q

(l)
n,m[t] − wkm�

2
 , where a and b can be taken as constants.

We represent R(l+1)
n,km

[t] as

The second derivative of f(x) is given by

From Eq. (43), we know that f ′′(x) ≥ 0 and f(x) is convex with respect to x. Then we can 
use the first-order Taylor expansion of f(x), e.g., f (x0)+ f

′
(x0)(x − x0) to approximate 

f(x) at any x0 within the domain of x.
Without loss of generality, we make x0 = 0 and have

and

By substituting q(l+1)
n,m [t] = q

(l)
n,m[t] +�q

(l)
n,m into Eq. (44), we can get

Let f (x0) = R
(l)
n,km

[t] . Then we have

where U (l)
n,km

[t] = 1
ln 2

Bg0pkm/σ 2

(�q
(l)
n,m[t]−ωkm�

2
)(g0pkm/σ 2+�q

(l)
n,m[t]−ωkm�

2
)
 . This completes the proof 

(Table 2).

(42)f (x) = R
(l+1)
n,km

[t] = B log2

(

1+
b

a+ x

)

.

(43)f
′′
(x) =

B

ln 2

(

1

(x + a)2
−

1

(x + a+ b)2

)

.

(44)
x − x0 = (q(l+1)

n,m [t] − wkm)(q
(l+1)
n,m [t] − wkm)

T
− (q(l)n,m[t] − wkm)(q

(l)
n,m[t] − wkm)

T
,

(45)f
′
(x0) = −

B

ln 2

b

a(a+ b)
.

(46)x − x0 = 2(q(l)n,m[t] − ωkm)�q(l)n,m[t]
T
+�q(l)n,m[t]�q(l)n,m[t]

T

(47)
R
(l+1)
n,km

[t] ≥Rlb
n,km

[t] � R
(l)
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[t] −U
(l)
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[t]
(

2(q(l)n,m[t] − ωkm)�q(l)n,m[t]
T
+�q(l)n,m[t]�q(l)n,m[t]

T
)

,
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Table 2 Figure title and legend

Figure number Title of figure Detailed legend

Figure 1 UAV-assisted MEC in IoT Figure 1 shows an example of a UAV-assisted MEC 
scenario, containing multiple UAV and multiple GSA

Figure 2 The workflow of the computing and communica-
tion modules of a UAV

Figure 2 shows the discrete-time system model 
containing T time slots, each of which performs 
offloading and computation

Figure 3 The variation of required time to complete the com-
puting tasks of the IoTDs

Figure 3 shows the variation of the time required for 
the system to complete all the computing tasks

Figure 4 The variation of energy consumption of the IoTDs Figure 4 shows the variation of energy consumption 
of the IoTDs

Figure 5 The profit earned by the UAV for processing the 
IoTD computing tasks

Figure 5 shows the variation of the profit obtained 
by the UAV

Figure 6 The distribution of the tasks being processed by the 
UAV and the IoTDs

Figure 6 shows the change of computing tasks under-
taken by the UAV and the IoTDs

Figure 7 The variation of required time to complete the com-
puting tasks of the IoTDs

Figure 7 shows the variation of the time required for 
the GSA and UAV to complete all the computing tasks 
of the IoTDs

Figure 8 The variation of energy consumption of the IoTDs Figure 8 shows the variation of the energy required 
for the IoTDs to complete all the computing tasks

Figure 9 The profit earned by the UAV for processing the 
IoTD computing tasks

Figure 9 shows the variation of the profit earned by 
the UAV

Figure 10 The distribution of the tasks being processed by the 
UAV and the IoTDs

Figure 10 shows the variation in the task load pro-
cessed by the UAV and the IoTDs

Figure 11 The trajectory of the UAV with different flight 
velocities

Figure 11 shows the optimized flight trajectory of the 
UAV by using Algorithm 4

Figure 12 The overall task completion time of UAV with differ-
ent flight velocities

Figure 12 shows the task completion time with differ-
ent flight velocities

Figure 13 The profits of UAVs and GSAs obtained by perform-
ing Algorithm 4

Figure 13 shows the profit that each UAV/GSA can 
achieve when matched to different GSAs/UAVs by 
using Algorithm 4

Figure 14 The matching results between the UAVs and GSAs 
by performing Algorithm 5

Figure 14 shows the matching result for the UAVs to 
the GSAs as well as the flight trajectories of the UAVs 
in the GSAs obtained by using Algorithm 5
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