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This paper presents a risk assessment methodology to be used in the future Advanced Air

Mobility (AAM) systems especially for supporting the planning phase and onboard contingency

management solutions. Two types of dynamic risk maps are introduced as Contingency Risk

Map that includes the probability of observing a contingency onboard and Risk Severity Map

which covers various sources of data such as population density, a dense air traffic, obstacles,

terrain, no-fly zones, and so forth. Contingency Risk Map is to quantify the probability of

having a contingency and decide if the quantified probability is above the threshold. If the

contingency risk probability is at unacceptable limit, Risk Severity Map assists to select a

pre-defined secure emergency landing zone or non-secure emergency landing zone defined

onboard. The developed risk assessment structure is tested through two different use cases. First

one is about defining locations as vertiport alternatives based on the generated map, in case of a

contingency ending up with an AAM vehicle to do emergency landing. Second case considers

minimum risk onboard rerouting of an AAM vehicle to a secure/non-secure emergency landing

zone under contingency management process. The main objective of this work is to build a

system-wide contingency management concept for the AAM system by supporting with UTM

services such as risk analysis assistance.

I. Introduction
Future Advanced Air Mobility (AAM) is a concept that envisions to transform the current air transportation system

into a new transportation system. The new system will provide service to underserved or not-served places such

that urban, suburban, and rural areas using high technology vehicles that provide various levels of autonomy. For

that purpose, the envisioned AAM system has to satisfy accessibility, flexibility, resiliency, and agility needs of such

structure. In order to enable the AAM system’s full potential, there are many challenges that have to be considered such

as infrastructure, technology, safety, regulations, accessibility, social and environmental impact, and so forth.

Safety is one of the most important challenges to overcome for developing such system. Managing adverse events

during operations and providing network-wide safety in case of a contingency/emergency situation are not trivial

problems. Therefore, a system-wide contingency management concept has to be developed by assessing network risk

levels properly. That concept aims to provide not only network-wide safety but also efficiency by considering contingent

vehicle itself and surroundings while dealing with expected or unexpected off-nominal and disruptive events. Figure 1

depicts the system-wide contingency management concept that is considered.

Concept of operations (ConOps) to date for AAM concepts around different parts of the world and from various

industry leaders, discuss about contingency and emergency management processes for the envisioned system alongside

the operational requirements and concepts, yet contingency management activities are given from vehicle perspective

[1–4]. Additionally, autonomous [5] and intelligent [6] contingency management concepts are introduced which

emphasizes that aircraft to be aware of both their capabilities and the environment as well as making its own decisions

and taking actions. On the other hand, three different autonomy levels for systems are introduced in [4], as automatic,

autonomic, and autonomous systems. According to that, contingency management activities are expected to be autonomic

systems where predefined solutions are selected autonomously without direct supervision but can be intervened if
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Fig. 1 Projected contingency management process from the traffic network perspective.

possible. Moreover, development of a contingency management process onboard for various tactical contingency

situations and testing with actual flights, are studied both in the Galician SkyWay project by Boeing Research and

Technology Europe [7] and AMU-LED project, by the authors [8]. The considered approaches are mainly from vehicle

perspective where it is very useful for resolving contingency cases in a low complexity traffic, yet might not work well in

a complex traffic environment which is strongly expected to be the case for AAM system. Therefore, the AAM system

requires a system-wide contingency management concept which is defined with base requirements in our previous work

[9].

All the Unmanned Aircraft System (UAS) Traffic Management (UTM) services have to cooperate for building the

system-wide contingency management concept. This will allow maximizing the traffic’s safety as well as providing

efficient coordination within the traffic, even in an adverse condition. Risk assessment is one of those crucial UTM

services to support contingency management process and create a safer UTM traffic ecosystem by risk-free flight

planning, maintaining the flight, and changing trajectories in case of an undesirable situation. Especially, risk maps are

very important tools as a decision support system, for selecting safe actions both at strategic and tactical level.

Definition and quantification of the risk metrics to develop a comprehensive risk map is not trivial. There are

many research efforts on designing a risk assessment methodology and analysing risk metrics to provide risk analysis

assistance to be used for AAM operations. Specific Operational Risk Assessment (SORA) methodology is developed

by Joint Authorities for Rulemaking on Unmanned Systems (JARUS) for the evaluation of air and ground risks and

determination on the operations to be conducted depending on their risk level [10]. Quantitative approaches are defined

by Altiscope to complement and extend the SORA scope and framework and to have a single comprehensive framework

[11]. There are also other studies to develop a quantitative background for risk analysis assistance since SORA approach

focuses more on the qualitative part in terms of risk categorization. Mathematical basis for risk assessment through a

simple probabilistic formalization is introduced and Bayesian network implementation is discussed and compared with

SORA in [12] and Bayesian framework is introduced for air risks in [13]. Also, there are risk assessment related studies

that are conducted under NASA’s System-wide Safety project as in [14–16]. The UTM Risk Assessment Framework

(URAF) is designed in [14], by evaluating the risk in real time via Bayesian Belief Networks using vehicle system status,

population density, and environmental parameters. Moreover, determination of the non-participant casualty risk level

during flights through population density information and onboard sources, is presented in [15] and determination of the

obstacle collision risk level by considering off-nominal conditions, is studied in [16]. In [17], probability of fatality is

quantified along a flight path by using vehicle specifications, population density, wind, and parameter uncertainties.

Static and dynamic ground risk maps are prepared in [18], to be used in offline and online path planning, respectively.
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As a continuation of [17, 18], risk map is enhanced by including layers such as population density, height of the ground

obstacle, sheltering, and no-fly zone and used for various descent types such that ballistic descent, uncontrolled glide,

parachute descent, and fly-away in [19]. Probabilistic risk assessment is studied in [20] by using probabilistic risk

exposure map considering risks to people and property on the ground and UAS failure mode analysis. In [21], effects of

mid-air collisions and ground risks to human safety are studied by only considering failures at mid-flight phase. In [22],

risk cost map is created using probabilistic impact of an accident to pedestrians and ground traffic and is used for flight

planning phase. Another study deals with collision risks of flights with people, vehicles, and manned aviation to create

risk-free path planning [23]. There is also an onboard flight planning framework that considers optimizing flight time,

altitude, and operational risk where operational risk consists of terrain, land usage, obstacles, and airspace restrictions

information [24]. The study in [25] focuses on the extension of the third party risks with individual and societal risk

indicators in UAS operations. There are other studies that focuses on prediction of risky flight regions due to weather

conditions, doing weather hazard risk modeling [26], and predicting the wind behaviour for urban areas [27]. In [28], a

risk map is prepared by taking parameters such as casualties, property damage, unmanned aerial vehicle (UAV) survival

into account alongside wind and link coverage information and reachability analysis, to be used in parachute landing in

case of loss of propulsion. Contingency based risk mapping and relevant uncertainty quantification is studied in [29] for

contingency management action selection process for a UAS. Last but not least, in [30, 31], 3-dimensional (3D) risk map

is considered based on ground risk aspects such as population, road traffic, ground obstacles, and noise which is used in

risk-based 3D path planning. There are many more studies related to UAS ground risk models that are reviewed in [32].

Studies up to date deal with specific aspects of risk map representation mainly considering ground risks through

population density and obstacles. Even though the most of the studies show clear representation of the quantification of

risk metrics that are considered for a proper risk assessment and minimize the overall risk for operations through flight

planning, re-routing; the risk assessment process also has to include a dense UTM traffic which is expected with AAM

system and risks associated with off-nominal conditions that can lead to contingency or emergency situations.

In this paper, we are focusing on a risk assessment methodology for UTM through two risk maps which focus on

quantification of the contingency risks and risks that can be caused to ground and air. First one is to be used for avoiding

contingency possibilities during operations. The probability of any contingency or contingency event combinations

occurring is quantified specific to location and timeframe. Second one is for taking proper measures beforehand such as

defining safe landing zones or selecting unprepared safe landing locations in case of a contingency situation. Also, that

risk map can be used for minimum risk rerouting to the predefined or to be defined safe landing zones. Finally, we aim to

validate the concept for vertiport alternatives that is defined under the joint Wisk-Boeing ConOps [4]. Those alternative

vertiports are defined for contingency events that may lead an AAM vehicle to do an emergency landing. The given

vertiport alternatives consist of diversion vertiports, secure emergency landing zones, and non-secure emergency landing

zones where diversion vertiports are vertiports that have capacity for off-nominal landings, secure emergency landing

zones are predefined locations that have the proper infrastructure for emergency landings, and non-secure emergency

landing zones are risk-free landing areas. The locations of diversion vertiports and secure emergency landing zones

must be predefined and non-secure emergency landing zones must be set onboard in case of a contingency, through a

proper risk assessment process. On the other hand, rerouting of a flight to those vertiport alternatives must be supported

by risk analysis assistance service as well while doing an emergency landing. Our purpose is to support the mentioned

contingency management processes in terms of safe landing zone definition/selection and rerouting to that location for

emergency landing, via our comprehensive risk assessment methodology.

II. General Structure
A methodology is developed that deals with generating two separate risk maps to be used both at the pre-operation

phase and during the operation. These maps can be named as Contingency Risk Map where the probability of

experiencing a contingency situation in each cell of a grid map is given and Risk Severity Map which shows the

normalized impact that can be caused by a landing UAS to both ground and air elements. The proposed risk assessment

flow is depicted in Figure 2. Once an operation starts, probability of experiencing a contingency is checked with a certain

frequency which is quantified via Contingency Risk Map. If the contingency probability exceeds the accepted threshold,

then a contingency management action has to be taken which is considered as an emergency landing in this study. Once

the operation is updated as contingent, an emergency landing zone has to be selected either as pre-defined diversion

vertiport or secure emergency landing zone. Both of these safe landing areas are defined using the Risk Severity Map at

pre-flight phase. If these options are not available, a non-secure emergency landing zone has to be picked from the Risk

Severity Map which refers to an unprepared safe landing area that is not defined before the operation unlike the other
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options. After selecting a safe location to land, the UAS has to be rerouted to that place. For rerouting, Risk Severity

Map is used again to minimize the risk that can be caused until completing a safe landing.

Fig. 2 General structure of the proposed risk assessment methodology.

Contingency Risk Map aims to provide information on the type, level, and location of a specific contingency

situation that can be expected during operation. That information can be used to minimize the contingency risk for flight

planning or change in operation. Additionally, the Contingency Risk Map can also be used as a decision support system

for operators or service providers to decide on continuing or terminating the flight depending on the accepted level of

contingency risk is exceeded or not. For preparing this map, different contingency sources are modeled such as complete

loss or degradation of power, exceeding separation limit with other elements in the network, losing communication link,

global positioning system, and control of the UAS.

Risk Severity Map, on the other hand, deals with quantifying the normalized impact that can be made to ground or

air elements. It is aimed to be used for defining diversion vertiports and secure emergency landing zones which shall be

defined at flight planning or even traffic network planning phase. In case a contingent UAS is not able to use these

options due to the location availability or UAS reachability, then a non-secure emergency landing zone option shall be

selected via Risk Severity Map. Also, safe rerouting to one of those locations has to be done through the considered

map. For generation of the Risk Severity Map, several datasets are considered such that location based population,

terrain slope and roughness, infrastructures such as buildings, roads, and airports, current air traffic and expected UAS

traffic, and no-fly zones.

Each risk map has a 3D grid map based structure where the cell sizes are customizable depending on the vehicle

type. For this study, cell sizes are defined as cubes where the length of each side is 50 m. As given in Figure 3, the

area over Dallas/Fort Worth is selected for this research. The area highlighted with blue is focused on for reducing the

computational load.

III. Contingency Risk Map
In this section, various contingency probabilities that are considered for the preparation of the Contingency Risk

Map are elaborated. These probabilities refer to the probability of experiencing a specific contingency or a combination
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Fig. 3 Research area of interest, Dallas/Fort Worth.

of contingencies within a specific cell. Contingency Risk Map is prepared from the specific vehicle’s perspective,

therefore, it is unique to each operation. The contingencies that are taken into account, are loss of power, loss of

separation, loss of link, loss of Global Navigation Satellite System (GNSS), and loss of control.

A. Loss of Power

Two contributors, propulsion system failure and battery condition, are taken into account as loss of power cases.

Propulsion system failures are modeled with a Poisson distribution which allows to quantify the probability of a given

number of events occurring within a specific timeframe.

𝑃 (𝑥 |𝜆) =
1

𝑥!
𝜆𝑥𝑒−𝜆 (1)

where 𝑥 is the number of occurrence of the considered event which is the propulsion system failure and 𝜆 is the

average failure rate of occurrence which is taken as experiencing 1 failure in 2500 flight hours. The obtained probability

is dependent to UAS’s condition rather than its location. Thus, every cell in the risk map for the considered UAS, is

filled with the value obtained from the distribution of the propulsion system failure.

On the other hand, the probabilistic impact of the battery condition is defined with the following probability

distribution. Therefore, the probability for losing power is quantified depending on the battery level of the UAS.

𝑃(𝑥 |𝑏𝑐𝑟𝑖𝑡𝑖𝑐) =

{
𝑒−𝑐𝑥/𝑏𝑚𝑎𝑥 , if 𝑥 ≤ 𝑏𝑐𝑟𝑖𝑡𝑖𝑐

0, otherwise
(2)

where 𝑏𝑐𝑟𝑖𝑡𝑖𝑐 and 𝑏𝑚𝑎𝑥 respectively refer to the critical limit and maximum level of the battery in percentage which

are 20% and 100%, 𝑥 is being the current battery level, and 𝑐 is the scaling coefficient. This distribution is independent

from the location of the UAS. Battery condition is the key parameter for quantifying such a probability. Similar with the

propulsion system failure, the value observed from the distribution is fed to the every cell in the hypothetical UAS’s risk

map.

B. Loss of Separation

Loss of separation can be approached from two perspective as probability of the separation minima violation between

ATM traffic and UTM traffic. The focus area includes an active airport, Dallas Addison Airport, that accommodates

operations such as charter, corporate, and general aviation flights.
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Probability of an AAM vehicle to lose its separation minima with a commercial/general aviation flight or with

another AAM vehicle is modeled in a same way as:

𝑃(𝑥 |𝑑𝑐𝑜𝑛 𝑓 , 𝑑𝑤𝑎𝑟𝑛) =




1, if 𝑥 ≤ 𝑑𝑐𝑜𝑛 𝑓

(
1 −

𝑥 − 𝑑𝑐𝑜𝑛 𝑓

𝑑𝑤𝑎𝑟𝑛

)2

, if 𝑑𝑐𝑜𝑛 𝑓 < 𝑥 ≤ 𝑑𝑤𝑎𝑟𝑛

0, otherwise

(3)

where 𝑑𝑐𝑜𝑛 𝑓 depicts the separation minima and 𝑑𝑤𝑎𝑟𝑛 refers to the warning distance. Going from 𝑑𝑤𝑎𝑟𝑛 to 𝑑𝑐𝑜𝑛 𝑓

means increasing the probability of having a loss of separation between other airspace users. In this study, two different

distance pairs are used related to ATM and UTM. Yet, conflict and warning distances can be modeled based on the

size of the vehicle that is considered for separation. Figure 4a shows a snapshot of the risk map for loss of separation

regarding the UTM traffic. The snapshot is taken for the 900 m. altitude which is selected as the operational altitude for

the considered UTM traffic. Similarly, Figure 4b depicts the conflict probability with the ATM traffic that lands at the

Dallas Addison Airport. Since the aircraft is descending and landing, altitude is selected as 250 m. for the snapshot to

clearly capture the distribution and stay within the altitude limit.

(a) In a UTM traffic. (b) In an ATM traffic.

Fig. 4 Snapshot of the map for the probability of having a separation loss.

C. Loss of Link

Loss of link case is investigated with three root causes as a failure on the hardware, interruptions on communication,

and the link coverage. For modeling the hardware break, Poisson distribution is used similar to the propulsion system

failure. The average failure rate of occurrence, 𝜆, is selected as observing 1 failure for 2000 flight hours. The sampled

value is assigned to the every cell of the map generated for the focused UAS. Breakdown of the hardware for providing a

link to a UAS may have different impact considering the back-up systems. Thus, the probability of observing loss of

link given that there is a hardware failure can be set accordingly.

Communication link interruptions can be caused by different sources such as high winds, thunderstorms/rainstorms,

buildings/infrastructures, and cellular traffic. Since there is not any very tall building made out of relatively dense

materials over the focus area, the building effect on link interruptions is neglected. Building material and height data is

obtained from OpenStreetMap [33]. Similarly, it is assumed that the cellular infrastructure is enough to accommodate

high usage rate. Wind effects are studied for quantifying the probability of link interruptions. Wind data is retrieved

from National Center for Atmospheric Research, Research Data Archive (NCAR RDA) [34]. Since the resolution of the
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wind data is 0.25 degrees and higher data resolution is required, obtained wind data is scaled to the focus area for each

altitude level by fitting a Burr distribution to the real wind data and sampling for the focus area.

𝑃(𝑥 |𝑐, 𝑘) = 𝑐𝑘𝑥𝑐−1 1

(1 + 𝑥𝑐)𝑘+1
(4)

where 𝑐 and 𝑘 control the shape and scale of the distribution. Wind data for very low level operations can also be

quantified in higher resolution through computational fluid dynamics analysis as in [27]. After obtaining the wind data,

the following approach can be followed for quantifying the probability of communication link interruptions.

𝑃(𝑥 |𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥) =




0, if 𝑥 < 𝑉𝑚𝑖𝑛

𝑘
𝑥 −𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛

, if 𝑉𝑚𝑖𝑛 ≤ 𝑥 < 𝑉𝑚𝑎𝑥

1, otherwise

(5)

where 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the minimum wind speed that creates an interruption and maximum acceptable wind

speed, and 𝑘 is the scaling parameter. A snapshot of the probability of communication interruptions due to wind at 100

m. altitude is given in Figure 5a.

Lastly, for modeling the link coverage, it is assumed that the communication for UASs is provided by using 4G/5G.

Thus, a communication coverage model is defined by taking the effective range and performance of the communication

towers into account. Communication tower locations are obtained from the OpenStreetMap.

𝑃(𝑥 |𝑑eff , 𝑑fade, 𝑡𝑝) =




0, if 𝑥 ≤ 𝑡𝑝𝑑eff

1 −

(
1 −

𝑥 − 𝑡𝑝𝑑eff

𝑡𝑝𝑑fade

)2

, if 𝑡𝑝𝑑eff < 𝑥 ≤ 𝑡𝑝𝑑fade

1, otherwise

(6)

where 𝑑eff and 𝑑fade denote the effective and fading range, 𝑡𝑝 represents the performance coefficient of a communi-

cation tower. The effective range is picked as 4 km. and the tower performance fades to 7.5 km. In terms of considering

the performance of the towers, a performance percentage is introduced that affects the effective and fading ranges.

Although, the percentage performance parameter has been set to 100% as a default value, it can be changed for each

tower which reduces the tower’s effective area. Figure 5b illustrates a snapshot of the probabilities of experiencing loss

of link case over each cell due to communication tower coverage limits. A small portion at the south part of the focus

area seems to have a possibility for vehicles to experience a loss of link due to coverage.

D. Loss of GNSS

Loss of GNSS cases are analyzed and modeled from three perspectives. These are GNSS blockage, interference

possibility, and GNSS performance depending on the number of satellites that are involved for positioning the UAS.

GNSS blockage may depend on different causes such that cloud formation, building, infrastructures and so forth.

The effect of the cloud formation or nominal weather conditions on GNSS performance can be negligible. GNSS

blockage due to buildings, on the other hand, can be modeled as follows.

𝜃𝑆𝐴𝑇 = arcsin

(
(𝑆𝑠 − 𝑆𝑟 )

∥𝑆𝑠 − 𝑆𝑟 ∥

)
(7)

where 𝜃𝑆𝐴𝑇 is the elevation angle of the satellite relative to the receiver, 𝑆𝑠 and 𝑆𝑟 are satellite and receiver position

vectors. After obtaining the elevation angle, height of the line of sight can be calculated as below.

ℎ𝑙𝑜𝑠 = ℎ𝑢𝑎𝑠 + 𝑑𝑡𝑎𝑛(𝜃𝑆𝐴𝑇 ) (8)

where ℎ𝑙𝑜𝑠 is the height of the line of sight between the receiver and satellite, ℎ𝑢𝑎𝑠 is the altitude of the UAS, and 𝑑

is the horizontal distance between the blockage and the receiver. Therefore, it can be seen that if the signal is blocked or

not via the following function.

𝑃(𝑥 |ℎ𝑏𝑙𝑜𝑐𝑘) =

{
1, if 𝑥 ≤ ℎ𝑏𝑙𝑜𝑐𝑘

0, otherwise
(9)
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(a) Link interruptions due to wind. (b) Loss of link due to coverage.

Fig. 5 Snapshot of the map for the probability of link loss.

If the height of the blockage, ℎ𝑏𝑙𝑜𝑐𝑘 , is bigger than the height of the line of sight, 𝑥, that means the signal is blocked.

This quantification has to be made for each satellite that can connect with the UAS and average performance has to be

defined accordingly. In other words, that probability depends on the location and the elevation angle of each satellite

that is connected at that moment. Since the operational altitude is selected as 900 m. for AAM vehicles and there are not

very tall buildings in the focus area, GNSS blockage may only be observed at the small portion of the vertical take-off

and landing phases. Building height information is extracted from OpenStreetMap by considering building and roof

level parameters.

Interference on GNSS can be considered as jamming and spoofing. Signal jamming is overpowering the GPS signal

which leads receiver to not operate and signal spoofing misleads GPS receiver to calculate position properly and diverge

by giving small disturbances or feeding with fake data. These two activities are considered as a not very frequent event

[35], therefore, they are modeled as a Poisson distribution by randomly observing 1 case in 10000 flight hours. This

probability is dependent to the location of the jammer or malicious actor, yet, the location of those might not be known

properly. Therefore, it is quantified for each cell of the grid map by randomly sampling from the fit distribution.

Lastly, GNSS performance is evaluated with the number of satellites that are connected to the UAS for positioning.

The model for the performance of the GNSS based on the number of satellites involved is quantified with a conditional

Sigmoid function as below.

𝑃(𝑥 |𝑛𝑚𝑖𝑛, 𝑛𝑠𝑢 𝑓 ) =




1, if 𝑥 < 𝑛𝑚𝑖𝑛

1 −
2

1 + 𝑒
𝑛𝑠𝑢 𝑓 −𝑥

𝑛𝑚𝑖𝑛

, if 𝑛𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑛𝑠𝑢 𝑓

0, otherwise

(10)

where 𝑛𝑚𝑖𝑛 and 𝑛𝑠𝑢 𝑓 denote the minimum and sufficient number of satellites required to position the AAM vehicle

properly. The minimum number of satellites that are required for roughly positioning the UAS is selected as 4 and the

sufficient number of satellites for accurate response is chosen as 8. Figure 6 shows a snapshot from the probability

quantification of the number of satellite effects over GNSS performance at the operational altitude. The number of

satellites that are connected with the UAS is selected by sampling randomly for each cell.
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Fig. 6 Snapshot of the map for the probability of loss of GNSS due to the number of connected satellites.

E. Loss of Control

Loss of control case is analyzed considering control system failure and wind effects on a UAS. Control system

breakdown is modeled using Poisson distribution same as the other system failures. That type of failure is assumed to

be happening once in 3000 flight hours. Similar with the other systems, failure of the control systems depends on the

AAM vehicle’s condition. Therefore, it is not location dependent and the received output is implemented into the every

cell of the vehicle specific contingency risk map.

Also, wind effects are considered for the loss of control cases in an AAM flight. Each vehicle has a certain level of

threshold in terms of wind resistance. Once that limit is exceeded, then the probability of observing a control loss may

increase depending on the wind severity. Wind data is quantified in a similar way as in the communication link loss

case. This situation is modeled as follows.

𝑃(𝑥 |𝑉𝑟𝑒𝑠) =




0, if 𝑥 < 𝑉𝑟𝑒𝑠

1

1 + 𝑒
𝑘
𝑉𝑟𝑒𝑠−𝑥
𝑉𝑟𝑒𝑠

, otherwise
(11)

where 𝑉𝑟𝑒𝑠 refers to the AAM vehicle’s wind resistance and 𝑘 is the scaling parameter. In this case, wind resistance

is taken as 15 m/s for cruise and 8 m/s for vertical take-off and landing phases.

F. Obtaining the Contingency Risk Map

Contingency Risk Map is generated by combining the probabilistic models for each contingency case. Bayesian

network approach which is represented as a directed acyclic graph, is applied for the integration of each condition that

leads to a contingency [36, 37]. Nodes of the considered structure represent the individual events and direct edges

give the direct causal relationship between nodes. Defining the relationship between variables and their conditional

probabilities is one of the most important parts in Bayesian network which can be done considering real data or domain

expertise. Figure 7 shows the connection between individual events and their contributors if there is any.

For constructing a joint distribution out of individual and conditional events, the chain rule for the Bayesian networks

is used as follows.
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Fig. 7 Bayesian network for the Contingency Risk Map.

𝑃(𝑥1:𝑛) =

𝑛∏

𝑖=1

𝑃(𝑥𝑖 |𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖)) (12)

where the joint probability 𝑃(𝑥𝑖:𝑛) is represented by the product of the probabilities of each variable given their

parent values and 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖) depicts the particular values of the parent events of 𝑥𝑖 . Figure 8 shows a snapshot of the

obtained Contingency Risk Map which changes over time and has to be updated during operations. The snapshot is

taken from the operational altitude.

IV. Risk Severity Map
This section covers the details of the elements that constitute the Risk Severity Map. The purpose of the Risk

Severity Map is to create a baseline for quantifying and normalizing the possible impact of a UAS to the environment in

case of a contingency. Generating such a map is beneficial to use for minimizing the expected impact for planning and

taking critical actions such as setting diversion vertiports and safe landing zones to be used under an adverse event;

selecting an unprepared safe zone due to limited availability at the pre-defined locations; or finding the minimum impact

route while taking such actions. Various data sources are considered to obtain the Risk Severity Map. These data

sources are population density, ATM and UTM traffic, obstacles, infrastructures, no-fly zones, and terrain.

A. Population Density

The population density dataset gives information on the people concentration over a specific area which is crucial to

locate the crowded locations and avoid them under an emergency condition. Thus, it forms a very important parameter

to carefully consider while making decisions using the Risk Severity Map. The population density data used in this work

consists of the number of people existing in the 30 m. grid cells. The dataset is retrieved from Facebook Connectivity

Lab. [38].

For normalizing the population density data, the following function is used where the maximum number of population

can be set by considering the grid sizes of interest, depending on the operator’s/UAS’s acceptable risk thresholds. Each

cell is quantified by this function and the obtained values form the population density map.

𝑓𝑝𝑑 (𝑥) =

{
𝑥/𝑁𝑚𝑎𝑥 , if 𝑥 < 𝑁𝑚𝑎𝑥

1, otherwise
(13)
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Fig. 8 Contingency Risk Map.

where 𝑁𝑚𝑎𝑥 denotes the maximum number of people that the considered cell can accommodate. Lowering the

𝑁𝑚𝑎𝑥 value means increasing the safety measures over the population. Values are normalized between 0 and 1. Figure

9 shows the population distribution over the focus are in Dallas/Fort Worth.

B. ATM Traffic

Commercial or general air transportation traffic is a parameter that has to be taken into account while preparing

the Risk Severity Map. Since the focus area includes an airport (Dallas Addison Airport) that is still accommodating

operations, the current air transportation traffic is included into the map by showing if an aircraft exists in a cell or not.

𝑓𝑎𝑡𝑚 (𝑥) =

{
1, if flight 𝑓 in cell 𝑐

0, otherwise
(14)

ATM traffic data is retrieved from FlightRadar24 [39] where information such as position of the commercial/general

aviation flights is used. Figure 10a depicts the traffic that is landing to the Dallas Addison Airport and the instant look

of the 250 m. altitude with the occupied cell by the aircraft. Even though the considered airport is not very busy with

operations, there are still some elements to care about in terms of risk mapping.

C. UTM Traffic

UTM traffic is generated by using the vertiport network that is built based on the studies in [40] which analyzes the

historical transportation patterns to obtain the possible UTM demand trend for Dallas/Fort Worth area. The network

covers information such as vertiport locations and capacities. As a vehicle model, a lift and cruise type (Wisk Cora)

vehicle is used for the whole traffic which has around 177 km/h cruise speed, 20 km/h vertical speed, 100 km range,

and 19 minutes maximum flight time [41]. The range and endurance limits of the chosen vehicle are considered for

obtaining the feasible origin-destination (O/D) pairs. After these parameters are obtained, the UTM traffic network

is built by using the current ATM traffic network as a basis to create a logical demand pattern between vertiports by

capturing the behaviour between high-demand airports. The built UTM traffic is included into the Risk Severity Map in

a similar way as for the ATM traffic.
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Fig. 9 Population density map.

𝑓𝑢𝑡𝑚 (𝑥) =

{
1, if flight 𝑓 in cell 𝑐

0, otherwise
(15)

The generated UTM traffic for a day and a snapshot for 900 m. altitude over the focus area to see the instant occupied

cells for the risk map, are represented in Figure 10b. The traffic network consists of 75 vertiports as nodes and 18349

direct routing flights as edges.

(a) ATM traffic and its full trajectory. (b) Generated UTM traffic and its full trajectories.

Fig. 10 Snapshot of the air traffic network.
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D. Area Usage

Land usage is an important source which assists for analyzing the possible damage on infrastructures and landing

UASs. Residential areas, buildings, roads, railways, airports, and areas covered by water are the datasets that are

considered for building the area usage map. Those datasets are retrieved from OpenStreetMap. Figure 11a shows

the land usage over the focus area. Buildings including heights for 3D mapping, roads, and railways are given in red,

airports are given in yellow, and water areas are given in blue. Buildings, roads, railways, airports, infrastructures are

both damageable and can cause damage to UAS. Watery areas, on the other hand, are considered as not suitable for

landing since the UAS can be lost or broken due to such a landing.

E. No-fly Zones

No-fly zones are modeled as cylinders where a UAS cannot go through. No-fly zone function is modeled where the

area and the affected altitude levels can be customized.

𝑓nofly (𝑥) =

{
1, if cell 𝑐 within no-fly zone 𝐴nofly

0, otherwise
(16)

where 𝐴nofly represents the volume that is picked as a no-fly zone and 𝑐 depicts the individual cell in the 3D grid

map. Figure 11b shows an example of a no-fly zone.

(a) Area usage. (b) No-fly zone.

Fig. 11 Snapshot of the area usage and no-fly zone.

F. Terrain

Terrain slope and roughness are considered for selecting a proper, smoother safe places to land for a UAS. Digital

elevation data is retrieved from United States Geological Survey (USGS) [42]. The approach in [28] is followed for

modeling these two parameters. For terrain slope, singular value decomposition is used to fit a plane to the real data and

obtain the slope angle of the terrain plane. After that, the obtained slope angles are normalized and filtered based on the

UAS’s acceptable slope limit which is denoted as 𝜃𝑚𝑎𝑥 . Figure 12a shows the terrain slope map of the focus area.

𝑓𝑠𝑙𝑜𝑝𝑒 (𝑥) =

{
𝑥/𝜃𝑚𝑎𝑥 , if 𝑥 < 𝜃𝑚𝑎𝑥

1, otherwise
(17)

Similar to the terrain slope, roughness of the surface for each cell is calculated by taking the standard deviation

of the elevation data. An acceptable limit of roughness is considered that is given as 𝜎𝑚𝑎𝑥 . Figure 12b depicts the

roughness map of the focus area.
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𝑓𝑟𝑜𝑢𝑔ℎ (𝑥) =

{
𝑥/𝜎𝑚𝑎𝑥 , if 𝑥 < 𝜎𝑚𝑎𝑥

1, otherwise
(18)

(a) Terrain slope. (b) Surface roughness.

Fig. 12 Risk map based on terrain related parameters.

Finally, the terrain risk severity map is obtained by summing up the terrain slope and roughness parameters. The

parameters are weighted equally.

𝑓𝑡𝑒𝑟𝑟𝑎𝑖𝑛 (𝑥) = 0.5 𝑓𝑠𝑙𝑜𝑝𝑒 (𝑥) + 0.5 𝑓𝑟𝑜𝑢𝑔ℎ (𝑥) (19)

G. Obtaining the Risk Severity Map

Risk Severity Map is achieved by integrating the data sources that are explained. For the integration, cumulative

value of each data is considered along with the weights assigned. Table 1 shows the data structures and weights assigned

to each map obtained through the aforementioned datasets. Represented weights can be updated depending on the

operation type, operational area, and purpose of the operator/service provider. Weights can also be selected based on

time since the considered Risk Severity Map has a dynamic nature.

Table 1 Risk Severity Map structure

Data Structure Importance %

Population density Static 35

ATM traffic Dynamic 20

UTM traffic Dynamic 20

Area usage Static 10

No-fly zones Dynamic 10

Terrain (for landing surface) Static 5

Let 𝑅𝑡 be the grid map at time 𝑡 for one of the datasets where each cell is filled with 𝑓 (𝑥𝑖, 𝑗 ).
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𝑅𝑡
=



𝑓 (𝑥1,1) . . . 𝑓 (𝑥1,𝑚)
...

. . .
...

𝑓 (𝑥𝑛,1) . . . 𝑓 (𝑥𝑛,𝑚)



(20)

After obtaining the each grid map from the data sources 𝑅 = {𝑅𝑝𝑑 , 𝑅𝑎𝑡𝑚, 𝑅𝑢𝑡𝑚, 𝑅𝑎𝑟𝑒𝑎, 𝑅𝑛𝑜 𝑓 𝑙𝑦 , 𝑅𝑡𝑒𝑟𝑟𝑎𝑖𝑛} and using

the weights defined 𝑤 = {𝑤𝑝𝑑 , 𝑤𝑎𝑡𝑚, 𝑤𝑢𝑡𝑚, 𝑤𝑎𝑟𝑒𝑎, 𝑤𝑛𝑜 𝑓 𝑙𝑦 , 𝑤𝑡𝑒𝑟𝑟𝑎𝑖𝑛}, Risk Severity Map can be created via a weighted

sum of the each risk contributor as follows.

𝑅𝑆𝑀 =

6∑︁

𝑖=1

𝑤𝑖𝑅𝑖 (21)

Figure 13 depicts a snapshot of the Risk Severity Map built at ground level. Risk Severity Map is a 3D map

where various data sources such as population, ATM/UTM data, no-fly zones, land usage considering heights of the

infrastructures, and terrain related parameters.

Fig. 13 Risk severity map.

V. Case Studies
There are two case studies that are considered for utilizing the introduced risk assessment process. The main focus

of the case studies is the concept defined under the joint Wisk-Boeing ConOps [4] which deals with setting secure

emergency landing zones at pre-flight phase and deciding on non-secure emergency landing zones onboard if necessary.

After observing possible safe locations, risk minimizing rerouting after a contingency situation case is elaborated.

A. Defining Secure/Non-secure Emergency Landing Zones

For setting the diversion vertiports and defining the secure/non-secure emergency landing zones, Risk Severity Map

can be used. First, an acceptable level of risk shall be defined either by the operator or service provider. Diversion

vertiports are existing vertiports that can reduce the risk level of a contingency situation by having a capacity to allow a
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contingent vehicle to do emergency landing. Secure emergency landing zones are defined as safe landing spots that are

set and designed with an infrastructure that can accommodate emergency landings and non-secure emergency landing

zones are landing places that have an acceptable level of risk. Non-secure emergency landing zones can be used in case

the other options are not available or suitable. Figure 14a and 14b show the safe areas for different risk thresholds. The

green areas can be used to define secure emergency landing zones at the infrastructure planning phase. Once they are

set, the rest of the places can be used as non-secure emergency landing zones during operations.

(a) Threshold: no risk. (b) Threshold: 2% risk.

Fig. 14 Snapshot of the Risk Severity Map with different limits of the accepted risk.

For our case studies, the weight of the terrain parameter is relatively small. Therefore, the reason for the increase in

the number of green cells in 2% risk threshold compared to the no risk threshold is the terrain related parameters such

as roughness and terrain slope. These parameters refer to the smoothness of the landing zone. As it can be seen in

Figure 14, some parts of the parks/green areas are enabled for defining safe landing zones.

B. Risk Minimum Emergency Routing

After defining the secure emergency landing zones, we focused on minimum risk rerouting problem in case of an

emergency landing. If the contingency probability of the cell that contains our operation is above the UAS’s contingency

probability limit, then the UAS takes an emergency landing action to one of the secure (pre-defined) or non-secure

(defined onboard) emergency landing zones. Contingency probability limit of an operation refers to a safety buffer

for taking proper measures before a contingency occurs. This buffer can be defined either by the operator or service

provider.

In Figure 15, the considered UAS checks the flight’s contingency probability through the Contingency Risk Map

and receives a probability that is above the operation’s safety threshold. Therefore, the UAS takes an emergency landing

action towards the closest (based on the Euclidean distance) and available secure emergency landing zone that is defined

prior to operation. The action includes a risk minimum rerouting to the selected spot. For that purpose, A* algorithm is

used for finding the safest and shortest path [43]. Rerouting is done by considering the Risk Severity Map, where all the

altitude layers are combined. The purpose of that is to avoid risks at the current altitude level of the contingent UAS, as

well as preventing the UAS from passing over populated areas and critical infrastructures while executing an emergency

landing.

VI. Conclusion
In this paper, we presented a comprehensive risk assessment methodology by considering contingency possibilities

that can be faced during flights and risk severity to surroundings after a contingency breaks out. Contingency Risk

Map and Risk Severity Map are introduced as parts of this methodology. These dynamic maps are obtained by
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Fig. 15 Risk minimum emergency landing flight path.

analyzing probabilistic models for contingency occurrences and using relevant datasets for the surroundings to consider,

respectively. Methodology checks the probability of experiencing a contingency onboard through the Contingency Risk

Map, depending on the UAS’s location and situation. If the contingency probability is above the threshold defined for

the specific flight, then the flight falls into the contingent situation and takes an emergency landing action to a safe zone.

That safe zone is set either as the closest diversion vertiport or secure emergency landing zone which are defined at

pre-tactical phase through the Risk Severity Map. If none of these options are available, UAS takes an action towards

a non-secure emergency landing zone which is defined onboard. Additionally, rerouting of the flight to the selected

landing spot is also made via the Risk Severity Map.

As a future work, we plan to refine the probabilistic models that we introduced with more realistic data and transform

some of the static datasets into dynamic such as population density by considering it through daily (work/school

hours), weekly (weekdays/weekends), monthly (summer/winter) basis, and special events. Also, new methods for

representing the Contingency Risk Map and Risk Severity Map will be explored. Lastly, the usage area of the introduced

risk methodology will be extended for the actions that are taken through relevant UTM services such as tactical and

pre-tactical conflict resolution.
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