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Abstract: The heat treatment process is a vital step for manufacturing high-speed railway spring
fasteners. In this study, orthogonal experiments were carried out to obtain reliable optimised heat
treatment parameters through a streamlined number of experiments. Results revealed that a better
comprehensive mechanical performance could be obtained under the following combination of heat
treatment parameters: quenching temperature of 850 ◦C, holding time of 35 min, medium of 12%
polyalkylene glycol (PAG) aqueous solution, tempering temperature of 460 ◦C, and holding time of
60 min. As one of the most important testing criteria, fatigue performance would be improved with
increasing strength. Additionally, a high ratio of martensite to ferrite is proven to improve the fatigue
limit more significantly. After this heat treatment process, the metallographic microstructure and me-
chanical properties satisfy the technical requirements for the high-speed railway practical operation.
These findings provide a valuable reference for the practical forming process of spring fasteners.

Keywords: Si-Cr spring steel; heat treatment optimisation; microstructure; mechanical property;
fatigue performance

1. Introduction

In the modern high-speed railway, anti-climbing ability, especially the anti-fatigue
ability of the railway elastic bar, is increasingly demanding due to the higher speeds and in-
creased loads involved in these operations [1,2]. In spring clips, the required microstructure
is typically one with a fine and uniform grain size, which provides good strength, ductility,
and resistance to fatigue failure. If the grain size is too large, or if there are heterogeneities in
the distribution of grain sizes, then the material has reduced strength, ductility, and fatigue
life [3,4]. To ensure that the bars can withstand the repeated stress of high-speed operations
without experiencing fatigue failure, a post-heat treatment process was proposed [5,6]. Re-
ports regarding the heat treatment process for different kinds of steel have been discussed
before, which include high-silicon medium carbon steel [5], quenched and partitioned
commercial spring steel [7], low carbon steels [8–10], 51CrV4 spring steel [11], and medium
carbon steel [12,13]. As a typical medium carbon steel, the most common heat treatment
process for spring steel is quenching and subsequent medium temperature tempering. The
determination of the pre-quenching heating temperature and holding time should take the
criterion that the microstructure of the steel is fully transformed into uncoarsened austenite
and the carbides are completely dissolved because the growth of austenite grains may
reduce the toughness of heat-treated parts [14]. Generally, the quenching temperature is
selected to be 30–50 ◦C higher than Ac3 [15].
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In the quenching process, an excessive quenching speed fosters the nucleation of
quenching cracks. During service, the stress concentration forms at the quenching crack
when applying repeated stress, which eventually results in pre-mature fracture of parts.
It has been proposed that quenching cracks significantly reduce the fatigue life of spring
components [16–18]. Inversely, the lamellar pearlite structure takes shape due to an insuffi-
cient quenching cooling rate, within which the cementite is flake-like. The ferritic matrix
may generate a significant stress concentration when stressed, which leads to the fracture
of cementite in advance. Then, the nucleation and proportion of microcracks eventually
lead to the failure [19]. The phase transformation temperature during the quenching and
cooling process are affected by the deformation status of the materials in the austenite
state, which increases the distortion energy of the primitive austenite structure, further
increasing the transformation temperature, and also affecting the distribution of grain-
boundary precipitates [20]. Apart from that, the quenching medium for spring steel can be
selected from mechanical oil, special quenching oil, or polyalkylene glycol (PAG) aqueous
solution [21]. Mechanical oil is widely utilised in industrial production, benefiting from its
cost-effectiveness, but it also has some shortcomings, such as insufficient cooling capacity.
Special quenching oil has the cooling ability between mechanical oil and water. It can lead
to the quenched parts attaining the ideal microstructure without cracking, but its price
is higher. As a kind of water-soluble quenching liquid, PAG polymer dissolves from the
solution under high temperature and then adheres to the surface of the workpiece, thereby
reducing the cooling speed of the workpiece. Varied cooling capacities of the quenching
medium can be achieved by adjusting the concentration of the quenching liquid. This
kind of quenching medium also enjoys a sound economic benefit, so it is widely applied
in industrial production [22]. With an increase in tempering temperature, the carbides of
spring steel undergo a series of changes: dissolution of fine strip-like carbides→ nucleation
of flake-like carbides → decomposition of flake-like carbides → nucleation of granular
carbides → growth of carbide particles. The abovementioned change in carbides also
favours the evolution of mechanical properties with a trend that the strength is weakened
while the plasticity is enhanced. Furthermore, the growth of carbide particles also shorten
the fatigue life of spring steels [23]. In addition, the distribution of precipitates directly
affects the elastic resistance of spring steel.

This study delves into the significance of heat treatment in the production of spring
clips using spring steel. It aims to provide a comprehensive understanding of the effects of
heat treatment on the microstructure and mechanical properties of steel, highlighting its
novelty and practical importance. In this work, the influence of factors including quenching
temperature, quenching holding time, quenching medium, tempering temperature, and
tempering time on the final mechanical performance was systematically investigated
during the spring steel heat treatment process. The significance of this research lies in its
potential to advance the understanding of heat treatment techniques for spring steel used
in the railway industry. By optimising the two-stage vacuum heat treatment process, the
production of spring clips is anticipated with improved mechanical properties, such as
higher strength, enhanced fatigue resistance, and superior durability. This has the potential
to enhance the overall performance and reliability of railway tracks, ensuring enhanced
safety and operational efficiency.

2. Materials and Methods
2.1. Heat Treatment Process

Testing rods were extracted from a rotary-forging Si-Cr steel rod. The chemical
composition in wt.% of the experimental steel is shown in Table 1.

Table 1. The chemical composition of experimental steel (wt.%).

C Si Mn Cr Ni Cu S P

0.55% 1.4% 0.65% 0.65% 0.11% 0.12% 0.012% 0.018%
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As given above, to keep the spring steel with a high elastic limit and enough toughness,
the general heat treatment is a two-stage process, including quenching and subsequent
medium-temperature tempering. The TOB-KTL1400-IV Horizontal Tube Furnace was used
to heat the specimen. The process parameters that need to be considered include quenching
temperature, quenching holding time, quenching medium, tempering temperature, and
tempering time (see Table 2). In this study, the quenching temperatures were selected
to be 830, 850, and 870 ◦C. Three kinds of quenching medium (12% PAG, 14% PAG, and
mechanical oil) were applied, followed by holding at the quenching temperature for 25, 35,
and 45 min, respectively. Afterward, the tempering process was carried out at a tempering
temperature of 420–520 ◦C and tempering time of 60–80 min. Due to the complex factors,
the orthogonal experiments (see Table 3) were carried out to avoid a large number of tests
while simultaneously obtaining an optimal scheme.

Table 2. Experimental factors for heat treatment.

Factor
Tempering

Temperature
(◦C)

Tempering
Time
(min)

Quenching
Temperature

(◦C)

Quenching
Medium

Quenching
Hold Time

(min)

1 440 60 830 12% PAG 25
2 480 100 870 Mechanical oil 35
3 420 80 850 14% PAG 45
4 500
5 520
6 460

Table 3. Orthogonal test scheme.

No. Tempering
Tem.

Tempering
Time

Quenching
Tem.

Quenching
Medium

Quenching
Hold Time

1 1 (440 ◦C) 1 (60 min) 3 (850 ◦C) 2 (Mechanical oil) 2 (35 min)
2 1 2 (100 min) 1 (830 ◦C) 1 (12% PAG) 1 (25 min)
3 1 3 (80 min) 2 (870 ◦C) 3 (14% PAG) 3 (45 min)
4 2 (480 ◦C) 1 2 1 2
5 2 2 3 3 1
6 2 3 1 2 3
7 3 (420 ◦C) 1 1 3 1
8 3 2 2 2 3
9 3 3 3 1 2

10 4 (500 ◦C) 1 1 1 3
11 4 2 2 3 2
12 4 3 3 2 1
13 5 (520 ◦C) 1 3 3 3
14 5 2 1 2 2
15 5 3 2 1 1
16 6 (460 ◦C) 1 2 2 1
17 6 2 3 1 3
18 6 3 1 3 2

The quenching heating temperatures of the material were selected to be 30–50 ◦C
higher than Ac3 with a heating rate of 10 ◦C/min, which were finally determined in the
range 830–870 ◦C. This is because the ferrite cannot be completely transform into austenite
at low temperatures, while higher temperatures lead to the issues of energy waste and
overheating of austenite grains [24,25]. Additionally, the quenching holding time has great
influence on the uniformity of sample temperature, the dissolution of carbide, and the
growth of austenite grain. Considering these factors, the holding time selected in this
test was in the range 25–45 min. In addition, since different quenching mediums present
various cooling characteristic curves or cooling mechanisms, three types of quenching
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medium were selected for the investigation, which were mechanical oil, 12% PAG aqueous
solution, and 14% PAG aqueous solution.

Furthermore, according to previous studies on the quenching and tempering heat
treatment process, the tempering temperature is normally considered to be the most
important factor that affects the final mechanical properties of spring steel. Therefore, in
the design of the test scheme, more attention was given to the tempering temperature.
Generally, the spring steel reaches its elastic limit when the tempering temperature is
between 350 and 450 ◦C, and the maximum fatigue limit corresponds to the tempering
temperature of 450–500 ◦C. Thus, in this study, the tempering temperature was initially
selected between 420 and 520 ◦C. In the aspect of determining the tempering time, it
was chosen to be 60–100 min when taking the condition of carbide precipitation, energy
saving, and production efficiency into consideration. Finally, since the microstructure
transformation in the test spring steel during tempering mainly occurs between 100 and
350 ◦C, the tempering steel was heated at a slow speed (3 ◦C/min) between 100 and 370 ◦C
and at a faster speed (10 ◦C/min) in other temperature ranges. A diagram showing the
factors considered at each stage of the heat treatment cycles is displayed in Figure 1. The
orthogonal test scheme was determined based on an L18(61, 36) orthogonal table. The
detailed process parameters are displayed in Table 3.
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Figure 1. Diagram showing the factors considered at each stage of the heat treatment cycles.

2.2. Material Characterisation Techniques

Material characterisation techniques were carried out in terms of mechanical tests
(including tensile tests, hardness tests, impact Charpy toughness tests, and fatigue resis-
tance tests) and microstructural observations. After each process, the rod samples were cut
centerline along the rolling axis by the wire cutting machine. The observation of microstruc-
ture was concentrated on the central area of metallographic specimens by a Leica optical
microscope (OM), manufactured by Leica Microsystems GmbH, a company headquartered
in Wetzlar, Germany. This aims to avoid the influence of oxidation and decarbonisation that
were generated in the quenching and tempering processes. These surfaces were ground by
various grades of sandpapers, polished, and then etched.

The microhardness testing was carried out using a MATSUZAWA Via-S Vickers
innovative automatic tester (manufactured by MATSUZAWA Co., Ltd. The company is
located in Saitama, Japan). The load for detecting the experimental specimens was 500 g.
The indentation time was set to be 5 s on the sample surface.
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A JEOL-7001 field emission gun-scanning electron microscope (manufactured by JEOL
Ltd. The company is headquartered in Akishima, Tokyo, Japan) was used to indicate
the analysis of electron backscatter diffraction (EBSD) mapping, energy dispersive X-ray
spectrometry (EDS), and scanning electron microscope (SEM) observation, which confers
information of fracture morphology, element distribution, precipitation distribution, and
some other grain information. Sample analyses were conducted by using a JEOL-7001 field
emission gun-scanning electron microscope at 12 mm work distance and 6.5 nA probe
current, and applied together with an Oxford Instrument Nordlys-II(S) camera and Aztec
5.0 software (manufactured by Oxford Instruments plc. The company is based in Abingdon,
Oxfordshire, UK). The EBSD mapping was characterised by an area of 150 × 130 µm with a
step size of 0.1 µm to largely cover more grains. All the information on crystallographic
orientation was collected by applying Oxford Instrument Channel 5 (HKL) software. The
Charpy impact tests were conducted by using the Instron impact test system. The impact
testing specimens had dimensions of 10 mm × 10 mm × 55 mm with a 2 mm deep V-notch
in the central area, according to ASTM E23 [26].

For the final performance detection of the experimental steel after different heat
treatment processes, the fatigue tests were carried out in the form of cyclic tensile testing
by the Instron 8801 testing machine (manufactured by Instron, a company that specializes
in materials testing equipment. The company is based in Norwood, MA, USA). This
equipment covers the procedures for the fatigue resistance tests under an axial force-
controlled condition to acquire the fatigue strength in the fatigue regime. During the
entire progress, the strains have to be selected predominately in the elastic range. To keep
the uniform process parameters, the force and frequency were determined to be 13.14
kN (corresponding to 450 MPa, which was determined by the yield stress) and 20 Hz,
respectively. The stress ratio was −1 due to the axial force. The testing specimen was
extracted from the spring steel rod, which had dimensions of 18 × 510 mm (diameter ×
length). Utilising the standard ASTM E606/E606M-21 protocol [27], the cylindrical rods
were fashioned into dog-bone specimens. These specimens featured a 6 mm diameter in
the gauge section and a gauge length of 20 mm.

3. Results and Discussion
3.1. Microstructural Analysis of the Heat-Treated Status

Based on the orthogonal testing scheme, there are nine sets of experiments that were
processed by different quenching technologies. Obviously, the quenched microstructure
mainly consisted of fine acicular and lath martensite (see Figure 2). In addition, the
microbands (marked by yellow arrows) along the rolling direction are exhibited in Figure 2.
For medium carbon steel, the first-formed martensite during quenching was dark due to the
influence of self-tempering, while later-formed martensite exhibited light colour without
the influence of self-tempering. According to the JB/T 9211-2008 standard [28], quenched
martensite is rated as grade 3. The fine acicular and lath martensite is normally identified
by high hardness together with excellent wear resistance and tensile strength [29–31]. The
martensite needles are rated to be grade 1 because their length is less than 15 µm. To
compare the influence of quenching temperature and quenching hold time on the final
microstructure, it can be observed from Figure 2a–i that the martensite structure becomes
coarser and the needle length becomes longer with the increase in quenching temperature
and quenching hold time. Furthermore, it is evident that the acicular martensite needles do
not exhibit parallel alignment to each other. Reports [32,33] revealed that the acicular plates
exhibited high misorientation angle boundaries, which were greater than 45 deg. In an
austenite grain, the first-formed martensite normally runs through the entire austenite grain
and splits it in half, resulting in limits to the length of martensite structures. Therefore, the
later-formed martensite presents a relatively smaller grain size. The relationship between
quenching temperatures/hold times and the length of martensite needles can be established
through statistical analysis of the prior austenite (PA) grain size distribution. This is because
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the size of the lamellar martensite depends on the PA grain size: an increase in the PA grain
size leads to a corresponding increase in the length of the martensite needle [34].
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Figure 2. Microstructures after quenching with different quenching temperatures and quenching
hold times of (a) 830 ◦C and 25 min; (b) 830 ◦C and 35 min; (c) 830 ◦C and 45 min; (d) 850 ◦C and
25 min; (e) 850 ◦C and 35 min; (f) 850 ◦C and 45 min; (g) 870 ◦C and 25 min; (h) 870 ◦C and 35 min;
(i) 870 ◦C and 45 min.

To further observe the microstructural evolution under different tempering conditions,
the SEM graphs are shown in Figure 3. It is apparent that all the microstructures are com-
posed of granular cementite and polygonal α ferrite, while the martensite still maintains its
directional distribution and acicular shape. This is because the granular carbide precipi-
tation formed in martensite and lath edges during the tempering process [35,36]. Except
for this, the granular carbide precipitation also formed at the austenite grain boundary.
Accordingly, the coherent relationship was broken, leading to the spheroidisation of sheet
cementite and the growth/aggregation of granular cementite.

In addition, Figure 4 shows that granular carbides are dispersed and fine in the matrix
while the size of carbides was increased with an increase in tempering temperature. To
further observe the high magnification of the granular carbides, EDS detections were also
applied in this study. It has been proposed that granular carbides grow with the elevation
of tempering temperatures, leading to a decrease in dislocation density, and the distribution
in carbide precipitation is mainly concentrated on the austenite grain boundaries [37].
This phenomenon illustrates that under a relatively lower temperature, the fine carbide
precipitation is generated at austenite grain boundaries to hinder the movement of the
austenite grain boundary, as to prevent the growth of austenite grains. Thus, its main
function is to refine the austenite grain; the microstructure after the austenite transformation
is also refined.
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3.2. Mechanical Evolution of Specimens after Heat Treatment

The heat-treated specimens were processed into standard tensile and impact samples.
The tested mechanical properties of specimens after heat treatment include ultimate ten-
sile strength (Rm), specified non-proportional elongation strength (Rp0.2), Charpy impact
toughness (ak), and elongation after fracture (EL). Table 4 shows all the abovementioned
mechanical properties of the heat-treated samples. In this study, intuitive analysis was
applied to analyse the mechanical properties test results and calculate the average deviation
and range (R) at each factor level. The calculated results are shown in Table 5.

Table 4. Mechanical properties under different heat treatment strategies.

Cases Rm (MPa) Rp0.2 (MPa) ak (J/cm2) EL (%) Tempered
Hardness (HV)

Quenched
Hardness (HV)

1 1602 ± 12 1532 ± 15 13.75 ± 1.23 8.90 ± 0.65 468 ± 12 726 ± 23
2 1562 ± 8 1502 ± 10 17.50 ± 1.12 10.25 ± 0.77 468 ± 8 714 ± 14
3 1594 ± 13 1498 ± 13 13.75 ± 0.85 9.25 ± 0.58 450 ± 11 748 ± 21
4 1428 ± 9 1362 ± 9 20.00 ± 0.60 10.90 ± 0.69 445 ± 13 777 ± 15
5 1406 ± 22 1352 ± 20 22.50 ± 1.43 10.50 ± 1.02 413 ± 7 729 ± 11
6 1425 ± 18 1382 ± 12 21.88 ± 0.95 10.60 ± 1.13 440 ± 12 696 ± 9
7 1686 ± 11 1621 ± 9 16.24 ± 0.77 7.85 ± 0.34 470 ± 9 761 ± 15
8 1675 ± 12 1578 ± 11 9.38 ± 1.36 9.90 ± 0.51 500 ± 16 748 ± 13
9 1729 ± 21 1619 ± 12 12.50 ± 0.28 9.60 ± 0.37 479 ± 18 761 ± 23

10 1443 ± 16 1393 ± 13 26.88 ± 1.86 10.35 ± 1.21 417 ± 7 724 ± 20
11 1390 ± 7 1341 ± 8 23.75 ± 1.80 10.80 ± 0.59 421 ± 6 759 ± 25
12 1409 ± 14 1363 ± 23 23.75 ± 1.75 11.00 ± 0.75 426 ± 10 703 ± 15
13 1339 ± 11 1293 ± 15 18.75 ± 1.66 11.15 ± 0.91 437 ± 11 776 ± 26
14 1332 ± 19 1288 ± 12 31.88 ± 2.25 11.15 ± 1.12 426 ± 14 691 ± 6
15 1388 ± 20 1335 ± 20 22.50 ± 2.39 10.35 ± 0.54 424 ± 16 777 ± 29
16 1576 ± 19 1505 ± 17 20.00 ± 1.89 9.50 ± 0.66 461 ± 17 712 ± 16
17 1509 ± 15 1444 ± 11 17.50 ± 0.97 10.25 ± 0.48 459 ± 15 766 ± 20
18 1501 ± 8 1454 ± 7 21.88 ± 1.32 10.00 ± 0.45 475 ± 21 754 ± 8
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Table 5. Intuitive analysis of mechanical properties.

Mechanical
Properties

Experiment
Indexes

Factors

A B C D E

Rm
(MPa)

k1j 1586 1512 1491 1510 1505
k2j 1420 1479 1509 1503 1497
k3j 1697 1508 1499 1486 1497
k4j 1414
k5j 1353
k6j 1529
R 344 34 17 24 7

Factors order Primary→Secondary: A→B→D→C→E

Rp0.2
(MPa)

k1j 1511 1451 1440 1442 1446
k2j 1365 1417 1437 1441 1433
k3j 1606 1442 1434 1426 1431
k4j 1366
k5j 1305
k6j 1467
R 301 34 6 16 15

Factors order Primary→Secondary: A→B→D→E→C

ak
(J/cm2)

k1j 15.00 19.27 22.71 19.48 20.42
k2j 21.46 20.42 18.23 20.10 20.63
k3j 12.71 19.38 18.13 19.48 18.02
k4j 24.79
k5j 24.38
k6j 19.79
R 12.08 1.15 4.58 0.63 2.60

Factors order Primary→Secondary: A→C→E→D→B

EL
(%)

k1j 9.47 9.78 10.03 10.28 9.91
k2j 10.67 10.48 10.12 10.18 10.23
k3j 9.12 10.13 10.23 9.93 10.25
k4j 10.72
k5j 10.88
k6j 9.92
R 1.77 0.70 0.20 0.36 0.34

Factors order Primary→Secondary: A→B→D→E→C

Tempered
hardness

(HV)

k1j 462 448 448 447 442
k2j 432 447 448 452 452
k3j 483 448 446 444 450
k4j 422
k5j 429
k6j 465
R 5.0 0.2 0.2 0.8 0.7

Factors order Primary→Secondary: A→D→E→B, C

The influence of each factor on tensile strength can be obtained through intuitive
analysis of orthogonal test results, as shown in Figure 5. Clearly, the tempering temperature
and holding time during tempering are the primary influential factors on the value of Rm.
This is evident from the respective influence levels of Rm is 344 and 34 Mpa, respectively.
In addition, the quenching medium also exerted a non-negligible influence on Rm, which
could reach 24 MPa. Considering the Rm index, a tempering temperature of no higher
than 460 ◦C can ensure a relatively high Rm value, which also provides a certain safety
reserve for the spring clips. In addition, under the conditions of a quenching temperature
of 870 ◦C and a quenching medium of 12% PAG aqueous solution, Rm is comparatively
higher than that for the other parameters. The fatigue performance of spring steel is, to
some extent, correlated with its Rm. Therefore, enhancing the Rm can have a substantial
impact on prolonging the fatigue life under specific conditions [38].
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Figure 5. Influence of various factors on ultimate tensile strength (Rm).

Likewise, according to the intuitive analysis of Rp0.2, depicted in Figure 6, it can be
observed that the tempering temperature and tempering holding time are the two factors
that greatly influence the Rp0 .2 value in this heat treatment test, with an influence level of
301 and 34 MPa, respectively. Moreover, the quenching time and quenching medium also
have a certain influence on the Rp0 .2 value. When the tempering temperature is 460 ◦C, the
Rp0 .2 of the specimen is close to the maximum stress value for spring clips. Generally, if the
ultimate service stress of the products equals one-half yield strength of the material, the
S-N curve almost approaches the horizontal line. Although such an infinite life product
is not economical, it is necessary to retain appropriate strength reserve for the material,
so that the fatigue life of the spring clips can reach the standard requirement of 5 million
times. In principle, the maximum stress of the spring fastener should be less than the yield
limit of the material. However, the maximum stress always occurs on the surface of the
spring fastener during operation. If a small plastic zone appears on the surface of the local
area, the yield of the material in this area does not cause the fracture in the spring fastener,
and the safe working conditions of the spring fasteners can still be ensured. Furthermore,
benefitting from the strain hardening, both the yield limit and strength of the material
in the plastic zone are improved. Although the appearance of the plastic zone leads to a
certain residual deformation, both the deformation and the buckle pressure loss are quite
small when the local plastic zone of the spring fastener is very small, which improves the
fatigue life of the spring fastener.

Through the intuitive analysis of the orthogonal test results, the factors that have
greater influences on the ak value are tempering temperature, quenching temperature, and
quenching holding time, with an influence level of 12.08, 4.58, and 2.60 J/cm2, respectively
(see Figure 7). The effects of quenching temperature and quenching holding time on the
ak mainly result from the PA grain size, while the tempering temperature mainly affects
the ak by changing the distribution, shape, and size of the precipitated carbides. When the
tempering temperature is 500 ◦C, the ak reaches its peak value. Nevertheless, the ak value
seems to be less susceptible to the tempering time and quenching medium.
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Based on the intuitive analysis of the orthogonal test results, the most influential
factors affecting the EL after fracture are tempering temperature and tempering holding
time. Their influence levels regarding EL are calculated to be 1.77% and 0.70%, respectively.
In addition, the quenching medium and quenching holding time also have an influence on
the EL after fracture (Figure 8).
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From the analysis of the experimental results, the EL value after fracture of the mate-
rials tempered by different processes all acquired a sound level, which is more than 9%.
Furthermore, according to the Vicker hardness results after quenching exhibited in Table 4,
the sample quenched by PAG aqueous solution possesses a significantly higher hardness
value than that for the sample quenched by mechanical oil. The hardness of the quenched
samples increases with the elevation of quenching temperature, while the quenching hold-
ing time has little effect on the hardness after quenching. According to the relevant data
in Table 5, among the designed experimental parameters, the tempering temperature is
the factor that has the greatest influence on the hardness value for the tempered samples.
Among them, the hardness values of samples obtained at 440 and 460 ◦C are reasonable,
while other factors have no obvious influence on the hardness values.

From what has been discussed above, the tempering temperature is often the most
influential factor on the mechanical properties index, while other factors have varied
influences on the mechanical properties, which is consistent with the expectations before
the test design. When the tempering temperature is set as 440–460 ◦C, the tensile strength
of the material is greater than the maximum stress value (1496 MPa) at the active service of
the spring fastener. When the tempering temperature is 460 ◦C, the Rp0.2 of the material
is close to the maximum stress value for the spring fastener. Therefore, a sound match of
impact toughness and elongation after fracture could be achieved.

3.3. Crystallographic Features at the Tempered Status

To acquire more grain information under different tempering temperatures, the EBSD
technique was applied for the in-depth analysis of the samples that were tempered at
420 ◦C (No. 8) and 500 ◦C (No. 11) while maintaining the same tempering time and
quenching temperature. Generally, regardless of the austenitic condition, the distribution of
orientation domains is comparatively fine and consistent. This is because all the generated
phases follow the Kurdjumov–Sachs rules theoretically and each austenite grain can obtain
24 orientations [33].

Although the samples were processed at different tempering temperatures, the inverse
pole figure (IPF) maps exhibit few correlations (see Figure 9a,d), and it is also not recom-
mended to determine the difference between final martensite structures from the band
contrast (BC) graphs (see Figure 9b,e). Nevertheless, grain boundary maps (Figure 9c,f),
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where the misorientation angles in the range 20–45◦ (traced by reddish lines) indicate the
middle-angle grain boundaries (MAGBs) and the cyan region reflects the high-angle grain
boundaries (HAGBs). It can be speculated that a more uniform austenite grain distribution
could be obtained at a tempering temperature of 420 ◦C.
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Furthermore, the austenite reconstruction was applied in this to further observe
the information on high-temperature grains by a reliable technique [39]. It is notable in
Figure 10a,b that the sample tempered at 420 ◦C exhibited an overall smaller austenite grain
size than the sample tempered at 500 ◦C. This is because, at a relatively lower tempering
temperature, the carbide precipitation was mainly concentrated on the austenite grain
boundaries to prevent the growth of austenite grains resulting from hindering the move-
ment of the austenite grain boundary. The larger austenite grain with a lower incidence of
austenite grain boundaries has higher hardenability, leading to a larger volume fraction of
martensite in the final product phases, and thereby larger strength [40]. Simultaneously,
the same developing trend regarding the martensite packet can be observed in Figure 10c,d.
It is noteworthy that the martensite packet exerts a significant influence on the mechanical
properties. Specifically, at lower tempering temperatures, the relatively smaller austenite
grains contain fewer martensite packets with a smaller size, which leads to an increase in
the strength of the steels [41]. Furthermore, based on the predicted reconstruction results,
the austenite grains are distributed more evenly at a lower tempering temperature, which
is consistent with the outcomes obtained from the grain boundary (GB) maps given in
Figure 9.
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Figure 10. Austenite reconstruction and martensite packet distribution of the samples tempered at
(a,c): 420 ◦C, No. 8; (b,d): 500 ◦C, No. 11.

Kernel average misorientation (KAM) maps are normally applied to describe the
orientation gradients with the specific range in individual grains [42]. In this study, the
selection of boundaries was determined in the range 0–5◦ and the 5 × 5 filter KAM
maps were appropriate here, as displayed in Figure 11. Local misorientation comparisons
reveal that the geometrically necessary dislocations (GND) would be significantly affected
due to strain portioning and heterogeneity in microstructure [43]. For the specimens
tempered at different conditions, it is difficult to distinguish the colour gradient based on
the KAM maps due to small deviations. Thus, in this study, it is acceptable to calculate
the local misorientation when defining the limit of random misorientation as 2◦. The local
misorientation of each central point was then ruled by the eight neighbour points [43,44]:

θlocal =
8

∑
k=1

θk·I(θk<∅)/
8

∑
k=1

I(θk<∅) (1)

where θn represents the misorientation between this central point and its neighbour point
n, ∅ is the misorientation threshold (2◦), and the indicator function is defined as I(θk<∅).
The simple method from strain gradient theory was applied to extrapolate GNDs [45]:

ρGND =
2θ

ub
(2)

where θ refers to the local misorientation, u represents the mapping unit length (step size),
and b is Burger’s vector (BCC: 0.248 nm).
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Figure 11. KAM maps and GND density distribution of the samples tempered at (a) 420 ◦C, No. 8;
(b) 500 ◦C, No. 11.

Apparently, the value for GND density was higher on the 420 ◦C tempered specimens
than that on the 500 ◦C tempered counterparts, which could be attributed to the fact that
the intense carbide precipitation would result in the decrease in dislocation density at a
higher tempering temperature. This kind of phenomenon also validates the EDS results
mentioned above.

3.4. Fatigue Performance Comparison

Since the tempering temperature is normally the most influential factor on the me-
chanical properties index, Nos. 8, 11, and 16 (corresponding to Table 3) were selected for
final fatigue experiments. After fatigue testing, the fatigue cycles for Nos. 8, 11, and 16
were 309,742; 57,335; and 5007, respectively. There was an interesting finding: although
No. 16 presented relatively better mechanical properties, No. 11 still has higher fatigue
limits than those for No. 16.

The typical fatigue fractures are displayed in Figure 12. The crack deflection could
be easily achieved in all three specimens (see Figure 12a,c,e), while the crack branching
is only obtained from Nos. 11 and 16 (Figure 12c,e). Overall, the fracture in No. 8 is
smoother than those in Nos. 11 and 16. In addition, the crack propagation direction is
more easily observed in No. 8 from Figure 12b. For the Nos. 11 and 16 specimens, the
fracture surface is relatively more ragged. Furthermore, the fracture surface for all the
specimens is characterised by fatigue striations and secondary cracks. However, for Nos.
11 and 16, more fatigue striations can be observed, and the secondary cracks are also more
evident. The observation of secondary cracks is coincident with the crack branching given
in Figure 12c,e.
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In addition, EBSD mapping was carried out for further analysis of the microstructure
adjacent to the fatigue cracks, as shown in Figure 13. From the IPF maps (Figure 13a,b), a
more uniform distribution of the microstructures was achieved for Nos. 8 and 16, specimens
that are consistent with the GB maps given in Figure 13j–l. As mentioned above, the
specimen presents a higher strength with uniform microstructural distribution; thus, it
can be assumed that the specimen with a relatively higher strength (No. 8) results in a
better fatigue limit. However, No. 16 also exhibited higher strength in comparison to
No. 11, while it is with poor fatigue cycles. There is an interesting finding from the band
contrast maps (Figure 13d–f): the ratio of martensite (dark colour) to ferrite (light colour)
is much larger in No. 8 than that in Nos. 11 and 16. It can be speculated that the ratio of
martensite to ferrite influences the fatigue limit more significantly. Since all specimens were
conducted in the cyclic tension process until failure, several subgrains could be achieved
and accumulated at the crack surfaces (Figure 13g–i).
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4. Conclusions

The spring fastener is one of the key parts of the rail track, which provides enough
buckle pressure to maintain track gauges. A high-performance spring fastener can greatly
improve railway-running safety. The main research work and achievements of this study
are listed as follows:

(1) The influence of main process parameters on the microstructure and mechanical prop-
erties of the investigated spring steel during quenching and subsequent tempering
was systematically studied, and an optimal heat treatment process was determined
(quenching temperature of 850 ◦C, quenching holding time of 35 min, quenching
medium of 12% PAG aqueous solution, tempering temperature of 460 ◦C, tempering
holding time of 60 min).

(2) The tempering temperature has a more significant influence on the microstructures
and mechanical properties of the experimental steel during the heat treatment process.
The granular carbides grow with the increase in tempering temperatures, which leads
to a decrease in dislocation density.

(3) According to the fatigue testing results, it is obvious that the specimen with a high
fatigue limit has a flat and ragged fracture surface, and the microstructure after
fatigue testing is more uniform. The high ratio of martensite to ferrite improves
fatigue performance significantly.
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(4) The research conducted in this study has a certain guiding effect on the thermal
processing technology of high-speed railway spring fasteners.
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