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A B S T R A C T

Railway track accidents continue to occur despite manual inspections, which are often inaccurate and can lead
to catastrophic events. While artificial intelligence has been applied in the railway sector, few studies have
focused on defect detection using object detection tools. Additionally, there is a lack of studies that compare
different models using the same dataset.

This paper proposes new data-driven techniques that identify railway track faults using three object
detection models: YOLOv5, Faster RCNN, and EfficientDet. These models are compared by testing a dataset of
31 images that contain three different railway track elements (clip, rail, and fishplate), both faulty and non-
faulty. Six classes were differentiated in the training of the models: one faulty and one non-faulty for each of the
three classes. Image pre-processing steps included data augmentation techniques and image resizing. Results
show good precision (equivalent to 1) in detecting non-defective elements, but recall values for defective
elements vary among models, with Faster RCNN performing the best (0.93), followed by EfficientDet (0.81),
and YOLOv5 (0.68). The full paper discusses the strengths and weaknesses of these proposed techniques for
railway fault detection.
1. Introduction

Rail transport is a commonly used mode of transportation for both
assengers and freight, covering both short and long distances. Al-
hough the railway sector has witnessed a decline in the number of
ccidents in the past decade, with a 45% decrease in the number of
atalities in the EU from 2010 to 2020 (Anon, 2021), the primary
auses of accidents remain unchanged. While train accidents can oc-
ur due to various reasons, defective rails, mechanical track failures
eading to derailments, and broken rails are among the most frequent
auses (Sanger, 2018; Zang et al., 2019). According to recent data span-
ing from 2016 to 2020, track buckles and broken rails rank as the two
ost common precursors to accidents in the railway sector (European
nion Agency for Railway, 2022; Rengel et al., 2022a).
Artificial Intelligence (AI) has become increasingly prevalent in

he railway sector, with applications in seven distinct sub-domains:
aintenance and inspection, safety and security, autonomous driv-
ng and control, traffic planning and management, transport policy,
evenue management, and passenger mobility (Anon, 2020). In the
aintenance and inspection field, the primary function of AI is to move
rom corrective/preventative inspection to predictive inspection (Tang
t al., 2022; Sresakoolchai and Kaewunruen, 2022). A data-driven
nternet of Things (IoT) based prototype, referred to as ‘‘MUHAFIZ’’,
s presented in Shah et al. (2021) as an automated and portable TRV
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E-mail address: ravi.pandit@cranfield.ac.uk (R. Pandit).

(track recording vehicle) with a revolutionary design based on an
axle-based acceleration approach for rail track defect diagnostics. Field-
based testing has demonstrated that MUHAFIZ is 87% more effective
than the standard push-trolley-based TRV mechanism. Fast Fourier and
wavelet transformations (WTs) are widely utilized to identify railway
defects, as seen in Ghosh et al. (2021), where a methodology is pro-
posed for real-time train line state identification. The findings indicate
that fracture damage is more likely to be identified by WT than by Fast
Fourier transform (FFT), while corrugation defects are more likely to
be detected by FFT than WT. The accelerometer sensors employed in
this study to detect vibrations are susceptible to interference from other
vibration sources since they are installed on the axle boxes of service
trains. The recommended approach is less effective in detecting wheel
faults. In Rosyidi et al. (2022), the author proposed the use of Principle
Component Analysis (PCA) to estimate the remaining useful time (RUL)
of the subsystem in the automatic railroad crossing system, predicting
when maintenance is required. The proposed technique was found to
be effective in estimating RUL, supported by simulation results.

In recent years, digital technologies and various sensors have been
utilized to detect rail defects and deterioration. For instance, vibration
signals (Najeh et al., 2021) and acoustic analysis (Shah et al., 2021)
have been employed. Karakose and Yaman (2020) suggested a fuzzy
system-based thermography solution to mitigate the impact of weather
ttps://doi.org/10.1016/j.engappai.2023.106622
eceived 3 February 2023; Received in revised form 15 April 2023; Accepted 7 Ju
vailable online xxxx
952-1976/Crown Copyright © 2023 Published by Elsevier Ltd. This is an open ac
http://creativecommons.org/licenses/by/4.0/).
ne 2023

cess article under the CC BY license

https://doi.org/10.1016/j.engappai.2023.106622
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106622&domain=pdf
mailto:ravi.pandit@cranfield.ac.uk
https://doi.org/10.1016/j.engappai.2023.106622
http://creativecommons.org/licenses/by/4.0/


M.G. Minguell and R. Pandit Engineering Applications of Artificial Intelligence 125 (2023) 106622

t
(
f
e
2
m
f
m
(
p
d
p
s
F
b
i
s
r
a
T
u
u
t
u
c
p
d

i
l
s
d
d
e
i
o
p
d
u
c
c
e
t
a
t
u
r
a

N

b
i
a
e
t
t
s
e
r
o

M
f
e

d
a
T
d
c
i
b
t
d
i
i
s
m
a
a
k
a
I
d

c
a
w
s
p
a
i
t
m

d
p
o
c
t
F

2

2

3
s
o
(
d

s
h
s

d
r
t
c
a

r
s
s

and daylight on non-contact rail system maintenance, which is compat-
ible with technology 4.0. Dube et al. (2021) devised a novel technique
for identifying cracks and counting their number on the rail surface,
while Karaduman et al. (2020) employed image processing techniques
to detect wear on the rail surface by removing shadows in railroad
photographs. Banić et al. (2019) utilized edge and feature extraction
echniques to determine the rails in the tracked railway using UAVs
Drones). Additionally, machine vision was used to detect surface de-
ects (Min et al., 2018) and object detection to detect anomalies (Wang
t al., 2021) or foreign objects on the railway track (Gasparini et al.,
020; Bhushan et al., 2017). Recently, computer vision and audio
achine learning have also garnered attention in railway industries for
eature extraction and analysis to optimize the system for better perfor-
ance (Doshi, 2022; Rengel et al., 2022b). For instance, in Yuan et al.
2019), the authors proposed a novel automatic feature extraction,
re-processing, and analysis deep learning technique for early fault
etection in railways. They followed three basic steps, namely, data
re-processing, feature extraction using spectrograms, and finally, clas-
ification model training based on feature and pre-processing datasets.
urthermore, updated research on fault detection on railway lines has
een examined in a review study by Kou (2021). Hashmi et al. (2022)
nvestigated a similar strategy by fusing conventional acoustic-based
ystems with deep learning models to enhance performance and reduce
ailway accidents. They used two CNN models – convolutional 1D
nd convolutional 2D – as well as one RNN model in this context.
he layer of a deep learning model that produces spectrograms was
sed for on-the-fly feature extraction. Finally, visual examination was
sed in the current investigation to determine POI since no conven-
ional approaches were used. The assessment of rail surface damage
sing computer vision and deep learning techniques, in addition to
onventional ultrasonic and acceleration detection techniques, has the
otential to significantly increase detection system effectiveness while
ecreasing inspection costs.
Recent research suggests that AI and data-driven algorithms us-

ng object detection have potential for identifying defects on railroad
ines (Chen et al., 2008). In the past, some studies have used one-
tage object detection models, such as YOLO (You Only Look Once), to
etect rail, clips, and bolt defects (Wang et al., 2020), as well as surface
efects such as cracks or irregularities on the railway track (Yanan
t al., 2019). While the first paper compares different YOLO models,
t does not differentiate between defective and non-defective elements,
nly paying attention to detecting unfaulty elements. The second pa-
er, on the other hand, only studies the third version of YOLO and
oes not compare different models. Other studies have explored the
se of CNN methods in this field, with Faster RCNN being the most
ommonly used model (Wei et al., 2019). While this model includes a
lassification of defective and non-defective elements, the study only
xamines one element, fasteners. Finally, AttnConv-Net has been used
o validate the effectiveness of object detection models for maintenance
nd inspection (Wang et al., 2022). This paper focuses on comparing
he results of this model with other published models to validate its
sefulness. While object detection has shown promise for identifying
ailroad defects, further research is needed to evaluate its effectiveness
cross multiple types of defects and elements.

ovelty and contribution to knowledge
Regular inspections of railway tracks are crucial for ensuring safety

y detecting physical flaws or design faults that could lead to serious
ncidents such as train derailments. However, the manual inspection
pproach is costly and outdated, and can result in significant downtime,
specially under harsh weather conditions. In recent years, digital
echnologies have been explored to automate railway track inspec-
ions. Although object detection has been investigated as a potential
olution (Padilla et al., 2020), there are research gaps to address. For
xample, there is a lack of studies that propose defects detection in
ailway tracks using newer object detection models, and the importance
f data collection and classification is not highlighted in most research.
2

oreover, many studies only train models on defective elements and
ail to classify non-defective elements, leading to limitations in their
ffectiveness.
This paper aims to address these gaps by proposing a method for

efect detection in railway tracks using newer object detection models
nd emphasizing the importance of data collection and classification.
he proposed approach aims to improve safety and reduce costs by
etecting defects automatically based on image datasets. With the
ontinuous advance in machine learning, there is a growing interest
n introducing these tools in the railway sector. However, one of the
iggest challenges in object detection is the need for sufficient data to
rain a programme, and the paper explores this challenge by comparing
ifferent models and datasets to find the most effective technique
n terms of precision and recall. Moreover, the paper highlights the
mportance of a comparative analysis of these techniques with the
ame training and testing dataset. The significance of the proposed
ethod lies in its ability to detect defects in railway tracks quickly and
ccurately, minimizing the risk of accidents and reducing costs associ-
ted with manual inspections. This research presents a contribution to
nowledge in the field of object detection in railway track inspections
nd offers a new perspective on its implementation in different sectors.
t also highlights the need to use more advanced and newer object
etection models to improve the accuracy of railway track inspections.
The methodology employed in this study is depicted in Fig. 1 and

an be described as follows. Firstly, the datasets were pre-processed
nd analysed to identify the most commonly occurring railway defects,
hich were then classified as either defective or non-defective. The
elected image datasets were then used for training and testing the
roposed model. Object detection models were chosen for verification,
nd the corresponding steps and algorithms were followed as illustrated
n Fig. 1. Finally, the validation of these models was performed using
he validation dataset, and the results obtained were compared for each
odel.
The outline of this paper is as follows: Section 1 is the intro-

uction. Section 2 describes the datasets in this study including pre-
rocessing, classification and labelling. Section 3 explained the method-
logies used in this study. Section 4 presents the results and their
ritical analysis. Section 5 carries out the performance comparison of
he proposed model, discussion and the limitation associated with it.
inally, Section 6 provides concluding remarks and future work.

. Data

.1. Data description

The data extracted to create the final dataset has been done from
different sources. Firstly, images are a collection from an open

ource (Anon, 2022) and field trips. Thus, with this dataset, 3 defects
n the railway tracks were highlighted and these are broken clips
fasteners), rail track breaks and faulty railway fish plates and these
efects are briefly described as follows:

➢ Broken clips: Clips are a kind of fastener in charge of fastening
teel rail to the sleeper. In some cases, it has happened that the clip
as broken or come loose and therefore cannot perform its function as
hown in Fig. 2.

➢ Rail track breaks: There are two distinct examples of this type of
efect as shown in Fig. 3. The first consists of train tracks that for any
eason have been damaged and have ended up breaking, preventing
he train from passing through the crack. The second consists of small
racks or deformities in the track joints. This type of defect is usually
ffected by the breaking of the fish plate.

➢ Faulty fish plates: Fish plates are metal plates that connect two
ails by several bolts or spikes. These are considered defective when
ome of the bolts are missing, causing the element’s inefficiency as
hown in Fig. 4.
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Fig. 1. Framework of the proposed methodologies for railway track fault detection techniques and their performance comparison.
Fig. 2. Correct clip v broken clip.
Fig. 3. Sample Rail track breaks.
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The second source consists of images extracted by Network Rail
howing defective rails and those that were consistent with the dataset
uilt up to that point were selected. Finally, the last source of informa-
ion is a set of images photographed of the Railway Innovation test area
t Cranfield University by the author. A total of 329 images have been
elected with a total of 467 annotations, as some of the images have
ore than one annotation. These images have been classified into 6
ifferent classes, including faulty and unfaulty elements.
In short, the importance of data collection and classification cannot

e overstated, as it is essential for building an accurate and reliable
ataset for machine learning models. In this study, we took great care
o ensure that the images collected were of high quality and represented
 c

3

diverse range of real-world scenarios. Moreover, we classified the
mages into 6 different classes, including faulty and unfaulty elements,
o provide clear differentiation between different types of defects and
on-defective elements.

.2. Data labelling and augmentation

Image datasets used in this study are coming from three different
ource but still not sufficient to train the proposed model, therefore,
ugmentation techniques employed to increase the size of datasets.
n addition to that, rotation technique was selected to simulate how
ameras could take pictures of the railway track from different angles
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Fig. 4. Broken fishplate.

Fig. 5. Number of annotations for each class.

Table 1
Sample of object classes and definitions.
Class Class name Object detected Number of annotations

1 Defective 1 Broken clips 92
2 Non-Defective 1 Non-broken clips 156
3 Defective 2 Rail Track breaks 79
4 Non-Defective 2 Common rail junctions 51
5 Defective 3 Faulty fishplates 34
6 Non-Defective 3 Correct fishplates 55

increasing then, the image dataset with more possible input data. It is
very difficult to present images of correct railway tracks without cracks,
as the mechanism would continuously detect an object throughout the
whole railway track. For class 4 (non-defective 2) of Table 1, instead of
choosing images of the rail where cracks and holes are not present, a
class of holes that are correct on the railway tracks has been chosen. In
the junctions of different tracks, where fishplates can be found, there
exist gaps between them that are correct. In some cases, due to friction
with the train, some of the track boundaries are cracked or the hole is
larger than it should be, in these cases it is considered a defect and is
classified as class 3 (Defective 2) of Table 1.

Fig. 5 shows the classes as a function of the number of annotations.
As can be seen, for some of the classes there are not enough images,
and this can affect the results as the machine cannot be correctly
trained. Furthermore, Fig. A.8 of appendix shows object count per
image. Further details of these datasets can be found in Anon (2022).

There are several tools available for labelling images. Labelling,
which was created by python and uses QT as a graphical interface,
has been used in this study (see Fig. 6). The following image shows
an example of how this task has been done. For each image, the region
where the figure is located must be drawn (with a bounding box) and
the type of class has to be mentioned. The programme saves the given
information in VOCXML or YOLOtxt format, this includes the object
classification and location in annotation text. The images were labelled
using Labelling and resized to square adding white margins to avoid

cropping images and losing annotations during the process.

4

The next step is to apply data augmentation on datasets to increase
the number of training data available and reduce overfitting problems.
Considering that there is a limited number of images in the dataset
due to limited sources, different image augmentation techniques were
contemplated. Among the different techniques, only geometric transfor-
mations were tested, as the objective is to maintain the originality of
the images. Some of these kinds of transformations include translation,
cropping, rotation, flipping, colour space and noise. Among the differ-
ent geometric techniques for image augmentation, rotation was the one
chosen. The other ones can suppose an advantage for other research,
but for this one, the most suitable one was to create new versions
changing the perspective in which the camera can take a photo. In
Fig. 7, an example of how the rotation technique applies to an image is
shown. After applying this image augmentation technique, the number
of images increased from 329 to 675, adding then 346 extra images
after this step.

Initially, there were 329 images in total that had to be distributed
between the training and the testing dataset. As this number is low and
the machine must be trained with enough images to work properly,
only 9% of the total number was selected for the testing dataset. This
means that 298 images were selected to train the different models and
the 31 remaining images to test the model’s performance. These 31
images include a total of 44 annotations, as some of the images contain
more than one annotation. After applying the image rotation technique,
the training dataset increased its number from 298 to 644 available
images. Further details on the analysis can be found in Appendix A.

2.3. Pre-processing

The final images for the dataset had different dimensions from
each other and were mostly very large. The machine is more efficient
and faster if it works with smaller images, so a resizing step of the
images has been performed. As shown in Fig. 8, the average size was
4000 × 3000. To reduce the image size to a square, the image size
was reduced to 416 × 416 (as shown in Fig. 9). The most suitable way
to avoid distorting the images was to reduce them to square shape.
For memory and resource reasons, a smaller size that the average size
was chosen. The choice of 416 × 416 pixels was based on the model
architecture and computational resources available. This size was found
to provide a good balance between accuracy and efficiency for our
specific task.

In order not to crop the margins of some of the photographs, thus
losing some annotation information, white margins have been added so
as not to distort the results. An example is shown in Fig. 10.

3. Methodologies

Object detection is a computer vision technique that aims to locate
in a video or image the detected objects and classify them using
bounding boxes (Xiao et al., 2020). Normally this bounding box is
followed by a text and a value, the former names the class type and
the latter quantifies the confidence of classification (in percentage). The
traditional object detection pipeline follows 3 main stages: Informative
Region Selection (1), Feature Extraction (2) and Classification (3) (Zhao
et al., 2018). Precision and recall are the most commonly used metrics
in general, Padilla et al. (2021) and also being used in this study to
access the effectiveness of the model and datasets. Precision is defined
as the fraction of detected items that are correct and recall as the
fraction of correctly detected items among all that should have been
detected. And, mathematically they are defined as follows,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑇𝑃
∑

𝑇𝑃 +
∑

𝐹𝑃
=

∑

𝑇𝑃
𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑

𝑇𝑃
∑ ∑ =

∑

𝑇𝑃
(2)
𝑇𝑃 + 𝐹𝑁 𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑇 𝑟𝑢𝑡ℎ𝑠
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Fig. 6. Image labelling process.
F
P
P

Fig. 7. Image 90◦ rotation.

Fig. 8. Original image sizing.

here,

• True positive (TP): Positive class predicted correctly (bounding
box).

• False positive (FP): A non-positive class predicted as positive
(false bounding box).

• False negative (FN): A non-detected positive class.
5

Fig. 9. Image resizing.

urthermore, to compare the precision of the different classes, Average
recision (AP) is used. It is defined as the area that remains under the
recision-Recall curve varying the threshold (𝜏) accepted (Zhu et al.,
2020).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝜏) =
∑

𝑇𝑃 (𝜏)
∑

𝑇𝑃 (𝜏) +
∑

𝐹𝑃 (𝜏)
=

∑

𝑇𝑃 (𝜏)
𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

(3)

𝑅𝑒𝑐𝑎𝑙𝑙(𝜏) =
∑

𝑇𝑃 (𝜏)
∑

𝑇𝑃 (𝜏) +
∑

𝐹𝑁(𝜏)
=

∑

𝑇𝑃 (𝜏)
𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑇 𝑟𝑢𝑡ℎ𝑠

(4)

When the objective is to compare performance between detectors,
the most common metric is mean Average Precision (mAP) which
calculates performance considering all classes and is used as a unique
metric for final evaluation (Zaidi et al., 2022).

There are different types of object detection models and for this
research three advanced techniques namely, Faster RCNN, YOLO and
EfficientDet are being used. YOLO and Faster RCNN are popular while
EfficientDet is one of the best performing models in terms of accu-
racy and training speed. However, these techniques have never been
explored in detail in railway industries to suggest the best technique
among these techniques. All three models have been trained and tested
using Google Colab which enables GPU use for faster results. A brief
summary of these techniques is described as follows.
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Fig. 10. White margins for final square images.
Fig. 11. Faster RCNN architecture (Ren et al., 2015).

3.1. Faster RCNN

Thanks to the incorporation of faster RCNN in CNNs, performance
has been improved in terms of detection speed. Faster RCNN is a two-
stage algorithm that uses the convolution network to generate the
regions and boxes and shares it with the object detection network
which reduces the number of possible frames by a large percentage (Sal-
vador et al., 2016; Ren et al., 2015). As shown in Fig. 11, Faster RCNN
follows 4 main parts of the structure, (Liu et al., 2017) and these are:

1. Convolutional layer: Extracts a feature map of the image.
2. RPN: The feature map is shared for subsequent Region Proposal
Networks. It determines anchors while it generates a region
proposal through border regression.

3. RoI pooling: Collects the feature map fixing the size by up-
sampling, and the region proposal.

4. Classification and regression layer: The proposal feature maps
are used to identify the class and adjust the regions of interest
with bounding boxes.

3.2. You only look once version 5 (YOLOv5)

YOLO is a one-stage algorithm that predicts bounding boxes and
performs class probabilities at the same time using an end-to-end neural
6

network. It transforms the target detection problem into a regression
problem solution by calculating the loss function of the classification
prediction and location information (Xue-ping et al., 2019). There exist
various versions of YOLO, but in this work, only v5 is contemplated
as being one of the latest versions it is more flexible in terms of
model sizing and data enhancement compared to the previous ver-
sions (Jiang et al., 2022). The architecture of YOLOv5 consists of four
main elements (Li et al., 2022) and is described as follows.

1. Input terminal: Includes data pre-processing and data augmen-
tation. Yolov5 can set the initial anchor frame size if the dataset
is changed.

2. Backbone network: It extracts feature maps from the input image
using cross-stage partial network and spatial pyramid pooling.

3. Neck network: Feature Pyramid Network (FPN) structure is used
to convey semantic features and the Path Aggregation Network
(PAN) structure conveys localization features. FPN structure
does it from the top feature map to the lower feature map and
PAN structures the other way around.

4. Output: Predicts the targets, applies bounding boxes and gener-
ates class probabilities and scores.

The output is encoded by dividing the input image into an SxS grid
of cells. One grid cell oversees predicting the object in the image (the
one in the centre of the object). Every grid cell predicts B bounding
boxes, compounded by 5 elements (x, y, w, h, confidence), and C class
probabilities (HackerNoon, 2018) where;

• (x,y): Centre of the box, relative to the grid cell location.
• (w,h): Width and height relative to the image dimensions.
• Confidence: Score that reflects the presence of the object in the
image.

The output vector follows the following equation:

𝑶𝒖𝒕𝒑𝒖𝒕 𝒗𝒆𝒄𝒕𝒐𝒓 = 𝑺𝒙𝑺𝒙 (𝑩𝒙5 + 𝑪) (5)

3.3. EfficientDet

Being a state-of-art object detection model, EfficientDet is the last
model considered for this project using the PyTorch implementation.
EfficientDet follows the one-stage object detectors paradigm. Its struc-
ture consists of 3 main parts as shown in Fig. 12 namely, a back-
bone network, a feature network and a shared class/box prediction
network (Tan et al., 2020) and explained as follows.
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w
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𝑹

𝑾

𝑫

Fig. 12. EfficientDet Architecture, (Tan et al., 2020).
Fig. 13. (1&4) Faster RCNN, (2&5) Yolov5, (3&6) EfficientDet.
1. Backbone network: EfficientNet is employed as the backbone
network which is designed to efficiently scale from the smallest
model size.

2. Feature network: it extracts single images of any size as input
and outputs sized feature maps. The Bi-directional Feature Pyra-
mid Network (BiFPN) feature network is used, which is repeated
multiple times.

3. Shared class/box prediction network: As the BiFPN layers, it is
repeated multiple times based on different resource constraints.

The following equations show how the input image resolution,
idth and depth for BiFPN are scaled (Sahota, 2020). There exist 8
ypes of EfficientDet-D𝜑, as 𝜑 can take values from 0 to 7. The one
sed in this project is EfficientDet-D0, being then:

𝒊𝒏𝒑𝒖𝒕(𝝋 = 0) = 512 + 𝝋 ⋅ 128 = 512 (6)

𝒃𝒊𝒇𝒑𝒏 (𝝋 = 0) = 64 ⋅
(

1.35𝝋
)

= 64 (7)

𝒃𝒊𝒇𝒑𝒏 (𝝋 = 0) = 3 + 𝝋 = 3 (8)
7

The box/class prediction network used in EfficientDet is a softmax
classifier. Although the width is the same as in BiFPN, the depth follows
the following equation:

𝑫𝒃𝒐𝒙 (𝝋 = 0) = 𝑫𝒄𝒍𝒂𝒔𝒔 (𝝋 = 0) = 3 +
𝝋
3

= 3 (9)

4. Result and discussion

This section contains the results obtained after training the problem
and passing the testing dataset. For each model, precision and recall
have been calculated and the precision–recall curve for defective and
non-defective annotations is represented. In addition, the mean average
precision of the 3 models is shown. Some of the tested images are
shown in Fig. 13.

4.1. You only look once (version 5)

For this first model, the precision and recall results are shown in the
following Table 2. In general, the results of precision are higher than
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Fig. 14. Defective 2 wrongly classified as non-defective 2.

Fig. 15. Precision-Recall curve for defective annotations.

Table 2
Precision and recall (YOLOv5).
YOLOv5

D1 ND1 D2 ND2 D3 ND3

Precision 100% 100% 100% 75% 100% 100%
Recall 100% 95% 60% 75% 67% 80%

Table 3
Number of FP and FN.
False positive False negative

Defective Non-defective Defective Non-defective

0 1 5 3

the ones obtained for recall, this means that the detections done by
the model are highly correct compared to the number of annotations
that should have been detected. In other words, the number of false
positives is low compared to the number of false negatives.

Table 3 presents the number of false positives and false negatives
n both categories, defective and non-defective. There has been one
etected element as non-defective considered a false positive and 5
efective elements that were not detected (false negatives). Indeed,
he one non-defective false positive is one of the five defective false
egatives. This means that not only the machine h was unable to detect
he defect, but it was also detected as unfaulty. Fig. 14 shows the image
hat the model was not able to detect correctly.
As the number of images in the dataset was low, the accuracy-recall

urves have been made with two separate classes instead of six. The
8

Table 4
Precision and recall for each class.
Faster RCNN

D1 ND1 D2 ND2 D3 ND3

Precision 75% 100% 91% 100% 67% 100%
Recall 100% 100% 100% 100% 67% 80%

Table 5
Number of FP and FN.
False positive False negative

Defective Non-defective Defective Non-defective

3 0 1 2

Table 6
Precision and recall for each class.
EfficientDet

D1 ND1 D2 ND2 D3 ND3

Precision 100% 95% 100% 100% 100% 100%
Recall 100% 100% 90% 75% 33% 60%

precision–recall curves of YOLOv5 are shown in Figs. 15 and 16. For
this model, the number of false positives is low and constant when
fixing different thresholds. The maximum value of recall maintaining
precision to 1, is equal to 0.6875 for defective annotations and equal
to 0.893 for non-defective annotations. For more information regarding
precision–recall curves, and calculations go to Appendix B. The Average
Precision of the defective class is equal to 0.9 and for the non-defective
is 0.978. The mean Average Precision for YOLO is equal to 0.939.

4.2. Faster R-CNN

Precision and recall results for Faster RCNN are shown in Table 4.
In contrast to the results obtained with yolov5, Faster RCNN shows
mostly better results in Recall than in Precision. Therefore, contrary
to previous results, in this case, the number of false positives is higher
than the number of false negatives respectively for each class. More
information about precision and recall calculations can be found in
Appendix B.

Table 5 shows the total number of false positives and false negatives
of defective and non-defective objects. In this case, there is only one
worrying error case: the defective false negative. The machine has not
been able to detect a defective class element. On the other hand, it can
be verified that there are no non-defective false positives, therefore,
at least the model has not detected that the element belongs to a
non-defective class, it has simply not classified it in any of the two
categories.

The following two graphs, Figs. 17 and 18 represent the Precision-
Recall curves for Defective and Non-Defective classes.

For the defective curve, the maximum value of recall maintaining
precision to 1, is 0.5625. Nevertheless, for a precision value of 0.938,
recall raises to 0.938. For the non-defective curve, the recall value
equals 0.929 when having perfect precision (equals 1). For the De-
fective class, the Average Precision has been equal to 0.945, and for
the non-defective class equal to 0.987. The mean Average Precision
considering the results of these two categories has been equal to 0.966.

4.3. EfficientDet

For this last model, EfficientDet, precision and recall results for each
of the six classes are shown in Table 6. Similar to the results of Yolov5,
the accuracy percentages are very high compared to those of recall. In
fact, for the images tested for defect 3, the number of false negatives is
higher respectively.
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Fig. 16. Precision-Recall curve for non-defective annotations.
Fig. 17. Precision-Recall curve for defective annotations.
Fig. 18. Precision-Recall curve for non-defective annotations.
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Table 7
Number of FP and FN.
False positive False negative

Defective Non-defective Defective Non-defective

0 1 3 3

Table 7 shows that the total number of false positives is one and the
total number of false negatives is 6. The only false positive (see Fig. 19)
s classified as a non-defective but it is not one of the defective false
 A

9

negatives, thus not worsening the results. The other three defective
false negatives, although not recognized, were at least not classified
as non-defective.

In Figs. 20 and 21, Precision-Recall curves are shown. As it can be
recision maintains constant and equal to 1 during most of the fixed
hresholds. The maximum value of recall with perfect precision is equal
o 0.8125 with a fixed accepted threshold between 0 and 80% for the
efective curve. For the non-defective curve, the maximum recall is
qual to 0.89 for a precision of 1 when the threshold is fixed at 60%.
ore information regarding the precision–recall curves can be found in
ppendix B.



M.G. Minguell and R. Pandit Engineering Applications of Artificial Intelligence 125 (2023) 106622

d

5

r
s
i
t

5

t
a
Y

Fig. 19. Non-defective false positive.

Table 8
Precision and recall results.
Methods D1 ND1 D2 ND2 D3 ND3

YOLOv5 Precision 1 1 1 0.75 1 1
Recall 1 0.95 0.6 0.75 0.67 0.8

Faster RCNN Precision 0.75 1 0.91 1 0.67 1
Recall 1 1 1 1 0.67 0.8

Efficient DetD0 Precision 1 0.95 1 1 1 1
Recall 1 1 0.9 0.75 0.33 0.6

The Average Precision of defective equals 0.94 and 0.978 for non-
efective. The mean Average Precision result for EfficientDet is 0.959.

. Model performance comparison and discussion

The three models tested have proven to be able to obtain good
esults and detect defective elements on the railway tracks. In this
ection, a more detailed analysis of the results obtained for each model
s discussed. The section includes the influence of the initial data on
he results, advantages and limitations associated with this research.

.1. False positives (FP) and False negatives (FN)

The level of confidence with which the different models have de-
ected an element is variable. For FasterRCNN and EfficientDet, the
verage confidence levels are quite high compared to those obtained in
OLOv5. Fig. 22 shows the average confidence levels for each model
for each class type without taking into account false positives and false
negatives.

As shown in Fig. 22, the first four classes, EfficientDet leads the 3
models with an average confidence level of almost 100%. For the last
two classes, on the other hand, FasterRCNN has the highest values. For
all 6 classes, YOLOv5 has the lowest confidence levels. However, the
confidence level is meaningless if it does not consider the false positives
and false negatives that it implies. The number of false positives and
false negatives for each model and class are shown in Fig. 23.

The following table shows the results obtained for precision and
recall in each of the object detection models. During the evaluation of
the 70 images, the total number of false positives and false negatives
obtained, are shown in Table 9. The number of false negatives for the
three models highlights the inefficiency in detecting elements in the
images (see Table 8).

The Average Precision of the defective class has been equal to 0.9
for YOLOv5, 0.945 for FasterRCNN and 0.94 for EfficientDetD0. For the
non-defective class, the average precision has been 0.978 for YOLOv5,
0.987 for FasterRCNN and 0.978 forisficientDetD0. The Mean average

precision for the three models is shown in Table 10.

10
Table 9
Total number of false positives and false negatives.
Methods False positive False negative

Defective Non-defective Defective Non-defective

YOLOv5 0 1 5 3
Faster RCNN 3 0 1 2
EfficientDetD0 0 1 3 3

Table 10
Mean Average Precision results.
Performance error metrics

YOLOv5 FasterRCNN EfficientDetD0

Mean Average Precision (mAP) 0.939 0.966 0.959

Table 11
Thresholds for each model.
Methods Threshold Precision Recall

D ND D ND D ND

FasterRCNN >=0.8 >0 0.9375 1 0.9375 0.9286
YOLOv5 >0 >=0.43 1 1 0.6875 0.8929
EfficientDet >0 >=0.52 1 1 0.8125 0.8929

Table 12
False positives and negatives considering thresholds.
Methods Threshold False positives False negatives

D ND D ND D ND

FasterRCNN >=0.8 >0 1 0 1 2
YOLOv5 >0 >=0.43 0 0 5 3
EfficientDet >0 >=0.52 0 0 3 3

5.2. Thresholds

In order to improve the accuracy of the models used in this study,
thresholds for each model were analysed to determine the settings that
produced the best results. Specifically, the aim was to strike a balance
between reducing the number of false positives and false negatives for
both defective and non-defective items. Depending on the type of item
being analysed, the focus was on either maximizing precision or recall.
This allowed for the creation of more trusted results, which were shown
in Table 11.

For defective items, it was crucial to minimize the number of false
negatives in order to ensure that the model always alerted the user
to the presence of a defect. Conversely, for non-defective items, the
priority was to minimize the number of false positives in order to avoid
erroneously categorizing these items as defective. The thresholds used
to achieve these goals were presented in Table 11. Among the three
models tested, Faster RCNN showed the best results when considering
these priorities, with a precision of 1 and 0 false positives for non-
defective items and a recall of 0.9375 with just one false negative for
defective items, as shown in Table 12.

5.3. Data repercussion

The data used to train Yolov5, Faster RCNN and EfficientDet had a
great impact on the results obtained. Being precision values high for
most classes, the impact of the training dataset is not relevant. For
recall, in contrast, the figure shows how the classes with lower images
had lower values. In other words, the lower the number of images, the
higher the number of false negatives. The following graphs compare
the data used for the training and the results of precision (Fig. 24) and
recall (Fig. 25) for each class and model considering accepted all the
confidence levels.

Being precision values high for most classes, the impact of the
training dataset is not relevant. For recall, in contrast, the figure shows
how the classes with lower images had lower values. In other words, the
lower the number of images, the higher the number of false negatives.
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Fig. 20. Precision-Recall curve for defective annotations.

Fig. 21. Precision-Recall curve for non-defective annotations.

Fig. 22. Mean threshold per model.

11
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Fig. 23. FN and FP for class and model.

Fig. 24. Precision v original dataset.

Fig. 25. Recall v original dataset.

12
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.4. Limitations

In this study, several limitations were identified and are described
s follows. Firstly, it should be noted that the results obtained from
he three models are based on a specific dataset. Changing this dataset
ould result in different outcomes than those obtained. It may be
eneficial to add more images or replace some with others to improve
he precision and recall obtained, especially since certain classes lack
ufficient images. Additionally, this study only focuses on three types
f defects found on railway tracks, and other types could be considered
n future studies.
Furthermore, there are certain limitations to how the programs

lassify defective and non-defective elements. Classifying an item as
efective does not necessarily mean that the program understands that
t cannot be classified as non-defective, and vice versa. The models are
rained to detect objects, and the designation of faulty or non-faulty is
imply a label that is added during the training process. Therefore, the
rogram may not understand that faulty and non-faulty are mutually
xclusive categories and could detect that an object is both faulty and
on-faulty at the same time, as it is simply a label. These limitations
hould be taken into consideration when interpreting the results of this
tudy and when applying the models to other scenarios. There is a need
o start a model which can be used for a binary and multi classification
nd can link that if one object is detected as ‘‘A’’ then that same object
annot be detected as ‘‘B’’.

. Conclusions

The paper aimed to test object detection models to detect defects
n railway tracks and thus considerably reduce the risk of manual
nspection and maintenance. Due to this study, it has been possible to
alidate the effectiveness that object detection could have in the field
f railway and specifically in maintenance and inspection. It should be
oted that the lack of images of some of the defective elements has led
o this low recall for some of the classes.
Faster RCNN has proven to be the most effective model for this

ataset in terms of accuracy and recall. In addition, the importance of a
ataset with enough images has been demonstrated, since if this is not
he case, the results obtained by one model, or another may be affected.
To be able to improve some of the results or to continue advancing

ith this study, different future projects have been proposed to im-
lement object detection techniques in the railway sector. Firstly, due
o the lack of faulty railway track data, it would be interesting to be
ble to extend the work confidentially to a company that can provide
13
this information. With more images, the dataset could be expanded,
and more accurate and effective results could be obtained. With a
wider range of photographs, the classification presented so far could
be more detailed. For example, for the fishplate defects, instead of
considering the lack of screws as the same defect, different classes could
be made for the lack of one or more of the four screws, thus training
the programme more effectively. In addition, other defects have not
been considered in this project, which would also be interesting to
comment on. On the other hand, it should be noted that following
the risk, further investigation should be carried out to optimize the
automated process. Using cameras or robots on the train tracks, these
images could automatically pass through a programme that detects
whether the elements are defective or not.

Future work involves exploring meta-heuristic algorithms, such as
the grey wolf optimization algorithm, whale optimization algorithm,
and sparrow search algorithm, to solve this problem. Additionally,
compared to binary classification, incorporating multi-classification
analysis has the potential to significantly enhance the accuracy of the
proposed model. Therefore, this aspect has been identified as a topic
for further research.
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ppendix A. Extra image dataset information

.1. Aspect ratio of original images

See Fig. A.1.
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Fig. A.2. Defective 1 heatmap.

Fig. A.3. Non-defective 1 heatmap.

Fig. A.4. Defective 2 heatmap.

A.2. Annotations heatmap for each class (https://roboflow.com/)

See Figs. A.2–A.7.

A.3. Annotations per image

Fig. A.8.
14
Fig. A.5. Non-defective 2 heatmap.

Fig. A.6. Defective 3 heatmap.

Fig. A.7. Non-defective 3 heatmap.

Table B.1
Expected results v obtained in the models.

Results

D1 ND1 D2 ND2 D3 ND3 Total

Real Boxes 3 19 10 4 3 5 44
Faster RCNN 4 19 11 3 3 4 44
Yolo v5 3 18 6 4 2 4 37
EfficientDet 3 20 9 3 1 3 39

Appendix B. Precision and recall calculations

See Tables B.1–B.4.

https://urldefense.proofpoint.com/v2/url?u=https-3a__roboflow.com_&d=dwmfaq&c=kvegjkexih4bmfggs-lrbcbewnnygw6-rj0jk7via_e&r=_ygypgt23ddzbh_nz6cdxskwukj6nelcyitospdbnks&m=dlvn3hekonzkpkmwwd5bmemz-eee7b7gwitcui4od2e7tqpfzglcodypar88s8_c&s=v1zvdebb0hjs7xq4sv2otgvkqffmenysfu12vz0lrqa&e=
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Fig. A.8. Annotation count per image.
Table B.2
Total true positives.

True positives

D1 ND1 D2 ND2 D3 ND3 Total

Faster RCNN 3 19 10 3 2 4 41
Yolo v5 3 18 6 3 2 4 36
EfficientDet 3 19 9 3 1 3 38

Table B.3
Total false negatives.

False postives

D1 ND1 D2 ND2 D3 ND3 Total

Faster RCNN 1 1 1 3
YOLO v5 1 1
EfficientDet 1 1

Table B.4
Total false positives.

False negatives (not detected)

D1 ND1 D2 ND2 D3 ND3 Total

Faster RCNN 0 0 0 0 1 1 3
Yolo v5 0 1 4 1 1 8
EfficientDet 0 0 1 1 2 2 6
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