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Abstract

With the dramatic advances in deep learning technology, machine learning research is focusing on

improving the interpretability of model predictions as well as prediction performance in both basic

and applied research. While deep learning models have much higher prediction performance than

conventional machine learning models, the specific prediction process is still difficult to interpret

and/or explain. This is known as the black-boxing of machine learning models and is recognized

as a particularly important problem in a wide range of research fields, including manufacturing,

commerce, robotics, and other industries where the use of such technology has become commonplace,

as well as the medical field, where mistakes are not tolerated.

Focusing on natural language processing tasks, we consider interpretability as the presentation

of the contribution of a prediction to an input word in a recurrent neural network. In interpret-

ing predictions from deep learning models, much work has been done mainly on visualization of

importance mainly based on attention weights and gradients for the inference results. However, it

has become clear in recent years that there are not negligible problems with these mechanisms of

attention mechanisms and gradients-based techniques. The first is that the attention weight learns

which parts to focus on, but depending on the task or problem setting, the relationship with the

importance of the gradient may be strong or weak, and these may not always be strongly related.

Furthermore, it is often unclear how to integrate both interpretations. From another perspective,

there are several unclear aspects regarding the appropriate application of the effects of attention

mechanisms to real-world problems with large datasets, as well as the properties and characteristics
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of the applied effects. This dissertation discusses both basic and applied research on how attention

mechanisms improve the performance and interpretability of machine learning models.

From the basic research perspective, we proposed a new learning method that focuses on the vul-

nerability of the attention mechanism to perturbations, which contributes significantly to prediction

performance and interpretability. Deep learning models are known to respond to small perturba-

tions that humans cannot perceive and may exhibit unintended behaviors and predictions. Attention

mechanisms used to interpret predictions are no exception. This is a very serious problem because

current deep learning models rely heavily on this mechanism. We focused on training techniques

using adversarial perturbations, i.e., perturbations that dares to deceive the attention mechanism.

We demonstrated that such an adversarial training technique makes the perturbation-sensitive at-

tention mechanism robust and enables the presentation of highly interpretable predictive evidence.

By further extending the proposed technique to semi-supervised learning, a general-purpose learning

model with a more robust and interpretable attention mechanism was achieved.

From the applied research perspective, we investigated the effectiveness of the deep learning

models with attention mechanisms validated in the basic research, are in real-world applications.

Since deep learning models with attention mechanisms have mainly been evaluated using basic tasks

in natural language processing and computer vision, their performance when used as core components

of applications and services has often been unclear. We confirm the effectiveness of the proposed

framework with an attention mechanism by focusing on the real world of applications, particularly

in the field of computational advertising, where the amount of data is large, and the interpretation

of predictions is necessary. The proposed frameworks are new attempts to support operations by

predicting the nature of digital advertisements with high serving effectiveness, and their effectiveness

has been confirmed using large-scale ad-serving data.

In light of the above, the research summarized in this dissertation focuses on the attention mech-

anism, which has been the focus of much attention in recent years, and discusses its potential for

both basic research in terms of improving prediction performance and interpretability, and applied

v



research in terms of evaluating it for real-world applications using large data sets beyond the lab-

oratory environment. The dissertation also concludes with a summary of the implications of these

findings for subsequent research and future prospects in the field.
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Chapter 1

Introduction

Deep learning [1] is one of the machine learning (ML) models and has contributed greatly to the

current development of artificial intelligence (AI). Compared to traditional ML models such as

decision trees [2] and support vector machines [3], DL models have been shown to dramatically

improve prediction performance in various fields because they can automatically learn important

features from data to realize a goal through the training. DL models, which do not require knowledge

about the subject, have demonstrated predictive and generative abilities beyond human capabilities,

especially in the fields of computer vision (CV) [4, 5] and natural language processing (NLP) [6, 7].

Because ML/DL models will be used more frequently in the future, it is necessary for users to be

able to interpret the validity of the prediction results of these models and the basis for them, in

terms of the reliability and practicality of the models.

While the recent DL model has excellent prediction performance, it is difficult to interpret and

explain the model prediction due to the complex architecture of the model. This black box and/or

not transparent nature is an important issue that needs to be resolved [8]. Explainable AI is a field

that seeks to explain the predictions of ML/DL models. This field has been studied for more than

40 years [9, 10], and classical explainable AI provided explanations based on roles constructed by

humans carefully. Recent DL models have complex neural network (NN) structures consisting of

1
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various nonlinear transformations, making a human interpretation of the internal inference process

very difficult. The interpretability of the predictions is recognized as a particularly important issue

in a wide range of research fields, including manufacturing [11], e-commerce [12], and robotics [13],

where the use of DL models is becoming common, as well as in the medical field [14] and autonomous

driving [15], where mistakes are not tolerated.

1.1 Objectives and Requirements for Explainable AI

Explainability/interpretability for ML/DL models can be taken to mean a variety of things. In

this section, we clarify our position on the interpretation and usage of these terms for ML/DL

models in this dissertation, with examples of what is stated in the literature in the related fields.

Previous studies have attempted to clarify the purpose and requirements for explainable AI [16–18].

Additionally, there are examples of companies such as Google 1 and Amazon 2, which place ML at

the center of their business, discussing the provision of explanations from the standpoint of providing

their systems and services.

Explainable AI should consider the audience because the contents and details of the reasons to

be presented by depending on the audience. As a promising definition of explainable AI, Arrieta et

al. [16] define it as follows:

Given an audience, an explainable Artificial Intelligence is one that produces details or

reasons to make its functioning clear or easy to understand.

Additionally, Arrieta et al. [16], in light of the previous explainable AI research, have identified the

following nine goals for the research: (1) trustworthiness, (2) causality, (3) transferability, (4)

informativeness, (5) confidence, (6) fairness, (7) accessibility, (8) interactivity, (9) privacy

awareness.

We agree with the above definition of Arrieta et al. [16] and aim to achieve the following goal

1https://cerre.eu/wp-content/uploads/2020/07/ai_explainability_whitepaper_google.pdf
2https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.

pdf

https://cerre.eu/wp-content/uploads/2020/07/ai_explainability_whitepaper_google.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf
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for the audiences: “building explainable AI that provides reasons and details that make understand-

ing easier.” As described below, this dissertation is divided into discussions of basic and applied

perspectives, each of which aims to define and improve “model interpretability” as follows. In the

basic research perspective, the goal is to provide an interpretation that makes the basis for the

predictions of multiple interpretation methods identical. This goal focuses on (1) trustworthiness,

which is the state of trust that the model will function as intended when the problem is solved, and

(5) confidence, which is the state of stability in the behavior of the model. In the applied research

perspective, assuming that the audience is the operator of the service, the goal is to provide an

interpretation that better supports the operator’s decision-making. This goal focuses on (4) infor-

mativeness, the state in which humans can extract the information necessary for decision-making

when solving real-world problems.

Throughout this dissertation, we will focus on the interpretation of each word in the input sen-

tence/document in the prediction of NLP models. By making it possible for audiences to interpret

where the model contributes predictions to the input, we believe that the above definition of ex-

plainable AI is satisfied. The ability to interpret the contribution of inputs from the DL model is

useful for validating the model behavior, analyzing errors, and making decisions when operating the

model in the real world.

1.2 Explainable AI Methods to Interpret the Prediction Re-

sults

There are two major approaches to the black box nature of DL models: (1) designing transparent

models [19–21] and (2) providing post-hoc explanations for model predictions [12, 22, 23]. For (1),

the design of transparent models involves research into understanding the architecture of the model

itself [18] and the learning algorithms of the model [21]. In DL models, these works have limited ap-

plicability to the target model architecture, making them difficult to apply to existing models. They
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typically have limited prediction performance as they attempt to provide human-interpretable ex-

planations. For (2), the post-hoc explanation methods involve visualization of factors that influence

predictions [23,24], and providing analytical explanations with concrete examples if applicable [25].

The post-hoc approach is widely used today because it generally applies to DL models and is easier

than designing transparent models.

In the following, we explain the visualization approaches of importance based on the gradient

for the prediction result and the learned attention weights in the post-hoc explanation, which is

nowadays the mainstream interpretation of the predictions. First, we define the mathematical

formulas that will be used throughout this dissertation with respect to these approaches.

We consider a recurrent-neural network (RNN) model for NLP task. The input of the model is

word sequence x = (x1, x2, · · · , xT ) ∈ VT of the length T where the words taken from vocabulary

V. The output of the model is ŷ ∈ RC corresponds to ground truth y ∈ RC , where C is the set of

class labels. We introduce the following short notation for the word sequence (x1, x2, · · · , xT ) as

(xt)
T
t=1. Let wt ∈ Rd be a d-dimensional word embedding corresponding to xt. We represent each

word with the word embeddings to obtain (wt)
T
t=1 ∈ Rd×T . The word embeddings is encoded with

encoder Enc to obtain the m-dimensional hidden states:

ht = Enc(wt,ht−1) ∈ Rm, (1.1)

where h0 is the initial hidden state, and it is regarded as a zero vector.

1.2.1 Gradient-based Approach

The gradient-based approach estimates the contribution of input x to ground truth y or prediction

ŷ by computing the partial derivative of x with respect to y or ŷ. Here we use the term gradient

for ∂y/∂x. The goal of the gradient-based approach is to estimate attribution maps gc = (gci )Ti=1 for

each word. The attribution maps gc are considered to capture the importance of each input word

for a particular output class c ∈ C.
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Following the advent of AlexNet [4], shortly after DL first came into the limelight, an early

gradient-based approach was proposed by Simonyan et al. [24] and has long supported the inter-

pretation of DL model predictions. They used a formulation similar to the above to present the

attribute map to the user as a saliency map based on its absolute value:

gc
saliency =

∣∣∣∣∂y∂x
∣∣∣∣ . (1.2)

The core idea of gradient-based methods is to map gradient information backward into the input

space based on labels or inference results.

Because gradient-based approaches are applicable to all DL models trained by backpropagation,

they have been used for many years in various fields for insight into the internal workings of models

and for error analysis [22, 23, 26]. Since then, gradient-based approaches such as GradCAM [22],

DeepLIFT [26], and Integrated Gradient [23] have been proposed to provide interpretations of pre-

dictions that provide deeper human insight, different from the rule-based approaches that were

common during classical explainable AI. There is a large body of literature claiming that gradient-

based approaches can be used to explain the importance of input features [27,28].

Gradient-based approaches have a variety of advantages. First, gradient-based methods are

fast and efficient in the computation of attribution maps. It is easily scalable because it does not

depend on the number of input features, and it can be easily computed with high performance with

the support of deep learning frameworks. Second, it can be applied to existing models and any

network architecture with very few lines of code by overriding the gradient of nonlinearity in the

computational graph. It is easy to implement because there is no need to implement custom layers

or operations.

On the other hand, there are limitations to gradient-based approaches. The biggest problem is

that the attribution maps presented are often visually noisy [29]. The gradient-based approaches

assume that small changes in input features cause small changes in predictions, which may not

always be the case [30]. Additionally, they are sensitive to the choice of input baseline, which
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can affect the attribution scores [23, 31]. The gradient-based approaches are not able to capture

interactions between features and, therefore, may not provide a complete explanation of the model’s

predictions [32].

1.2.2 Attention-based Approach

In recent DLs, attention mechanisms [6, 33] are used to focus more attention on specific parts of

the input as the model processes it. The effectiveness of the mechanism was initially validated in

machine translation [33] and image captioning [34], but it is now being expanded in a wide variety

of tasks. The attention mechanism works by assigning weights to each part of the input.

The key component in the attention mechanism is an attention score function S(·, ·). The score

function maps a query Q and key K to attention score ãt for the t-th word. For the NLP tasks,

we consider K = (ht)
T
t=1. The attention scores ã = (ãt)

T
t=1 projected to sum to 1 by a alignment

function A, which results in the attention weights a as follows:

a = A(K,Q) = ϕ(S(K,Q)), (1.3)

where ϕ is a projection function to probability, such as softmax. The weight a indicates the impor-

tance of that portion to the current task. These weights are then used to selectively focus on the

most important parts of the input to generate output. We then compute weighted instance vector

ha as a weighted sum of the hidden states:

ha =

T∑
i=1

atht (1.4)

Finally, ha is fed to a prediction layer, which outputs a probability distribution over the set of

categories C.

The score function conventionally uses the following additive attention formulation:

Sadd(K,Q)i = v⊤ tanh (W1Kt + W2Q), (1.5)
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where W1,W2 ∈ Rd×M and v ∈ Rd are the learnable parameters. Currently, the Transformer and

other variants often use the following scaled-dot product attention formulation:

Sprod(K,Q) =
K⊤Q√

m
(1.6)

In this dissertation, each evaluation is carried out with additive attention formulation as the score

function.

While the gradient-based approach can interpret the prediction of a model without any interpre-

tation/explanation mechanism, the attention-based DL model allows for the interpretation of the

model by visualizing the learned attention weights. Explanations based on learned weights of atten-

tion mechanisms [33] can be shown in a forward direction for DL model inputs, giving a clear expla-

nation that appeals to human intuition. Since the attention mechanism introduced in conventional

RNN is generally placed before the last layer (or the last layer of the encoder in encoder-decoder

architecture), the attention weights are learned to emphasize the part that contributes to the final

prediction. For the Transformer model [6], which has been attracting much interest in recent years,

attention rollout [35] has been proposed, which visualizes the result of the matrix product of the

attention scores.

1.3 Discussion on Post-hoc Explanation Approaches

Although the attention mechanism contributes significantly to predictive performance and model

interpretability, researchers find that the mechanism still suffers in the predictive interpretation of

the model. In a claim that surprised the field, Jain and Wallace [36] argued that “attention is not an

explanation.” They reported the following two major problems in a simple RNN-based model with

the attention mechanism, especially by NLP task: (1) There is not necessarily a strong correlation

between the regions estimated to be important by attention weights and those obtained by gradients.

(2) Small perturbations to the attention mechanism lead to unintended predictive changes, and

those adversarial perturbations that deceive the mechanism lead to large predictive errors. For (1),
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the authors reported that Kendall’s rank correlations [37] of importance indicated by the learned

attention weight and word importance calculated by the gradient show almost no correlation. For

(2), they found that small perturbations to the attention mechanisms lead to unintended prediction

changes, while adversarial perturbations that deceive the mechanism lead to large prediction errors.

Against the weak explanatory nature of the attention mechanisms reported above, refutational

analyses and methods to overcome them have been proposed in recent years [38–41]. On the an-

alytical side, Wiegreffe and Pinter [38] argued that Jain and Wallace [36]’s claim depends on the

definition of explanation and that testing it requires considering different aspects of the model with

attention mechanisms in a rigorous experimental setting. Furthermore, similar to Wiegreffe and

Pinter [38], several studies argue that the effects of explanations by attention mechanisms vary

depending on the definition of explanatory properties [39, 40, 42]. With regard to improving the

interpretability of the attention mechanism, there are some studies that re-examined the structure

of the mechanism itself [43] or proposed a training technique that makes the attention mechanism

robust to perturbations indirectly [44]. On the other hand, to our knowledge, no technique has been

proposed to directly address the vulnerability of attention mechanisms to perturbation, as pointed

out in Jain and Wallace [36].

In the light of the definition of explainable AI in the Arrieta et al. [16], if each interpretation

approach provides a different interpretation, it will have a negative impact on the audience, especially

in the trustworthiness and confidence. As described above, various studies have been conducted

on the interpretability of DL models, focusing on the gradient- and attention-based approaches.

However, a comprehensive synthesis of these multiple approaches to obtain reliable and robust

interpretations is an important basic research direction, and there remains room for further research.
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1.4 Interpreting Deep Learning Models in Real-World Ap-

plications

While the above discussion focused on the interpretation of DL models in the basic research per-

spectives, this section describes the provision of interpretation in DL models that are operated in

the real world. To begin with, we emphasize that there are still few studies that have validated

using real-world datasets under a practical situation. We speculate that this may be because in-

formation about applications in the real world is often confidential. Therefore, DL-based models,

including attention-based models, have been developed in fields such as machine translation [6, 33],

machine reading comprehension [7], and image classification [45]. However, the development and

evaluation of such models have been carried out on relatively small and well-organized data sets,

limited to so-called laboratory environments. One of the root causes of the limitation is the lack of

publicly available dataset, which is important for the research area. The effectiveness of DL models

outside of these data-available areas remains to be developed. So far, attention-based DL models

have been reported to perform well on various tasks. On the other hand, it remains unclear how

the DL models perform on noisier, more imbalanced, and diverse real-world data that may deviate

from the benchmark dataset.

The literature evaluating its interpretability in DL models operating in the real world is even

less extensive than the literature evaluating its performance on real-world datasets. According

to Arrieta et al. [16] and the industry tech giants, Explainable AI is expected to be an AI that

provides such audience/operators with details and reasons to clarify their own behavior or to facilitate

understanding. Furthermore, there is a certain need to build a DL model that can provide high

prediction performance and prediction evidence, which have not been achieved by conventional ML

models. In sum, there is currently limited research on developing models that can be interpreted for

practical use of large real-world data. This point remains an important applied research issue.
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1.5 The Proposals of this Dissertation

1.5.1 Basic Research Perspectives

In terms of the basic research for this dissertation, Chapters 2 and 3 describe the vulnerability

of the attention mechanism, which is essential to DL models, to perturbations and countermea-

sures against it. We further discuss the interpretability of our technique after its application. The

majority of prior studies have suggested that interpretation is possible by investigating where the

attention mechanisms assign large weight to the model inputs. On the other hand, we believed that

the mechanism was vulnerable to noise, which would negatively affect prediction performance and

interpretability.

To overcome the above challenges, a natural idea is: to introduce adversarial perturbation to

the attention mechanism that is vulnerable to perturbation so that it learns to be robust to noise.

We focus on adversarial training (AT) [46] to deal with adversarial examples [47] that produce

inaccurate model output. AT [46] was first proposed in the field of image recognition as a method to

overcome the weak point where the model can be fooled by input small noise/perturbation that is

imperceptible to humans. Since then, AT has been introduced in the NLP field and has demonstrated

its usefulness in areas which is difficult for the DL model to predict, even when the text is mixed with

metaphorical expressions that are understandable to humans (e.g., fake news detection [48]). While

AT in NLP is often applied to the input space, its effects when applied to attention mechanisms

remain unclear.

The basic research perspective of this dissertation proposes a new training technique that focuses

on the vulnerability to perturbations of the attention mechanism and contributes significantly to

prediction performance and prediction interpretation. We consider using AT, in which perturbations

are applied to deceive the mechanisms, exploiting adversarial perturbations. By employing the

proposed technique, DL model will be trained to pay stronger attention to areas that are more

important for prediction, which is expected to not only improve prediction performance but also

improve model interpretability.
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Adversarial Training for Attention Mechanism

Inspired by AT [46], a powerful regularization technique for enhancing model robustness, we aim

to overcome the vulnerability of the attention mechanism to perturbations. In Chapter 2, we pro-

pose a general training technique for natural language processing tasks, including AT for attention

(Attention AT) and more interpretable AT for attention (Attention iAT). The proposed techniques

improved the prediction performance and the model interpretability by exploiting the mechanisms

with AT. In particular, Attention iAT boosts those advantages by introducing adversarial perturba-

tion, which enhances the difference in the attention of the sentences. Evaluation experiments with

ten open datasets revealed that AT for attention mechanisms, especially Attention iAT, demon-

strated (1) the best performance in nine out of ten tasks and (2) more interpretable attention (i.e.,

the resulting attention correlated more strongly with gradient-based word importance) for all tasks.

Additionally, the proposed techniques are (3) much less dependent on perturbation size in AT.

Virtual Adversarial Training for Attention Mechanism

AT has successfully reduced the disadvantage of being vulnerable to perturbations to the atten-

tion mechanisms by considering adversarial perturbations, as shown in Chapter 2. However, this

technique requires label information, and thus, its use is limited to supervised settings. In Chapter

3, we explore the approach of incorporating virtual AT (VAT) [49] into the attention mechanisms,

by which adversarial perturbations can be computed even from unlabeled data. To realize this

approach, we propose two general training techniques, namely VAT for attention mechanisms (At-

tention VAT) and “interpretable” VAT for attention mechanisms (Attention iVAT), which extend

AT for attention mechanisms to a semi-supervised setting. In particular, Attention iVAT focuses on

the differences in attention; thus, it can efficiently learn clearer attention and improve model inter-

pretability, even with unlabeled data. Empirical experiments based on six public datasets revealed

that our techniques provide better prediction performance than conventional AT-based as well as

VAT-based techniques, and stronger agreement with evidence that is provided by humans in detect-

ing important words in sentences. Moreover, our proposal offers these advantages without needing



CHAPTER 1. INTRODUCTION 12

to add the careful selection of unlabeled data. That is, even if the model using our VAT-based

technique is trained on unlabeled data from a source other than the target task, both the prediction

performance and model interpretability can be improved.

1.5.2 Applied Research Perspectives

In terms of applied research for this dissertation, Chapters 4 and 5 describe research on applications

of ML/DL models in NLP tasks. In particular, we focus on applications to the field of computational

advertising [50], which has a significant impact on business. The field of computational advertising

is a relatively new and important business-related research topic, dealing with very large online

data volumes of the order of 100 million. Display advertising is a type of online advertising in

which an advertiser pays a publisher to display graphical material on the publisher’s web page

or application. This graphical material, which primarily contains images and text, is commonly

referred to as ad creative and serves to effectively provide product information to consumers who

are willing to buy. The market for digital advertising has been expanding enormously and is expected

to grow further in the future. In fact, the IAB internet advertising revenue report 2021 [51] states

that “digital advertising revenue increased 35.4% year over year, the highest growth since 2006.”

Since it is difficult to operate ad data due to its large scale manually, a methodology is expected to

provide operational support by means of a computer to distribute highly effective ads and discontinue

ineffective ads.

Mainstream research in online advertising estimates click-through rate (CTR) and conversion

rates (CVR) for users of the ads being served. For such tasks, various methods based on ML/DL

have recently emerged [52–56], including the variants of factorization machines [57–60] that can

consider feature interactions. While these have been evaluated and assessed on anonymized ad-

serving benchmark datasets such as Criteo3 and Avazu4 and have reported some improvement in

prediction performance, very few studies have evaluated them on other data, including real-world

data [61, 62]. This is because ad data is generally very complex in terms of rights involving a large

3http://labs.criteo.com/2013/12/download-terabyte-click-logs/
4https://www.kaggle.com/c/avazu-ctr-prediction

http://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://www.kaggle.com/c/avazu-ctr-prediction
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number of stakeholders, making it difficult to disclose. Additionally, there are very few studies on the

prediction of effectiveness for ads with no delivery performance, the so-called cold start setting [63].

The applied aspect of this dissertation describes the practical application of NLP technology to

the computational advertising field and discuss the prediction performance and model interpretabil-

ity of the proposed frameworks. Chapter 4 describes a framework for evaluating ad creatives that

are more effective in terms of serving. Although it is important to evaluate in advance what kind of

ad creatives should be served, it is also important to provide evidence as to why the ad creatives are

effective in order to improve newly created ad creatives and judge the validity of such evaluations.

Chapter 5 describes a framework for automating the discontinuation of ad creatives with less serving

effectiveness. Predicting the timing of ad discontinuation itself is important. Additionally, providing

some evidence as to why the ad creative is discontinued at a certain time is an important indicator

for advertisers and ad operators to consider whether to trust the prediction. This is a major factor

in confidence in the DL model.

Operational Support for More Effective Ad Creatives

Accurately predicting conversions in advertisements is generally a challenging task because such

conversions do not occur frequently. In Chapter 4, we propose a new framework to support creating

high-performing ad creatives, including the accurate prediction of ad creative text conversions before

serving them to the consumer. The proposed framework includes the key ideas needed to train the

model: multi-task learning and conditional attention mechanism. The multi-task learning is an idea

to improve prediction performance by simultaneously predicting clicks and conversions in order to

overcome the difficulty of prediction due to data imbalance. The conditional attention mechanism

is a new mechanism that can take into account the attribute values of the ad creative, such as the

genre of the ad creative and the gender of the delivery target, to further improve the performance of

conversion prediction. We evaluated the proposed framework on actual large-scale serving history

data and confirmed that these ideas improved the performance of conversion prediction.



CHAPTER 1. INTRODUCTION 14

The conditional attention mechanism incorporated in the proposed framework is capable of inter-

preting word expressions that contribute to the effectiveness of ad serving. Attention highlighting

using the learned conditional attention mechanism predicts conversions in advance, taking into

account the attribute values set at the time of ad submission, and simultaneously visualizes the

importance of the words that contributed to the prediction. By observing the attention highlighting

when the proposed method predicts a high number of conversions for a prototype ad creative, it is

possible to confirm the word expressions that better fits the target ad attributes.

Operational Support for Less Effective Ad Creatives

Discontinuing ad creatives at an appropriate time is one of the most important ad operations that

can have a significant impact on sales. Such operational support for ineffective ads has been less

explored than that for effective ads. After pre-analyzing 1,000,000 real-world ad creatives, we found

that there are two types of discontinuation: short-term (i.e., cut-out) and long-term (i.e., wear-out).

In Chapter 5, we propose a practical prediction framework for the discontinuation of ad creatives

with a hazard function-based loss function inspired by survival prediction. Our framework accurately

predicts the appropriate timing for the discontinuation of two types of digital advertisements, short-

term and long-term. The framework consists of two main techniques: (1) a two-term estimation

technique with multi-task learning and (2) a click-through rate-weighting technique for the loss

function. We evaluated our framework using 1,000,000 real-world ad creatives, including 10 billion

scale impressions.

The attention mechanism incorporated in the proposed framework allows us to interpret the word

expressions that contributes to ad discontinuation. While various factors determine ad discontinua-

tion, we expect that short- and long-term discontinuation in the ad text will show different trends.

Specifically, in the short-term discontinuation, it is possible to identify word expressions in which

the user did not show interest. On the other hand, in the long-term discontinuation, it is possible

to confirm word expressions that are no longer in season. Based on the interpretation of these word

expressions, the operator can make a final decision to discontinue the ad creatives. Unfortunately,
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due to restrictions on information disclosure, quantitative evaluation of interpretability by specific

attention visualization is not possible. Meanwhile, we report that the performance of the framework

is sufficient to support ad operators, and the word-by-word visualization the framework provides has

significant advantages that could support discontinuation.

1.6 Thesis Structure

The remainder of this thesis is organized as follows. The first two are chapters on aspects of basic

research, and the next two are chapters on aspects of applied research. The last chapter is the

conclusion of this thesis:

• Chapter 2 describes adversarial training for attention mechanisms.

• Chapter 3 describes virtual adversarial training for attention mechanisms.

• Chapter 4 describes conversion prediction for ad creatives.

• Chapter 5 describes discontinuation prediction for ad creatives.

• Chapter 6 provides a discussion of the applicability, interpretability, and development of the

proposed method throughout this dissertation.

• Chapter 7 contains the conclusion section of this dissertation.



Chapter 2

Adversarial Training for Attention

Mechanisms

A serious problem was pointed out in Jain and Wallace [36] that attention mechanism, a key com-

ponent of current deep learning models, is vulnerable to perturbations. This chapter 2 aims to

address the problem by employing adversarial training to attention mechanism. An overview of at-

tention mechanism and the background of our proposed technique to its vulnerabilities is described

in Section 2.1. Related work on attention mechanisms and adversarial training is described in Sec-

tion 2.2. We propose new adversarial training techniques for attention mechanism (Attention AT)

and interpretable one (Attention iAT) in Section 2.3 that make attention mechanisms robust to per-

turbations. Our proposed techniques introduce perturbations that deceive the attention mechanism

during training, and we present the experimental conditions under which we compare our techniques

to the conventional AT for word embedding in Section 2.4. We confirm in Section 2.5 that our tech-

niques perform better in terms of prediction performance and interpretability than the conventional

techniques that introduce perturbations to word embeddings. We present in Section 2.6 the compar-

ison and discussion of the proposed techniques in terms of AT for attention and word embeddings,

and in terms of the type of perturbation. Finally, we summarize this chapter in Section 2.7.

16
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2.1 Background

Attention mechanisms [33] are widely applied in NLP field through DNNs. As the effectiveness

of attention mechanisms became apparent in various tasks [41, 64–68], they were applied not only

to RNNs but also to CNNs. Moreover, Transformers [6] which make proactive use of attention

mechanisms have also achieved excellent results. However, it has been pointed out that DNN models

tend to be locally unstable, and even tiny perturbations to the original inputs [47] or attention

mechanisms can mislead the models [36]. Specifically, Jain and Wallace [36] used a practical bi-

directional RNN (BiRNN) model to investigate the effect of attention mechanisms and reported

that learned attention weights based on the model are vulnerable to perturbations.1

The Transformer [6] and its follow-up models [70,71] have self-attention mechanisms that estimate

the relationship of each word in the sentence. These models take advantage of the effect of the

mechanisms and have shown promising performances. Thus, there is no doubt that the effect of the

mechanisms is extremely large. However, they are not easy to train, as they require huge amounts of

GPU memory to maintain the weights of the model. Recently, there have been proposals to reduce

memory consumption [72], and we acknowledge the advantages of the models. On the other hand,

the application of attention mechanisms to DNN models, such as RNN and CNN models, which have

been widely used and do not require relatively high training requirements, has not been sufficiently

studied.

In this chapter, we focus on improving the robustness of commonly used BiRNN models (as

described detail in Section A.1) to perturbations in the attention mechanisms. Furthermore, we

demonstrate that the result of overcoming the vulnerability of the attention mechanisms is an im-

provement in the prediction performance and model interpretability.

To tackle the models’ vulnerability to perturbation, Goodfellow et al. [46] proposed adversarial

training (AT) that increases robustness by adding adversarial perturbations to the input and the

training technique forcing the model to address its difficulties. Previous studies [46, 73] in the

1In Jain and Wallace [36], the vulnerability of attention mechanisms to perturbations is confirmed with an RNN-
based model [36]. In this chapter, we focus on the model, and Transformer [6]-based model such as BERT [69] and
their successor models [70,71] will be future work.
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    Attention heatmap of a recent NLP model

+ Adversarial perturbation

    After training with adversarial perturbation for attention:

A gentle compassionate drama about grief and healing

A gentle compassionate drama about grief and healing

A gentle compassionate drama about grief and healing

Figure 2.1: An example of an attention heatmap for a BiRNN model with attention mechanisms and
the model with attention mechanisms trained with adversarial training from the Stanford Sentiment
Treebank (SST) [74]. The proposed adversarial training for attention mechanisms helps the model
learn cleaner attention.

image recognition field have theoretically explained the regularization effect of AT and shown that

it improves the robustness of the model for unseen images.

AT is also widely used in the NLP field as a powerful regularization technique [75–78]. In

pioneering work, Miyato et al. [75] proposed a simple yet effective technique to improving the

text classification performance by applying AT to a word embedding space. Later, interpretable

AT (iAT) was proposed to increase the interpretability of the model by restricting the direction

of the perturbations to existing words in the word embedding space [76]. The attention weight

of each word is considered an indicator of the importance of each word [79], and thus, in terms

of interpretability, we assume that the weight is considered a higher-order feature than the word

embedding. Therefore, AT for attention mechanisms that adds an adversarial perturbation to deceive

the attention mechanisms is expected to be more effective than AT for word embedding.

From motivations above, we propose a new general training technique for attention mechanisms

based on AT, called adversarial training for attention (Attention AT) and more interpretable ad-

versarial training for attention (Attention iAT). The proposed techniques are the first attempt to

employ AT for attention mechanisms. The proposed Attention AT/iAT is expected to improve
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the robustness and the interpretability of the model by appropriately overcoming the adversarial

perturbations to attention mechanisms [80–82]. Because our proposed AT techniques for attention

mechanisms is model-independent and a general technique, it can be applied to various DNN mod-

els (e.g., RNN and CNN) with attention mechanisms. Our technique can also be applied to any

similarity functions for attention mechanisms, e.g, additive function [33] and scaled dot-product

function [6], which is famous for calculating the similarity in attention mechanisms.

To demonstrate the effects of these techniques, we evaluated them compared to several other

state-of-the-art AT-based techniques [75, 76] with ten common datasets for different NLP tasks.

These datasets included binary classification (BC), question answering (QA), and natural language

inference (NLI). We also evaluated how the attention weights obtained through the proposed AT

technique agreed with the word importance calculated by the gradients [24]. Evaluating the proposed

techniques, we obtained the following findings concerning AT for attention mechanisms in NLP:

• AT for attention mechanisms improves the prediction performance of various NLP tasks.

• AT for attention mechanisms helps the model learn cleaner attention (as shown in Figure 2.1)

and demonstrates a stronger correlation with the word importance calculated from the model

gradients.

• The proposed training techniques are much less independent concerning perturbation size in

AT.

Especially, our Attention iAT demonstrated the best performance in nine out of ten tasks and more

interpretable attention, i.e., resulting attention weight correlated more strongly with the gradient-

based word importance [24]. The implementation required to reproduce these techniques and the

evaluation experiments are available on GitHub.2

2https://github.com/shunk031/attention-meets-perturbation

https://github.com/shunk031/attention-meets-perturbation
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2.2 Related Work

2.2.1 Attention Mechanisms

Attention mechanisms were introduced by Bahdanau et al. [33] for the task of machine translation.

Today, these mechanisms contribute to improving the prediction performance of various tasks in the

NLP field, such as sentence-level classification [64], sentiment analysis [41], question answering [65],

and natural language inference [66]. There are a wide variety of attention mechanisms; for instance,

additive [33] and scaled dot-product [6] functions are used as similarity functions.

Attention weights are often claimed to offer insights into the inner workings of DNNs [79].

However, Jain and Wallace [36] reported that learned attention weights are often uncorrelated with

the word importance calculated through the gradient-based method [24], and perturbations interfere

with interpretation. In this chapter, we demonstrate that AT for attention mechanisms can mitigate

these issues.

2.2.2 Adversarial Training

AT [46,47,83] is a powerful regularization technique that has been primarily explored in the field of

image recognition to improve the robustness of models for input perturbations. In the NLP field, AT

has been applied to various tasks by extending the concept of adversarial perturbations, e.g., text

classification [75, 76], part-of-speech tagging [77], and machine reading comprehension [78, 84]. As

mentioned earlier, these techniques apply AT for word embedding. Other AT-based techniques for

the NLP tasks include those related to parameter updating [85] and generative adversarial network

(GAN)-based retrieval-enhancement method [86]. Our proposal is an adversarial training technique

for attention mechanisms and is different from these methods.

Miyato et al. [75] proposed Word AT, a technique that applied AT to the word embeddings.

The adversarial perturbations are generated according to the back-propagation gradients. These

perturbations are expected to regularize the model. Since then, Sato et al. [76] proposed Word

iAT, and it has been known to achieve almost the same performance as Word AT that does not
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expect interpretability [76]. The Word iAT technique aims to increase the model’s interpretability

by determining the perturbation’s direction so that it is closer to other word embeddings in the

vocabulary. Both reports demonstrated improved task performance via AT. However, the specific

effect of AT on attention mechanisms has yet to be investigated. In this chapter, we aim to address

this issue by providing analyses of the effects of AT for attention mechanisms using various NLP

tasks.

AT is considered to be related to other regularization techniques (e.g., dropout [87], batch nor-

malization [88]). Specifically, dropout can be considered a kind of noise addition. Word dropout [89]

and character dropout [90], known as wildcard training, are variants for NLP tasks. These tech-

niques can be considered random noise for the target task. In contrast, AT has been demonstrated

to be effective because it creates particularly vulnerable perturbations that the model is trained to

overcome [46].

It has been reported that DNN models that introduce adversarial training to overcome adversarial

perturbations capture human-like features [80–82]. These features help to make the prediction of

DNN models easier to interpret for humans. In this chapter, we demonstrate that the proposed AT

to attention mechanisms provides cleaner attention that is more easily interpreted by humans.

2.3 Adversarial Training for Attention Mechanisms

The main contribution of this paper is to explore the idea of employing AT for attention mechanisms.

In this chapter, we propose a new training technique for attention mechanisms based on AT, called

Attention AT and Attention iAT. The proposed techniques aim to achieve better regularization

effects and to provide better interpretation of attention in the sentence. These techniques are the

first application of AT to the attention in each word, which is expected to be more interpretable,

with reference to AT for word embeddings [75] and a technique more focused on interpretability [76].

In this chapter, we generate adversarial perturbations based on the model described in Section A.1.
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2.3.1 Attention AT: Adversarial Training for Attention

We describe the proposed Attention AT, which features adversarial perturbations in the attention

mechanisms rather than in the word embeddings [75, 76]. The adversarial perturbation on the

mechanisms is defined as the worst-case perturbation on attention mechanisms of a small bounded

norm ϵ that maximizes loss function L of the current model:

rAT = argmax
r:||r||2≤ϵ

L(Xã+r,y; θ̂), (2.1)

where Xã+r is the input sequence with attention score ã, its perturbation r, y is the target output,

and θ̂ represents the current model parameters. We apply the fast gradient method [69, 75], i.e.,

first-order approximation to obtain an approximate worst-case perturbation of norm ϵ, through a

single gradient computation as follows:

rAT = ϵ
g

||g||2
,where g = ∇ãL(Xã,y; θ̂). (2.2)

ϵ is a hyper-parameter to be determined using the validation dataset. We find this rAT against the

current model parameterized by θ̂ at each training step and construct an adversarial perturbation

for attention score ã:

ãadv = ã + rAT. (2.3)

2.3.2 Attention iAT: Interpretable Adversarial Training for Attention

We describe the proposed Attention iAT for further boosting the prediction performance and the

interpretability of NLP tasks. Rather than utilizing AT to attention mechanisms (as described

in Section 2.3.1), Attention iAT effectively exploits differences in the attention to each word in a

sentence for the training. As a result, this technique provides cleaner attention in the sentence and

improves the interpretability of the attention. These effects contribute to improving the performance

of various NLP tasks.
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In terms of formulation, the proposed Attention iAT is analogous to interpretable AT for word

embeddings (Word iAT) [76], which increases the interpretability of AT for word embeddings in

formulas. However, the implications and effects for training the model are very different; in the pro-

posed Attention iAT, the attention difference enhancement, described later, enhances the difference

in attention for each word. The difference and its effect will be explained later in this section and

discussed in Section 2.6.3.

Suppose ãt denotes the attention score corresponding to the t-th position in the sentence. We

define the difference vector dt as the difference between the attention to the t-th word ãt in a sentence

and the attention to any k-th word ãk:

dt = (dt,k)Tk=1 = (ãt − ãk)Tk=1. (2.4)

T = TS in single sequence task, and T = TP in a pair sequence task. By normalizing the norm of

the vector, we define a normalized difference vector of the attention for the t-th word:

d̃t =
dt

||dt||2
. (2.5)

The number of dimensions in dk is the number of the vocabulary (fixed length) for Word iAT, while

the dimension of words in a sentence (variable length) for Attention iAT. The dimensionality of dt in

Attention iAT is much smaller compared to Word iAT.3 We define perturbation r(αt) for attention

to the t-th word with trainable parameters αt = (αt,k)Tt=1 ∈ RT and the normalized difference vector

of the attention d̃t as follows:

r(αt) = α⊤
t · d̃t. (2.6)

By combining αt for all t, we can calculate perturbation r(α) for the sentence:

r(α) = {r(αt)}Tt=1. (2.7)

3This normalization is done on a sentence-by-sentence basis, so it does not matter that the dimension is varies
(T << V ).
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Then, similar to Xã+r in Eq. 2.1, we introduce Xã+r(α) and seek the worst-case weights of the

difference vectors that maximize the loss functions as follows:

riAT = argmax
α:||α||≤ϵ

L(Xã+r(α),y; θ̂). (2.8)

Contrary to Attention iAT, in Word iAT, the difference dt,k in Eq. 2.4 is defined as the distance

between the t-th word in a sentence and the k-th word in the vocabulary in the word embedding space.

Based on the distance, Word iAT determines the direction of perturbation for the t-th word as a linear

sum of the word directional vectors in the vocabulary. In contrast, Attention iAT does not compute

the distance to word embeddings in the vocabulary. Instead, this technique computes the difference

in attention to other words in the sentence and determines the direction of the perturbation. The

adversarial perturbation of Attention iAT, defined in this way, works to increase the difference in

attention to each word. We call this process in Attention iAT as attention difference enhancement.

Owing to the process, Attention iAT improves the interpretability of attention and contributes to

the performance of the model’s prediction. The detail discussions are shared in Section 2.6.3.

For computational efficiency, we calculate the interpretable adversarial perturbation by applying

the same approximation method as in Eq. 2.2:

riAT = ϵ
g

||g||2
,where g = ∇αL(Xã+r(α),y; θ̂). (2.9)

Then, similar to Eq. 2.3, we construct a perturbated example for attention score ã:

ãiadv = ã + riAT. (2.10)
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Table 2.1: Dataset statistics. We used the three most well-known NLP tasks for evaluation: binary
classification (BC), question answering (QA), and natural language inference (NLI). We split the
dataset into training, validation, and test sets. We performed preprocessing as shown at https:

//github.com/successar/AttentionExplanation in the same manner as Jain and Wallace [36].
See the details in Appendix B.1. Jain and Wallace [36] split the dataset into only a training set and
a test set, so we did not get the same result.

Task Dataset # class # train # valid # test # vocab Avg. # words

Binary
Classification (BC)

SST [74] 2 6,920 872 1,821 13,723 18
IMDB [91] 2 17,186 4,294 4,353 12,485 171
20News [92] 2 1,145 278 357 5,986 110
AGNews [93] 2 51,000 9,000 3,800 13,713 35

Question
Answering (QA)

CNN news [94] 584 380,298 3,924 3,198 70,192 773

bAbI
Task 1 6 8,500 1,500 1,000 22 39
Task 2 [95] 6 8,500 1,500 1,000 36 98
Task 3 6 8,500 1,500 1,000 37 313

Natural Language
Inference (NLI)

SNLI [96] 3 549,367 9,842 9,824 20,979 22
Multi NLI [97] 3 314,161 78,541 19,647 53,112 34

2.3.3 Training a Model with Adversarial Training

At each training step, we generate adversarial perturbation in the current model. To this end, we

define the loss function for adversarial training as follows:

L̃ = L(Xã,y;θ)︸ ︷︷ ︸
The loss from

unmodified examples

+ λL(XãADV
,y;θ)︸ ︷︷ ︸

The loss from
its adversarial examples

, (2.11)

where λ is the coefficient that controls the balance between two loss functions. Note that XãADV
can

be Xãadv
for Attention AT or Xãiadv

for Attention iAT.

2.4 Experiments

In this section, we describe the evaluation tasks and datasets, the details of the models, and the

evaluation criteria.

https://github.com/successar/AttentionExplanation
https://github.com/successar/AttentionExplanation
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2.4.1 Tasks and Datasets

We evaluated the proposed techniques using the open benchmark tasks (i.e., four BCs, four QAs,

and two NLIs) used in Jain and Wallace [36]. In our experiment, we added MultiNLI [97] as an

additional NLI task for more detailed analysis (see the details in Appendix B.1). Table 3.2 presents

the statistics for all datasets. We split the dataset into a training set, a validation set, and a test

set.4 We performed preprocessing, including tokenization with spaCy5, mapping out vocabulary

words to a special <unk> token, and mapping all words with numeric characters to qqq in the same

manner as Jain and Wallace [36].

2.4.2 Model Settings

We compared the two proposed training techniques to four conventional training techniques. They

were implemented using the same model architecture as described in Section A.1. Following Jain

and Wallace [36], we used bi-directional long short-term memory (LSTM) [98] as the BiRNN-based

encoder, including Enc, EncP , and EncQ. A total of six training techniques were evaluated in the

experiments:

• Vanilla [36]: a model with attention mechanisms trained without the use of AT.

• Word AT [75]: word embeddings trained with AT.

• Word iAT [76]: word embeddings trained with iAT.

• Attention RP: attention to the word embeddings is trained with random perturbation (RP).

• Attention AT (Proposed): attention to the word embeddings is trained with AT.

• Attention iAT (Proposed): attention to the word embeddings is trained with iAT.

We implemented the training techniques above using the AllenNLP library with Interpret [99,100].

Through the experiments, we set the hyper-parameter λ = 1 related to AT or iAT in Eq. 3.14. To

4Jain and Wallace [36] split the dataset into only a training set and a test set, so we did not get the same results.
5spaCy · Industrial-strength Natural Language Processing in Python https://spacy.io/

https://spacy.io/
https://spacy.io/
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ensure a fair comparison of the training techniques, we followed the configurations (e.g., initialization

of word embedding, hidden size of the encoder, optimizer settings) used in the literature [36] (see

the details in Appendix D.1).

Note that while Jain and Wallace [36] used a test set to adjust the model’s hyper-parameters,

we used a validation set. In adversarial training, the Allentune library [101] was used to adjust

hyper-parameter ϵ, and we report the test scores for the model with the highest validation score.

2.4.3 Evaluation Criteria

First, we compared the prediction performance of each model for each task. As an evaluation metric

of the prediction performance, we used the F1 score6, accuracy, and the micro-F1 score for the BC,

QA, and NLI, respectively, as in [36].

Next, we compared how the attention weights obtained through the proposed AT-based technique

agreed with the importance of words calculated by the gradients [24]. To evaluate the agreement,

we compared the Pearson’s correlations between the attention weights and the word importance of

the gradient-based method. In [36], the Kendall tau, which represents rank correlation, was used

to evaluate the relationship between attention and the word importance obtained by the gradients.

Recently, however, it has been pointed out that rank correlations often misrepresent the relationship

between the two due to the noise in the order of the low rankings [102]; we concurred with this, so

we used Pearson’s correlations. Refer to Appendix B.2.1 for details on the evaluation criteria.

Finally, we compared the effects of perturbation size ϵ of AT on the validation performance of

the BC, QA, and NLI tasks with a fixed λ = 1. We randomly choose the value of ϵ in the 0–30 range

and ran the training 100 times. The configurations in [75, 76] were ϵ = 5 for Word AT and ϵ = 15

for Word iAT.

6The F1 score is a metric that harmonizes precision and recall.. Therefore, this score takes both false positives
and false negatives into account.
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2.5 Results

In this section, we share the results of the experiments. Table 2.2 presents the prediction performance

and the Pearson’s correlations between the attention weight for the words and word importance

calculated from the model gradient. The most significant results are shown in bold.

2.5.1 Comparison of Prediction Performance

In terms of prediction performance, the model that applied the proposed Attention AT/iAT demon-

strated a clear advantage over the model without AT (as shown in Vanilla [36]) as well as other

AT-based techniques (Word AT [75] and Word iAT [76]). The proposed technique achieved the best

results in almost all benchmarks. For 20News and AGNews in the BC and bAbI task 1 in QA, the

conventional techniques, including the Vanilla model, were sufficiently accurate (the score was higher

than 95%), so the performance improvement of the proposed techniques to the tasks was limited

to some extent. Meanwhile, Attention AT/iAT contributed to solid performance improvements in

other complicated tasks.

2.5.2 Comparison of Correlation between Attention Weights and Gradi-

ents on Word Importance

In terms of model interpretability, the attention to the words obtained with the Attention AT/iAT

techniques notably correlated with the importance of the word as determined by the gradients.

Attention iAT demonstrated the highest correlation among the techniques in all benchmarks. Fig-

ure 2.2 visualizes the attention weight for each word and gradient-based word importance in the SST

test dataset. Attention AT yielded clearer attention compared to the Vanilla model or Attention

iAT. Specifically, Attention AT tended to strongly focus attention on a few words. Regarding the

correlation of word importance based on attention weights and gradient-based word importance,

Attention iAT demonstrated higher similarities than the other models.
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(a) Vanilla

(b) (Proposed) Attention AT

(c) (Proposed) Attention iAT

Figure 2.2: Visualization of attention weight for each word and word importance calculated by
gradients on the SST dataset. Best viewed in color. The models that apply the proposed Attention
AT/iAT give clearer attention. In terms of word importance, Attention iAT has more similar
attention-based and gradient-based results than the other methods.
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Figure 2.3: The effect of perturbation size ϵ on the validation performance. We observed that the
model with Attention AT/iAT maintained an almost constant prediction performance even when the
perturbation size increased. Compared to Word AT/iAT, The model with the proposed techniques,
Attention AT/iAT, was more robust with a large ϵ.

2.5.3 Effects of Perturbation Size

Figure 2.3 shows the effect of the perturbation size ϵ on the validation performance of SST (BC),

CNN news (QA), and Multi NLI (NLI) with a fixed λ = 1. We observed that the performances

of the conventional Word AT/iAT techniques deteriorated according to the increase in the pertur-

bation size; meanwhile, our Attention AT/iAT techniques maintained almost the same prediction

performance. We observed similar trends in other datasets as described in Section 2.4.1.

2.6 Discussion

2.6.1 Comparison of Adversarial Training for Attention Mechanisms and

Word Embedding

Attention AT/iAT is based on our hypothesis that attention is more important in finding significant

words in document processing than the word embeddings themselves. Therefore, we sought to achieve

prediction performance and model interpretability by introducing AT to the attention mechanisms.

We confirmed that the application of AT to the attention mechanisms (Attention AT/iAT) was more

effective than word embedding (Word AT/iAT) and supports the correctness of our hypothesis, as

shown in Table 2.2. In particular, the Attention iAT technique was not only more accurate in
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its model than the Word AT/iAT techniques but also demonstrated a higher correlation with the

importance of the words predicted based on the gradient.

As shown in Figure 2.2, Attention AT tended to display more attention to the sentence than

the Vanilla model. The results showed that training with adversarial perturbations to the attention

mechanism allowed for cleaner attention without changing word meanings or grammatical functions.

Furthermore, we confirmed that the proposed Attention AT/iAT techniques were more robust re-

garding the variation of perturbation size ϵ than conventional Word AT/iAT, as shown in Figure 2.3.

Although it is difficult to directly compare perturbations to attention and word embedding because

of the difference in the range of the perturbation size to the part, the model that added perturbations

to attention behaved robustly even when the perturbations were relatively large.

2.6.2 Comparison of Random Perturbations and Adversarial Perturba-

tions

Attention RP demonstrated better prediction performance than Word AT/iAT. The results revealed

that augmentation for the attention mechanism is very effective, even with simple random noise.

In contrast, the correlations between the attention weight for the word and the gradient-based

word importance were significantly reduced, as shown in Table 2.2. We consider that Attention

RP is successful in learning robust discriminative boundaries through random perturbation and

improving to the desired classification performance. However, as the gradient is smoothed out by

the perturbation around the (supervised) data points, the correlation with the word importance by

the gradient is considered to be degraded. In other words, Attention RP can achieve a certain level

of classification performance, but it does not lead to which words are useful from their gradients.

2.6.3 Comparison of Attention AT, Attention iAT, and Word iAT

In the experiments, Attention iAT showed a better performance compared Attention AT in the

prediction performance and the correlation with the gradient-based word importance. Attention iAT

exploits the difference in the attention weight of each word in a sentence to determine adversarial
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perturbations. Because the norm of the difference in attention weight (as shown in Eq. 3.8) is

normalized to one, adversarial perturbations in attention mechanisms will make these differences

clear, especially in the case of sentences with a small difference in the attention to each word.

That is, even in situations where there is little difference in attention between each element of

dt = (dt,1, dt,2, · · · , dt,T ), the difference is amplified by Eq. 3.8. Therefore, even for the same

perturbation size ||α|| < ϵ, more effective perturbations r(α) weighted by d̃t were successfully

obtained for each word. However, in the case of sentences where there was originally a difference in

the clear attention to each word, the regularization of dt in Eq. 3.8 had practically no effect because it

did not change their ratio nearly as much. Thus, we posit that the Attention iAT technique enhances

the effectiveness of AT applied to attention mechanisms by generating effective perturbations for

each word.

The Attention iAT technique was inspired by Word iAT. Word iAT generates perturbations in

the direction that maximizes the loss function while restricting the direction of the perturbation

to become a linear combination of the direction of word embedding in the vocabulary. Word iAT

indirectly improves the interpretability of the model by indicating which words in the vocabulary

to which the perturbation is similar. However, we are confident that Attention iAT is a direct im-

provement in the interpretability of the model, because it can show more clearly which words to pay

attention. This is owing to the attention difference enhancement process described in Eq. 3.8. Thus,

the proposed techniques are highly effective in that they lead to a more substantive improvement in

interpretability.

2.6.4 Limitations

Our proposal is a general-purpose robust training technique for DNN models, which are commonly

used for NLP tasks. Therefore, we have chosen here an RNN with an attention mechanism that

has been put to practical use [36]. For this reason, models such as BERT [7] that deal with self-

attention were outside the scope of this study, and will be the subject of future work. We also

did not deal with tasks (such as machine translation) that were not used in the literature [36] as
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baselines. Additionally, for the same reason in as [39], we did not consider the variants of attention

mechanisms, such as bi-attentive architecture [66], multi-headed architecture [6], because they could

have different interpretability properties.

As an extension of AT, virtual adversarial training (VAT), which is a semi-supervised training

technique, was proposed in [49, 75]. Based on VAT, the proposed technique can be expected to

improve accuracy by using unlabeled datasets.

2.7 Conclusion

We proposed robust and interpretable attention training techniques that exploit AT. In the exper-

iments with various NLP tasks, we confirmed that AT for attention mechanisms achieves better

performance than techniques using AT for word embedding in terms of the prediction performance

and the interpretability of the model. Specifically, the Attention iAT technique introduced ad-

versarial perturbations that emphasized differences in the importance of words in a sentence and

combined high accuracy with interpretable attention, which was more strongly correlated with the

gradient-based method of word importance. The proposed technique could be applied to various

models and NLP tasks. This paper provides strong support and motivation for utilizing AT with

attention mechanisms in NLP tasks. We describe the extension to semi-supervised learning that

further increases the performance in the proposed technique in Chapter 3.

In the experiment, we demonstrated the effectiveness of the proposed techniques for RNN models

that are reported to be vulnerable to attention mechanisms, but we will confirm the effectiveness

of the proposed technique for large language models with attention mechanisms such as Trans-

former [6] or BERT [7] in the future. Because the proposed techniques are model-independent and

general techniques for attention mechanisms, we can expect they will improve predictability and the

interpretability for language models. The applicability to current mainstream models with attention

mechanisms is discussed in Chapter 6.
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Table 2.2: Comparison of prediction performance and the Pearson’s correlation coefficients (Corr.)
between the attention weight and the word importance of the gradient-based method. We used
the same test metrics as in [36]: binary classification (BC), question answering (QA), and natural
language inference (NLI). As an evaluation metrics of the prediction performance, we used the F1
score (F1), accuracy (Acc.), and the micro-F1 (Micro-F1) score for BC, QA, and NLI, respectively.

(a) Binary classification (BC)

Model
SST IMDB 20News AGNews

F1 [%] Corr. F1 [%] Corr. F1 [%] Corr. F1 [%] Corr.

Vanilla [36] 79.27 0.652 88.77 0.788 95.05 0.891 95.27 0.822

Word AT [75] 79.61 0.647 89.65 0.838 95.11 0.892 95.59 0.813
Word iAT [76] 79.57 0.643 89.64 0.839 95.14 0.893 95.62 0.809

Attention RP 81.90 0.531 89.79 0.628 96.09 0.883 96.08 0.792

Attention AT (Proposed) 81.72 0.852 90.00 0.819 96.69 0.868 96.12 0.835
Attention iAT (Proposed) 82.20 0.876 90.21 0.861 96.58 0.897 96.19 0.891

(b) Question answering (QA)

Model
CNN news bAbI

Acc. [%] Corr.
Task 1 Task 2 Task 3

Acc. [%] Corr. Acc. [%] Corr. Acc. [%] Corr.

Vanilla [36] 64.95 0.765 99.90 0.714 45.10 0.459 52.00 0.387

Word AT [75] 65.67 0.779 100.00 0.797 79.50 0.657 55.10 0.439
Word iAT [76] 65.66 0.776 99.90 0.798 79.80 0.658 54.90 0.437

Attention RP 65.78 0.614 100.00 0.592 80.60 0.584 55.35 0.373

Attention AT (Proposed) 65.93 0.771 100.00 0.807 82.30 0.632 56.00 0.514
Attention iAT (Proposed) 66.17 0.784 100.00 0.821 85.40 0.710 57.10 0.589

(c) Natural language inference (NLI)

Model
SNLI Multi NLI

Micro-F1 [%] Corr.
Micro-F1 [%]

Corr.
Avg. Matched Mismatched

Vanilla [36] 78.64 0.764 60.26 59.80 60.71 0.541

Word AT [75] 79.03 0.812 60.72 60.58 60.86 0.601
Word iAT [76] 79.12 0.815 60.73 60.59 60.87 0.603

Attention RP 79.23 0.569 60.97 61.02 60.91 0.547

Attention AT (Proposed) 79.19 0.792 61.17 61.20 61.13 0.626
Attention iAT (Proposed) 79.32 0.818 61.34 61.75 60.93 0.668



Chapter 3

Virtual Adversarial Training for

Attention Mechanisms

In chapter 2, we proposed new techniques of adversarial training for attention mechanism. This chap-

ter 3 aims to extend the technique to semi-supervised learning. We described the background in

Section 3.1 that our supervised technique can be extended to semi-supervised learning in the frame-

work of virtual adversarial training, which can expect to improve further the prediction performance

and interpretability of deep learning models. We review the attention mechanism, adversarial train-

ing, and their relation to our proposal with Attention AT/iAT in Section 3.2. After that, we propose

Attention VAT/iVAT, extensions of Attention AT/iAT based on the idea of virtual adversarial train-

ing in Section 3.3. We demonstrate in Section 3.4 and 3.5 that the proposed techniques outperform

the conventional adversarial and virtual adversarial training methods for word embeddings, as well

as the techniques proposed in Chapter 2, in terms of prediction performance and interpretability of

the deep learning models. We discuss in Section 3.6 in terms of the comparison between supervised

and semi-supervised learning based on the training techniques for attention mechanism, in terms of

the amount of unlabeled data, and in terms of the agreement between human-annotated evidence

labels and the prediction evidence presented by the proposed technique. Finally, we summarize this

35
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chapter in Section 3.7.

3.1 Background

Despite their significant success in various computer vision (CV) and natural language processing

(NLP) tasks, deep neural networks (DNNs) are usually vulnerable to tiny input perturbations,

which are often referred to as adversarial examples [46, 47, 103]. Goodfellow et al. [46] proposed

adversarial training (AT) for protection against malicious perturbations, which improves robustness

by smoothing the discrimination boundary through adding adversarial perturbations to the input.

This technique has been reported as highly effective for solving common problems in the CV field. In

NLP, Miyato et al. [75] proposed AT for word embeddings (Word AT) to improve model robustness.

Moreover, Sato et al. [76] developed interpretable AT for word embeddings (Word iAT), which makes

adversarial perturbations more interpretable by restricting the perturbation direction to existing

words in the word embedding space.

At present, attention mechanisms, on which various studies have focused in recent years [6,7,33,

64], are among the most important components in DNN models. However, Jain and Wallace [36]

reported a critical problem; attention mechanisms are vulnerable to malicious perturbations. To mit-

igate this issue, we recently proposed AT for attention mechanisms (Attention AT) and interpretable

AT for attention mechanisms (Attention iAT) [104]. These proposals provide model robustness to

the vulnerability of attention mechanisms, as well as a more interpretable attention heatmap; that

is, our techniques provide clear attention in a sentence. Moreover, these techniques significantly

improve performance.

Although AT successfully improves model robustness, the training technique is only available in

supervised settings because labeled data are needed to calculate adversarial perturbation. However,

in NLP, labeled data for training are often expensive, and it is generally not easy to apply data

augmentation. Therefore, extending these techniques to semi-supervised learning, whereby unlabeled

data can also be used for training, is desirable. Virtual AT (VAT) [49], which is a sophisticated semi-

supervised learning technique, has been proposed to extend AT to semi-supervised settings. This
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technique improves model robustness by smoothing out discrimination boundaries by calculating

the adversarial perturbations, which is known as “virtual adversarial perturbation,” based on the

current prediction using both labeled and unlabeled data. VAT is reportedly effective in both the

CV [46, 49] and NLP [75, 76, 105] fields. Semi-supervised learning methods generally use unlabeled

data based on the model’s output (i.e., current parameters) at the time; therefore, to a certain

extent, the unlabeled data should be similar to the labeled data.

In this study, we propose two new general training techniques: VAT for attention mechanisms

(Attention VAT) and interpretable VAT for attention mechanisms (Attention iVAT), which extend

AT for attention mechanisms to a semi-supervised setting, thereby making the model even more

robust and interpretable. Attention VAT and iVAT improve model robustness by smoothing out the

discriminative boundary even for unlabeled data points by calculating the direction of the virtual

adversarial perturbation. In contrast to Attention VAT, Attention iVAT utilizes the difference in

attention to each word in a sentence to construct adversarial perturbations, and can thus learn clear

attention more efficiently, which improves the model interpretability.

We compared our proposed techniques with several other state-of-the-art AT-based techniques

using six common NLP benchmarks. We evaluated the extent to which the attention weights that

were obtained using our techniques agreed with the gradient-based word importance [24] and ra-

tionales provided by humans [106]. We investigated the effect on the performance of the unlabeled

data being added to the training. This empirically confirmed that our techniques could improve

both the prediction performance and model interpretability, even when trained on unlabeled data

from a source different from that of the target task.

The advantages of our VAT techniques for attention mechanisms are summarized as follows:

• The VAT for attention mechanisms is an extension to semi-supervised learning of the effective

AT for attention mechanisms, which provides improved prediction performance compared to

conventional AT-based techniques and recent VAT-based techniques in semi-supervised set-

tings.

• The VAT for attention mechanisms also favors model interpretability, exhibiting a stronger
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correlation with word importance based on gradients and higher agreement with the results of

human annotations. This promising outcome has been particularly important for deep learning

models in recent years.

• The benefit of the above extension to semi-supervised learning is almost independent of select-

ing the additional unlabeled data to be used. That is, a significant performance improvement

can be expected even while reducing the difficulty of selecting unlabeled data. Our empirical

experiments confirm that prediction performance improves by increasing the unlabeled data.

3.2 Related Work

In this section, we describe two topics that are closely related to our VAT for attention mechanisms:

(1) AT and its extension, namely VAT, and (2) attention mechanisms.

3.2.1 AT and its Extension, VAT

AT [46, 47, 83, 107] is a powerful regularization technique in the CV field primarily explored to

improve model’s robustness to input perturbations. A recent proposal in the CV field, attention

transfer based adversarial training (ATAT) [107], considers the class activation map (CAM) as

an attention heatmap and applies adversarial training to the CAM. Furthermore, AT has been

applied to various NLP tasks by extending the concept of adversarial perturbations, such as text

classification [75,76,108], part-of-speech tagging [77], relation extraction [109], and machine reading

comprehension [41]. The recently proposed stability fine-tuning framework (StaFF) [108] applies

AT to defend against word-level adversarial attacks. Word AT [75] is a pioneering technique that

applies AT for word embeddings in NLP. Word iAT [76] has subsequently been proposed to realize

more “interpretable” AT for word embeddings. This technique restricts the perturbation direction

to existing words in the word embeddings space. Each input with a perturbation can be interpreted

as an actual sentence by considering the perturbation as a replacement for a word in the sentence.

However, although this approach enhances the interpretability of the perturbations, it does not
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increase the interpretability of model prediction.

VAT [49] extends AT to semi-supervised settings, in which virtual adversarial perturbation, even

for unlabeled data points, is defined. This technique provides smoother discriminative boundaries

and improves model robustness compared to AT, in which only supervised data are used. VAT has

achieved state-of-the-art performance in the CV field, e.g., in image classification tasks [49], as well

as excellent results in the NLP fields, e.g., in text classification [75, 76] and sequence tagging [105].

In particular, Chen et al. [105] used an extremely large dataset, namely the One Billion Word

Language Model Benchmark dataset [110], as an unlabeled data pool for semi-supervised learning.

Their VAT-based technique outperformed state-of-the-art sequence labeling models. With a small

number of labeled examples, An et al. [111] recently proposed a VAT-based semi-supervised question

generation (QG) model, named virtual stroke recognition copy network (VSAC Net), for the Chinese

QG tasks. These models that use VAT for NLP tasks are applied to input or hidden representations,

which is different from our proposed concept of applying VAT to attention mechanisms.

Whereas previous AT and VAT techniques have been applied to the input space mainly for word

embeddings, we proposed the Attention AT and Attention iAT techniques for the application of

AT to attention mechanisms [104]. These techniques outperformed Word AT and Word iAT in

various tasks, such as text classification, question answering (QA), and natural language inference

(NLI) tasks. The results indicated that AT for attention mechanisms is more efficient than AT for

word embeddings regarding both model accuracy and interpretability. Our proposed Attention VAT

and Attention iVAT, are semi-supervised learning extensions of Attention AT and Attention iAT,

respectively.

Table 3.1 summarizes the comparison between our Attention VAT/iVAT and those in related

studies. Both of our proposals, Attention VAT and Attention iVAT, remedy the potential vulner-

ability to perturbations in the attention mechanisms and can handle unlabeled data. Moreover,

Attention iVAT efficiently learns clearer attention and improves model interpretability without the

selection of unlabeled data. VAT has often been employed for inputs and their embeddings [49,76];

however, to our knowledge, no application to attention mechanisms has been reported. We have
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Table 3.1: Comparison of the proposed Attention VAT/iVAT with that of related studies.

Attention
vulnerability

Unlabeled
data

Model
interpretability

Word AT [75] ✗ ✗ ✗
Word iAT [76] ✗ ✗ ✓

Word VAT [49] ✗ ✓ ✗
Word iVAT [76] ✗ ✓ ✓

Attention AT [104] ✓ ✗ ✗
Attention iAT [104] ✓ ✗ ✓

Attention VAT (ours) ✓ ✓ ✗
Attention iVAT (ours) ✓ ✓ ✓

empirically demonstrated that our VAT-based techniques are effective even when they are applied

to unlabeled data from sources other than the labeled data.

3.2.2 Attention Mechanisms

Attention mechanisms for machine translation were first introduced by Bahdanau et al. [33]. These

mechanisms contribute to improving the prediction performance of various NLP tasks, such as

sentence-level classification [64], sentiment analysis [41, 112], QA [65], and NLI [66]. The recently

proposed sentence-level attention transfer network (SentATN) [112] aims to solve the cross-domain

sentence classification task with the advantages of the attention mechanism and sentence-level AT.

Attention weights are claimed to offer insights into the inner workings of DNNs [79]. However,

learned attention weights are often uncorrelated with word importance, which is calculated using

the gradient-based method [24], and perturbations to the attention mechanisms may interfere with

the interpretation [36,113]. Our recently proposed AT for attention mechanisms [104], is a novel and

practical training technique for solving these issues. We have demonstrated that this technique (1)

improves the performance, (2) exhibits a stronger correlation with gradient-based word importance,

and (3) is substantially less dependent on the scale of perturbation.

This study presents a new attempt to employ VAT in attention mechanisms. Our proposal

addresses the potential problem with attention mechanisms, namely the low correlation between
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Figure 3.1: Intuitive illustration of the proposed VAT for attention mechanisms. Our technique
can learn clearer attention by overcoming adversarial perturbations rVAT, thereby improving model
interpretability

the attention weight and word importance. It is expected to increase the correlation (i.e., model

interpretability) further by effectively using unlabeled data and learning to focus on the differences

in the attention weights.

3.3 Virtual Adversarial Training for Attention Mechanism

Our proposal is an extension of training techniques that are effective by introducing adversarial

perturbation to the attention mechanism to semi-supervised learning using VAT [49]. In this section,
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we introduce two new general training techniques for attention mechanisms based on VAT: (1) VAT

for attention mechanisms (Attention VAT), and (2) interpretable VAT for attention mechanisms

(Attention iVAT). These techniques follow the calculation of the perturbation direction in the original

VAT, and thus, the formulas are similar although the implications are different, as we will explain

in the following sections.

Fig. 3.1 provides an intuitive illustration of the proposed technique. Our proposals provide

general-purpose robust training techniques that can be applied to any model that uses attention

mechanisms and can also use unlabeled data. We apply the proposed techniques to the common

model that is described in Appendix A.1.

Let Xã be an input sequence with an attention score ã. We model the conditional probability of

class y as p(y|Xã;θ), where θ represents all model parameters. We minimize the following negative

log-likelihood as a loss function for the model parameters to train the model:

L(Xã,y;θ) = − log p(y|Xã;θ). (3.1)

Our proposed techniques introduce an adversarial perturbation to the attention score ã.

3.3.1 Attention VAT: Virtual Adversarial Training for Attention

The first proposal, Attention VAT is a natural extension of our previous Attention AT [104] for

supporting semi-supervised learning. Whereas AT determines the adversarial perturbation in super-

vised setting based on label information, VAT computes the virtual adversarial perturbation even

for unlabeled data, and is expected to provide more robust models. The virtual adversarial pertur-

bation on the attention mechanisms is defined as the worst-case perturbation on the mechanisms of

a small, bounded norm by maximizing the Kullback–Leibler (KL) divergence between the estimated

label distribution of the original examples and the distribution of the perturbation that is added to

the perturbation of the original example.

Suppose that D′ denotes a set of Nl labeled and Nu unlabeled data. We introduce Xã+r, which
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denotes Xã with the additional perturbation r. Attention VAT minimizes the following loss function

for estimating the loss of the virtual adversarial perturbation rVAT on the input sequence with an

attention score:

LVAT(Xã, Xã+rVAT
; θ̂) =

1

|D′|
∑

X∈D′

LKL(Xã, Xã+rVAT
; θ̂), (3.2)

rVAT = argmax
r:∥r∥2≤ϵ

LKL(Xã, Xã+r; θ̂), (3.3)

where ϵ is a hyperparameter that controls the norm of the perturbation and is determined using the

validation set. θ̂ represents the current model parameters. In this case, LKL(Xã, Xã+r; θ̂) is the KL

divergence, which can be calculated using KL(·∥·):

LKL(Xã, Xã+rVAT
; θ̂) = KL(p(·|Xã, θ̂) ∥ p(·|Xã+rVAT

, θ̂)). (3.4)

VAT uses the current model parameters θ̂ to find the worst perturbation, rVAT, that most affects

the output probability and learns, such that the prediction does not change when rVAT is added

to each sample. Differently expressed, the effect is to make the model robust by smoothing the

probability distribution of predictions for each data point, including the unlabeled data. We use an

approximation method instead of solving the expensive optimization problem above [75]:

rVAT = ϵ
g

∥g∥2
,where g = ∇ãLKL(Xã, Xã+r; θ̂). (3.5)

In each training step, we obtain a virtual adversarial perturbation rVAT for the attention score ã of

each input data based on the current model θ̂:

ãvadv = ã + rVAT. (3.6)
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3.3.2 Attention iVAT: Interpretable Virtual Adversarial Training for At-

tention

The other proposal, Attention iVAT, is also an extension of our previous Attention iAT [104] for

semi-supervised learning. Our former Attention iAT generates adversarial perturbations by focusing

on the difference in attention to each word, and thus, generates clearer differences in attention among

words. That is, this technique significantly enhances model interpretability by providing an intuitive

and clear indication of the words in a sentence that are important.

Another technique relating to our proposal, namely Word iVAT, extends interpretable AT for

the word embedding of each word to semi-supervised learning. This technique may improve the

interpretability of perturbations by restricting the direction of the added perturbation to the known

direction of the word. Although the name of this technique is similar to that of our proposal, it

does not provide explicit information regarding the important words in a sentence, and thus does

not provide the high interpretability of the model as the name implies.

We formulate our Attention iVAT as follows. We define the word attentional difference vector

dt ∈ RT , where T is the number of words in the sequence, as the attentional difference between the

t-th word ãt and any k-th word ãk in a sentence:

dt = (dt,k)Tk=1 = (ãt − ãk)Tk=1. (3.7)

Note that the difference in the attention score to itself is 0; that is, dt,t = 0. By normalizing the

norm of the vector, we define a normalized word attentional difference vector of the attention for

the t-th word, as follows:

d̃t =
dt

∥dt∥2
. (3.8)

We define the perturbation r(wt) for the attention to the t-th word with the trainable parameters

wt = (wt,k)Tt=1 ∈ RT as follows:

r(wt) = w⊤
t d̃t (3.9)



CHAPTER 3. VIRTUAL ADVERSARIAL TRAINING FOR ATTENTION MECHANISMS 45

By combining wt for all t as w, we can calculate the perturbation r(w) for the sentence:

r(w) = (r(wt))
T
t=1. (3.10)

Subsequently, similar to Xã+r in Eq. (3.3), we introduce Xã+r(w) and seek the worst-case direction

of the difference vectors that maximize the loss function:

riVAT = argmax
r:∥r∥2≤ϵ

LKL(Xã, Xã+r(w); θ̂). (3.11)

Using the same derivation method as in Eq. (3.5) to obtain the above approximation, we introduce

the following equation to calculate riVAT as an extension to semi-supervised learning:

riVAT = ϵ
g

∥g∥2
, g = ∇wLKL(Xã, Xã+r(w), θ̂). (3.12)

Similar to Eq. (3.6), we construct a perturbated example for the attention score ã:

ãivadv = ã + riVAT. (3.13)

Unlike Attention VAT, Attention iVAT defines the perturbation riVAT as the product of a trainable

parameter wt and a normalized word attentional vector dt. In situations in which the difference

in the attention among words is relatively small (i.e., the model does not know which words in

the sentence are important), Eq. (3.8) enables the computation of meaningful virtual adversarial

perturbations that increase the difference in the attention between words. Consequently, the model

is expected to obtain clearer attention to overcome the perturbations. This process can be considered

as attention difference enhancement and was described in our previous paper [104].

We describe the attention difference enhancement in Attention iVAT in terms of its formula. As

the norm of the difference in the attention weight (as indicated in Eq. (3.8)) is normalized to one,

virtual adversarial perturbations for attention mechanisms can clarify these differences, particularly
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in the case of sentences with a small difference in the attention to each word. Even in situations in

which there is little difference in the attention between each element of dt = (dt,1, dt,2, · · · , dt,T ), the

difference is emphasized by Eq. (3.8). In the case of sentences in which there is originally a difference

in the clear attention to each word, the regularization effect of d̂t in Eq. (3.8) has almost no effect

because it hardly changes the ratio. As in our previous study [104], the Attention iVAT technique

enhances the usefulness of VAT when it is employed in attention mechanisms by generating effective

perturbations for each word. A notable advantage of our Attention iVAT is that this attention

difference enhancement can be computed without label information.

3.3.3 Model Training with VAT

We generate a virtual adversarial perturbation based on the current model θ̂ at each training step.

To this end, we define the loss function for the VAT as follows:

L̃ = L(Xã,y; θ̂)︸ ︷︷ ︸
Loss from

unmodified examples

+ λLVAT(Xã, XãVADV
; θ̂)︸ ︷︷ ︸

Loss from
virtual adversarial examples

, (3.14)

where λ is the coefficient that is used to control the two-loss functions. Note here that XãVADV
may

Xãvadv
for Attention VAT or Xãivadv

for Attention iVAT.

3.4 Experiments

In this section, we describe the comparison models, datasets, evaluation tasks, and evaluation criteria

that were used in the experiments.

3.4.1 Comparison Models

We compared Attention VAT and Attention iVAT, with conventional AT- and VAT-based train-

ing techniques. Following previous studies [36, 104, 114], we implemented the techniques using the

same recurrent neural network (RNN)-based model architecture described in Appendix A.1. The
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proposed techniques effectively extend semi-supervised learning, a training technique that achieves

high performance and generalizability by adding adversarial perturbation to the attention mecha-

nism of the model. Therefore, we conducted comparative experiments that employed the widely

used RNN-based model configurations as a baseline and evaluated them by how much performance

improved. Our proposed technique is a general-purpose robust training method that can be applied

to all models. Therefore, in this study, instead of comparing our techniques with models that aim

to improve the individual performance, we used a model with a general configuration as a baseline

and conducted an evaluation to compare it with other training methods that have been recently

proposed.

We followed the configurations used in the literature to ensure a fair comparison of the training

techniques [36, 104]. Further details are provided in Appendix D.1. We compared the following

models in supervised and semi-supervised settings:

Supervised Models

We compared the following seven models:

• Vanilla [36]: A model with attention mechanisms that is trained without the use of AT- or

VAT-based techniques, as described in Appendix A.1.

• Word AT [75]: Word embeddings trained with AT.

• Word iAT [76]: Word embeddings trained with iAT.

• Attention AT [104]: Attention to word embeddings trained with AT.

• Attention iAT [104]: Attention to word embeddings trained with iAT.

• Attention VAT (ours): Attention to word embeddings trained with VAT.

• Attention iVAT (ours): Attention to word embeddings trained with iVAT.
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Table 3.2: Dataset statistics.

Task Dataset # classes
# train

# valid # test # vocab Avg. # words
# labeled (Nl) # unlabeled (Nu)

Single sequence task SST [74] 2 6,920 - 872 1,821 13,723 18
IMDB [91] 2 17.186 - 4,294 4,353 12,485 171
AGNews [93] 2 51,000 - 9,000 3,800 13,713 35

Pair sequence task CNN news [94] 584 190,149 190,149 3,924 3,198 70,192 773
SNLI [96] 3 274,683 274,684 9,842 9,824 20,979 22
MultiNLI [97] 3 157,080 157,081 78,541 19,647 53,112 34

Semi-supervised Models

We compared the following four models:

• Word VAT [49]: Word embeddings trained with VAT.

• Word iVAT [76]: Word embeddings trained with iVAT.

• Attention VAT (ours): Attention to word embeddings trained with VAT.

• Attention iVAT (ours): Attention to word embeddings trained with iVAT.

3.4.2 Datasets and Tasks

Table 3.2 presents the statistics for the labeled datasets, which include datasets for single-sequence

tasks (e.g., text classification) and pair-sequence tasks (e.g., QA and NLI). We divided the dataset

into training, validation, and test sets as done in [104]. Moreover, we preprocessed these datasets

according to [36,104]. Refer to Appendix B.1 for further details on the dataset and preprocessing.

Labeled Dataset

Following [36, 104], we evaluated the techniques using open datasets for three single-sequence and

three pair-sequence tasks.

Labeled Dataset for Single-Sequence Tasks We used the following four datasets: Standard

Sentiment Treebank (SST) [74], IMDB, a large movie reviews corpus [91], and the AGNews

corpus [93]. The model was trained using the entire training set.
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Labeled Dataset for Pair-Sequence Tasks We used the following three datasets: the CNN

news article corpus [94], The Stanford Natural Language Inference (SNLI) [96], and the Multi-Genre

NLI (MultiNLI) [97]. The model was trained using half of the randomly sampled training data.

The other half was used as the unlabeled data, as described in Section 3.4.2.

Unlabeled Dataset

We describe the unlabeled data for the single-sequence and pair-sequence tasks.

Unlabeled Dataset for Single-Sequence Tasks We used the One Billion Word Language

Model Benchmark dataset [110] as an unlabeled data pool for the semi-supervised learning step.

This benchmark is used extensively to evaluate language modeling techniques and was recently

employed by Chen et al. [105] for the model based on VAT. Thus, we considered that the dataset

would also be useful in our VAT-based settings.

Unlabeled Dataset for Pair-Sequence Tasks Owing to the nature of the pair-sequence task,

it is inherently difficult to use external sentences as unlabeled data, as in the case of single-sequence

tasks. For training, we, therefore, decided to use half of the randomly sampled training data as

labeled data and the other half as unlabeled data. The evaluation was performed using the unlabeled

data. We adopted this evaluation method as it was used in the original VAT paper [75] and is a

viable option.

3.4.3 Evaluation Criteria

We conducted four evaluations of model performance and interpretability when the proposed tech-

niques were applied: (1) prediction performance following previous studies, (2) correlations based

on word importance, (3) agreement with human annotations, and (4) the effects of the amount and

selection of unlabeled data.
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Prediction Performance

We used the F1 score, accuracy, and micro-F1 score for the single- and pair-sequence tasks, as

in [36,104], to compare the performance of the model when the proposed and conventional VAT-based

techniques were applied. The models were evaluated in supervised and semi-supervised settings.

Correlation with Word Importance

We compared how well the attention weights obtained using our VAT-based technique agreed with

the importance of the words that were calculated using gradients [24]. We used Pearson’s correlations

between the attention weights and the word importance, as in the work of Mohankumar et al. [102]

and our previous research [104], to evaluate the agreement. Refer to Appendix B.2.1 for details on

the evaluation criteria.

Agreement with Human Annotation

We determined how strongly the attention weights that were obtained using our technique agreed

with human annotations. DeYoung et al. [106] recently released a unified benchmark dataset includ-

ing movie reviews, QA, and NLI, which featured human rationales for the decisions. They included

both instance-level labels and the corresponding supporting snippets (i.e., rationales) from human

annotators. We used this annotated dataset as an additional evaluation criterion for the movie

review task in the IMDB dataset.

In accordance with [106], we used metrics that are appropriate for models that perform hard

(discrete) rationale selection and soft (continuous) rationale selection. We used the intersection over

union (IOU) and token-level F1 score as evaluation criteria for the hard rationale selection, and

the area under the precision-recall curve (AUPRC), average precision (AP), and the area under

the receiver operating characteristic curve (ROC-AUC) as evaluation criteria for the soft rationale

selection, as in [106].



CHAPTER 3. VIRTUAL ADVERSARIAL TRAINING FOR ATTENTION MECHANISMS 51

Effects of Amount and Selection on Unlabeled Data

To understand further the effects of unlabeled data in semi-supervised learning, we analyzed the

impact of the amount of unlabeled data on the model’s performance. We specifically focused on

VAT-based techniques, such as Word VAT, Word iVAT, and our Attention VAT/iVAT.

Moreover, we investigated the effect of the selection strategy for the unlabeled data that were used

in the semi-supervised learning in each task. We compared two strategies: the addition of unlabeled

data without considering any of the contents, and the addition of data that are semantically close to

the labeled data. Specifically, we applied random selection to the former and approximate nearest

neighbor (ANN)-based selection to the latter.

Random Selection The random selection strategy randomly samples data from an unlabeled data

pool. Unlabeled data can be prepared in large quantities compared to labeled data. Considering

the relatively small size of the labeled dataset, the number of unlabeled datasets was adjusted

accordingly for each task.

Approximate Nearest Neighbor (ANN) Selection The ANN selection strategy samples data

from an unlabeled data pool in which the representations are close to the sentence representation

that are contained in the labeled data. In this study, we applied ANN selection based on the following

sentence representation:

• Bag of words (BoW)-based representation: The BoW representation was computed for each

sentence in the pool.

• Average word embedding-based representation: The average of the word embeddings for each

sentence in the pool was computed as the representation.

We selected the unlabeled data near NANN (as the hyperparameter) for these representations using

the ANN strategy and used these data for semi-supervised learning. We used Annoy1 to search for

1spotify/annoy: https://github.com/spotify/annoy

https://github.com/spotify/annoy
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neighbors and set NANN to 10 as the neighborhood in the experiments. We designed the experiment

for the ANN selection strategy to select the same amount of data as the random selection strategy.

3.5 Results

Tables 3.3 and 3.4 summarize the results of the prediction performance, and the correlations between

the learned attention weights and word importance that was estimated using the gradient-based

method, respectively. In both tables, (a) presents the results of the AT- and VAT-based techniques

in which adversarial perturbations were added to the word or attention, whereas (b) displays the

results of the iAT- and iVAT-based techniques in which improved interpretability was considered.

3.5.1 Prediction Performance

Table 3.3a indicates that our Attention VAT outperformed adversarial training for word embedding

(Word AT), its semi-supervised extension (Word VAT), and adversarial training for attention mech-

anisms (Attention AT) in all performance measures. Moreover, Table 3.3b shows that our Attention

iVAT exhibited the best prediction performance for all benchmarks. Thus, it can be confirmed that

our Attention VAT/iVAT achieves better prediction performance than recent AT- and VAT-based

techniques for the input space.

3.5.2 Correlation with Word Importance

According to Table 3.4a, the proposed Attention VAT yielded the strongest correlation between

attention to words and word importance as determined by the gradients. In particular, VAT, which

enables the use of unlabeled data, significantly improved the performance. As indicated in Table 3.4b,

the proposed Attention iVAT achieved the highest correlation value in all datasets. Although our

previous Attention iAT exhibited a significant increase in performance, Attention iVAT further

increased the correlation by a substantial margin.
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Table 3.3: Comparison of prediction performance. Unlabeled data were also used for the results of
the VAT-based method, and the amounts of such data are listed below the table.

(a) AT- and VAT-based techniques

Single-sequence task Pair-sequence task

Model F1 [%] Acc. [%] Mic. F1 [%]

Unlabeled
data

SST1 IMDB2 AgNews3 CNN4 SNLI5 MultiNLI6

Vanilla [36] ✗ 79.27 88.77 95.27 56.25 73.52 56.59

Word AT [75] ✗ 79.61 89.65 95.59 60.87 75.85 57.82
Word VAT [49] ✓ 83.04 92.21 96.23 63.74 77.38 60.43

Attention AT [104] ✗ 81.72 90.00 96.12 62.08 77.21 59.28
Attention VAT (ours) ✓ 83.18 92.48 96.35 64.93 77.87 61.07

(b) iAT- and iVAT-based techniques

Single-sequence task Pair-sequence task

Model F1 [%] Acc. [%] Mic. F1 [%]

Unlabeled
data

SST1 IMDB2 AgNews3 CNN4 SNLI5 MultiNLI6

Vanilla [36] ✗ 79.27 88.77 95.27 56.25 73.52 56.59

Word iAT [76] ✗ 79.57 89.64 95.62 61.21 75.91 57.91
Word iVAT [76] ✓ 83.07 92.30 96.17 63.76 77.42 60.47

Attention iAT [104] ✗ 82.20 90.21 96.19 62.15 77.23 59.42
Attention iVAT (ours) ✓ 83.22 92.56 96.48 65.08 78.13 61.18

1Nu = 50,000; Nu/Nl = 7.22. 2Nu = 150,000; Nu/Nl = 8.23. 3Nu = 250,000; Nu/Nl = 4.90.
4Nu = 190,149; Nu/Nl = 1.00. 5Nu = 270,683; Nu/Nl = 1.00. 6Nu = 157,081; Nu/Nl = 1.00.

3.5.3 Agreement with Human Annotation

Table 3.5 compares the estimated important words (i.e., the attention) in the sentences with human

annotations. The proposed techniques, especially our Attention iVAT, were more consistent with

the human-provided rationales than existing AT techniques for the word as well as the baseline in

both the hard and soft rationale selections. The BERT-to-BERT pipeline model [106]2 exhibited

the strongest agreement with the human annotation. However, for rationale selection, it underwent

supervised training with human annotations in a supervised manner for rationale selection, whereas

2They constructed a simple model in which they first trained the encoder to extract rationales, and then trained
the decoder to perform prediction using only rationales based on the pipeline model [115]. The pipeline model adopts
BERT for both the encoder and the decoder.
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Table 3.4: Comparison of Pearson’s correlation between attention to words and word importance
estimated by gradients. The results are provided for the iVAT-based technique using unlabeled data.

(a) AT- and VAT-based techniques

Single-sequence task Pair-sequence task

Model Pearson’s correlation

Unlabeled
data

SST1 IMDB2 AgNews3 CNN4 SNLI5 MultiNLI5

Vanilla [36] ✗ 0.852 0.788 0.822 0.638 0.741 0.517

Word AT [75] ✗ 0.647 0.838 0.813 0.691 0.757 0.574
Word VAT [49] ✓ 0.779 0.853 0.831 0.749 0.758 0.629

Attention AT [104] ✗ 0.852 0.819 0.835 0.742 0.769 0.593
Attention VAT (ours) ✓ 0.898 0.879 0.903 0.766 0.784 0.638

(b) iAT- and iVAT-based techniques

Single-sequence task Pair-sequence task

Model Pearson’s correlation

Unlabeled
dataset

SST1 IMDB2 AgNews3 CNN4 SNLI5 MultiNLI6

Vanilla [36] ✗ 0.852 0.788 0.822 0.638 0.741 0.517

Word iAT [76] ✗ 0.643 0.839 0.809 0.702 0.758 0.581
Word iVAT [76] ✓ 0.781 0.859 0.893 0.751 0.761 0.631

Attention iAT [104] ✗ 0.876 0.861 0.903 0.753 0.772 0.622
Attention iVAT (ours) ✓ 0.901 0.883 0.907 0.773 0.808 0.647

1Nu = 50,000; Nu/Nl = 7.22. 2Nu = 150,000; Nu/Nl = 8.23. 3Nu = 250,000; Nu/Nl = 4.90.
4Nu = 190,149; Nu/Nl = 1.00. 5Nu = 270,683; Nu/Nl = 1.00. 6Nu = 157,081; Nu/Nl = 1.00.

the models that were applied in our technique did not use annotations, which means that the selection

could be considered as unsupervised.

3.5.4 Amount and Selection of Unlabeled Data

Fig. 3.2 depicts the changes in the prediction performance with an increase in the amount of unlabeled

data in the random selection strategy. It shows that the amount of unlabeled data was a crucial

factor for this performance for both validation and test data. Here, because similar results were

obtained in each of the three single- and pair-sequence tasks, two for each task are shown for reason
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Table 3.5: Performance of vanilla and semi-supervised models for hard and soft rationale selection.

(a) Hard rationale selection

Model IOU F1 Token F1

Vanilla [36] 0.011 0.097

Word VAT [49] 0.018 0.100
Word iVAT [76] 0.019 0.102

Attention VAT (ours) 0.030 0.126
Attention iVAT (ours) 0.033 0.128

BERT-to-BERT [106] 0.075 0.145

(b) Soft rationale selection

Model AUPRC AP ROC-AUC

Vanilla [36] 0.326 0.395 0.563

Word VAT [49] 0.349 0.413 0.581
Word iVAT [76] 0.350 0.414 0.582

Attention VAT (Proposed) 0.403 0.477 0.646
Attention iVAT (Proposed) 0.417 0.489 0.651

BERT-to-BERT [106] 0.502 - -

of space. The results of five experiments each with different seed values are shown with error bars.

Specifically, in the single-sequence tasks, namely SST and IMDB, the performance improved as the

amount of unlabeled data increased up to approximately seven times that of the labeled data. In the

pair-sequence tasks, namely CNN news and MultiNLI, although we could only prepare up to twice

the amount of unlabeled data because of the limitations of the experimental conditions as mentioned

above, the accuracy also improved as the amount of data increased. This analysis demonstrates that

VAT-based techniques provide significant benefits with a large amount of unlabeled data. Although

we presented the results of four datasets (two for each dataset in the single- and pair-sequence tasks)

that are representative of the six datasets used in the evaluation experiments, we found generally

the same trends in the other datasets.

Table 3.6 compares the performance of the unlabeled data selection using the selection strategies

in the semi-supervised learning process. Both the random and ANN strategies exhibited almost the

same prediction performance in our techniques. This result suggests that the prediction performances
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Figure 3.2: Model performance in validation and test score for single-sequence tasks (SST and
IMDB) and pair-sequence tasks (CNN news and MultiNLI) with different amounts of unlabeled
examples

of our techniques were almost the same, regardless of the selection strategy used. However, a

remarkable improvement in the correlation with the word importance was observed. This finding is

discussed in further detail in Section 3.6.2.

3.6 Discussion

3.6.1 AT and VAT for Attention Mechanisms

Our Attention VAT/iVAT techniques logically extend our Attention AT/iAT [104] techniques, ac-

cording to our belief that attention is more important in identifying significant words in text/document

processing than the actual word embeddings. Our proposed Attention VAT/iVAT significantly out-

performed the Word AT/iAT in supervised settings, thereby reaffirming the above assumption.

Moreover, our Attention VAT/iVAT exhibited equivalent performance to that of Attention AT/iAT,

although our techniques did not use supervised labels for estimating the (virtual) adversarial pertur-

bation. In such situations, AT, which can use supervised labels directly to compute the adversarial
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Table 3.6: Comparison of unlabeled data selection performance in semi-supervised learning.

Model SST IMDB AGNews

Selection
strategy

Sentence
representation

F1 [%] Corr. F1 [%] Corr. F1 [%] Corr.

Attention VAT Random 83.18 0.898 92.48 0.879 96.35 0.903
ANN BoW 83.20 0.903 92.51 0.884 96.38 0.908

Avg. word embedding 83.21 0.927 92.50 0.902 96.39 0.928

Attention iVAT Random 83.22 0.901 92.56 0.883 96.48 0.917
ANN BoW 83.26 0.909 92.59 0.891 96.51 0.924

Avg. word embedding 83.26 0.941 92.60 0.914 96.52 0.957

direction, is advantageous. However, VAT, which relies on the current estimation for the compu-

tation and does not use labels, exhibits a fully equivalent performance, with no negative evidence

observed.

In the semi-supervised settings, our VAT-based techniques further improved prediction perfor-

mance and the correlation with the word importance in both the single- and pair-sequence tasks.

Our techniques can use unlabeled data more efficiently than the conventional Word VAT, which,

as well as its extension Word iVAT, have been validated extensively in semi-supervised settings.

In summary, the application of VAT to the attention mechanism, rather than word embedding,

resulted in improved model robustness (i.e., improved prediction performance) and interpretability

(i.e., improved agreement with manually annotated rationales).

3.6.2 Amount and Selection of Unlabeled Data

The amount and selection of unlabeled data that are added for training the model are important

factors for improving the performance in semi-supervised learning. First, we discuss the relationship

between the amount of unlabeled data and the prediction performance. Our proposed techniques

improved the performance until the unlabeled data were approximately seven times larger than the

labeled data in the single-sequence tasks. Although the amount of unlabeled data was limited to

the amount of training data, for the previously mentioned reasons, in the pair-sequence tasks an

increase in the amount of unlabeled data sufficiently improved the prediction performance. This

success is assumed to be owing to the VAT effectively utilizing unlabeled data, which contributed to
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smoothing the discriminative boundaries. It is noteworthy that the data added as unlabeled data

produced a performance improvement even though they differed from the original dataset regarding

type and quality.

Next, we discuss the selection strategy for unlabeled data. It is desirable for the input spaces

of the unlabeled and labeled data to be similar when computing virtual adversarial perturbations

using unlabeled data. Contrary to this empirical rule, our VAT for attention mechanisms worked

effectively even when unlabeled data, from a domain different from that of the labeled data, were

used. Our VAT for attention mechanisms essentially improved the model robustness. This confirms

that our technique yields correct inference results for various inputs and can estimate the words

that are important for the prediction as clear attention weights. As VAT computes the direction

of the adversarial perturbation based on current model estimation, the addition of unlabeled data

contributed to improving the performance, regardless of the selection strategy for the unlabeled

data. This is possibly why our VAT for attention mechanisms need not be careful when selecting

unlabeled data.

The training with more semantically similar unlabeled data from the pool (i.e., the ANN-based se-

lection strategy) exhibited a stronger correlation between attention to words and the gradient-based

estimates of the word importance than that without this consideration (i.e., the random selection

strategy). The selection of similar unlabeled data is expected to offer certain advantages in terms

of interpretability. As the ANN-based strategy selects similar data in a low-dimensional space, a

higher correlation is anticipated. A performance improvement can be expected if a superior selection

strategy is established in the future. Nevertheless, we emphasize that the proposed technique can

improve model performance by simply adding a large unlabeled data pool to the training, without

considering the similarity of the data.

3.6.3 Agreement with Human Annotation

The proposed Attention iVAT demonstrably exhibited substantially stronger agreement with hu-

man annotation than all other conventional techniques. In this evaluation, the BERT-to-BERT
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model [106] performed best, but this model was the only one that was trained to predict the textual

portion of the rationale/evidence in a supervised manner. Hence, it was not possible to compare

directly the models that applied our techniques. Our training technique can indirectly achieve highly

efficient rationale selection for common and practical RNN-based models without using large models

such as BERT and explicit learning for the rationale selection.

Similar to our previous proposal Attention iAT, Attention iVAT incorporates a process to em-

phasize the difference in attention to each word better, which may have contributed to the im-

proved performance. Specifically, the norm of the weight of the difference in the attention of words

(Eq. (3.8)) was normalized to 1. This process makes more effective use of the differences in attention

to each word and calculates the virtual adversarial perturbations, which are determined based on

more data than those in the former Attention iAT. Therefore, we believe that Attention iVAT can

generate cleaner attention, and thus, achieve a higher hard/soft rationale selection score.

3.7 Conclusion

We have proposed novel, effective, and general-purpose semi-supervised training techniques for

NLP tasks, namely Attention VAT and Attention iVAT. These methods are extensions to a semi-

supervised setting using VAT of our previous techniques, namely Attention AT and Attention iAT

respectively. Our training techniques significantly improve the prediction performance and model

interpretability. In particular, our proposed techniques are highly effective when using unlabeled

data and can outperform conventional VAT-based techniques. We confirmed that our techniques

perform effectively even when using unlabeled data from a source other than the labeled data. That

is, no careful selection (i.e., simple random selection) from the source is required. Our techniques

can easily be applied to any DNN model with attention mechanisms.

The model used in the evaluation of the proposed technique in Chapters 2 and 3 is the RNN-based

model. The application of the technique to the Transformer model, which is the current mainstream

model, and the impact of our work on subsequent research is discussed in Chapter 6.



Chapter 4

Conversion Prediction Using

Multi-task Conditional Attention

Networks to Support the Creation

of Effective Ad Creatives

Attention mechanisms have received a great deal of interest both in basic and applied research, but

their evaluation is often limited to benchmark datasets in a laboratory environment. This chapter 4

aims to develop a framework that can effectively predict the effective ad creatives to serve and

explain the trends of the effective ad creatives to us. The computational advertising field considers

applications that are business-critical and operate with large amounts of real-world data, and support

for the creation of more effective ad creatives for serving is one of the key subfields. Section 4.1

provides some background on the above. We describe in Section 4.2 the analysis and generation of

ads with high impact, the CTR/CVR prediction task, and the background methods for the proposed

framework in this chapter. We propose a new framework for supporting the creation of effective ad

60
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creatives that includes the following features in Section 4.3: (1) a new attention mechanism that

considers the target user’s preferences and (2) a new training method that simultaneously predicts

the CTR and CVR. We confirm in Section 4.4 that the proposed framework is highly effective in

evaluating operationally important metrics based on large-scale ad creative data obtained in the real

world. Finally, we summarize this chapter in Section 4.5. We consider that the attention weights

learned by the proposed framework can be applied to support the creation of effective ad creatives. In

Chapter 6, we discuss the possibility that the word-level interpretations provided by the framework

can practically assist in the operation, which relies mostly on human resources.

4.1 Background

In display advertisements, ad creatives, such as images and texts, play an important role in delivering

product information to customers efficiently [116]. The performance of these advertisements is

generally defined by the revenue of conversions per the cost of the advertisement. Conversions

are user actions, such as the purchase of an item or the download of an application, and they

represent a known metric that advertisers try to maximize through their ad creatives. The costs

of advertisements are generally calculated by the cost per click (CPC), where an advertiser pays

for the number of times their advertisement has been clicked. Therefore, the high performance

of an ad is determined by minimizing the amount paid for the maximum number of conversions.

Creating high-performing ad creatives is a difficult but crucial task for advertisers. The purpose of

this study is to supporting the creation of ad creatives with many conversions, and we propose a

new framework to support creating high-performing ad creatives, including accurate prediction of

ad creative text conversions before delivery to the consumer1. If conversions of ad creatives can be

predicted before delivery to consumers, advertisers can avoid the losses incurred by the high cost

of ineffective advertisements. Moreover, because ad creatives with high click-through rates (CTRs),

and low conversions have a tendency to deceive users, we also expect to improve the user experience

on media displaying those ads. As a result, advertisers will be able to focus on improving the CTR

1We have also improved the CVR prediction using the result of conversion prediction.
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of ad creatives.

Some attempts to support the creation of high-performing creatives by predicting ad creative

conversions have been reported in the industry234, but as far as we know, no academic research

has been published in this area. Thomaidou et al. [117, 118] proposed a framework for generating

ad creatives automatically. However, this framework focuses on search ads, and generates ad text

according to set rules. Thus, this framework cannot be applied for our purpose. Some studies have

reported that ad creatives affect the CTR of advertisements [119–121], but they do not predict the

conversions. Prediction of a user’s CTR or conversion rate (CVR) is a general task undertaken by

many studies in this research area, but there are no studies that have predicted these rates for ad

creatives. The prediction of an ad creative’s performance is another important issue, but to the best

of our knowledge, no study has examined this issue.

Although ad creatives are mainly image and text, we focus on the latter, and predicting its

conversions. Because it is difficult to replace ad images, but easy to replace text, in this chapter,

we propose a recurrent neural network (RNN)-based framework that predicts the performance of

an ad creative text before delivery. The proposed framework includes three key ideas, namely,

multi-task learning, conditional attention, and attention highlighting. Multi-task learning is an

idea for improving the prediction accuracy of conversion, which predicts clicks and conversions

simultaneously, to solve the difficulty of data imbalance. Conditional attention focuses on the feature

representation of each creative based on its genre and target gender, thus improving conversion

prediction accuracy. Attention highlighting visualizes important words and/or phrases based on

conditional attention. We confirm that the proposed framework outperforms some baselines, and

the proposed ideas are valid for conversion prediction. These ideas are expected to be useful for

supporting the creation of ad creatives.

This research is motivated to support the creation of high performing creative text. The contri-

butions are summarized as follows:

2https://www.facebook.com/business/m/facebook-dynamic-creative-ads
3https://www.adobe.com/en/advertising/creative-management.html
4https://support.google.com/google-ads/answer/2404190?hl=en

https://www.facebook.com/business/m/facebook-dynamic-creative-ads
https://www.adobe.com/en/advertising/creative-management.html
https://support.google.com/google-ads/answer/2404190?hl=en
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1. We propose a new framework that accurately predicts ad creative performance.

To realize this, we propose two key strategies to improve the prediction performance of adver-

tisement conversion.

(a) Multi-task learning predicts conversion, together with previous click actions, by learning

common feature representations.

(b) The Conditional attention mechanism focuses attention on the feature representation of

each creative text considering the target gender and genre.

2. We propose attention highlighting that offers important words and/or phrases using conditional

attention.

A prototype implementation of the proposed framework with Chainer [122] has been released on

GitHub5.

4.2 Related Work

This study focuses on ad creatives. First, we describe existing studies that analyze high-performing

ad creatives, and discuss how to generate them. Many studies on advertising creatives focus on

images, and offer few results for texts. Furthermore, these studies focus on the CTR, rather than

conversions. Second, we introduce studies on performance prediction for ads. In contrast to this

study, which aims to predict the performance of new ads, these studies focus on images. Finally,

highlighting studies related to our ideas, we introduce multi-task learning and RNN-based attention

mechanisms.

4.2.1 Analysis and Generation of Effective Advertisements

Because ad creatives play an important role in the performance of ads, some studies analyzed ad

creative performance [119–121]. For example, Azimi et al. [119] tried to predict some features of

5https://github.com/shunk031/Multi-task-Conditional-Attention-Networks

https://github.com/shunk031/Multi-task-Conditional-Attention-Networks
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the CTR using ad creative images, and evaluated the effectiveness of visual features. The motivation

of their study is similar to ours, but we focus on text instead of images in ad creatives and predict

conversions rather than the CTR. Cheng et al. [120] proposed a model for predicting the CTR of

new ads, and reported some knowledge using feature importance, but the text features of that study

were based on fixed rules. With the development of deep learning, especially convolutional neural

networks (CNNs) [4], visual features can be easily and effectively used for machine learning. Chen et

al. [54] proposed Deep CTR, showing that using the features of ad images can significantly improve

CTR prediction.

Thomaidou et al. [118] developed GrammaAds, which automatically generates keywords for

search ads. In addition, they proposed an integrated framework for the automated development

and optimization of search ads [117]. These studies support the creation of text ad creatives, but

because these methods are rule-based, focusing only on search ads, the methods cannot be applied

to display advertising.

4.2.2 CTR and Conversion Prediction in Display Advertising

CTR prediction of display advertising is important not only in the industry but also in academia.

In [52, 53], a CTR prediction model was proposed using logistic regression (LR), and factorization

machines (FMs) have been proposed to predict advertising performance [57–59]. In industry, LR

and FMs are mainly used, because in display advertising, the prediction response time needs to be

short to display an advertisement smoothly. In recent years, deep neural networks (DNNs) have

been applied for predicting the advertisement CTR [54–56, 60, 123], and especially, some models

combining DNNs with FMs have been proposed, and have improved predictions [56, 60, 123, 124].

The improvements achieved by these models show that explicit interaction between variables is

important for advertisement performance prediction, so we adopted explicit interaction in our idea

as a conditional attention mechanism.

There are several studies on CVR prediction [125–127], but there are not as many as the studies

on CTR prediction. CVR prediction is difficult, because the number of conversions is imbalanced
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data that almost ad creative’s conversions are zero. Existing studies tackled this difficulty. Yang

et al. [128] adopted dynamic transfer learning for predicting the CVR, and demonstrating feature

importance. Punjobi et al. [125] proposed robust FMs for overcoming user response noise. In this

chapter, we tackle this difficulty using multi-task learning.

4.2.3 Background of the Proposed Strategies

In this chapter, we propose two key strategies for improving the prediction performance of adver-

tisement conversion, namely, multi-task learning and a conditional attention mechanism. As the

background of these strategies, we describe multi-task learning and the RNN-based attention mech-

anism.

Multi-task Learning. Multi-task learning [129] is a method that involves learning multiple

related tasks. It improves the prediction performance by learning common feature representations.

Recently, multi-task learning has been used in various research areas, especially natural language pro-

cessing (NLP) [130,131] and computer vision [132–134], and has achieved significant improvements.

Conversions represent extremely imbalanced data, so conversion prediction is difficult. Because ad

click actions represent a pre-action of conversion actions, click prediction may be related to con-

version prediction. Therefore, we adopt multi-task learning, which predicts clicks and conversions

simultaneously.

RNN-based Attention Mechanism. For supporting the creation of ad creative text, we use

the knowledge of NLP. RNN-based models, such as long short-term memory (LSTM) [98], gated

recurrent unit (GRU) [135], and attention mechanisms [33] have made breakthroughs in various

NLP tasks, for example, machine translation [33], document classification [64, 128], and image cap-

tioning [34]. An RNN is a deep learning model for learning sequential data, and in NLP, this model

can learn word order. Attention mechanisms compute an alignment score between two sources, and

make significant improvements in some NLP tasks. Recently, self-attention [64], which computes

alignment in a single source, was proposed. In addition, visual analysis using attention can high-

light important phrases and/or words using the attention result, so the attention mechanism is also
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attractive for interpretability. In this chapter, we adopt a self-attention mechanism for improving

conversion prediction performance and visualizing word importance.

4.3 Methodology

The outline of the proposed framework for evaluating ad creatives is shown in Figure 4.1. In the

framework, we propose two strategies: multi-task learning, which simultaneously predicts conver-

sions and clicks, and a conditional attention mechanism, which detects important representations in

ad creative text according to the text’s attributes.

Conversion prediction using ad creatives with an imbalanced number of conversions is a challeng-

ing task. Therefore, in multi-task learning, we expect to improve the model accuracy by predicting

conversions along with clicks. The conditional attention mechanism makes it possible to dynamically

compute attention according to the attributes of the ad creatives, its genre, and the target gender.

4.3.1 Framework Overview

The input of the proposed framework is ad creative text and ad creative attribute values. Ad creative

consists mainly of two short pieces of text called the title and description. The ad attribute values

are the gender of the delivery target and the genre of the ad creative, and they are related to the

ad creatives.

Specifically, the input of the proposed framework is an ad creative text S = {w1,w2, · · · ,wn}

consisting of n word embeddings, where wi ∈ Rdw represents the word vector at the i-th position in

the ad creative text. Therefore, S ∈ Rn×dw is a two-dimensional matrix of the word sequence.

Incidentally, in the practical situation, a number of ad creative texts that have title and de-

scription texts are created for the target product. These texts often have different contexts for

maximizing the amount of information empirically. Therefore, the proposed framework uses two

text encoders, which learn the individual context from the title and the description.
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Ad creative

Title text

Description text

Attributes to be distributed

Gender

Genre

Title encoder

Description encoder

MLP
#CV
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Attention

Figure 4.1: Outline of the proposed framework. In the framework, we propose two strategies: multi-
task learning, which simultaneously predicts conversions and clicks, and a conditional attention
mechanism, which detects important representations in ad creative text according to the text’s
attributes.

As a text encoder, we adopted the GRU, which can extract features from ad creative text con-

sidering word order. Specifically, title text Stitle = {wtitle
1 ,wtitle

2 , · · · ,wtitle
n } and description text

Sdesc = {wdesc
1 ,wdesc

2 , · · · ,wdesc
n } are input from the ad creative into title and description encoders,

respectively, and are encoded into feature representations as htitle
t ∈ Rutitle and hdesc

t ∈ Rudesc ;

t = 1, 2, · · · , n:

htitle
t = title encoder(wtitle

t ,htitle
t−1 ),

hdesc
t = description encoder(wdesc

t ,hdesc
t−1 ).

(4.1)

Let utitle and udesc be the number of hidden units of the title and description encoders ob-

tained here. The n hidden states can be expressed as Htitle = {htitle
1 , · · · ,htitle

n } and Hdesc =

{hdesc
1 , · · · ,hdesc

n }, respectively. Compute a vector xfeats that concatenates these hidden states,

Htitle, Hdesc, one-hot vectors of gender features xgender ∈ Rdgender , and genre features xgenre ∈ Rdgenre :

xfeats = concat(Htitle, Hdesc,xgenre,xgender). (4.2)

Note, xfeats ∈ Rdfeats ;dfeats = n × (utitle + udesc) + dgender + dgenre. These concatenated vectors are
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inputted in a multi-layer perceptron (MLP) which is an output layer of the proposed framework.

To predict conversions ŷ(cv) and clicks ŷ(click), multi-task learning described later predicted ŷmulti =

{ŷ(cv), ŷ(click)} through the MLP:

ŷmulti = MLP(xfeats). (4.3)

To improve the performance of the model robustness, we use wildcard training [90] with dropout [136]

for the input word embeddings.

4.3.2 Multi-task Learning

Conversion prediction is difficult, due to the imbalanced data, so we use the strategy of multi-task

learning. Multi-task learning is a method that solves multiple tasks related to each other, and that

improves the prediction performance by learning common feature representations. We adapt multi-

task learning, and predict clicks and conversions prediction simultaneously. Because click prediction

may be related to conversion prediction, we expect to improve the prediction performance by learning

common feature representations using multi-task learning.

In multi-task learning, the input is a feature vector of a training sample denoted by x, and the

ground truth is y. For training samples x = {x1,x2, · · · ,xN}, a single model, f , learns to generate

predictions ŷ = {ŷ1, ŷ2, · · · , ŷN}:

ŷ = f(x1,x2, · · · ,xN ). (4.4)

We minimize the mean squared error (MSE) over all samples, N , in l = 1
N

∑N
i=1(yi − ŷi)

2. In

K supervised tasks, the multi-task model, F = {f1, f2, · · · , fK}, learns to generate predictions

ŷ = {ŷ(1), ŷ(2), · · · , ŷ(K)}:

ŷ = F (x1,x2, · · · ,xN ). (4.5)
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Figure 4.2: Example of the conditional attention mechanism. Conditional attention is calculated
from the element-wise product of the attention matrix A and the feature vector c consisting of the
gender and the genre.

The total loss is calculated from the sum of loss in each task,

L =
1

N

K∑
k=1

N∑
i=1

(
y
(k)
i − ŷ

(k)
i

)2

. (4.6)

In this task, for ground truth of y(cv) and y(click), we minimize losses for predicted conversions ŷ(cv)

and clicks ŷ(click):

Lmulti =
1

N

N∑
i=1

(
y
(cv)
i − ŷ

(cv)
i

)2

+ λ
1

N

N∑
i=1

(
y
(click)
i − ŷ

(click)
i

)2

, (4.7)

where λ > 0 is the hyper-parameter to control the effect of the click loss.
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4.3.3 Conditional Attention

We propose the strategy of the conditional attention mechanism. Supporting the creation of ad

creatives by considering attribute values is useful, but the conventional attention mechanism learns

keywords or key phrases, by calculating the alignment score using only the input sentence.

In this paper, we propose a conditional attention mechanism to calculate self-attention, using

feature vectors obtained from the attribute values of the ad creative. Figure 4.2 illustrates the

conditional attention mechanism. It can consider ad creative attributes against the conventional

attention mechanism.

The conditional attention mechanism is calculated from the attention of the text encoder and

the feature vector obtained from the attribute values of the ad creative text. Each word in the

word sequence S is independent of the others. To capture these word order relations, we apply a

text encoder to the text, to obtain the hidden state ht ∈ Ru. The n hidden states of these u × n

dimensions can be expressed as H = {h1,h2, · · · ,hn}.

To consider ad attribute values, a conditional vector, c ∈ Rn, is calculated by performing a linear

combination of xfeats ∈ Rdfeats and trainable parameters Wprj ∈ Rn×dfeats :

c = Wprjxfeats. (4.8)

Here, we use self-attention [64] for computing the linear combination. The attention mechanism

takes the entire hidden state H of the text encoder as the input and outputs attention vector a:

a = softmax(wT
s2tanh(Ws1H)), (4.9)

where Ws1 ∈ Rn×u and ws2 ∈ Rn are trainable parameters. Because H is an n× u dimension, the

size of attention vector a is n. The softmax(·) is calculated so that the sum of all the weight is 1.

Furthermore, we calculate the conditional attention vector using the attributes given to the

ad creative. The conditional attention vector, acnd, is calculated using conditional vector c and
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Table 4.1: Features included in the ad creative dataset. It contains 1,694 campaigns, some of which
were part of campaigns delivered by Gunosy. The average lengths of the title and description texts
are about 15 and, 32 characters, respectively. The Campaign ID feature is not directly inputted in
the model, because the ID is used for evaluations with cross-validation based on the ID.

Features Feature Description Details

Campaign ID Campaign ID in Gunosy Ads 1,694 campaigns

T
ex

ts Title Title texts Avg. 15.44±3.16 chars
Description Description texts Avg. 32.69±5.43 chars

A
tt

rs Genre Genre of the creatives 20 types
Gender Gender of delivery target 3 types

attention vector a:

acnd = a⊙ c. (4.10)

Here, ⊙ is an element-wise product. We want r different parts to be extracted from the ad creative

texts. Thus, the conditional attention vector acnd becomes conditional attention matrix Acnd ∈

Rn×r. Therefore, sentence vector m with the embedded ad creative text becomes sentence matrix

M ∈ Ru×r. The conditional attention matrix, Acnd, is multiplied by hidden state H of the text

encoder, and the r-weighted sentence matrices are calculated as follows:

M = HAcnd. (4.11)

In the proposed framework, the model makes predictions based on the calculated M and ad creative

attributes, such as xgender and xgenre.
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Table 4.2: Comparison of the prediction performance of CVs in mean squared error (MSE) criteria.
The proposed multi-task learning and conditional attention reduced MSE in almost all the categories,
especially estimating cases where the number of conversions (#CV) is one or more (#CV > 0).
However, “All predicted as zero” showed sufficiently low MSE in this category, due to too many
CV = 0 in this dataset. Therefore, we conclude using MSE as an evaluation metric is not suitable
in this study.

Model
MSE

All #CV >0

Single-task Multi-task Single-task Multi-task

MLP 0.01712 0.01698 0.04735 0.03199

GRU
Vanilla 0.01696 0.01695 0.04657 0.04355
Attention 0.01685 0.01688 0.04695 0.03105
Conditional attention 0.01683 0.01675 0.04641 0.02825

All predicted as zero 0.02148 —

4.4 Experiments

4.4.1 Dataset

We use real-world data from the Japanese digital advertising program Gunosy Ads6, provided by

Gunosy Inc.7. Gunosy Inc. is a provider of several news delivery applications, and Gunosy Ads

delivers digital advertisements for these applications. Gunosy is a news delivery application that

achieved more than 24 million downloads in January 2019.

For evaluation, we used 14,000 ad creatives delivered by Gunosy Ads from August 2017 to August

2018. In digital advertising, the cost of acquiring a conversion is called the cost per acquisition

(CPA). Advertisers set target CPAs for a product, and manage its ad creatives to improve their

performance. When the target CPAs for creatives are different, the trend of conversions may also

vary, and for this reason, the dataset we selected comprises ad creatives where the target CPA was

within a certain range. In addition, we removed creatives with a low number of impressions8 from

the dataset. As shown in Table 4.1, the title, description, and genre of the ad creative, as well as

the gender to which the ad is delivered, are used as input features. Note that the Campaign ID

6https://gunosy.co.jp/ad/
7https://gunosy.co.jp/en/
8An occasion when a particular advertisement is seen by someone using the application.

https://gunosy.co.jp/ad/
https://gunosy.co.jp/en/
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Figure 4.3: Distribution of clicks and conversions in the dataset. The number of conversions is
concentrated on zero. Compared with the number of conversions, the number of clicks indicates a
long-tail distribution.

is not a feature directly used as an input in the model, because the ID is used for evaluating with

cross-validation based on the ID.

Creative texts written in Japanese are split into words using MeCab [137], a morphological

analysis engine for Japanese texts, and mecab-ipadic-neologd [138], which is a customized system

dictionary that includes many neologisms for MeCab. The number of clicks and conversions is

log-normalized.

Figure 4.3 shows a histogram of the number of clicks and conversions. The number of conversions

is concentrated on zero, and in relation, the number of clicks is a long-tailed distribution. Therefore,

the ad creative dataset is definitely imbalanced. Figure 4.4 shows the distribution between the

number of clicks and conversions in the dataset. The correlation coefficient between the number of

clicks and conversions is 0.816, which is a strong correlation. As a reminder, we hide the number of
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Figure 4.4: The linear relation between the clicks and conversions in the dataset (correlation coeffi-
cient r = 0.816).

clicks and conversions, also their frequencies, for confidentiality reasons.

4.4.2 Experimental Settings

In these experiments, support vector regression (SVR) and an MLP-based text encoder were used as

a baseline model. When inputting creative text in the SVR model, we used average-pooled sentence

representations computed from word representations, using pre-trained word2vec (w2v) [139]. The

same pre-trained w2v was used as word embedding for the proposed model.

We compared and examined the following models: MLP (not considering word order) and GRU

(considering word order) as the text encoder in the proposed framework. LSTM was also considered

as a candidate for the baseline model; however, it showed no improvement in performance, so it

was excluded from the experiment. In addition, CNNs are known to be capable of training at

high speed, because they can perform parallel calculations, compared with LSTM and GRU, and
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their performances are also known to be equal. Nevertheless, these methods were excluded in these

experiments, because we were targeting an RNN-based model that can apply attention for visualizing

the contributions of words to ad creative evaluation.

We compared the proposed models used in the proposed framework. The following models were

compared and examined, to confirm the effect of multi-task learning in conversion prediction:

Single-task: A commonly known model that predicts conversions only; and

Multi-task: A model that simultaneously predicts the number of clicks and the number of conver-

sions.

To confirm the effect of the conditional attention mechanism, we compared the following models:

Vanilla: A simple text encoder without an attention mechanism. It is a baseline in the proposed

model;

Attention: A mechanism that introduces self-attention to the text encoder. It makes it possible to

visualize which word contributed to prediction during creative evaluation; and

Conditional Attention: A mechanism introduced to the text encoder of the proposed method.

Conditional attention can be computed and visualized considering the attribute values of the

ad creative. Different attentions can be visualized by changing the attribute value for the same

creative text.

In addition, the hyper-parameter setting is described below. The mini-batch size was set to be

64, and the number of epochs was set to be 50. For multi-task learning, we used a fixed value of

λ = 1. In the text encoder, the number of hidden units was set to be 200 for utitle and udesc. For all

models, we use Adam [140], with a weight decay of 1e−4, for parameter optimization.

4.4.3 Evaluation Metrics

First, as evaluation metrics, we adopt not only MSE but also normalized discounted cumulative

gain (NDCG) [141], which is evaluation metrics for ranking. MSE measures the average of the
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Table 4.3: Comparison of the normalized discounted cumulative gain (NDCG) in the proposed
model. When calculating NDCG scores, the results for all data and the scores restricted to the top
1% of conversions (#CV) were calculated.

Model
NDCG [%]

All #CV top 1 %

single multi-task single multi-task

SVM 96.72 83.73

MLP 96.68 97.18 82.97 84.12

GRU
Vanilla 96.54 97.00 76.39 78.51
Attention 96.76 97.11 83.00 85.49
Conditional Attention 96.77 97.20 87.11 87.14

squares of the errors, which is the average squared difference between the estimated values and

what is estimated. We adopted ranking evaluation metrics because the number of conversions is

imbalanced. As shown in Figure 4.3, most ad creative conversions are zero and imbalanced. A

high evaluation score can be achieved by an overfit model that predicts all outputs as zero when

such metrics are used. For the creation of high-performing ad creatives, rather than predicting zero

conversions, we would like to accurately predict high-conversion creatives as such.

NDCG is mainly used in the experiments. NDCG is the discounted cumulative gain (DCG)

normalized score. In DCG, the score decreases as the evaluation of an advertisement declines, so

a penalty is imposed if a low effect is predicted for highly effective creatives. At the time of the

NDCG calculation, after obtaining the rank of the ground truth, and its predicted value, respectively,

evaluation scores are calculated for all the evaluation data, as well as those restricted to the top 1%

of conversions.

For ad creative evaluation, the metrics are computed with cross-validation. In most advertising

systems, advertisements are delivered in units of campaigns. In a campaign, the target gender and

its genre are set, and multiple ad creatives are developed.

In this paper, we predict the number of conversions for ad creative text in unknown campaigns,

and confirm the generalization performance of the proposed framework. Therefore, at the time of the

evaluation, five-fold cross-validation was performed in such a manner that the delivered campaigns
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did not overlap.

4.4.4 Experimental Results

For confirming the accuracy of the proposed framework compared with the baselines, we compared

single-task and multi-task learning, and the results of the application of the conditional attention

mechanism are described. Through almost all the results, the proposed framework applying multi-

task learning and the conditional attention mechanism achieved a better performance than the other

methods. Especially, when focusing on ad creatives with many conversions, the proposed framework

achieved high prediction accuracy.

Table 4.2 shows the MSE score with all the evaluations in each model, and with one or more

conversions in each model. Almost all the results show that the model applying the multi-task

learning and conditional attention mechanism had a smaller MSE score than the other models did.

Overall, the RNN-based GRU showed better performance than the baseline models. Therefore, the

results suggest that it is important to properly capture word order when evaluating creative texts.

Compared with vanilla and attention, in the proposed model, conditional attention showed a better

performance.

Although the improvement of all datasets is weak, because as shown in Figure 4.3, the number

of conversions of many ad creatives is zero, the MSE is small, even if the conversion of most ad

creatives is predicted to be zero. Therefore, we evaluated data with conversions other than zero.

As a result, we found that the proposed model exhibits much better performance than the baseline

model for data with one or more conversions. The proposed model was able to predict creatives

with more conversions than the baseline models.

To evaluate ad creatives with many conversions as such, we used the ranking algorithm NDCG.

The NDCG result in the proposed model is shown in Table 4.39. The NDCG score (regarded as All

in Table 4.3) for all the datasets is shown for reference, because as noted above, most samples have

zero conversions. The performance of the GRU model that considers word order compared with the

baseline model improved by an average of approximately 3-5%, with many conversions.

9The same tendency was observed even when mean average precision (MAP) was used as an evaluation metric.
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Table 4.4: Comparison of NDCG between the CVR directly predicted by the single-task model and
the CVR (#conversions / #clicks) calculated from the multi-task GRU model’s predicted conversions
and clicks. The threshold value for calculating NDCG is assumed to be a CVR of 0.5 or more.

Model NDCG [%]

Single-task
Vanilla 80.54
Attention 82.58
Conditional attention 83.89

Multi-task
Vanilla 82.63
Attention 84.27
Conditional attention 85.61

In the NDCG result (Table 4.3), the multi-task model realized higher prediction accuracy than

the single-task model predicting only conversions did. A score improvement of approximately 1-2%

was confirmed when compared with the baselines. Because clicks are highly correlated with target

ad conversions, as shown in Figure 4.4, rather than predicting conversions alone, training the model

to multi-task by predicting clicks simultaneously can improve prediction accuracy. By training clicks

and conversions, the proposed model seems to implicitly learn features that contribute to conversion

prediction.

Because several previous studies predicted the CVR directly, we also calculated it, using the

prediction of the multi-task learning model, and compared the accuracy. In a multi-task model,

the CVR can be calculated by dividing conversions by clicks. In Table 4.4, the multi-task model is

compared with the single-task model by directly estimating the CVR. The prediction performance

of the multi-task model is higher than that of the single-task model. Although the number of clicks

and conversions predicted by multi-task learning may not always be close to the ground truth, the

ratio of the number of clicks to the conversion number is captured properly.

In Table 4.3, the conditional attention mechanism achieved better results the NDCG metric. In

particular, the conditional attention mechanism showed better results than the conventional atten-

tion mechanism did. In the conventional attention mechanism, the training was focused solely on

the co-occurrence relation between words in the input text, but the conditional attention mechanism

can predict conversion by using the attribute value.
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Table 4.5: Comparison of GRU models for creative texts and their attribute value interactions.
Performance is improved using conditional attention rather than giving attribute values directly to
word vectors.

Model
NDCG [%]

Single-task Multi-task

w2v + attributes
Vanilla 77.84 78.03

Attention 80.39 83.52

w2v Conditional attention 87.11 87.14

Table 4.5 shows the result comparing feature interaction between w2v-based embeddings and ad

attribute values. In the proposed framework, this interaction is realized with the conditional atten-

tion mechanism, explicitly. Because attention is computed by the input variables, this interaction is

implicitly expressed by inputting both variables in the text encoder. For confirming the effect of this

explicit interaction in the conditional attention mechanism, we compared the model that inputted

both variables in the text encoder with the conditional attention mechanism. The conditional atten-

tion mechanism showed the best performance in the single-task and multi-task model. Introducing

the vanilla model and the conventional attention model to the word representation with ad attribute

values resulted in a poor performance, mainly because the duplicate interactions were calculated

excessively. It is suggested that it is better to introduce the explicit interaction of attribute values.

4.5 Conclusion

In this paper, we propose a new framework to support the creation of high-performing ad creative

text. The proposed framework includes three key ideas, multi-task learning and conditional atten-

tion improve prediction performance of advertisement conversion, and attention highlighting offers

important words and/or phrases in text creatives. We confirmed that the proposed framework real-

izes an excellent performance thanks to these ideas, through experiments with actual delivery history

data.

In the future, we will build a framework that simultaneously uses images attached to ad creatives,

and aim to improve the accuracy of conversion prediction.



Chapter 5

Ad Creative Discontinuation

Prediction with Multi-task Hazard

Networks

In chapter 4, we proposed a new framework focused on supporting the creation of more effective ad

creatives. In contrast, support for discontinuing ad creatives that have become less effective in terms

of serving is another important aspect of ad operation support. This chapter 5 aims to formulate

the discontinuation of ad creatives. We outline in Section 5.1 that there have been various studies

on support for ad creatives with high serving effectiveness, while there have been few studies on

support for ad creatives with low serving effectiveness, and explain Section 5.2 based on specifically

related studies. In Section 5.3, we analyze real-world data obtained from ad operations and confirm

that there are both short- and long-term discontinuation trends for ad discontinuation problem,

which have been previously well formulated. Against the background, we propose in Section 5.4

a new framework with a well-used attention mechanism for supporting ad operations that predicts

ad discontinuation within the survival time analysis. We evaluate the proposed framework using

80
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large-scale datasets obtained through actual operation in Section 5.5, and conduct case studies in

Section 5.6. Finally, we summarize this chapter in Section 5.7. The presentation of important

words that serve as the basis for prediction by the proposed framework contributes greatly to the

final decision of the operator. The interpretability of prediction by the framework is discussed in

Chapter 6.

5.1 Background

With the increasing importance of digital advertising, the significance of ad operations has also

increased. Ad operations consist of various tasks, such as preparing ad creatives, determining the

bid price and the target audience, and discontinuing inefficient ad creatives. These operations

are essential for business revenue; however, operators’ abilities are dependent on their experience.

Supporting ad operations is an important topic of study in the field of machine learning (ML)

[61,142–145]. Discontinuing ad creatives at the appropriate time is a crucial operation and can have

a significant impact on sales. However, to the best of our knowledge, no studies have been conducted

so far that support these operations.

To support ad operations, we address the discontinuation of ineffective ad creatives based on

ML methods. Ad creatives are generally discontinued manually by ad operators when they become

less effective. Considering that ad-serving algorithms (e.g., bid price optimization [143, 144]) are

required to serve a large number of effective ad creatives, multiple studies have been conducted to

develop algorithms that can provide accurate predictions [54,146]. However, we posit that predicting

ad performance for operational efficiency requires other mechanisms because the utilization of the

results is different from efficient ad serving. In other words, in this chapter, we focus on predicting

the effectiveness of the ad creatives so as to properly discontinue ineffective ones.

Empirically, discontinuation falls under two categories: (a) cut-out (i.e., for short-term dis-

continuation) and (b) wear-out (i.e., for long-term discontinuation). In cut-out discontinuation, ad

creatives are discontinued after a short period of time due to incompatible serving effects, whereas in

wear-out discontinuation, ad creatives are discontinued when ad creatives’ performance deteriorates
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after a long time. Ad operators need to take different actions for each type of discontinuation. We

clarified these empirical differences by analyzing real-world data (described in detail in Section 5.3).

We propose a framework based on a multi-modal deep neural network (DNN) for predicting

the discontinuation of ad creatives that draws on the idea of survival prediction [147]. Survival

analysis/prediction has been developed for use in the medical field [148] to model the time until events

of interest; however, it is now commonly used in various other fields [149, 150] and is particularly

effective in digital advertising [151–153]. Our framework integrates a hazard function, which is

frequently used in survival prediction, into a loss function.1 We believe that our loss function is

more appropriate for predicting the timing of discontinuation than conventional classification or

regression frameworks are.

For the two types of discontinuation identified with pre-data analysis, we employ a two-term

estimation technique to predict the two terms through multi-task learning (MTL) [129]. Moreover,

we employ a new click-through rate (CTR)-weighting technique for the loss function to identify the

property of more valuable ad creatives. We used 1,000,000 real-world ad creatives, including 10

billion scale impressions, to evaluate our framework in offline experiments with a concordance index

(CI) [154] and the F1 score, and case studies that simulate online experiments in two real-world

practical cases. Currently, our framework is deployed in a production environment and provides

predictions for our internal operators.2

The contributions of our study are summarized as follows:

• Analyzing large-scale ad creative dataset: We analyzed 1,000,000 real-world ad creatives,

including 10 billion scale impressions, and identified two important aspects. (a) There are two

reasons for the discontinuation of ad creatives: cut-out (for the short term) and wear-out (for

the long term). (b) The business impact of discontinuation varies significantly for different ad

creatives.

• Proposing a new framework for predicting ad creative discontinuation: We propose

1It is controversial to solve ad discontinuation prediction as a survival prediction. In this chapter, we do not
elaborate on this topic but only discuss the idea of the hazard function. We intend to tackle this issue in our future
studies.

2Based on the predictions, we have discussions with the operations team to further improve the operation efficiency.



CHAPTER 5. AD CREATIVE DISCONTINUATION PREDICTION 83

Table 5.1: Classification of machine learning methods to support the process for ad creatives.

The process for ad creative operations Machine learning methods to support the operation process

(1) Creating and submitting to the ad platform Thomaidou et al. [155], Kitada et al. [142], Hughes et al. [156], Mishra et al. [61]
(2) Serving to users on the platform Zhang et al. [157], Shen et al. [158], Maehara et al. [143], Doan et al. [145]
(3) Discontinuing when the ads become less effective Our study

a multi-modal DNN-based framework for predicting ad discontinuation with a hazard function-

based loss function. Our framework includes two effective techniques: (i) a two-term estimation

technique with MTL and (ii) a CTR-weighting technique for the loss function. Our framework

demonstrated significantly better performance (short: 0.896, long: 0.939, and overall: 0.792

in the CI) than the conventional method (0.531 in the CI) did. Additionally, our framework

outperformed classification- and regression-based frameworks.

• Evaluating the framework through practical case studies: We evaluated our framework

from two important perspectives of case studies and confirmed the following: For short-term

cases, our framework demonstrated an equivalent or better discontinuation effect compared

with manual operations. For long-term cases, our framework provided a high degree of simi-

larity of order to manual discontinuation orders compared with other methods, based on other

practical indicators; this is important for long-running ad creatives.

5.2 Related Work

5.2.1 Supporting Ad Operations

Table 3.1 shows a classification of ML methods that support the process for ad creatives. The

operation process for ad creatives generally includes the following: (1) created and submitted to

the ad platform, (2) served to users on the platform, and (3) discontinued when they become

less effective. There are several studies to support (1) and (2) based on ML methods, such as

supporting the creation of high-performing ad creatives [61, 142, 155, 156], determining the best bid

price [143,157,159], and deciding to whom to serve the ad creatives [145,158,160]. However, to the

best of our knowledge, no studies have been conducted on supporting the discontinuation process.
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Thus, we focus on process (3) and develop a framework for predicting the appropriate timing for

the discontinuation of a ad creative.

The serving performance of ads can be inefficient for a variety of reasons, one of which is wear-

out. Wear-out is an event caused by decreasing ad performance due to repeated serving to users.

To control for wear-out, frequency capping,3 which restricts the number of times an ad creative is

served to a user, is a traditional function, and the number of servings of an ad is useful in predicting

the CTR and/or conversion rate (CVR) [146]. The event is commonly discussed in marketing

science literature [161], and an ad-serving algorithm that incorporates wear-out as a feature has

been previously proposed [162]. However, no studies have directly predicted the wear-out of ad

creatives.

In related studies about ad creative discontinuation, a bandit algorithm has been commonly used

for selecting effective ad creatives [163]. Using the algorithm, the efficiency of ad creatives can be

estimated correctly with fewer impressions. However, ad operators must decide which ads to discon-

tinue based on their performance; however, determining the appropriate timing of discontinuation

demands much experience.

5.2.2 Survival Prediction and Hazard Function

Survival prediction is a branch of statistics that deals with time-to-event data, that is, data where

the objective variable is the time until the event occurs. The effectiveness of the strategy has been

confirmed across various domains, such as credit score analysis [150] and customer analysis [149].

In digital advertising, survival prediction helps to predict the conversion rate [164], user experiences

after clicking on an ad [151], the winning bid price [152], and the failure rate of the reserve price [153].

The main feature of the survival prediction task is to correctly model censored data such that no

event occurs during the observation period. However, in the ad discontinuation task, such data are

scarce because the operator manually determines the time of discontinuation.4 When such censoring

data are scant or nonexistent, Zhong et al. [165] reported that the survival prediction task can be

3https://support.google.com/google-ads/answer/117579
4Although there are some cases where the serving volume is low, they are very few.

https://support.google.com/google-ads/answer/117579
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regarded as equivalent in terms of formulation to the classification task. Although it is debatable

whether survival prediction is suitable for ad discontinuation tasks, we assume that the properties of

ad discontinuation have some similarities with those of survival prediction tasks. Thus, we attempt

to utilize the hazard function, which is an important idea in survival prediction.

The hazard function can model the main variable of interest as the time until an event. This

function has been used to represent the decaying survival probability, and deep learning-based

survival prediction models have been developed by training a loss function based on the function [147,

166, 167]. We considered that the function is suitable for modeling the discontinuation probability

of exponentially decaying ad creatives (described in detail in Section 5.3). Through training based

on the hazard function with a deep learning model, we expect to develop a better prediction model

that will help ad operators with discontinuation.

5.3 Pre-Data Analysis

In this section, we clarify the characteristics of the two types of discontinuation (cut-out and wear-

out) by analyzing a real-world dataset. First, we provide an overview of the dataset. Second, we

analyze the dataset in terms of serving days and sales aspects. Then, we discuss the difference

between the two types of discontinuation based on the analysis.

5.3.1 Dataset Overview

We used real-world data from the Japanese digital advertising program Gunosy Ads,5 provided by

Gunosy Inc.6 Gunosy Inc. is a provider of several news delivery applications, and Gunosy Ads

delivers digital advertisements for these applications. The applications have been downloaded more

than 53 million times as of November 2019. We used approximately 1,000,000 ad creatives, including

10 billion scale impressions, served from 2018 to 2019 by Gunosy Ads. The ads were managed in

units called campaigns, and each campaign was configured with a target gender, ad genre, and cost

5Gunosy Ads https://gunosy.co.jp/ad/en/
6Gunosy Inc. https://gunosy.co.jp/en/

https://gunosy.co.jp/ad/en/
https://gunosy.co.jp/en/
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Table 5.2: Examples included in the ad creative dataset. In addition to the Japanese title text and
description text shown here, the dataset contains categorical information (e.g., gender of the serving
target, genre of the ad creative), images (e.g., the image attached to the ad creative), and numerical
information (e.g., the number of impressions, clicks, conversions, and the CPA for the ad creative).

Title text Description text Gender Genre

1000万人が選ぶ！みんなが選んでいるゲーム10選

Chosen by 10 million people! The 10 games played by everyone.

スマホに入れておきたい無料ゲームを限定でご紹介

Exclusively introducing free games

that you will want to install on mobile phone.

All Game App.

-10kgのダイエットに成功！痩せる理由はこれ

Success in -10 kg weight loss! This is the reason for getting slim.

女子に人気の方法で効果を実感

Realizing the effects popular among girls.
Female Healthy Food

有名芸能人監修。簡単にできる料理レシピ本

Supervised by a famous celebrity; easy cookbook.

一人暮らしの男性にもおすすめ！

Recommended for men living alone!
Male Books
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Figure 5.1: Frequency distribution of the number of serving days of the overall ad creatives in one
month. Many creatives were discontinued within three days of serving.

per acquisition (CPA). Table 5.2 shows the examples included in the ad creative dataset. Each

ad creative was associated with a campaign and consisted of an image, title, and description. Ad

performance data, including the number of impressions, clicks, conversions, and sales, were tabulated

for each ad creative daily. Because the data are confidential, the actual values cannot be disclosed.

Thus, relative values are used when discussing the data.

5.3.2 Analysis of the Dataset

Variation of Serving Days

First, we analyzed the distribution of the serving days, which is the period of time since the ad

creatives were served, as in Figure 5.1. Many ad creatives were discontinued within three days of

serving, and the continuous serving days of the ad creatives were exponentially distributed.
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Table 5.3: Percentage of the number of ads served and their sales on the serving date. While 80%
of the ads were served within a week of serving, the 20% of the ads that were served for more than
a week accounted for 80% of the sales.

Serving days Number of Ads [%] Sales [%]

[0, 3) 42.66 1.90
[3, 7) 38.72 16.34

[7,+∞) 18.62 81.76
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Figure 5.2: Histogram of ad creative sales in descending order. The y-axis is log-scaled. Most ad
creatives are included in the first bin.

Table 5.3 shows the percentage of the number of ads served and their sales on the serving days.

Although the number of ad creatives that were served for a long term is small, these creatives

account for a large percentage of advertising sales. Specifically, comparing the serving days of [0, 3)

and [7,+∞), the former has the majority of the ad creatives, but the latter accounts for the highest

percentage of sales. From this difference, we assume that each discontinuation is caused by different

operations. We discuss the differences in detail in Section 5.3.3.

Variation in Sales

Figure 5.2 shows the histogram of ad creative sales in descending order. Sales vary considerably for

each ad creative. Some are high-sales ad creatives, but most do not contribute to business revenue.
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Thus, the impact of each ad creative on the revenue is very different.

Accordingly, we attempted to reflect the high-sales ad creatives for the prediction framework. If

the framework is trained with equal use of all ad creatives, the framework would reflect the trends

of low-sales ad creatives excessively. We assumed that the construction of the framework requires

the weighting of learning depending on sales. Therefore, we employ a CTR-weighting technique for

the loss function, as described in Section 5.4.4.

5.3.3 Two Types of Discontinuation

In this section, we discuss the differences between the two types of discontinuation based on the

analysis in Section 5.3.2. We also describe how the differences can be handled effectively using our

framework.

The short-term discontinuation is labeled cut-out. In digital advertising, a best practice is to

create various patterns of ad creatives and look for effective ones by serving them. Clearly, it is

not easy to find an effective pattern, and thus, many ad creatives are discontinued in the short-

term. As Figure 5.1 shows, many ad creatives are discontinued early on, but this selection process is

conducted manually. Thus, it is a burden on the operation loads. In fact, automation of the process

has significant cost advantages (i.e., both time and money) from a business perspective.

In contrast, the discontinuation of an ad creative after it has been served for a long-term period

is called wear-out [161]. Wear-out occurs when the ad creatives are overexposed to customers and

response drops. The discontinuation of long-running ad creatives damages sales; however, the wear-

out of ads is inevitable. Thus, ad operators are tasked with creating new compelling ad creatives for

their replacement. Ad operators prioritize this task by estimating wear-out, which heavily depends

on the operator’s experience. Thus, by predicting wear-out, we expect that the sales loss could

be minimized. In terms of ad operations, predicting wear-out has a different role from predicting

cut-out.

In short, cut-out occurs when the user is not interested, and wear-out occurs when the user

becomes fatigued. The operations involved in each type of discontinuation also differ. In the case
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of a cut-out, the operator discontinues many inefficient ad creatives rapidly, whereas in the case of

a wear-out, the operator estimates when an ad creative’s performance degrades. It is important

that our framework predicts both types of discontinuation. Predicting cut-out (for the short term)

can save human effort and enable efficient advertising operations. Predicting wear-out (for the long

term) can have a significant impact on business revenue.

The properties of these two types of discontinuation are so different that they should be considered

as two different tasks. Therefore, we employ a two-term estimation technique (as described in

Section 5.4.3). Additionally, we analyze two real-world cases to evaluate the availability of each type

of discontinuation (as described in Section 5.6).

5.4 Methodology

We propose a multi-modal DNN-based framework for predicting the timing of the discontinuation

of ad creatives, based on the idea of survival prediction. First, we provide an overview of our frame-

work. Then, we introduce a loss function based on the hazard function for training our framework.

Additionally, we employ two techniques to enhance the performance for the prediction: (1) a two-

term estimation technique with MTL and (2) a CTR-weighting technique for the loss function. We

believe that it is important to make the DNN model simpler, especially for business problems, and

we introduce these effective learning techniques for the simple DNN model.

5.4.1 Overview of the Proposed Framework

Figure 5.3 shows the outline of our framework. For predicting the timing of ad creative discontin-

uation, we adopt and integrate the hazard function, which is based on the discrete-time survival

prediction strategy [147]. From the input ad creative X observed in time t, our framework outputs

hazard probability h for each pre-defined L time interval T such that (0, t1], (t1, t2], · · · , (tL−1, tL]

through hazard function f(·|·) with sigmoid function σ:

h = σ(f(t|X)) ∈ RL. (5.1)
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Figure 5.3: Outline of our framework that exploits a hazard function, which draws on the idea of
survival prediction, to predict the discontinuation of ad creatives. The input includes the four types
of features: text, categorical, image, and numerical features. The output is the hazard probability,
which includes whether the target ad creative has been discontinued in each time interval.

The details of how the function is learned are in described in Section 5.4.2.

The input to our framework is ad creative X observed in time t; the framework uses the four

types of features that constitute an ad creative: text features x1 (e.g., title, description), categorical

features x2 (e.g., gender of the serving target, genre of the ad creative), image features x3 (e.g., the

image attached to the ad creative), and numerical features x4(t) (e.g., the number of impressions,

clicks, conversions, and the CPA for the ad creative), which include statistical features and time-

series features. x1 to x3 are invariant with time interval t; x4 varies with t due to the serving

performance.

For the input features, each type of feature is encoded according to the type, such as text

embeddings e1, categorical embeddings e2, image embeddings e3, and numerical embeddings e4(t).

For all features, we performed conventional encoding and aggregation as well as encoding based

on DNN techniques. Due to the space limitation, the details of these input features and encoding
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processes are presented in Appendix E.1. Additionally, we briefly mention the properties of the

features obtained by these encoding processes in the section.

For predicting the hazard probability, the encoded features are finally integrated using a multi-

layer perceptron (MLP) to estimate the serving days of an ad creative in the pre-defined time

intervals:

h = σ(f(t|X)) = σ(MLP([e1, e2, e3, e4(t)])) ∈ RL. (5.2)

5.4.2 Learning the Hazard Function for Ad Creative Discontinuation

We describe the problem settings of the hazard function in discrete-time survival prediction and

how it can be learned for ad discontinuation. The hazard function can model the main variable

of interest as the time to an event. To predict the timing of discontinuation, we are interested in

discrete problems because currently discontinuation is done manually in real-world scenarios.

In discrete-time survival prediction, the follow-up time is broken up into time intervals, which

are often right-closed and left-open. Let t′ denote the time at which the event occurs, l = 1, 2, · · · , L

index the time intervals, and tl−1 and tl denote the lower and upper bounds of the l-th time interval,

respectively. The hazard probability within the l-th time interval is defined as follows:

hl = Pr(t′ ∈ (tl−1, tl]|t′ > tl−1). (5.3)

Here, the time interval is the same setting defined in Section 5.4.1.

The hazard probability can be modeled as a function of covariates to assess the effect of covariates

on the time to the event of interest. It is our belief that this property is appropriate for the

discontinuation of ad creatives. The hazard probability of the observation surviving the l-th time

interval hl is equal to the l-th output of the hazard function, which is equivalent to the following:

hl = σ(fl(tl|X)). (5.4)

where fl is the l-th output of hazard function f(·|·).



CHAPTER 5. AD CREATIVE DISCONTINUATION PREDICTION 92

The parameters are estimated through the maximization of the likelihood function for the discrete

survival prediction strategy [147]. The likelihood is written as follows:

ℓ(T , X) =

l′∏
l=1

hδl
l (1 − hl)

(1−δl). (5.5)

where l′ is the number of time intervals that was observed, and δl is the event indicator within the

l-th time interval, which is equal to 1 if the event occurs within that interval, and 0 otherwise. To

maximize the likelihood function, we minimized the following negative log-likelihood:

L(T , X) =

l′∑
l=1

δk log hl + (1 − δl) log(1 − hl). (5.6)

The full log-likelihood is the sum of the log-likelihood for each data and we minimize the log-

likelihood by mini-batch gradient decent.

5.4.3 Two-term Estimation Technique: For Short- and Long-term Dis-

continuations

We employ a two-term estimation technique to improve the performance for the two types of dis-

continuations (cut-out and wear-out). To account for the difference between the two types of dis-

continuations, we train two prediction models by setting different time intervals for each model. We

call these two models the short-term model and the long-term model, respectively.

The short-term model learns the cut-out features, and the long-term model learns the wear-

out features. In the short-term model, for time interval TS , which has LTS
intervals, the target

log-likelihood is defined as L(TS , X). In the long-term model, for time interval TL, which has

LTL
intervals, the target log-likelihood is defined as L(TL, X). Training with these different time

intervals for each model is expected to enable learning of different properties of short- and long-term

discontinuation, which will provide better predictions.

The MTL allows us to train short-term and long-term models in a unified single model. In
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applying this technique to our framework to train the model, we used the following two likelihoods:

Lmulti(TS , TL, X) = λL(TS , X) + (1 − λ)L(TL, X), (5.7)

where λ is a regularization coefficient that controls the balance between two loss functions. In this

chapter, we set λ to 0.5.7 The two hazard probabilities for the short- and long-term time intervals

outputted from the MTL technique can be merged, multiplying by the last interval of the short-

term time interval and the beginning of the long-term time intervals, to the last time interval of the

long-term time intervals. We used this result as the overall model of MTL with short- and long-term

time intervals.

In particular, TS and TL were set to be as follows:

TS = (1, 3], (3, 5], (5, 7], (7, 10], TL = (1, 10], (10, 30], (30, 60], (60, 90], (90, 120]. (5.8)

The time intervals for the short- and the long-term model were defined based on observations of a

dataset in which most ads were discontinued in about 10 days or 120 days, respectively, under the

assumption [147] that it was effective to make the interval width exponential.

5.4.4 CTR-weighting Technique for the Hazard-based Loss Function

We employ a CTR-weighting technique for the hazard function-based loss function. It is important

to capture the features of ad creatives that have a high CTR, because this is known to contribute

to business revenues, as stated in Section 5.3.2. Thus, we utilize the weighting technique to the loss

function with the CTR of ad creatives:

LCTR(T , X) = (rCTR + 1) · L(T , X), (5.9)

7As the fraction of short-term discontinuation is much larger than that of long-term discontinuation, tuning hy-
perparameter λ would yield better performance.
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where rCTR = #click / #impression and generally takes the value 0 ≤ rCTR ≤ 1. Thus, we

added one to this value to prevent the loss value from becoming too small for data with a low CTR.

For comparison, we used the impression-weighting technique Limp with the same settings as the

CTR-weighting technique.8

In the MTL, to apply our CTR-weighting technique, we used the following likelihood:

Lmulti
CTR (TS , TL, X) = λLCTR(TS , X) + (1 − λ)LCTR(TL, X). (5.10)

5.5 Offline Experiments

5.5.1 Motivation and Tasks of Offline Experiments

The purpose of the offline experiments is to evaluate whether our framework can correctly predict

ad discontinuation using observed data. To this end, we used the real-world dataset of ad creatives

shown in Section 5.3. The discontinuation date of the ad creative was defined as the date on which

the ad operator discontinued it manually. The dataset was divided into a training set, a validation

set, and a test set in a campaign-based and stratified fashion9, comprising 600,000, 200,000, and

200,000 ad creatives, respectively.

5.5.2 Evaluation Criteria of Offline Experiments

We evaluated our framework on the following aspects: (1) comparison with the conventional survival

prediction-based methods and its suitable metrics and (2) comparison with the classification and

regression frameworks. Regarding the former, considering our framework draws on the idea from

8Using sales directly as a weighting should be avoided in terms of business aspects because it would be too
significantly affected by an advertiser’s business.

9In most advertising systems, advertisements are served in units of campaigns, and multiple creatives with similar
trends are developed in a campaign. Thus, to avoid data leakage due to potential similarity, we divided the dataset
depending on the campaigns.
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Table 5.4: Comparison of concordance indexes with different time intervals and different features.
The time interval was compared for the short term, long term, and the whole period. We calculated
the concordance indexes using the prediction for all test data and the prediction for the top 25% of
sales data in the test data.

Model
Feature

Concordance Index

Short term Long term Overall

Stat. Text Image Time. All
Top 25%
of sales

All
Top 25%
of sales

All
Top 25%
of sales

Cox time-varying PH [168] ! ! 0.6098 0.7293 0.6574 0.6932 0.5287 0.5320

Random Survival Forest [169] ! ! 0.6213 0.7578 0.6832 0.7294 0.5311 0.5487

Our framework Single-task ! ! 0.7958 0.8262 0.7541 0.8001 0.5874 0.6001

! ! 0.7962 0.8232 0.7536 0.8045 0.5536 0.6045

! ! 0.7931 0.8346 0.7880 0.8397 0.5935 0.6101

! ! ! 0.7962 0.8313 0.7575 0.8113 0.5908 0.6113

! ! ! ! 0.8289 0.8640 0.7892 0.8456 0.6225 0.6456

Multi-task ! ! ! ! 0.8700 0.8712 0.9228 0.9293 0.7915 0.8049

survival prediction, we follow the evaluation in a survival prediction manner. For the latter, we

evaluate the prediction made by the hazard function in our framework.

Survival Prediction-based Models with CI

For the performance evaluation, we employed a CI [154], which is the standard measure for model

assessment in survival prediction strategies. A CI evaluates, for each random pair, the probability

that the two predicted survival times will be in the same order as the actual survival time. For

context, CI = 0.5 is the average CI of a random prediction, whereas CI = 1.0 is the perfect ranking

of a prediction. We believe that this measure is sufficient to evaluate the framework based on our

survival prediction.

From a business perspective, it is important to accurately predict the duration of top-selling

creatives. The differences between the sales of the ad creatives were found to be substantial, as

shown in Section 5.3. To determine whether the high-value creatives were accurately predicted, we

evaluated only the top 25% of the ad creatives in the dataset based on their sales values.

For comparison with the survival prediction technique, we used the conventional methods of

the Cox time-varying proportional-hazards model (Cox time-varying PH) [168] and random survival

forest [169]. The hyperparameters of these methods tuned the validation set, and we report the
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prediction results for the test set. To confirm the effects of our short-term and long-term models,

we constructed an overall model that includes the time interval used in the short- and long-term

models. The hyperparameter settings of our framework are described in Appendix E.2.

Classification and Regression Frameworks with F1 score

To validate our framework, we compared it with binary classification and regression frameworks

that simulate direct discontinuation. This leads to an intuitive evaluation with other frameworks

for which the CI cannot be directly applied. The details of the classification and regression models

are described in Appendix E.3.

We used the F1 score to compare our framework with the classification/regression frameworks.

The only difference between our framework and the others is the output objective; our framework

predicts the hazard probability at each time interval in a single-task model, whereas the classifica-

tion/regression framework predicts whether to discontinue at the time interval in each model.

5.5.3 Evaluation Results of Offline Experiments

Comparison of Survival Prediction-based Models

First, we compared the conventional method of the Cox time-varying PH and random survival forest

in terms of the statistical and text features. Table 5.4 shows in terms of the CI. We can regard a

model with the same features (i.e., the statistical and text features) under a single-task setting as

a baseline based on our DNN. Compared the DNN baseline with the conventional methods, our

DNN-based framework showed better performance, with an approximate 10-point gain. By using

our framework, not only can the performance be improved, but various features, such as image and

time-series features, can be accounted for as well. Furthermore, comparing our DNN baseline with

the full model of our framework (i.e., the model with all features under multi-task setting), we can

confirm an average improvement of 3 points in prediction performance.

For the short- and long-term models, the models that incorporated all features, such as image

features, text features, and time-series features, had the best scores by an average of approximately
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Table 5.5: Comparison of prediction performance by proposed CTR-weighted loss in the multi-task
model. We compared the vanilla model (without any special loss), Limp, and LCTR.

Model
Concordance Index

without Limp LCTR

Short-term 0.8700 0.8884 0.8958

Long-term 0.9228 0.9297 0.9390

Overall 0.7915 0.8060 0.8127

4 points. In the short-term model, the text and image features contributed more compared with

the long-term model. However, in the long-term model, the time-series features contributed more

than in the short-term model. These differences are in line with the trends of the two types of

discontinuation. The effect of time-series data is described in Appendix E.4.

Compared with the models where the short- and long-term models were trained individually, we

observed even better performance in the model that was trained simultaneously with MTL. The

performance improved significantly by approximately 5 points and 13 points in the short- and long-

term models, respectively. MTL further boosted the overall performance, with a clear improvement

of about 17 points.

Table 5.5 shows the MTL model performance comparison to confirm the effect of the CTR- and

impression-weighting techniques. By introducing the CTR-weighting technique, the prediction per-

formance was improved in the short-term, long-term, and overall models. The impression-weighting

technique performed better than the vanilla model (e.g., without any weighting for the loss) but did

not show a better performance compared with the CTR-weighting technique.

In the short-term model with CTR weighting, the CI showed an improvement of approximately

3 points, and in the long-term model, the improvement was approximately 2 points. The improve-

ment in performance was observed even when impression weighting was introduced; however, the

performance improved more when the CTR-weighting technique was introduced. We assume that

the large variance in the number of impressions is the reason for the difference between these scores.

Thus, weighting with CTR enables training for more accurate prediction.



CHAPTER 5. AD CREATIVE DISCONTINUATION PREDICTION 98

Table 5.6: Comparison of the F1 score in discontinuation prediction after N days using the binary
classification framework and regression framework.

Short-term Long-term

3 days 7 days 30 days 90 days

Classification framework 0.3208 0.3106 0.1098 0.0980
Regression framework 0.3813 0.2852 0.0969 0.0735

Our framework 0.7988 0.7796 0.7287 0.7004

Comparison of Classification and Regression Frameworks

Table 5.6 compares our framework and classification/regression frameworks. Compared with other

frameworks, our framework performed better by approximately 40 points in the short-term model

and by 60 points in the long-term model. In the short-term model, our framework achieved superior

performance, about twice that of the other frameworks. In the long-term model, the classifica-

tion/regression frameworks did not appear to perform well. Based on these results, our hazard

function-based approach represents an effective method for predicting ad creative discontinuation

problems.

5.5.4 Discussion of Offline Experiments

The Effect of Input Features on Prediction Performance

In our framework, the effective feature of the prediction of short- and long-term ad discontinuation

is different. In the short-term model under the single-task setting, the text and image features that

make up the ad creative contribute to the prediction. The short-term discontinuation (i.e., cut-out)

may be caused by many users who are not immediately interested in the ad creatives. Since the

text and image affect the user’s impression of the ad creative, this result reflects characteristics of

the short-term discontinuation. In the long-term model, the time-series feature contribute to the

prediction. The long-term discontinuation (i.e., wear-out) is caused by the user getting fatigued,

as described in Section 5.3. This is due to the fact that users have been repeatedly interacting

with similar or the same ads, and thus the CPA has been decreasing. Since the time-series feature
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captures the user’s fatigue by change of the ad performance, this result reflects characteristics of

the long-term discontinuation. As a result, we confirmed that each input feature contributes to the

prediction of both cut-out and wear-out appropriately.

The Effect of Two-term Estimation with MTL and CTR-weighting Technique

Ad creative discontinuations are of two types with different characteristics, as described in Sec-

tion 5.3. To accurately predict the appropriate timing for the discontinuations, we introduce MTL

into our two-term estimation technique. Additionally, we introduce the CTR-weighting technique

to learn more valuable ad creative features. We confirmed that these techniques contribute to the

prediction of ad creative discontinuation.

For ad creative discontinuation that has two different types of characteristics, we demonstrated

that the model with our two-term estimation technique is superior to the single (overall) model. The

short- and long-term models trained by the two-term estimation technique achieved much higher

prediction performance than the single overall model, which included both short- and long-term

time intervals. Furthermore, we found that training a unified model of these two-term models by

MTL achieved better performance than the short- and long-term models alone. We believe that the

unified model with MTL can learn the fine-grained property of short- and long-term discontinuation

than the single overall model.

Our CTR-weighting technique is expected to learn more valuable ad creative features accurately.

The results showed that our model was a more accurate predictor with CTR-weighting loss than

without it. It improved the accuracy of the prediction of discontinuation of top-selling ad creatives

and the overall accuracy. Consequently, it can be assumed that accurate training of effective ad

creatives will have a positive effect on the overall prediction.

Our Hazard function-based Framework vs. Classification/Regression Framework

Our framework achieves much higher prediction performance for the ad discontinuation prediction

problem by introducing the hazard function instead of the conventional classification/regression
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framework. We assume that there are two reasons due to the property of the discontinuation

problem: (1) the data imbalance and (2) the time dependence of the discontinuation. Regarding

the data imbalance, most of the ad creatives were discontinued early. If the classification/regression

framework is trained on such data, it may output only biased predictions. Regarding the time

dependence of the discontinuation, the probability of the ad creative discontinuation increases as time

goes on. The classification/regression framework does not have the assumption of time dependency,

while the hazard function-based framework is known to have the assumption. We consider that

the hazard function appropriately captures the property of the two reasons derived from the ad

creative discontinuation problem. In contrast, the classification/regression framework does not seem

to sufficiently handle the problems of the data imbalance and the time dependence. In particular,

the classification- and regression-based long-term models may output only discontinuation, which

may be why the F1 score is low. Furthermore, as ad creatives tend to be discontinued due to their

decreasing effectiveness of serving over time, our framework, which can consider the discontinuation

probability at the previous time interval, is considered to function effectively.

5.6 Case Studies

5.6.1 Motivation and Tasks of the Case Studies

As our goal is to support ad operations (specifically ad discontinuation), we needed to verify how

effective our framework is in practical cases. In Section 5.5, we confirmed that our framework

performs well for predicting the ad creative discontinuation. However, we should evaluate with

other criteria in addition to the traditional performance criteria in survival prediction such as CI.

In this section, we evaluate the availability of our framework on two real-world cases according

to the following research questions using as yet unobserved data:

• RQ1: How does the efficiency of our framework for discontinued ad creatives compare to that

of human operation?

• RQ2: How close is the order of the ad discontinuation based on the framework’s predictions
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to the actual manual order?

In the first case, we evaluate the cut-out (i.e., short-term) performance of our framework. Our

purpose in the short-term is to reduce the operation loads on the operators from having to discontinue

many ad creatives manually. We confirm how the efficiency changes when the ad is discontinued

according to our framework, compared with that under manual operation. In the second case, we

evaluate the wear-out (i.e., long-term) performance. Ad operators must prioritize tasks that create

new compelling ad creatives to replace of long-running ads, as described in Section 5.3.3. Therefore,

it is crucial to identify an appropriate order for ad discontinuation in the ad business.

For the evaluation, we use the best model identified in Section 5.5. When the hazard probability

from the model exceeds 0.9 for the first time, we consider that the ad creative has been discontinued

in the time interval. The two practical cases are analyzed for another period to confirm the time

robustness with 400,000 ad creatives for three months, unlike in the offline experiments.10

5.6.2 Evaluation Criteria of the Case Studies

To evaluate our framework more closely against real-world ad operations, we conducted case studies

in terms of CPA11 and the order in which the ad creative is discontinued. The evaluation results

with the criteria respond to the aforementioned research questions. We describe the details of these

criteria below.

CPA Ratio: The Ratio of the Actual CPA to the Target CPA

We introduce practical metrics to assess the performance of ad creatives. One of the major metrics

for deciding discontinuation in ad operation is the CPA ratio, which measures the efficiency of the

CPA. We use this metric as the baseline for the experiments. The CPA ratio is defined as follows:

CPA ratio = Actual CPA / Target CPA. (5.11)

10These data were sampled randomly to ensure confidentiality.
11While we understand the importance of the volume metric of the ads, we keep it private for business reasons

because the metric is closely linked to real-world commercial systems.
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Table 5.7: Comparison of the CPA ratios for predicting cut-out in the practical evaluation experi-
ment. The CPA ratio is calculated as Actual CPA/Acceptable CPA. The closer the CPA ratio is
to 1, the more profitable it is for the advertiser and the media. Human performance is calculated
on the day the ad operator discontinues the ad creative.

Short-term Single-task Multi-task Human performance

CPA ratio 1.13 ± 0.9 1.12 ± 0.7 1.18 ± 0.4

The actual CPA is calculated based on the number of sales and conversions and is the indicator of

how much the ad creative costs compared with the conversions. The target CPA is the CPA that the

advertiser wants. This metric measures CPA efficiency, which represents both the costs and volume.

We should avoid simply evaluating a low CPA because it would reduce the exposure of the ad when

the CPA is low. Advertisers are expected to minimize the volume within their budgets. We believe

that the CPA ratio can be used to evaluate both the cost and volume.

The CPA ratio should not be high but not low either. When the metric is low, the setting of

the cost can be satisfied, but the volume can be increased by allowing a higher actual CPA. The

closer the CPA ratio is to 1, the more profitable it is for the advertiser and the media. This metric is

actually used by ad operators to decide whether discontinue ad creatives. We assume that evaluation

based on this metric is similar to professional operator decisions.

The Order of Ad Discontinuation

We evaluated the order of discontinuation for RQ2. To prepare for the sudden discontinuation of

long-running ad creatives, it is necessary to ascertain to evaluate whether our framework can accu-

rately predict the order in which ads are discontinued. To evaluate the order of ad discontinuation,

we compared the normalized discounted cumulative gain (NDCG) [141]. The NDCG is calculated

for ad creatives in the order in which they are discontinued by the ad operator and in the order in

which our framework predicts discontinuations.
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5.6.3 Evaluation Results of the Case Studies

Comparison of CPA Ratios

To answer RQ1, we evaluated the CPA efficiency if the ad operators decide to discontinue ad creatives

according to our framework. Our framework predicted the discontinuation date based on only one

day of data from serving. The CPA ratios of our framework are calculated based on the predicted

discontinuation date, and the ratios for human performance are calculated based on the actual

discontinuation date. We note that the discontinuations by human decision used the performance

after the fist day, contrary to our framework. This experiment assumed the cut-out case, and thus,

we evaluated the output of the short-term model, as described in Section 5.6.1.

Table 5.7 shows the comparison of the CPA ratios. Compared to the best model under the single-

task setting, the best model under the multi-task setting successfully predicted the discontinuation

with a CPA ratio close to one. Furthermore, the multi-task model shows better performance of

discontinuation in terms of the CPA ratio than the human operator’s decision. Overall, we confirmed

that the single- and multi-task models have the same level of human performance.

Comparison of the Discontinuation-order Evaluation

To answer RQ2, we determined how close the discontinuation order predicted by our framework was

to the actual discontinuation order. Correctly predicting which ads are likely to discontinue allows

ad operators to set operational priorities. This experiment assumed the wear-out case; hence we

evaluated the output of the long-term model, as described in Section 5.6.1.

To decide on a discontinuation order using our framework, we utilized the predicted discontinua-

tion date and the hazard probability. To predict the wear-out case, our framework used only the first

10 days of data from serving. In each time interval, we sorted ad creatives based on the probability,

and we concatenated the ordered ad creatives in each time interval.

To compare the evaluation results, we introduced two practical rule-based indicators, which are

similar to practical operations. One was to sort by sales, namely, sales order. The business is

seriously affected if an ad with high sales is discontinued. The other was to sort by the CPA ratio,
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Figure 5.4: Comparison of the NDCG for the following prediction and actual discontinuation orders
for each continuous serving days: by our framework (i.e., single-task and multi-task) and by the
rule-based on the sales and the CPA ratio.

namely, the CPA ratio order, because ads with a high CPA ratio are easy to discontinue. These

indicators are considered to be correlated with human decision-making.12

Figure 5.4 shows the NDCG of the prediction of our framework and the actual discontinuation

orders for each continuous serving day. This experiment targeted ad creatives that have been served

for more than 10 days. Each evaluation was conducted every 10 days for ad creatives within con-

tinuous serving days. For example, when the x-axis value was 20, the y-axis showed the NDCG

value with ad creatives with 20 or more days of continuous serving. This evaluation determined how

accurately we could predict future discontinuation.

12Ad operators usually monitor these indicators daily.
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5.6.4 Discussion of the Case Studies

RQ1: Perspective of CPA ratio

In Table 5.7, we confirmed that both single- and multi-task models outperform the performance of

the human operator. Because the performance of our models does not use unseen future data, which

are used in the human performance, we posit that the same level of the performance is sufficient.

This result suggests that, even if we decide the discontinuation using the prediction of our framework,

the CPA efficiency does not get worse.

Clearly, the performance after ad discontinuation cannot be known, and thus, when the prediction

result comes after the actual discontinuation date, the CPA ratio is the same as the actual CPA

ratio. We posit that this problem does not affect our purpose, as our proposal is not to outperform

but rather support human decision-making.

To answer RQ1, when our framework discontinues an ad creative, the CPA efficiency

is almost equal to human operation.

RQ2: Perspective of the Order of Ad Discontinuation

Overall, our framework provided appropriate predictions of the discontinuation order compared

with sales- and CPA ratio-based metrics. The CPA ratio and our framework exhibited the same

performance for the first 10 days. However, when the number of serving days was increased, our

framework performed better. In other words, the CPA ratio is suitable indicator for predicting which

ad will be discontinued in the near future but cannot predict the discontinuation days in the long

term, unlike our framework. Because it is important to plan priorities using long-term predictions,

our framework plays an important role in prioritizing ad operations.

To answer RQ2, our framework achieves a closer prediction of the order of the actual

discontinuation than practical indicators.



CHAPTER 5. AD CREATIVE DISCONTINUATION PREDICTION 106

5.7 Conclusion

Ad creative discontinuation has a major role in ad operations. Although ad operation efficiency

using ML methods is an active research topic, there have been few practical studies regarding how

to predict the appropriate timing of ad creative discontinuation. To achieve this goal in a real-

world environment, we proposed a multi-modal DNN-based framework for predicting the timing of

the discontinuation of ad creatives that draws on the idea of survival prediction. Our framework

has a loss function based on the hazard function and contains the following two simple but novel

techniques: (1) a two-term estimation technique with multi-task learning and (2) a CTR-weighting

technique for the loss function.

Evaluations using 1,000,000 real-world ad creatives confirmed that our two-term estimation tech-

nique significantly improves the prediction performance, and CTR-weighting technique further im-

proved the performance. Compared with classification/regression frameworks, we observed that

our framework performed notably better for predicting discontinuation. Additionally, for the two

practical cases in the case studies, our framework achieved equivalent CPA efficiency with manual

operation for short-term prediction and a higher NDCG with manual operation compared with other

indicators using actual sales metrics (sales order, CPA ratio order) in long-term predictions. While

the DNN-based architecture in our framework is not entirely novel, we addressed a crucial problem

encountered in real-world ad operations and confirmed its feasibility in practical cases.

Our framework has been deployed in our production environment, and we engage in regular

discussions with the operations team to figure out ways to further improve the operation efficiency.

In the future, by analyzing the prediction results, we intend to establish the best practice to utilize

the result and publish our framework for customers. Additionally, we intend to train a model that

rewards the operator’s discontinuation behavior based on reinforcement learning.
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Discussion

The goal of the research described in this dissertation is to improve the prediction performance

and model interpretability through attention mechanisms from the basic and applied research per-

spectives. First, we discuss the scope of application of the research results. Next, we discuss the

interpretability of the DL model, which is important in the future collaboration between humans

and DL models, and the interpretability of the proposed methods. Finally, we discuss the impact of

the proposed methods on subsequent studies published in response to our study.

6.1 Scope of Application of the Research Results

Throughout this dissertation, we used RNN-based models for the parts of the research results that we

worked on, especially for NLP task. Such models were already widely used in practical applications

when we started the research, and could be trained with relatively small computational resources.

In light of the above, we considered that RNN-based evaluation was appropriate from the viewpoints

of both basic and applied research at that time.

In the basic research, we evaluated the effectiveness of the proposed techniques in NLP tasks

against RNNs with attention mechanisms. On the other hand, the proposed techniques are applicable

to all models with attention mechanisms (including Transformer [6]). Although the mainstream has

107
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moved to Transformer in recent years, the original articles in this dissertation [104,170] only stated

that it was applicable.

The main reasons for not evaluating Transformer [6] or its follow-up models [70, 171] are: (1)

the significant increase in computational complexity, (2) the unconfirmed vulnerability of the Trans-

former to perturbations in the attention mechanism, and (3) the unknown model interpretability

properties of the Transformer. Regarding (1), Transformer was difficult to train at the time because

it was a very deep model with a large number of parameters compared to conventional RNN-based

models. For (2), we focused on the vulnerability in RNNs because the vulnerability was confirmed

in Jain and Wallace [36], which we referred to, and was unknown in Transformer. Furthermore, for

(3), since the RNN with attention mechanism has the mechanism before the final layer, we consid-

ered that the features that directly contribute to prediction are reflected in the attention weights.

This setup allows for easier interpretation of prediction results compared to the Transformer model,

which has a very complex attention mechanism.

While limited to evaluation by RNN for the above reasons, it is also considered to be an effective

training technique for the Transformer. The proposed technique is expected to have the same model

regularization effect as the original AT technique [49,75]. For Transformer-based pre-trained models

such as BERT [7], the proposed technique can be applied to the frozen encoder part. Then, the

predictions can be made using the obtained the CLS tokens, which can be trained with a relatively

small amount of computation. In fact, the ideas for our technique have been evaluated in the

Transformer-based model in a subsequent study [172,173] and are discussed in detail in Section 6.3.

In applied research, we developed frameworks for ad operations using a similar RNN model with

the attention mechanism. Since our framework is generic, it is possible to change the text encoder

responsible for NLP to a Transformer. On the other hand, the study related to interpretability

in attention-based RNN models is more proven than in the Transformer model, which may have

advantages, especially in businesses where mature technology is preferred.
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6.2 Discussion of Interpretability in This Study

Following Arrieta et al. [16]’s definition of explainable AI, we proposed some techniques/frameworks

to achieve the goal of ”building explainable AI that provides reasons and details that make under-

standing easier.” Throughout this paper, we refer to ”interpretability” in NLP tasks as methods

that focus on each word in the input text and give the user an interpretation of the prediction.

6.2.1 Basic Research Perspectives

Recall that we focused on (1) trustworthiness and (5) confidence among the properties required of ex-

plainable AI. Methods that have been widely known to provide interpretations of model predictions,

utilizing the attention and gradient, have often shown different results, and further study is needed

to achieve more reliable model interpretations. We first examine the metrics for interpretability used

in prior studies, and then discuss interpretability in Chapters 2 and 3.

Let us first discuss the evaluation using rank correlations, which was used in Jain and Wallace [36]

to evaluate interpretability. Consider a situation where a relatively long sentence is input into the

model. Intuitively, few words are considered important for solving the task for the entire input

sentence. Thus, the majority of words are not necessarily required for prediction. Recall here

that the gradient-based interpretation method may potentially present a noisy rationale. When the

relationship between attention and the noisy gradient is evaluated by the rank correlation, the results

are computed close to uncorrelated, even if the attention does provide a sufficient interpretation.

From the above, we have examined the relationship between attention and gradient importance by

Pearson’s correlation coefficient in Chapters 2 and 3.

In Chapter 2, we showed that applying adversarial training to attention resulted in a higher

correlation between attention and importance by gradient. Even in the baseline model, which was

noted as “attention is not explanation,” the Pearson’s correlation between attention and gradient

tended to be positive. The proposed technique enables the model to learn to pay more attention

to words that are important for predicting the task. As a result, the noisy gradient becomes a

clean gradient so that this kind of training occurs; attention is also clean as described in Chapter 2.
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We believe that the interpretations resulting from such learning are more likely to be selected from

words that are easier for humans to interpret, since both attention and gradient are activated for

words that are more important for solving the task.

In Chapter 3, we showed that the correlation was further increased by utilizing unlabeled data to

ensure diversity in the input data. Even in unlabeled data, there should be characteristic words that

may contribute to predicting the task to be solved. The proposed technique enabled training that

showed similar interpretations of both the words contributing to the prediction and the attention

and gradient, even with unlabeled data that may be of a different nature than the task to be

solved. The proposed technique enables training to present similar interpretations of both words

and attention/gradients that contribute to predictions, even for unlabeled data of a different source

than the problem to be solved. Additionally, we assessed the agreement with the manually annotated

evidence [106]. The parts labeled as evidence by humans are sufficient information to solve the task

and are highly interpretable in terms of faithfulness. Lipton [174] describes faithfulness as follows:

“an explanation provided by a model is faithful if it reflects the information actually used by said

model to come to a disposition.” Although the model to which the proposed technique is applied

has a lower apparent score because it does not have a mechanism for directly estimating evidence,

it has a higher score than the baseline model and provides a more faithful explanation.

We argue for a different conclusion about interpretability for attention mechanisms, which previ-

ous studies have concluded that “attention is not an explanation [36].” The measure of interpretabil-

ity by rank correlation used in [36] does not always adequately assess it. Our proposed technique

also allows different interpretation methods to show similar results, which may give a more reliable

interpretation. On the other hand, it is possible that attention and gradient may simultaneously

represent interpretations that are not on target. It is still not clear whether the interpretations

presented by these two methods are necessarily beneficial to humans. We believe that this point will

require further investigation through error analysis.



CHAPTER 6. DISCUSSION 111

6.2.2 Applied Research Perspectives

Among the properties required of explainable AI, we focused on (4) informativeness in the applied

research. In actual decision-making in advertising operations, it is important to provide information

so that appropriate decisions can be made. Most of the tasks in the computational advertising field

addressed in this study rely on human labor, and many of them have not been formulated in the

first place. We believe that this research has made a significant contribution to the research field,

even if only by formulating and providing a preliminary interpretation of ad operations.

In Chapter 4, we provided the creator with keywords of interest to the user in an interpretable

form to assist in the creation of effective ad creatives. The ad creator can check the words that

contribute to conversion prediction from multiple ad creative proposals prepared in advance, based

on the ad attributes, using our conditional attention mechanism weights. We can find keywords that

cannot be found by simple aggregation (e.g., the correlation between keywords and the number of

conversions). This may be because the proposed framework combines these elements, as attention is

given to words in the context of the text, including the attributes of the advertisement. Our proposed

framework allows the creators to provide important interpretations in order to create attractive ad

creatives that directly contribute to sales.

In Chapter 5, for the ad discontinuation prediction, which had not been formulated before, the

use of a survival prediction framework that can predict the discontinuation probabilities in detail

and keywords that contribute to discontinue are provided in an interpretable form. Note that the

challenge of using ML models to solve the problem of predicting ad discontinuation in the first place

is itself new to academia. Therefore, decision support using conventional ML models (e.g., logistic

regression, decision trees, SVM, etc.) for ad discontinuation prediction is in itself novel and has a

significant impact on business sales as well as the work of ad operators. In contrast to the prediction

of discontinuation through the classification and regression frameworks, this research allows for more

detailed discontinuation probabilities to be provided in the framework of survival analysis so that

ad operators can extract the information they need to make decisions when discontinuing ads. Since

the operators can make discontinuation decisions based on more detailed fine-grained predictions,
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the proposed framework is considered to provide useful operational support.

In addition to the above, we also provided interpretable keywords that contribute to the predicted

discontinuation of ineffective ad creatives. While survival prediction has provided information on

the probability of discontinuing at each time interval, it is still often unclear what factors contribute

to discontinuing in the ad creative. Since the decision to discontinue an ad creative that has become

less effective is difficult to make, it is possible to identify the words that contribute to the prediction

by checking the weights by the learned attention mechanism within the proposed framework. While

a variety of factors determine the discontinuation of an ad creative, we expect to see different

trends in short- and long-term discontinuation in the ad text. Specifically, it is possible to check

word expressions that the user was not interested in during the short-term discontinuation. Such

keywords are useful in determining the decision, but they can also be interpreted as keywords

that would immediately discontinue an ad creative in terms of creating an ad creative. At long-term

discontinuation, the proposed framework can present word expressions that are no longer in season. If

served over a long period of time, they contain keywords that are no longer in line with current events

and are thought to increase wear-out. Unfortunately, due to disclosure constraints, quantitative

evaluation of interpretability by specific attention within the dissertation has not been directly

possible. On the other hand, as described in Chapter 5, it is true that the proposed framework

provides daily predictions to ad operators, and decisions are made based on these predictions. While

discontinuing ineffective ads has as much business impact as creating highly effective ad creatives, we

believe that the interpretations provided by the attention mechanism solve a part of the real-world

problems in the computational advertising field.

6.3 The Impact of the Proposed Methods on Subsequent Re-

search

As described above, we evaluated our proposals using the RNN-based model, however, the outcomes

of our basic and applied research are applicable to models with attention mechanisms in general.
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We describe below how our proposals has had an academic impact on papers written after our paper

was published.

6.3.1 Basic Research Perspectives

The idea of introducing adversarial training to attention mechanism proposed in the basic research

has greatly influenced subsequent research. Similar ideas were applied to RoBERTa [70] to demon-

strate its effectiveness in temporal reasoning tasks, although our research was limited to evaluate

based on the RNNs. In temporal reasoning tasks, words such as before and after are important to

predict, however, Ribeiro et al. [175] has shown that even these simple temporal segments often fail,

resulting in poor performance. As in the examples, similar but different words are usually placed

close together in the word embedding space. The reason for this is that DL models including the

word embedding learn co-occurrence patterns between words using a large corpus of text. As a

result, words that are commonly used in similar contexts tend to be placed close together in the

embedding space, even if they have different meanings. They agree with our idea and aim to improve

generalization performance by adversarial training on such words and their embeddings.

Inspired by our ideas, Hu et al. [176] proposed a new attention mechanism that makes the

perturbation-vulnerable attention mechanism more stable and explainable. Their proposed Stable

and Explainable Attention (SEAT) is trained to have the following properties: (1) its prediction

distribution is enforced to be close to the distribution based on the vanilla attention; (2) its top-k

indices have large overlaps with those of the vanilla attention; (3) it is robust w.r.t perturbation.

Their SEAT, and extension of our idea, has been evaluated in comparison with BERT in addition

to RNN, and achieves even better prediction performance and interpretability than our methods.

Our ideas are also powerful in real-world applications. It plays a role in predictive and cognitive

methods, especially regarding mental health [177, 178] and fake news [48], where metaphorical ex-

pressions are often used. The former is working on health mention classification based on our ideas,

which is difficult to recognize because of its various metaphorical expressions [177, 178]. The latter

constructs a prediction model with reference to our idea for fake news that is carefully written to



CHAPTER 6. DISCUSSION 114

deceive people by incorporating metaphorical expressions [48].

Our idea of extending to semi-supervised learning has been proven effective in the medical and

biological fields [179, 180]. Due to low annotation costs, the number of data is generally limited in

these fields. In the medical field, our idea if part of a new framework for predicting ASD (autism

spectrum disorder) subjects and typical controls based on fMRI data [179]. Additionally, in the

biological field, where the number of data is limited and annotation is difficult in many cases,

our idea is being considered for application with the expectation of a kind of data augmentation

effect [180].

On the other hand, the idea of AT for attention has certain limitations When calculating adver-

sarial perturbations, data are first forwarded to the model, and then the direction of the adversarial

perturbation is calculated based on the obtained gradient, which generally increases the compu-

tational complexity. This is a drawback of using our method in the pre-training phase of recent

large-scale language models, as it increases the complexity. We believe that using our method in the

fine-tuning phase will further improve the generalization performance of the model by acting a data

augmentation role with AT for attention, as well as the effect of the pre-trained model on a small

number of data.

6.3.2 Applied Research Perspectives

The computational advertising research focused on in this study is a relatively new field and is still

in its early stages of development. In particular, while there have been some attempts at analytical

aspects of ML/DL-related research focused on ad creatives [118, 155], few studies have addressed

problems solving in actual business operations. Since around 2019, there has been an increase in

efforts related to the operation support of ad creatives [61,62,156,181], including our ideas [142]. We

believe that our efforts have created a certain research trend in the sub-domain of the computational

advertising field: the application of ML/DL on ad creative.

While there are a variety of operations related to ad creative, research has started to focus on

operational support related to highly effective ads. Specifically, there is support for creating ad
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creatives with high serving effectiveness [142, 181–183], automatic generation of descriptions that

lead to product purchases [156, 184, 185], and recommendation of keywords and designs that users

find attractive [61, 62]. In search engine advertising, a system that can automatically generate

advertisement text using reinforcement learning has been proposed [156], and the generation of

ad creatives personalized to each user is realized [184]. Our research was ahead of these efforts,

providing advance predictions of effective ad creatives and word-by-word interpretations that could

assist in their creation.

Although ad operations related in ineffective one can have a significant business impact, we are

the first to focus on supporting the discontinuation of ad creatives that have become ineffective [186].

Conventionally, the decision to discontinue an ad creative was partially supported by using a bandit

algorithm to predict the CTR and CVR of the ads [143,145,157,158], however, it was difficult to set

a threshold for discontinuing ads based on these metrics, as described in Chapter 5. The proposed

framework has constructed an operationally useful system that directly supports the decision to

discontinue an ad creative. Our major academic contribution is that we formulated these studies in

the framework of survival time analysis, rather than in the framework of classification and regression,

which is generally conceivable. It is meaningful that we formulated the business problem in the

framework of survival analysis, rather than in the framework of classification and regression, which

is generally conceivable. We believe this effort to be a major academic contribution.



Chapter 7

Conclusion

This dissertation discussed both basic and applied research on how attention mechanisms improve

the performance and interpretability of machine learning models, especially in NLP-related tasks.

Focusing on the black-box nature of deep learning models, which have recently achieved significant

results in various fields, we attempted to develop new training techniques and models that help

interpret the prediction results for the input words. For the further development of applications of

deep learning models, this black box nature is a serious barrier to analyzing the behavior of the

models and using them in situations where prediction failures are not tolerated. To the best of our

knowledge, where there is a trade-off between prediction performance and interpretability, we have

pioneered a new technique that aims to improve both.

From the basic research perspective, we proposed new training techniques to improve both predic-

tion performance and model interpretability by employing adversarial perturbations to the attention

mechanisms. The attention mechanisms are currently an indispensable key component of deep learn-

ing models, and the vulnerability of these mechanisms to noise and perturbation can seriously affect

the prediction performance and interpretability of the model. Our experiments demonstrated that

our proposed AT for attention mechanism achieves a preferable performance gain than conventional

models in terms of the prediction performance and interpretability of the model. Furthermore, to
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effectively utilize unlabeled data, our proposed VAT for attention mechanisms significantly improved

both the metrics and performed effectively even when using unlabeled data from a source other than

the labeled data. These training techniques are model-independent with attention mechanisms and

are scalable to any model.

From the applied research perspective, we proposed interpretable prediction frameworks to sup-

port ad operations with large-scale ad data for real-world applications. Because ad data is generally

much larger, more diverse, and noisier than the toy data used in basic research, the effectiveness

of models with attention mechanisms for such data remains unclear. We attempted to construct

models that can be interpreted from the aspects of both predicting the serving effect of ad creatives

that have not yet been served in advance and predicting the appropriate timing for discontinuing ad

creatives whose effect is declining, which have a particular impact on business. The former model

for predicting more effective ad creatives can learn attention that appropriately reflects user interest

while predicting highly imbalanced CTRs and CVRs, suggesting that it is possible to support the

creation of effective ad creatives based on such attention weight. In the latter model for predicting

less effective ad creatives, we first formulated the problem of discontinuing ad creatives and con-

structed a multimodal DNNs to predict the discontinuation with high accuracy. Furthermore, we

empirically confirmed that the performance of discontinuation is comparable to that of humans.

Although the proposals within this dissertation are mainly validated using RNN models, we

believe that the proposed methods are generic and can be applied to all models with attention

mechanisms that will emerge in the future. In interpreting the prediction evidence for each input

word, we discussed the application of the proposals entail a certain degree of interpretability. Our

ideas are providing a positive effect on those that follow, and are informing the emergence of further

basic research into the development of the ideas, as well as efforts to support real-world operations.

Because there are several other options to provide explanations to DNNs besides attention mech-

anisms, we will confirm the applicability of the ideas in this method to these options in the future.

Additionally, we will discuss the interpretability of the models in business applications, such as

recommendation systems, to see if our method can be applied to such systems.



Appendix A

Appendix for Common Model

Architecture

A.1 Common Model Architecture

In this appendix, we introduce the common model architecture to which our training techniques were

applied. The common model is a practical and widely used RNN-based model, and its performance

has been compared in extensive experiments focusing on attention mechanisms [36,104,114]. As the

settings differ for single- and pair-sequence tasks, we defined a model for each task, as illustrated in

Fig. A.1, and the details are described below.

A.1.1 Model for Single-Sequence Tasks

Fig. A.1a presents the model for the single-sequence tasks, such as text classification. The input of

the model was a word sequence of one-hot encoding XS = (x1,x2, · · · ,xTS
) ∈ R|V |×TS , where |V |

and TS are the vocabulary size and the number of words in the sequence, respectively. Let wt ∈ Rd

be a d-dimensional word embedding corresponding to xt. Each word was represented with the word

embeddings to obtain (wt)
TS
t=1 ∈ Rd×TS . The word embeddings were encoded with a bidirectional
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(a) Single-sequence model

+
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Enc Enc Enc

(b) Pair-sequence model

Figure A.1: Common models for applying the proposed training technique: (a) single-sequence
model for the text classification task, and (b) pair-sequence model for QA and NLI tasks In (a), the
input of the model was the word embeddings, {w1, · · · ,wTS

} that were associated with the input

sentence XS . In (b), the inputs were the word embeddings {w(p)
1 , · · · ,w(p)

TP
} and {w(q)

1 , · · · ,w(q)
TQ

}
from the two input sequences, XP and XQ, respectively. These inputs were encoded into hidden
states through a bidirectional encoder (Enc). In conventional models, the worst-case perturbation
r is added to the word embeddings. In our Attention VAT and iVAT, r is computed and added to
the attention score ã to improve the prediction performance and model interpretability, even with
unlabeled data.

RNN (BiRNN)-based encoder Enc to obtain the m-dimensional hidden state:

ht = Enc(wt,ht−1), (A.1)

where h0 is the initial hidden state and it is regarded as a zero vector. Following [36] and [104], we

used the additive formulation of attention mechanisms [33] to compute the attention score for the

t-th word ãt, which is defined as:

ãt = c⊤tanh(Wht + b), (A.2)

where W ∈ Rd′×m and b, c ∈ Rd′
are the model parameters. Subsequently, the attention weights

a ∈ RT for all words were computed from the attention scores ã = (ãt)
TS
t=1, as follows:

a = (at)
TS
t=1 = softmax(ã). (A.3)
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The weighted instance representation ha was calculated using the attention weights a and hidden

state ht, as follows:

ha =

TS∑
t=1

atht. (A.4)

Finally, ha was fed to a dense layer Dec, and the output activation function σ was used to obtain

the following predictions:

ŷ = σ(Dec(ha)) ∈ R|y|, (A.5)

where σ is a sigmoid function and |y| is the class label set size.

A.1.2 Model for Pair-Sequence Tasks

Fig. A.1b presents the model for pair-sequence tasks, such as QA and NLI. The input of the model

was XP = (x
(p)
t )TP

t=1 ∈ R|V |×TP and XQ = (x
(q)
t )

TQ

t=1 ∈ R|V |×TQ , where TP and TQ are the number of

words in each sentence. Furthermore, XP and XQ represent the paragraph and question in QA tasks

and the hypothesis and premise in NLI tasks, respectively. We used two separate BiRNN encoders

(EncP and EncQ) to obtain the hidden states h
(p)
t ∈ Rm and h

(q)
t ∈ Rm:

h
(p)
t = EncP (w

(p)
t ,h

(p)
t−1); h

(q)
t = EncQ(w

(q)
t ,h

(q)
t−1), (A.6)

where h
(p)
0 and h

(q)
0 are the initial hidden states, and they are regarded as zero vectors. Subsequently,

we computed the attention weight ãt of each word of XP as follows:

ãt = c⊤tanh(W1h
(p)
t + W2h

(q)
TQ

+ b), (A.7)

where W1 ∈ Rd′×m and W2 ∈ Rd′×m denote the projection matrices, and b, c ∈ Rd′
are the

parameter vectors. Similar to Eq. (A.3), the attention weight at could be calculated from ãt. The

presentation was obtained from the sum of the words in XP .

ha =

TP∑
t=1

ath
(p)
t (A.8)
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was fed to a Dec, following which a softmax function was used as σ to obtain the prediction (in the

same manner as in Eq. (A.5)).

A.1.3 Model Training with Attention Mechanisms

Let Xã be an input sequence with an attention score ã, where ã is a concatenated attention score

for all t. The conditional probability of the class y was modeled as p(y|Xã;θ), where θ represents

all model parameters. We minimized the following negative log-likelihood as a loss function for the

model parameters to train the model:

L(Xã,y;θ) = − log p(y|Xã;θ). (A.9)
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Appendix for Tasks and Datasets

B.1 Tasks and Dataset

B.1.1 Binary Classification

The following datasets were used for evaluation. The Stanford Sentiment Treebank (SST) [74]1

was used to ascertain positive or negative sentiment from a sentence. IMDB Large Movie Reviews

(IMDB) [91]2,3 was used to identify positive or negative sentiment from movie reviews. 20 News-

groups (20News) [92]4 were used to ascertain the topic of news articles as either baseball (set as

a negative label) or hockey (set as a positive label). The AG News (AGNews) [93]5 was used to

identify the topic of news articles as either world (set as a negative label) or business (set as a

positive label).

1https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip
2https://s3.amazonaws.com/text-datasets/imdb_full.pkl
3https://s3.amazonaws.com/text-datasets/imdb_word_index.json
4https://ndownloader.figshare.com/files/5975967
5The dataset can be found on Xiang Zhang’s Google Drive.
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B.1.2 Question Answering

The following datasets were used for evaluation. The CNN news article corpus (CNN news) [94]6

was used to identify answer entities from a paragraph. The bAbI dataset (bAbI) [95]7 contains

20 different question-answer tasks, and we considered three tasks: (task 1) basic factoid question

answered with a single supporting fact, (task 2) factoid question answered with two supporting facts,

and (task 3) factoid question answered with three supporting facts. The model was trained for each

task.

B.1.3 Natural Language Inference

The following datasets were used for evaluation. The Stanford Natural Language Inference (SNLI) [96]8

is used to identify whether a hypothesis sentence entails, contradicts, or is neutral concerning a given

premise sentence. Multi-Genre NLI (MultiNLI) [97]9 uses the same format as SNLI and is compara-

ble in size, but it includes a more diverse range of text, as well as an auxiliary test set for cross-genre

transfer evaluation.

B.2 Details of Evaluation Criteria

B.2.1 Correlation between Attention and Gradient-based Word Impor-

tance

We computed how the attention weighted obtained through our VAT-based technique agree with

the importance of words calculated by gradients [24]. This evaluation follows Jain and Wallace [36].

The correlation τg is defined from the attention a ∈ RT and the gradient-based word importance

g ∈ RT as follows:

τg = PearsonCorr(a, g). (B.1)

6The dataset can be found on Deep Mind Q&A Google Drive.
7https://research.fb.com/downloads/babi/
8https://nlp.stanford.edu/projects/snli/snli_1.0.zip
9https://www.nyu.edu/projects/bowman/multinli/multinli_1.0.zip

https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTTljRDVZMFJnVWM
https://research.fb.com/downloads/babi/
https://nlp.stanford.edu/projects/snli/snli_1.0.zip
https://www.nyu.edu/projects/bowman/multinli/multinli_1.0.zip
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The gradient-based word importance g = (gt)
T
t=1 is calculated as follows:

gt = |
|V |∑
i=1

1[Xit = 1]
∂y

∂Xit
|,∀t ∈ [1, T ], (B.2)

where Xit is the t-th one-hot encoded word for the i-th vocabulary in X ∈ R|V |×T , and T is the

number of words in the sequence.



Appendix C

Appendix for Adversarial Training

for Attention Mechanism

C.1 Implementation Detail

For all datasets, we either used pretrained GloVe [187] or fastText [188] word embedding with

300 dimensions except the bAbI dataset. For the bAbI dataset, we trained 50 dimensional word

embeddings from scratch during training. We used a one-layer LSTM as the encoder with a hidden

size of 64 for the bAbI dataset and 256 for the other datasets. All models were regularized using L2

regularization (10−5) applied to all parameters. We trained the model using the maximum likelihood

loss utilizing the Adam [140] optimizer with a learning rate of 0.001.
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Appendix for Virtual Adversarial

Training for Attention Mechanism

D.1 Implementation Details

We implemented all of the training techniques using the AllenNLP library with Interpret [99, 100].

We evaluated the test set only once in all experiments. The experiments were conducted on an

Ubuntu PC with a GeForce GTX 1080 Ti GPU. Our implementation is based on the one published

by [104].1 Note that the model that was used in our experiment had a small number of parameters

compared to recent models; therefore, the execution speed of the model was also fast.

D.1.1 Supervised Classification Task

We used pretrained fastText [188] word embedding with 300 dimensions and a one-layer bi-directional

long short-term memory (LSTM) [98] as the encoder with a hidden size of 256 for the supervised

settings. We used a sigmoid function as the output activation function. All models were regularized

using L2 regularization (10−5) that was applied to all of the parameters. We trained the model

1https://github.com/shunk031/attention-meets-perturbation
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using the maximum likelihood loss and the Adam optimizer [140] with a learning rate of 0.001. All

of the experiments were conducted at λ = 1.

We searched for the best hyperparameter ϵ from [0.01, 30.00] following [104]. The Allentune

library [101] was used to adjust ϵ, and we decided on the value of the hyperparameter ϵ based on

the validation score.

D.1.2 Semi-supervised Classification Task

We used the same pretrained fastText and encoder for the semi-supervised settings. We again used

the Adam optimizer [140] with the same learning rate as that in the supervised classification task.

The same hyperparameter search was performed as in the supervised settings. All of the experiments

were conducted at λ = 1 in the semi-supervised settings.

We also performed the same preprocessing according to Chen et al. [105] using the same unlabeled

data. We determined the amount of unlabeled data Nul based on the validation score for each

benchmark dataset. We reported the test score of the model with the highest validation score.



Appendix E

Appendix for Ad Discontinuation

Prediction

E.1 Detail of Features

Our framework used the four feature areas that constitute the ad creative: text features, categorical

features, image features, and numerical features. The details of these input features and encoding

processes are described as follows.

E.1.1 Text features

Text features were extracted from the title and description of an ad creative. Specifically, words were

embedded from the title and the description and encoded by a text encoder using a recurrent neural

network (RNN)-based model. For the RNN-based model, we used bi-directional long short-term

memory (LSTM) [98] in our implementation. We can expect the extracted text features to consider

the context of the ad creative text. Subsequently, title embedding and description embedding were

calculated as the last hidden state of each text encoder as: htitle ∈ Rdtitle and hdesc ∈ Rddesc . Finally,
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we concatenated these embeddings to text embeddings:

e1 = [htitle;hdesc] ∈ Rdtitle+dtext . (E.1)

E.1.2 Categorical features

Categorical features were extracted from the gender of the serving target and the genre of the ad

creative. Specifically, the gender of the distribution target was extracted as xgender ∈ Rdgender , which

was one-hot encoded. Additionally, the genre of the ad creative, which was embedded by entity

embedding method [189], was extracted as xgenre ∈ Rdgenre . We can expect the extracted categorical

features to consider the demographic information of the target users. Finally, we combined these

embeddings in categorical embeddings:

e2 = [xgender;xgenre] ∈ Rdgender+dgenre . (E.2)

E.1.3 Image features

Image features were extracted from an image of an ad creative. Specifically, image embedding e3

was obtained by encoding dh×dw sized ad image x3 using the ResNet34 [5] pretrained by ImageNet:

e3 = ResNet34(x3). (E.3)

We can expect the extracted image feature to consider the characteristics of the ad image.

E.1.4 Numerical features

Numerical features include the number of impressions, clicks, and conversions and the CPA for an

ad creative. The numerical features consist of statistical and time-series features.

The statistical feature is composed of statistical information about target date t. The CTR was

obtained from the number of impressions and the number of clicks, and the CVR was obtained from
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the number of clicks and the number of conversions. We used the following features as the statistical

feature: the number of impressions xs1, clicks xs2(t), conversions xs3(t), the CTR xs4(t), the CVR

xs5(t), and the CPA xs6(t). These features were normalized through logarithmic transformation.

Finally, we concatenated these features as statistical embeddings:

eStat4 (t) = [xs1(t); xs2(t); xs3(t); xs4(t); xs5(t); xs6(t)]. (E.4)

Time-series features were extracted from impressions and clicks accumulated from the first day of

serving to the target date t based on statistical features. Specifically, from the accumulated impres-

sions and clicks, those encoded by the history encoder with different LSTM models were obtained

as an impression history embedding himp and a click history embedding hclick, respectively. These

embeddings are the last hidden states encoded by the history encoder of the serving performance

data up to time t. Then, we combined these features into time-series embeddings:

eTime
4 (t) = [himp;hclick] ∈ Rdimp+dclick . (E.5)

Finally, we combined statistical embedding eStat4 (t) and time-series embedding eTime
4 (t) into numer-

ical embeddings:

e4(t) = [eStat4 (t); eTime
4 (t)]. (E.6)

We can expect the extracted numerical features to consider the both statistical and time-series

properties of the ad creative.

E.2 Implementation Details

The texts of the ad creatives, written in Japanese, were split into words using MeCab [137], which is

a type of morphological analysis for Japanese texts. The custom dictionary mecab-ipadic-neologd1,

which includes various neologisms, was used as the dictionary.

1https://github.com/neologd/mecab-ipadic-neologd

https://github.com/neologd/mecab-ipadic-neologd
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We used pre-trained word2vec [139] to initialize the word embedding layer in our framework. For

the text encoder, dtitle and ddesc were set to 16. For the history encoder, dimp and dclick were set to

10. For an image encoder, we extracted 512 dimensional feature vectors. The feature vectors were

then converted using a shallow MLP to dimg = 16 dimensional image features.

We used pycox2 to implement the base of our survival prediction framework. The mini-batch

size was set to be 32, and the number of epochs was set to be 50. Adam [140] was used for the

model optimization.

In all experiments, we performed the evaluation on the test set only once. The experiments were

conducted on an Ubuntu PC with one GeForce GTX 1080 Ti GPU. As our framework is relatively

small, we ran the case studies on the CPU.

Regarding the deployment of our framework, we dockerized the implementation of our framework

to work on Amazon Web Service (AWS). The prediction from our framework is output daily to a

Google spreadsheet for discussion with the ad operation team.

E.3 Classification and Regression Frameworks

As binary classification models, we built models that predicted discontinuation after 3, 7, 30, and

90 days. We evaluated the predictions of the model specific to each time interval. In training the

binary classification model, we used the binary cross entropy loss to train the model. For a fair

comparison, we applied a CTR-weighting technique based on our idea to the comparison models.

Regarding the regression model, we built models for short-term and long-term. The regression

models were trained on data with time intervals adjusted for short- and long-term intervals. For

training the regression model, we used mean squared error loss to train the model. We used the

time interval that was closest to the prediction made by the regression model as the final prediction.

Similar to binary classification, we applied the CTR-weighting technique for a fair comparison.

The same architecture as our single-task model (as described in Section 5.5) was used in these

models, and the same features were used as inputs. Note here that we considered an evaluation based

2https://github.com/havakv/pycox

https://github.com/havakv/pycox
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Figure E.1: Comparison of the effects of time-series features with daily changes in ad discontinuation
prediction task. For the short- and the long-term models, the more days that can be used for
prediction, the higher the performance. In the long-term model, when used for prediction for 30
days or more, the concordance index is dramatically improved compared with the case where the
time-series feature is not used.

on the mean squared error, but we believe that the metrics and results presented in Section 5.5 are

more suitable for comparison.

E.4 Effects of Time-series Data

Figure E.1 shows the effect on prediction performance of the time-series features, changing the

number of days used for prediction. Figure E.1a shows the change in the CI in the short-term

model. As described above, the model to which the time-series feature is input achieves a higher score

compared with the model to which no time-series feature is input. Additionally, as the number of

days used for prediction increased, the prediction performance of each model improved. Figure E.1b

shows the change in the CI in the long-term model. Similar to the short-term model, in the long-

term setting, the model with time-series features has a higher score compared with the model

without time-series features. Therefore, it appears that the effectiveness of the time-series features

for prediction increases with time.
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