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Abstract— Object detection in a dynamic environment is important for accurate tracking and mapping in Simultaneous
Localization and Mapping (SLAM). Dynamic feature points from people or vehicles are the main cause of unreliable
SLAM performance. Previous researchers have used varied techniques to solve this problem, such as semantic
segmentation, optical flow, and moving consistency check algorithm. In this proposal, Object Detection and Tracking
SLAM (ODTS), we define a weighted grid-based attention model for a feature tracking module to track landmarks
and objects. ODTS system tracks landmarks, such as buildings in the background, and objects, such as vehicles, in the
foreground. For optimizing performance, a robust self-attention module is integrated. For evaluation, the trajectory of
the robot is tracked, and the root mean square error (RMSE) is recorded. Additionally, the number of background
and foreground feature points were observed for landmarks and objects. ODTS significantly minimizes the tracking
lost problem and produces more accurate maps and tracking of feature points.
Keywords: Keywords: SLAM, weighted grid-based, feature points, objects, landmarks.

I. INTRODUCTION
SLAM performs two major tasks concurrently: localization

and mapping. Previous research have described the problems
affecting SLAM performance and the impact of tracking and
mapping problems in SLAM includes, surveys by Cadena
and Taketomi [1], [2]. Therefore, we propose ODTS SLAM
system that minimises the problems of tracking and mapping
in SLAM.

Previous work on SLAM in dynamic environments include:
DS-SLAM [3] that uses semantic segmentation and moving
consistency check for dynamic object detection and exclusion
to solve the tracking and mapping problem. Their framework
is robust and able to capture a priori data effectively, but it
fails to detect the dynamic object that is not a priori. [4]
use RANdon SAmpling Consensus (RANSAC) algorithm in
moving consistency check resource-intensive, which requires
a lot of iterations to compute an optimal solution and requires
problem-specific thresholds to be set.

DynaSLAM system [5] uses semantic segmentation and
a multi-view geometry algorithm to detect a priori dynamic
objects as well as non a priori dynamic objects in the envi-
ronment. The disadvantage of DynaSlam is that it does not
perform well in very populated areas.

Li et al. propose attention SLAM [6], a system that
combines visual saliency semantic model and visual SLAM.
Their approach is from an Information Theory point, and the
attention SLAM reduced the pose estimate error. Dynamic
object culling(Doc) SLAM [7] system obtains object culling
by using panatopic segmentation, optical flow, moving consis-
tency check, and key point supplement, to prevent the tracking
lost problem. The disadvantage of this approach is that it
significantly increases the system overhead and computational
cost.

Lai et al. [8] system is a robust visual SLAM for dynamic
environments. They handle dynamic objects by combining
instance segmentation networks, optical tracking, and epipolar
constraints to eliminate the influences of dynamic objects.

When performing localization and mapping concurrently,
the presence of objects introduces a trade-off between cre-
ating accurate maps using landmarks and utilizing important
information coming from objects in localization to avoid a
collision. Our approach optimizes the input images sequence
to improve the mapping and tracking, thereby, increasing the
system’s robustness and producing more accurate results.

II. METHODS

A. Proposed framework

Our system Fig.1 is inspired by the original Murtado et al.
Oriented Fast and Rotated Brief (ORB-SLAM2) framework
[9]. ODTS Slam proposes: (1) contrast enhancement and (2)
weighted grid-based feature tracking module. These changes
improve the accuracy of SLAM for feature points tracking and
mapping module.

B. Contrast enhancement

For the pre-processing step Fig.2, RGB images are con-
verted into the L*a*b* color space and apply the S curve to
the Luminous layer (L*) only, keeping the a* and b* layers
unchanged. Using the sigmoid function equation 1 according
to [10] below and defining the optimal c and b values for our
target, the brightness layer, L* is fed to the function to obtain
an enhanced image.

αL =
1

1 + e(L×(c−lij )b+β)
(1)
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Fig. 1. Object detection and tracking SLAM (ODTS) frame-
work for objects in a dynamic environment.
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Fig. 2. Color contrast enhancement pipeline.

Where, L represents the Luminous channel that is modified,
c and b are constants representing the contrast and brightness
values respectively. lij is the original image pixel at position
xij , and β is the constant threshold value. Modifying c and
b levels inversely against a set threshold β value improves the
image illumination and prevents over-illumination.
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Fig. 3. Qualitative results from color contrast enhancement
pipeline.

From Fig.3 the histogram of the original layer L has poor
illumination, and the intensity values are concentrated in a
small range. After applying the s curve, the new layer L
has high contrast, and the corresponding histogram has the
intensity levels distributed over range and leveled.

C. Weighted Attention model

We examine a dynamic environment based on the human
gaze to simulate which parts of a scene are important to detect
the position and orientation of an agent and, which parts are
important to detect the pose of an agent in a scene.

Towards achieving true self-awareness, attention as de-
scribed in Attention SLAM [6] needs to be robust. Our ODTS
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Fig. 4. The green line shows the higher lying features, and the
yellow lines show the lower lying features. As the agent moves,
the only the lower lying features are likely to be affected by
occlusion or removal or new features to be inserted.

framework uses self-attention to assign the relevant scores
for ORB feature descriptors, and to classify landmarks and
objects.

We are inspired by the grid system defined in [11], and im-
plement a weighted grid-based system for ODTS framework.
Input images from the dataset sequence are defined by a size
of H x W, let x represent the input vector for the frames in the
image sequence and m represents the number grids, using the
Leece lattice approach [12] product quantization, we define
the grids as below. The frame is divided into I x J grids, and
each of the grids have size h x w. Each of the grids has feature
points corresponding to the ORB feature points in the original
frame.

Fig. 5. The grid generated on the image with ORB feature
points.

In Fig 5 The feature points are weighted using a grid-based
system and feature vectors are generated. We use the sum of
the weighted feature vectors for tracking and mapping in the
ODTS SLAM system. Feature points for tracking are selected
based on their position and the weighted attention scores.

III. RESULTS

Our experiments are performed on a powerful Intel Core
i7 using Nvidia GeForce RTX 3060 GPU computer, running
Ubuntu 20.04 focal. We ran image sequences from the KITTI
dataset [13] odometry and [14] TUM RGB-D freigburg3
dynamic scene dataset, in our ODTS system and compared the
absolute trajectory error RMSE values, observe the qualitative
and quantitative results and discuss our results below.

In Table 1, we show the RMSE results of freiburg3 dataset
sequences and the average (%) improvement in our system.
We select the dataset from the TUM RGBD database because
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Table 1. Accuracy evaluation in terms of RMSE for TUM RGB-
D dynamic dataset in our ODTS system against ORBSLAM2
[9] and DynaSLAM [5]

Sequences Ours [9] [5] Improv.
Walking rpy 0.027 0.662 0.035 36.0%
Sitting halfsphere 0.012 0.02 0.017 2.3%
Walking halfsphere 0.14 0.351 0.025 28.6%
Walking xyz 0.12 0.459 0.015 32.3%
Sitting xyz 0.13 0.009 0.015 10.5%
Desk with person 0.058 0.061 0.080 16.2%
Walking static 0.017 0.026 0.019 22.5%
Sitting static 0.007 0.010 - 30.0%

it contains a sequence of images of people moving around a
room.

Next, we examine the performance of the system in the
outdoor dynamic sequence for KITTI dataset sequence 00.
This sequence shows a car moving in a busy neighborhood
with people and other vehicles. We plot trajectory results in
Fig.6, from running the KITTI visual odometry dataset [13]
on the ODTS system.

Orange - ORBSLAM2 
Blue - ODTS SLAM 
Black Ground Truth

Green- DynaSlam 
Blue - ODTS SLAM 
Black Ground Truth

Fig. 6. KITTI odometry dataset sequence trajectory results for
ODTS and ORBSLAM2(left), and ODTS and DynaSlam(right).

Better estimation from ODTS trajectory for KITTI Se-
quence Fig 6. We examine the trajectory estimation of our
system against the ground truth and ORBSLAM2. Then,
again against the DynaSlam system. ODTS Slam trajectory
results are more accurate to the ground truth compared to the
mentioned previous works.

For our image sequences, we observed the number of feature
points tracked consecutively for every five frames and recorded
the average table below.
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Fig. 7. Threshold determination for the number of feature point
tracking: (left) the background feature point tracking, (right)
the objects feature point tracking.

The number of feature points tracked by our system for
our image sequences is 738 for background feature points

and 1150 for object feature points. The fewer background
feature points provide consistent tracking at a determined hard
threshold. This considerably improves feature points tracking
and mapping.

IV. DISCUSSION

In future research, we will work towards executing the
system in real-time and further examine the impact of ad-
justing weights differently based on the scenes, either indoor
or outdoor, and track the feature points for outdoor sequences
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