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Abstract

Extensive research has been conducted on CALL systems
for Pronunciation Error detection to automate language
improvement through self-evaluation. However, many
of these previous approaches have relied on HMM or
Neural Network Hybrid Models which, although have
proven to be effective, often utilize phonetically labelled
L2 speech data which is expensive and often scarce.
This paper discusses a ”zero-shot” transfer learning
approach to detect phonetic errors in L2 English speech
by Japanese native speakers using solely unaligned
phonetically labelled native Language speech. The
proposed method introduces a simple base architecture
which utilizes the XLSR-Wav2Vec2.0 model pre-trained
on unlabelled multilingual speech. Phoneme mapping
for each language is determined based on difference of
articulation of similar phonemes. This method achieved
a Phonetic Error Rate of 0.214 on erroneous L2 speech
after fine-tuning on 70 hours of speech with low resource
automated phonetic labelling, and proved to additionally
model phonemes of the native language of the L2 speaker
effectively without the need for L2 speech fine-tuning.

1 Introduction

In this day and age, where the world is more
connected than ever, English language education is
often seen as a high priority to many non-English
native nations, and Japan is a prime example of
this. Although this is the case, many Japanese
people still struggle with English, particularly English
pronunciation. While there certainly exists other aspects
of the English language, such as grammar, which may
pose a great difficulty for Japanese native speakers due
to distinct differences between both languages, unlike
grammar, pronunciation often requires some form of
practical assistance. In Japan, such native practical
assistance can often be difficult to come by, resulting
in many secondary and sometimes tertiary level English
classrooms relying on Japanese native teachers. It is
for this reason that there has been great demand for
an automated means of improving one’s pronunciation
independently without native assistance. Research
aimed at improving pronunciation quality through
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Automatic Speech Recognition (ASR) techniques has
grown increasingly popular in recent years.

2 Existing Research

A notable contribution to the field of phonetic error
detection in Computer Assisted Pronunciation Training
systems (CAPT) is [21] which introduced the “Goodness
of Pronunciation” score which determines whether or
not individual phonemes in an utterance are correct
based on their posterior probabilities. The use of
posterior probabilities in CAPT systems would go on
to be further developed in research [16] where native
English and non-native (L2) speech trained models
were used to improve its mispronunciation detection via
Hidden Markov Models (HMM) and Neural Network
Hybrid Models. The use of HMMs in these works were
proven beneficial in their ability to produce accurate
segmentation of phonemes.

However, in recent years Neural Network models
equipped with Connectionist Temporal Classification
(CTC) loss have shown success in accurate phone
segmentation comparable to that of HMMs without
the need for time-aligned speech data [7]. In such
methods, CTC Loss is often used in combination
with attention-based models such as Recurrent Neural
Networks or LSTMs for end-to-end approaches as seen in
[13]. While such models have shown high performance,
similar to HMM-based models, many often still have
shortcomings which limit their performance. These
include (1) Need for phonetically labelled L2 speech data,
and (2) Dependence on pre-defined error patterns for
classification.

The reliance on labelled L2 speech for modelling
erroneous pronunciation in research such as [23, 24]
require large amounts of data and are therefore
dependent on its availability. This can create difficulty
when training such models as, depending on the
target language, L2 speech corpora from a specific
native language group can be scarce or non-existent.
Additionally, labelling such corpora manually can pose
more of a challenge due to the ambiguity of certain
distortion-based mispronunciation errors [4]. As manual
labelling is a subjective task, this causes inconsistency in
such corpora which can throttle the performance of the
resulting model [14].
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The goal of this research is to develop a base Neural
Network pipeline trained on only native speech data to
transcribe and discern phonetic errors in L2 speech using
a Cross-lingual “zero-shot” Transfer-learning approach.
This was done using the XLS-R Wav2Vec2.0 pre-trained
model. This model has been pre-trained on over 300
million unlabeled raw speech samples from 128 different
languages and in previous studies has shown promising
results in zero-shot approaches in phonetic transcription
of unseen languages outside of the tuning set [22]. We
take on a similar approach for error detection in L2
speech, however in this research the models were tuned
using native speech from the respective native and target
language pairs. The data used in this study are labelled
using phone mappings based on similarity of articulation
between common phonemes in both languages similar to
the method used in [15].

Linguistic research has shown that errors in
pronunciation are not random errors but a reflection
of patterns which originate from the speaker’s mother
tongue which they have adapted to [3]. Considering
this, the proposed model trained on the user’s native
language not only benefits through increasing availability
of applicable data for training, but also increases the
capability of modelling native phonemes from both
languages without the need for predefined error
patterns. While it has been argued that phonetic errors
contribute less to the intelligibility of an L2 Learner’s
pronunciation when compared to prosodic features such
as stress, the improvement of such errors, particularly
phonetic errors common to Japanese-native L2 learners
(see Table 1), are still an essential foundation in
pronunciation improvement. To show the flexibility of
the proposed system, variations of the model trained
on high resource (manual labelling) and low resource
(automatic labelling) data were evaluated on L2
utterances from the SRC UME-ERJ corpus.

3 Method

3.1 Wav2vec2.0 (XLS-R)

Wav2vec2.0 [1] performs ASR tasks through a
Transformer model architecture initially pretrained on
hours of unlabeled raw speech. The first stage of the
pretraining process involves encoding raw speech data
into a normalized latent representation using a feature
encoder composed of multiple convolutional blocks and
GELU activation. This latent output is then quantized
into fixed representations, using mapped entries from
multiple code books. Code book entry selection is
learned using a differentiable Gumbel SoftMax function.
The transformer learns through the contrastive task of
accurately identifying the true quantized representation
amongst “distractors” of randomly masked sequences of
the feature encoder output. These tasks are propagated
through a contrastive loss, which optimizes the model’s
ability to learn representations in the latent speech, and
a diversity loss which promotes the equal use of multiple

code book entries. Through this process wav2vec2.0 is
able to learn representations of unlabeled data during
pretraining.

In the case of the XLS-R-300M wav2vec model,
over 300 million unlabeled speech samples spanning
over 128 different languages were used to pretrain
the model. This self-supervised approach through
multilingual pre-training allows wav2vec2.0 to adapt to
speech representations in different linguistic contexts and
has shown to achieve high performance when fine-tuned
on multiple languages to phonetically transcribe unseen
languages [2]. For this research, raw feature vectors for
only the native (Japanese) and target (English) language
pairs will be used for inference. Contrary to [2], in respect
to the scope of this task, phoneme mapping will be
made based on shared articulatory similarities between
phonemes in the designated language pair, rather than a
global phone recognizer.

Fine tuning involves learning on labelled feature vector
input on a randomly initialized output layer which is
optimized using Connectionist Temporal Classification
Loss (CTC) (see Figure 1). The sequence before
decoding will be output as follows:

OutCTC = PE ∪ PJ ∪ β (1)

Where PE , PJ and β represents English phonemes,
Japanese Phonemes (see Section 3.2) and the CTC
blank tokens respectively. The optimal path from the
CTC output logits are decoded using a Greedy decoder
algorithm.

3.2 Phonetic Mapping

Considering phonetic classification of our proposed
method uses a single acoustic model with a shared output
layer, similar to other multilingual approaches, phoneme
classes of both languages used will be unified to avoid
out-of-vocabulary (OOV) token errors [15, 22]. With
respect to the language pairs used for inference, the
mapping format for phonetic assignment is determined
based on difference of articulatory features of similar
phonemes which exist in both languages. In short,
similar phonemes in both languages which have an
almost allophonic relationship will be classified as a single
phoneme class. This is done so as to not only reduce the
complexity of the acoustic model, but to also reduce the
possibility of a high False Rejection Rate (FRR) which
is unfavourable for error identification in CAPT systems
[6]. Phonetic mapping is outlined for each phonetic
category as seen below.

Vowels. In the case of vowels, English is known to
have up to 15 different vowel phonemes which include
combined sounds such as /ow/ and /ay/, while the
Japanese language consists of only 5 basic vowels. In
addition to the number present in each language, each
group of vowels differ in their degree of tenseness, where
English vowels are more often lax compared to those in
Japanese which require more muscle tension [17]. This
difference in vowel tension contributes to difficulty in



Figure 1. Illustrated overview of the proposed system using XLS-R pretrained WAV2VEC2.0 Model

English vowel pronunciation by Japanese speakers which
leads to substitution errors of /i/ and /iy/ such as in the
words ”bit” and ”beat” respectively [10]. For this reason,
all vowels in the native Japanese utterances were labelled
as separate distinct phonemes from those in the native
English corpora. Also, unlike Japanese, vowel duration
in the English language is non-phonemic, meaning that
the identity of a phoneme does not change with its
duration [19]. For this reason, no distinctions were made
between long and short sounding Japanese vowels.

Consonants. Unlike vowels, consonants in Japanese
share more similarities with those in English. While the
existence of certain Japanese phonemes in the English
language are sometimes questioned, such as the bilabial
fricative in fuji-san and voiceless palatal fricative in hito,
these phonemes were treated as allophones of the /f/ and
/h/ in English respectively [17]. One major distinction
that was made was the retro-flex liquid /r/ in Japanese
which differs from the /r/ in the English language. While
this /r/ is sometimes compared to the alveolar tap /t/
in English (such as in water) [19], in this study these are
treated as two separate phonemes.

4 Experiments

This section describes the experiments conducted using
the different corpora to evaluate the error detection
performance of the cross-lingual model as well as the
flexibility of the model when trained on data with varying
degrees of labelling quality. All corpora in this study
contains read speech which, although has shown to
have prosodic differences with spontaneous speech [8],
is suitable for the training and evaluation of this model
as it is compatible with the expected input speech for
this text-depended task.

4.1 Corpora

4.1.1 TIMIT

Native data from the TIMIT Acoustic-Phonetic Speech
Corpus contains speech utterances from 630 native
English speakers from 8 different regions of the United
States. The TIMIT corpus has been used in ASR
and phonetic research such as [9] to train and evaluate
models and is one of the few manually transcribed
and time-aligned speech corpora available. This corpus
is used as the native corpus to train and evaluate
the phone error detection model’s performance on high
resource data. For all experiments, post-consonantal
closes and pauses were removed and allophones were
merged to maintain consistency with other corpora [12].
Additionally, the alveolar tap /dx/ was merged with the
phoneme /d/.

4.1.2 UME-ERJ (Native English)

The UME-ERJ Native English Corpus contains
approximately 6 hours of speech from 40 American
native English speakers (equally split by gender) above
the age of 20. This corpus consists of read speech
from 400 sentences. Contrast to TIMIT, the utterances
in this corpus are not phonetically labelled. For this
experiment, the UME-ERJ corpus was phonetically
labelled through automated forced alignment using the
Penn’s Aligner HMM Toolkit software. Forced alignment
was conducted using a modified phone dictionary which
allowed for cases of the medial /t/ phoneme (such as
the /t/ in water) to be classified as /d/ to represent the
alveolar tap, as this is the condition where this phoneme
is most likely to occur [25]. Although other variations of
the /t/ phoneme exist, such as the vanishing /t/ after
the alveolar nasal /n/, these changes were not included.
Given the degree of accuracy of forced aligned labelling,
this corpus is used to evaluate the model’s performance
on lower resource labelled speech, compared to manual
labelling.



4.1.3 Librispeech

The Librispeech corpus is a large speech corpus
containing up to 1000 hours of spoken American native
English. The data from this corpus comprises mainly
of read speech from audio-books. While some of the
speech from Librispeech, similar to TIMIT, are relatively
out-dated, the large quantity provided is essential in
measuring the potential detection performance when
trained on extended hours. For this experiment, a
selected 50-hour subset of the Librispeech corpus was
used. This data was transcribed automatically using
word-phoneme mapping and will be used to evaluate the
performance on low resource labelled speech.

4.1.4 JNAS

The JNAS corpus contains over 16,000 speech samples
from 306 Japanese native speakers (equally split by
gender) which amounts to roughly 21 hours. This corpus
contains speech read from a total of 503 phonetically
balanced sentences originating from newspaper articles.
For all experiments involving this corpus, phonemes were
labelled automatically using phonetic mapping (similar
to the Librispeech subset).

4.1.5 UME-ERJ L2 English

For evaluation of the performance of each model the
L2 English UME-ERJ corpus was used. This corpus
contains English speech from Japanese Native University
students and been used in ASR related tasks such as
in [18]. For Error detection accuracy, a subset of
the corpus containing 50 single word utterances was
used. For this task utterances were selected based on
2 primary conditions. (1) Contain no more than 2
erroneous phonemes, and (2) Only errors with relatively
low ambiguity.
This is done to lower the degree of subjectivity that

is expected from labelling certain phonetic errors, such
as an utterance which falls in between similar sounding
phonemes (e.g., /ae/ and /aa/) [11]. Error patterns
which occurred in the selected samples can be classified
into four main categories (see Table 1). Additionally,
the False Rejection Rate (FRR) will also be measured.
For this evaluation native sounding Japanese utterances
with no noticeable phonetic errors were used. These
utterances were selected based on speakers that were
evaluated with a perfect score via a mark sheet provided
in the corpus documentation.

5 Results and Discussion

In this section, we show the evaluation results for
bilingually trained Wav2vec2.0-XLS-R models used in
this study to measure the error detection performance,
and the sensitivity with respect to the hours of speech
and the method of data labelling used. All models in the
study were trained with a batch size of 8 and a learning
rate of 0.001. The model checkpoint with the optimal

Table 1. Category of error patterns which occur in
the labelled utterances from the UME-ERJ L2 English
corpus. q represents a pre-consonantal pause.

Error Pattern Example
Substitution let

l/eh/t/− > rj/eh/t/
Phone Insertion slash

s/l/ae/sh/− > s/rj/aj/sh/uj/
Phone Skipping bar

b/aa/r/− > b/aa/
Pause Insertion bat

b/ae/t/− > b/ae/q/t/oj/

average performance was selected from each experiment.
As a result, the number of training steps as well as the
proportion of speech samples for each language set varies.

In the primary experiment, models trained on different
sets of data were compared (see Table 2). From these
results we can see that the overall performance of the
model increases with the duration of speech training
data. While the concept of performance improvement
through an increase of speech data is expected [20],
this improvement occurs despite the decline in labelling
quality of the utterances used.

Table 2. Phone Error Rate (PER) and False Rejection
Rate (FRR) for models trained on different corpora.
UME - UME-ERJ Native Corpus, LS - Librispeech
subset,TMT - TIMIT training set

TMT-JNAS UME-TMT LS-JNAS
-JNAS

(3 +3) (3+7+10) (51+21)
6hours 20hours 72hours

PER 0.68 0.59 0.214
FRR 0.74 0.5587 0.1452

This is shown as the 51 hour subset of Librispeech
transcribed via word-phone mapping achieves a PER
of 0.214 which is comparable to phone recognition
results evaluated on the TIMIT corpus using previous
approaches such as Bi-LSTM-CTC [5]. In another
experiment, the evaluation performance of our
bilingually trained models were compared with a
wav2vec2.0-XLS-R model trained on the TIMIT training
set only. In this experiment, models were evaluated on
both the TIMIT test set and the UME-ERJ L2 native
sounding subset (used to measure FRR)(see Table 3).
Although the TIMIT trained model achieved the highest
performance when evaluated on the TIMIT test set, the
bilingually-trained models surpassed the TIMIT-trained
model when evaluated on the phonetically fluent L2
English utterances. Both models in this experiment were
trained on the LIB-JNAS (72 hours) bilingual data-set
and on the UME-ERJ L2, similar to the previous
experiments.

Accurate modelling of non-native utterances often
utilizes speaker adaptation using accurate pronunciation
speech from L2 learners to improve error detection
accuracy [9]. However, these results show that by using



Table 3. Evaluation Phone Error Rate on TIMIT test
set and False Rejection Rate (FRR) for TIMIT-trained
and bilingually-trained wav2vec models.

TIMIT LS-JNAS UME-LS
-JNAS

TIMIT(test) 0.1337 0.2843 0.2586
FRR 0.2589 0.1452 0.127
Average 0.1963 0.2147 0.1928

the wav2vec2.0-XLS-R, fine-tuning models on native
speech from the L2 users native language can be used as a
form of language adaptation and attain sufficient results
on L2 speech. Additionally, when adding additional
speech data (UME-ERJ) to the Librispeech-JNAS
trained model, the average PER surpasses that of the
TIMIT-trained model.

Table 4. Error Detection Rate of the current system
(Wav2Vec2.0-XLS-R) by category.

Total Errors Detected
Errors (Wav2vec)

Substitution 71 68
Phone Insertion 18 16
Phone Skipping 5 5
Total 94 89
Detection Rate 0.947

Table 5. Statistics of the detected errors of the
LS-JNAS fine tuned model with respect to phoneme type
(consonants and vowels)

Consonants Vowels
Substitution 44 41 27 27
Phone Insertion 0 0 18 16
Phone Skipping 4 4 1 1
Total 48 45 46 44

Figure ?? denotes a histogram showing the number
of errors successfully identified with respect to the total
number of errors transcribed for each error pattern.
Contrast to the PER metric which measures the
classification error rate with respect to the manually
transcribed labels, this evaluation includes substitution
error classifications that are similar to the labelled
substitution errors. For instance, in the case of the
word ”rat” (r/a/t/), a misclassification of the label
rj/a/t/ as d/a/t/ would still be accepted as an accurate
identification of this substitution error due to the fact
that both /d/ and /rj/ (Japanese /r/) are both alveolar
type phonemes with similar articulation and thereby
lead to some degree of subjectivity in their discernment.
From looking at these results, it can seen that the
Librispeech-JNAS model has a high detection rate of
common Japanese error patterns.

In an additional experiment, as a baseline model,
a Long Short-Term Memory (LSTM) equipped with
convolutional blocks was trained bilingually (using the
same corpora as the current system) and the results were
compared with that of the wav2vec2.0-XLS-R model.

This comparison was conducted in order to understand
the contribution of the multilingual pre-trained model
as well as the predictive performance of the transformer
model in comparison to other previous state-of-the-art
architectures in a cross-lingual transfer learning task.
Similar to the wav2vec model, the CTC loss function
was used to allow for training without the need for
time-aligned data. As can be seen from the comparison
in table 6, the current model, when evaluated on the
L2 error test set, greatly exceeds the performance of
the LSTM baseline in terms of PER. Additionally, the
current model has a higher error detection rate per
category (and overall) when compared to that of the
LSTM trained on the LIB-JNAS data set (see Table 7).

Table 6. Phone Error Rate (PER) comparison for the
current system (wav2vec-XLS-R) and baseline (LSTM)
when trained on the LIB-JNAS data set.

Wav2Vec-XLS-R LSTM
PER 0.214 0.84

Table 7. Comparison of the error detection rate of the
current system (wav2vec-XLS-R) and baseline (LSTM)
by category.

Errors Wav2vec LSTM
Substitution 71 68 6
Phone Insertion 18 16 1
Phone Skipping 5 5 0
Total 94 89 7
Detection Rate 0.947 0.074

6 Conclusions

This research proposes a Cross-Lingual Transfer
Learning approach to phonetic error detection in L2
English speech by Japanese speakers using a multilingual
wav2vec2.0-XLS-R model fine-tuned on solely native
English and Japanese speech. With our proposed model
trained on 70 hours total speech, we achieve a low
Phone Error Rate on erroneous L2 speech without any
L2 fine-tuning. Although this approach can be seen
as data-intensive requiring hours of speech to attain
high performance, requiring only native data which is
more easily obtainable greatly reduces the challenge
of sufficiently fine-tuning the model. Additionally,
from the results we also show that this can also be
accomplished using speech labelled through low-resource
automated methods which further broaden the range
of accessible data for model fine-tuning. While this
method is a simple error detection approach which
operates through phonetic transcription, if paired with
score-based methods such as Goodness of Pronunciation,
potential exists for greater error detection flexibility.
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