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Abstract—Acquisition of human vital signs through radar is 
a very promising technology that can address the shortcomings 
of the traditional contact-based measurement devices and 
enable the move toward a contactless vital monitoring system. 
This research is focused on monitoring breath rate (BR) and 
heart rate (HR) via a frequency modulated continuous wave 
(FMCW) radar. Currently, the two approaches used for BR and 
HR estimation are filter-based and decomposition-based, such 
as variational mode decomposition (VMD) for high-quality 
signal separation. We propose an adaptive VMD (AVMD) to 
address the problem of setting the number of segmentation 
levels required by the VMD algorithm. Various experiments are 
conducted under practical scenarios in terms of distance, angle, 
posture, and activity as well as the existence of a nearby person 
and fan. We have made a comprehensive assessment of accuracy 
change and impact in these scenarios. The experimental results 
show clearly that the proposed AVMD gives higher accuracy 
compared to the filter-based and VMD-based. A real-time BR-
HR monitoring system using the proposed AVMD and the TI’s 
IWR1843Boost radar board has been implemented to 
demonstrate its practical uses.    

Keywords—FMCW radar, filter, VMD, AVMD, breathing 
rate, heart rate, estimation, accuracy, real-time monitoring. 

I. INTRODUCTION 

Monitoring human heart rate (BR) and breathing rate 
(HR) is of paramount importance for disease diagnosis, 
healthcare, and psychological analysis. This is achieved 
traditionally through special equipment such as ECG 
(electrocardiogram) monitors, PSG (polysomnography), and 
wearables like a wristband or watch. However, these 
approaches suffer from several inconveniences including 
invasiveness and discomfort due to the need to have direct 
contact with the human body, which may affect both physical 
and psychological states. Researchers have tried to address 
this problem by designing contactless solutions based mainly 
on cameras [1] and radio frequency signals (RF). Although 
the former approach using a camera solved the problems of 
inconvenience and comfort, the privacy is not well preserved 
specially for continuous monitoring, in addition to the 
restriction related to light brightness and the line of sight of 
the camera. On the other hand, RF-based solutions do not 
have such issues and make them a promising solution for 
continuously monitoring BR and HR in the background 
without interfering with human daily activities.  

The research on RF-based respiration acquisition was 
pioneered by J. C. Lin in 1975 [2], and heartbeat detection 
research was done also by him in 1979 [3]. Due to the 
availability of highly customized and miniatured radars, the 
research on using this technology has attracted great attention 

for both academic and industrial research in the past decade. 
Different types of radar were used in previous works 
including Ultra-Wide Band, Continuous Wave (CW), and 
FMCW radars. In [4], a simple UWB used the Chirp Z 
Transform (CZT) and a motion filter to recover the 
respiration and eliminate the motion artifacts. Although the 
reported results were good, the implementation was not 
suitable for real-world application. A more recent work using 
UWB was reported in [5] where a sophisticated system is 
implemented for continuous monitoring. The breathing was 
extracted using a bandpass filter and the Short Time Fourier 
Transform (STFT) was used to extract the heartbeats. They 
reported a mean absolute error of 0.09 bpm and 1.43 bpm for 
BR and HR respectively. In [6], a 2.4 GHz CW radar was 
developed and used to detect the respiratory and cardiac rates 
of a target sitting at 1.5 cm from the radar. The results 
obtained were 0.5 bpm and 1 bpm mean average error for the 
breathing and heartbeats respectively. Using an FMCW radar, 
the authors in [7] used a combination of VMD and the 
wavelet transform to estimate the heart rate of a subject sitting 
at a 1-meter distance. They reported a mean absolute error 
(MAE) of 0.82 bpm (beats per minute) for the heart rate over 
a 1-minute window. Wu and Yang used a 5.8 GHz FMCW 
radar to monitor the heartbeat over one minute with a subject 
sitting at a 1m distance in a static posture [8]. They used the 
algorithm of VMD to extract the heartbeat signal and reported 
an error of 1.7 %. Another recent study also used the VMD 
decomposition to reconstruct the heartbeat signal from its 
higher harmonics to avoid the impact of respiration [9]. Their 
results show that the estimated HR had an MAE in a range of 
3.02–6.11 bpm for subjects sitting still at 0.6–0.8 m range. In 
addition, the use of radar for heart rate monitoring, according 
to our survey [10] is still lacking and no commercial product 
is available in the market, due to the unreliability of HR 
estimations in practical deployment. 

Many of the existing RF-based BR/HR studies are 
conducted under very limited experimental scenarios. It is 
necessary to evaluate the performance of BR/HR estimation 
under diverse situations since the radio is very sensitive to 
both users’ and environmental states. Therefore, we conduct 
a series of experiments to give a comprehensive assessment 
of BR and HR accuracy under various practical scenarios. We 
propose the use of an adaptive mechanism for estimating the 
number of segmentation levels required by the VMD 
algorithm.  

The main contributions of this work are the following: (1) 
Proposal of adaptive VMD, known as AVMD, that 
determines the number of the decompositions dynamically 



for adaptation to an actual environment; (2) Assessment of 
both traditional filtered-based and the latest VMD-based 
approaches as well as our proposed AVMD, which has shown 
superior performance compared as the former two under 
practical scenarios; (3) Implementation of a real-time BR-HR 
monitoring system that can automatically detect human 
presence and send estimated BR and HR to a user via a 
network. 

 The remainder of this paper is organized as follows. The 
next section describes the general processing chain used for 
vital sign monitoring. Section III presents details of the 
proposed AVMD for deciding a proper VMD parameter. The 
experimental protocols and settings are described in Section 
IV, and the assessment results are shown in Section V. 
Section VI explains our developed system for real-time BR 
and HR monitoring in practical use. The last section gives a 
summary of this research and a list of issues in future work. 

II. VITAL SIGNS PROCESSING 

FMCW radar transmits continuous waves that increase in 
frequency linearly, and this type of wave is called “chirp”. 
Receiving the reflection of these waves from the surrounding 
environment allows the radar to determine spatial information 
about the reflecting objects including distance, speed, and 
angle. In the case of vital signs detection, the radar leverages 
the change in the range information due to the chest motion 
resulting from both breathing and heartbeats. 

 
Fig. 1. Signal processing steps radar-based vital sign estimation 

The high-level signal processing flow for vitals estimation 
using radar is depicted in Fig. 1. Upon receiving the reflected 
radio waves, they are converted into range information by 
applying a Fast Fourier Transform algorithm (FFT). The 
output from this step is commonly called 1D-FFT or range-
FFT since it provides range information. Clutter removal is 
applied next to eliminate reflections from static objects in the 
environment such as the floor, walls, and furniture. This is 
achieved by subtracting averaged amplitude values in each 
range bin. Once these static reflections are eliminated, only 
the manifestation of the non-static chest displacements due to 
the breathing and heartbeat of a targeted person is expected 
to have a more significant variable amplitude on the radar 
range map. The person’s chest can be located by just selecting 
the range bin with the highest average power. Since the 
displacements of the chest caused by breathing and heartbeats 
are very minute [11], their impact on the frequency of the 
reflected signal is very small and cannot be tracked by 
analyzing the frequency change. However, they can be 
captured by analyzing the corresponding phase change or 
demodulation. Due to the restricted output of the phase 
demodulation process within a range of [-π, π], a phase 
unwrapping process is necessary to recover the original 
evolution of the phase by adding or subtracting 2π value to 
the phase where consecutive phase values are greater than π. 
The resulting unwrapped phase signal contains the 

cardiorespiratory information alongside the target body 
motion.  

To separate and extract the breathing and heartbeat signals, 
the most reported approach in the literature is based on the 
use of a band passing filter [12, 13], since the breathing and 
the heartbeats frequencies are in different ranges. Specifically 
for a healthy adult human, the breathing and heartbeat rates 
are 12–20 bpm and 60–100 bpm [14] respectively, which 
correspond to 0.2–0.33Hz for breathing and 1–1.7 Hz for 
heartbeats. In addition to this filter-based approach, other 
popular methods for extraction and separation are based 
mainly on mode decomposition such as Variational Mode 
Decomposition (VMD) [15] and Empirical Mode 
Decomposition (EMD) [16]. They separate the signal into 
physically meaningful components called Intrinsic Mode 
Function (IMF). Through spectral analysis of these IMFs, the 
correct IMF for breathing and heartbeats can be selected 
based on the frequency range of each signal. This kind of 
decomposition scheme is specifically suited for analyzing 
non-linear and non-stationary signals as is the case for 
breathing and heartbeats. Once the breathing and heartbeat 
signals are acquired, estimations of their rate change can be 
performed using a time domain-based approach such as a 
variation of peak counting algorithm, or through the selection 
of the frequency of the strongest component in the frequency 
domain via FFT. 

I. ADAPTIVE-VMD-BASED VITAL SIGNS MONITORING 

As mentioned in the previous section, the mode 
decomposition methods proved their effectiveness for non-
linear and non-stationary signal decomposition. Specifically, 
VMD is reported in the literature [17] to achieve higher 
precision and noise robustness making it ideal for use in case 
of vital sign extraction from the noisy reflections in the 
surrounding environment. Considering better separation 
results compared to the filter-based one, we adopt VMD as a 
base for our breathing and heartbeat signal extraction. 
However, the requirement of providing the number of the 
decompositions (K) in advance is a major shortcoming of this 
method since the result of the decomposition is highly 
sensitive to the value of this parameter and choosing the 
wrong number will produce sub-optimal and even worse 
performance. Previous works that used VMD [8, 9, 18] for 
radar-based vitals extraction provided an empirical value for 
the parameter K based on their experiments which may not 
give optimal results in other experimental conditions.  

A. Adaptive Estimation of VMD Decomposition Levels 

To address the problem of providing the number of 
decomposition levels, we propose the integration of an 
estimation scheme to estimate the number of correct 
decompositions in the context of vital signs extraction. The 
process is based on the fact that we already know the 
frequency range of the desired results which is the heartbeat 
frequency range (0.8-1.7 Hz). To avoid the over-
segmentation issue, we start the VMD decomposition with a 
small value for K (K=3) guaranteeing to have only one valid 
IMF in the desired range. The next step is to increase the 
value of K by 1 and check the number of resulting IMFs with 
center frequency within the heartbeat range. The stop 
criterion is the generation of more than one valid IMF and in 



that case the correct value of K is K-1. We also set a high 
limit for K to prevent the algorithm from getting stuck in case 
the decomposition does not yield more than one valid IMF. 
This process is summarized in Fig. 2.  

   
Fig. 2. Flow chart of the process of estimating the number of modes (K) 

B. Processing Chain 

The processing chain we propose is depicted in Fig. 3. 
After receiving the range FFT information from the radar, we 
perform a clutter removal by removing the DC component 
from the data of each range. We select the target location by 
choosing the range bin with the highest power. The next step 
is to apply phase unwrapping to recover the details of the 
chest displacements. To improve the quality of this data, we 
perform a phase difference operation, which is specifically 
applied to amplify the effect of the heartbeat and make it 
easier for extraction. The breathing signal is extracted next 
using a bandpass filter with cutoff frequencies of 0.1 to 0.6 
last step uses peak counting to estimate the rate of both 
breathing and heartbeats. The peak counting approach used is 
the evaluation of the number of peaks in the last 30 sec for 
breathing and 15 sec for heartbeats. This number is converted 
into bpm using the following formulas (1). 

𝑏𝑝𝑚 =
଺଴

௘௦௧௜௠௔௧௜௢௡ ௪௜௡ௗ௢௪
 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑎𝑘𝑠          (1) 

  
Fig. 3. Flow chart of the vital signs estimation steps. 

II. EXPERIMENTAL SETUP & DATA ACQUISITION 

To validate the performance of our vital sign monitoring 
approach and assess its robustness for deployment in practical 
scenarios, we conduct a series of experiments using both an 

FMCW radar and reference devices under various user and 
environmental conditions and compare it with the 
conventional filter-based and VMD-based methods. 

A. Devices and Recording Protocol 

We adopt the Texas Instrument IWR1843BOOST radar 
board [19], which is shown on the left of Fig. 4. This radar 
was selected for its high operating frequency (77 GHz) and 
bandwidth (4 GHz) in addition to the technical support from 
Texas Instrument documentation and the online community 
[20]. We used a modified image file for this board to output 
the 1D-FFT data through the UART (Universal 
Asynchronous Receiver/Transmitter) port. The radar settings 
are given in Table I. To evaluate the accuracy of the estimated 
BR and HR, we also use two reference devices, the Polar H10 
strap [21] and Vernier respiration belt [22], which are shown 
on the right of Fig. 4. 

 
Fig. 4. Devices: TI-IWR1843BOOST, Polar H10, Vernier respiration belt 

TABLE I.  RADAR SETTINGS 

Parameter Value Unit 

Frequency 77 GHz 

Frame periodicity 62.5 ms 

Chirp slope 52 MHz/us 

Chirp end time 40 us 

ADC samples 64 - 

ADC sampling Frequency 2 Msps  

# Receivers 4 - 

# Transmitters 3 - 

For this comprehensive assessment, we use a set of python 
scripts developed in our lab to control the different devices 
and synchronize the recording. The protocol starts by 
connecting to the devices (Polar H10, Vernier belt, the radar, 
and camera) to get the different data. After a successful 
connection, the software waits for 30 sec before issuing a 
beep marking the start of the recording. We set the recording 
time to 3 min where at the end another beep is issued. The 
software then gathers the data from all devices and writes 
them into an excel file with each type of data occupying a 
different sheet, in addition to a video recording for the 
experiment.  

B. Experiment Conditions 

In this assessment, our objective is to offer a 
comprehensive evaluation of the performance of BR and HR 
estimations using filter-based, VMD-based, and our proposed 
AVMD. We conducted various experiments that are divided 
basically into two different categories: user-related and 
environment-related. The former category is with a subject 
sitting at different distances, angles, and postures relative to 
the radar or performing some activity like using a smartphone.  



The latter category is related to the surrounding environment 
such as the impact from a nearby person or other objects 
placed near the subject. Ten subjects aging from 22 to 31 
participated in the different recordings. Each subject recorded 
one segment of 3 min for each scenario. Table II summarizes 
the details of the experiments conducted. 

TABLE II.  EXPERIMENTAL SCENARIOS 

Type Conditions 

U
se

r 

10 participants, distance (0.6, 1, 1.4 m), static, facing radar, 0 
deg 
4 participants, angle (0, 25, 50 deg), static, at 1.3 m forming 
90deg with radar azimuth axis 
4 participants, posture (facing, back, side), static, at 1.3 m and 
0 deg 

2 participants, sleeping (supine, prune, side), radar is 1.2 m 
on top of the subject’s chest. 

2 participants, activity (using a phone), facing radar at 1.3 m 
and 0 deg 

E
nv

 

2 participants, a nearby sitting person while the target is 
facing radar at 1.3 m and 0 deg 

2 participants, moving fan placed next to the target at 1.3 m 
and -35 deg while the target is at 1.3 m 35 deg. 

L
on

g 
P

er
io

d 

1 participant, 40-min recording of sleep, radar is 1.2 m on top 
of the subject chest. 

1 participant, 40-min recording while working on a PC. Radar 
is placed over the PC screen at 1m from the subject’s chest 

C. Filter-based and VMD-based Processing Chains 

Fig. 5 shows the details of the signal processing chains of 
filter-based and VMD-based methods used for comparison. 
In addition, for the conventional VMD implementation, we 
set the parameter K to the value of 10 as it is the default 
parameter used usually. The first IMF is assigned as the 
breathing while the second IMF is assigned as the heartbeat. 

 
Fig. 5. Filter-based and VMD-based processing chains. 

III. ASSESSMENT OF BR AND HR ESTIMATION 

In this section, we present and discuss the assessment 
results based on filter, VMD, and AVMD under various 
experimental conditions given in Table II of the previous 
section. The main metric used for evaluation is the Mean 
Absolute Error (MAE) defined in (2). 

𝑀𝐴𝐸 =  
∑ |ோ௘௙೔ିா௦௧೔|೙

೔సభ

௡
                           (2) 

where Refi is the ground truth value from reference devices, 
Esti is the estimated signal value by radar, and n is the total 
number of values.  

A. Impact of Distance 

To evaluate the impact of target distance, the subject sits 
facing the radar at 0.6, 1, and 1.4 m. Table III shows the 
average MAE for 10 subjects of the estimated BR and HR 
over 2 min using the three methods. It can be seen that the 
performance of almost all implementations degrades with 
increasing distance, especially for heartbeat estimation, 
which is expected since the signal gets weaker as it travels 
long distances.  

TABLE III.  AVERAGE MAE FOR DIFFERENT DISTANCES  

Distance (m) Method BR HR 

0.6 

Filter 1.13 6.29 

VMD  1.76 8.18 

AVMD  1.13 3.04 

1 

Filter 1.76 7.94 

VMD  3.41 9.59 

AVMD  1.76 4.53 

1.4 

Filter 1.21 10.58 

VMD  2.35 11.56 

AVMD  1.21 3.59 

 According to the results from Table III, our adaptive 
implementation performs better than the conventional Filter 
and VMD, especially for estimated heart rates.  

B. Impact of Angle 

 We perform recordings at 1.4 meters for angles of 0, 25, 
and 50 degrees as shown in Figure 6. Four subjects 
participated in this experiment. Table IV shows a summary 
of the obtained MAE average results. 

 
Fig. 6. Subject sitting at different angles from radar. 

TABLE IV.  MAES FOR DIFFERENT ANGLES    

Angle (deg) Method BR HR 

0 

Filter 0.62 10.6 

VMD 0.97 13.8 

AVMD 0.62 3.95 

25 

Filter 2.07 10.3 

VMD 2.05 10.47 

AVMD 2.07 4.65 

50 

Filter 1.46 11.93 

VMD 2.54 8.23 

AVMD 1.46 4.56 

C. Impact of Posture 

To check the accuracy of vital signs estimation in different 
postures, we perform a recording at 1.4 meters with the 
subject sitting backward (back to radar) and sideways as 
shown in Figure 7 and compare it to the previously recorded 
facing posture. Four subjects participated in this experiment. 



Table V shows the obtained average MAE results. The overall 
results show degradation of performance for all methods for 
both backward and side sitting. This degradation is 
understandable since the radar’s primary source of reflections 
related to vital signs is collected from the chest which is 
obscured in both backward and side sitting. Nevertheless, 
AVMD still shows better results as compared to the other two 
methods. 

 
Fig. 7. Subject sitting in facing, backward, and sideways postures. 

TABLE V.  MAES FOR POSTURE IMPACT 

 Method BR HR 

F
ac

in
g 

Filter 0.62 10.59 

VMD 0.97 13.87 

AVMD  0.62 3.95 

B
ac

k 

Filter 5.36 15.29 

VMD 7.7 14.48 

AVMD  5.36 11.78 

Si
de

 

Filter 3.22 8.52 

VMD 2.53 10.15 

AVMD  3.22 5.76 

D. Sleep Scenario 

Different from sitting in a chair, we tested the 
performance in a sleeping scenario. The postures of supine, 
prune, and sleeping on the side are considered. Two subjects 
took part in these experiments with radar placed on top at 1.2 
m from the subject's chest. Figure 8 depict the three postures 
in our experiments. 
 

 
Fig. 8. Subject sleeping in supine, prune, and side postures. 

TABLE VI.  MAES FOR POSTURE IMPACT 

 Method BR HR 

Su
p

in
e Filter 2.71 10.86 

VMD 3.7 9.7 

AVMD  2.71 3.9 

P
ru

ne
 Filter 2.95 14.57 

VMD 1.96 17.52 

AVMD  2.95 4.7 

Si
de

 Filter 2.64 20.39 

VMD 7.4 19.94 

AVMD  2.64 5.6 

In both supine and prune postures, AVMD shows very 
good accuracy for breathing and heartbeat. Specifically in the 
case of prune, and unlike the previous sitting backward 
experiment, the presence of the bed mattress pushes back the 
impact of chest movement that get more visible on the back 
allowing for better signal extraction result.  

E. Impact of User’s Activity 

During this experiment, a subject was sitting on a chair at 
1.3 m while using a phone as shown on the left of Fig. 8. Table 
VI summarizes the MAE results obtained. Even with the 
subject using his phone AVMD still can get acceptable results 
from 1.3 m and give better performance compared to the other 
implementations, especially for HR. 

F. Impact of Other Nearby Subject 

For this experiment, the subject was sitting at 1.3 m while 
another subject is sitting next to him at a farther range as 
shown in the right part of Fig. 8. It can be seen, from Table 
VI, that the performance of estimating the vitals is still within 
acceptable ranges. 

G. Impact of Other Nearby Objects 

In this experiment, we made use of a moving fan to check 
the impact on vital estimation accuracy and summarize the 
result in Table VI. The presence of the fan had some impact 
that degraded the estimation performance. The AVMD again 
has outperformed the conventional VMD and the Filter-based 
methods showing more consistency in estimating the heart 
rate. 

 
Fig. 9. Subject sleeping in supine, prune, and side postures. 

TABLE VII.  MAES OF USING PHONE, NEARBY PERSON, AND FAN 

 
Using Phone Nearby Person Nearby Fan 

BR HR BR HR BR HR 

Filter 1.8 16.16 1.18 13.45 3.88 14.16 

VMD 5.85 12.8 1.4 7.96 3.86 10.44 

AVMD 1.8 5.46 1.18 1.69 3.88 3.78 



H. Long Period Experiment 

To further test performance in real case scenarios, we 
recorded additional experiments in sleeping and while 
working on a PC for 40 min each. For the sleep scenario, the 
settings are the same as for previous experiments (radar on 
top at 1.2 m). In the second experiment, the radar was placed 
over the PC screen using a camera holder where the distance 
between the radar and the chest of the target is around 1 m as 
shown in Figure 10. 

 
Fig. 10. Long Period Experiment: sleeping (left), working with PC (right). 

Table VIII shows the MAE results for the performance of 
AVMD where three segments are considered in both 
experiments. 

TABLE VIII.  AVERAGE MAES OF AVMD FOR  LONG PERIOD 
MONITORING 

 Posture Time (min) BR HR 

Sl
ee

pi
ng

 

Supine 0 to 4 0.87 4.08 

Side 4:10 to 13:10 3.47 4.49 

Prune 20 to 30 1.36 2.92 

Avg 1.9 3.83 

W
or

ki
ng

 w
it

h
 

P
C

 Facing 

0 to 10 3.37 8.15 

15 to 25 4.11 4.34 

30 to 40 2.82 3.82 

Avg 3.43 5.44 

The overall results from Table VIII show a slight 
deterioration in performance in the case working with a PC 
as compared to the sleeping scenario. This is due to the 
scattered movements during work as compared with sleep 
where rare bursts of movements happen. Nevertheless, 
AVMD still provides very good results for both breathing and 
heartbeats. 

I. Result Discussion 

Following the different results obtained from these 
experiments, AVMD consistently performed better than 
conventional VMD. The main reason for the unstable 
performance of the conventional VMD is that the 
decomposition levels in most cases are not adequate and the 
IMFs used still have a strong noise impact. AVMD also 
outperformed the conventional filtering, where the results for 
the heartbeat extraction were better in all experiments. This 
is mainly due to the concept behind each method. Whereas 
the filter will allow any signal components if they are within 
its cutoff frequencies allowing noises in that range to be 
aggregated with the signal of the vitals. On the other hand, 
VMD tries to find the principal components or modes in a 
signal to separate the noise in the process and result in a 
higher resolution extraction. 

AVMD achieved an average MAE of 4.53 bpm for HR 

estimation and 1.76 bpm in the case of breathing across 
distances ranging from 0.6 to 1.4 m in the distance 
experiments which is the conventional experiment performed 
by other works. Table IX provides a summary of the 
performance of AVMD in terms of Mean Absolute Error 
(MAE) and Mean Absolute Percent Error (MAPE) for each 
range. According to previous works that assessed the 
accuracy of wearable measurement devices [24], we define 
an acceptable error rate for a physical monitoring device to 
be (< +/-10%), as this is considered an accurate threshold for 
medical ECG monitors and breathing measurement devices. 
We use MAPE to compute this error and conclude the 
accuracy of our solution in the standard sitting scenarios at 
different distances for 10 subjects (as per previous related 
works).  

TABLE IX.  AVERAGE MAES & MAPE FOR DISTANCE EXPERIMENT 

Experiment 
MAE (bpm) MAPE (%) 

BR HR BR HR 

Sitting at 0.6 m 1.13 3.04 9.34 4.73 

Sitting at 1 m 1.76 4.53 9.58 5.2 

Sitting at 1.4 m 1.21 3.59 7.89 5.32 

IV. A REAL-TIME MONITORING SYSTEM 

This research is further aimed to develop a real-time 
monitoring system that outputs the estimated BR and HR of 
a target user. The purpose to develop the system are two folds, 
one is for researchers to get visualized results to check 
performance in real-time under various situations, and the 
other is for a user to be informed in real-time about his/her 
BR and HR via a smartphone. To this end, we performed 
different assessments of our proposed processing chain to 
know the different limitations to expect on deployment. This 
real-time system has been implemented with the following 
functions: (1) Acquisition and parsing of the 1D-FFT radar 
data and measured data from two reference devices, Polar 
H10 and Vernier belt; (2) Processing the radar data and 
estimating BR and HR using proposed AVMD to extract the 
vitals; (3) Desktop GUI of Development Mode to connect 
reference devices for making performance evaluation easier 
and more direct; (4) Ability to record a video alongside the 
data from the different the radar and reference devices for 
easy offline analysis; (5) A mobile App to report the vitals of 
a target user in real-time via the network. 

Python was used as the main development language for 
the backend implementation, the desktop GUI, and the 
mobile App. Since multiple tasks need to be executed 
continuously and in parallel such as reading and parsing radar 
data from the UART, processing the radar data using the 
AVMD, managing the GUI, etc. Each of these tasks is started 
in its independent process using the multiprocessing package 
to leverage the availability of multi-core CPUs. The 
communication and data transfer between the different 
processes are done through data queues available in the same 
package. To send the processing results to be displayed on the 
mobile app, we used a MySQL database (DB), so that we can 
write the vital information (breathing rate and heart rate) into 
a table inside the DB where the mobile App can issue queries 
to the server hosting the DB to get the information and display 
them on the screen of a user’s smartphone. Both the desktop 



GUI and the mobile App were developed using a library 
called Kivy [23], which is a Python library designed for 
creating touch-enabled applications. The advantage of using 
Kivy is the use of the same base code with Python and then 
compiling to other platforms such as Android OS and iOS.  

 
Fig. 11.  Vital signs monitoring system components. 

The radar captures data at all times, and the vital 
estimation process will always output an estimation even if 
there is no person on the scene. To detect the presence of a 
human, we added a power threshold based on the power level 
of the room by capturing the data in no-human existence 
conditions. With the power, if a person enters the scene the 
power level will rise, and the vital estimation process starts. 
As soon as the persons exit the scene, the power level will 
drop, and the vital estimation process stops. The estimation 
process uses the last 30 sec data as input and proceeds with 
the same steps as described in our proposal. 

V. CONCLUSION  

In this work, we have proposed an adaptive mechanism 
for estimating the value of the parameter K required by the 
VMD algorithm used for vital sign extraction and separation. 
We have given a comprehensive assessment of FMCW radar-
based BR and HR estimation accuracy using different 
methods under various practical scenarios. These assessment 
results have shown clearly that the proposed AVMD has 
achieved better and reliable performance compared to the 
conventional filter-based and VMD-based methods in almost 
all experiments. A real-time vital sign monitoring system has 
also been developed to demonstrate its effectiveness for both 
researchers and users. Our future work will target the 
acquisition of a more detailed vitals such as RRI and HRV, 
and using them for more advanced health monitoring such as 
illness and fatigue. In addition, we will investigate the use of 
the multiple antennas to enable the monitoring of multiple 
subjects and extend the capabilities of our platform.  
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