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Identify RNA-associated subcellular
localizations based on multi-label learning
using Chou’s 5-steps rule
Hao Wang1, Yijie Ding2, Jijun Tang1,4, Quan Zou3 and Fei Guo1*

Abstract

Background: Biological functions of biomolecules rely on the cellular compartments where they are located in cells.
Importantly, RNAs are assigned in specific locations of a cell, enabling the cell to implement diverse biochemical
processes in the way of concurrency. However, lots of existing RNA subcellular localization classifiers only solve the
problem of single-label classification. It is of great practical significance to expand RNA subcellular localization into
multi-label classification problem.

Results: In this study, we extract multi-label classification datasets about RNA-associated subcellular localizations on
various types of RNAs, and then construct subcellular localization datasets on four RNA categories. In order to study
Homo sapiens, we further establish human RNA subcellular localization datasets. Furthermore, we utilize different
nucleotide property composition models to extract effective features to adequately represent the important
information of nucleotide sequences. In the most critical part, we achieve a major challenge that is to fuse the
multivariate information through multiple kernel learning based on Hilbert-Schmidt independence criterion. The
optimal combined kernel can be put into an integration support vector machine model for identifying multi-label
RNA subcellular localizations. Our method obtained excellent results of 0.703, 0.757, 0.787, and 0.800, respectively on
four RNA data sets on average precision.

Conclusion: To be specific, our novel method performs outstanding rather than other prediction tools on novel
benchmark datasets. Moreover, we establish user-friendly web server with the implementation of our method.

Keywords: RNA subcellular localization, Multi-label classification, Hilbert-Schmidt independence criterion, Multiple
kernel learning, Web server

Background
Biological functions of biomolecules rely on various cellu-
lar compartments. One cell can be divided into different
compartments that are related to different biological pro-
cesses. Thus, the cellular role of one RNA molecular
could be inferred from its localization information.What’s
more, there has been a great deal of research on the
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protein subcellular localization [1–6]. Currently, the bio-
logical technology capable of whole-genome that subcel-
lular localization has been indicated to be a fundamental
regulation mode in biological cells [7].
With the explosive growth of biological sequences in

the post-genomic era, one of the most important but
also most difficult problems in computational biology
is how to express a biological sequence with a discrete
model or a vector, yet still keep considerable sequence-
order information or key pattern characteristic. This
is because all the existing machine-learning algorithms,
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such as Optimization algorithm [8], Covariance Discrim-
inant algorithm [9, 10], Nearest Neighbor algorithm [11],
and Support Vector Machine algorithm [11, 12]) can only
handle vectors as elaborated in a comprehensive review
[13]. However, a vector defined in a discrete model may
completely lose all the sequence-pattern information. To
avoid completely losing the sequence-pattern informa-
tion for proteins, the pseudo amino acid composition
[14] or PseAAC [15] was proposed. Ever since the con-
cept of Chou’s PseAAC was proposed, it has been widely
used in nearly all the areas of computational proteomics
[16–18]. Because it has been widely and increasingly used,
four powerful open access soft-wares, called ‘PseAAC’
[19], ‘PseAAC-Builder’ [20], ‘propy’ [21], and ‘PseAAC-
General’ [22], were established: the former three are for
generating various modes of Chou’s special PseAAC [23];
while the 4th one for those of Chou’s general PseAAC[24],
including not only all the special modes of feature vec-
tors for proteins but also the higher level feature vec-
tors such as Functional Domain mode, Gene Ontology
mode, and Sequential Evolution or Position-Specific Score
Matrix(PSSM) mode. Encouraged by the successes of
using PseAAC to deal with protein/peptide sequences,
the concept of PseKNC (Pseudo K-tuple Nucleotide
Composition) [25] was developed for generating various
feature vectors for DNA/RNA sequences [26–28] that
have proved very useful as well. Particularly, in 2015 a
very powerful web-server called Pse-in-One [29] and its
updated version Pse-in-One2.0 [30] have been established
that can be used to generate any desired feature vectors
for protein/peptide and DNA/RNA sequences accord-
ing to the need of users’ studies. Inspired by the Chou’s
method[31, 32], we mainly extract the frequency informa-
tion of the sequence.
Currently, the biological technology capable of whole-

genome localization is the subcellular RNA sequencing,
called SubcRNAseq, which yields high-throughput and
quantitative data. Large amounts of raw subcRNAseq
data have recently become available, most notably from
the ENCODE consortium. A lot of research work has
established the resource to make RNA localization data
available to the broader scientific community. Firstly,
Zhang et al. [33] built a database called RNALocate, which
collected more than 42,000 manually engineered RNA
subcellular localization entries. Subsequently, Mas-Ponte
et al. [34] constructed a database named LncATLAS to
store the subcellular localization of lncRNA. ViRBase[35]
is a resource for studying ncRNA-associated interactions
between virus and host. Now, Huang et al.[36] have built
a manually curated resource of experimentally supported
RNAs with both protein-coding and noncoding function.
Considering expensive and inconvenient biological

experiments [37], automatic computational tools are the
highly relevant measure to speed up RNA-related studies.

The computational identification of subcellular localiza-
tion has been a hot topic for the last decade. In the early
days, Cheng et al. [38] systematically studied the distribu-
tion of lncRNA localization in gastric cancer and revealed
its relationship with gastric cancer. As a pioneer work,
Feng et al. [39] developed a computational method to pre-
dict the organelle positions of non-coding RNA (ncRNAs)
by collecting ncRNAs from centroids, mitochondria, and
chloroplast genomes. Subsequently, Zhen et al. [40] devel-
oped lncLocator to predict the subcellular localization of
long-stranded non-coding RNA. Xiao et al. [41] proposed
a novel method used the sequence-to-sequence model
to predict microRNA subcellular localization. Besides,
Yang et al. [42] developed MiRGOFS being a GO-based
functional similarity measurement for miRNA subcellular
localization. Then, iLoc-mRNA [43] used binomial dis-
tribution and one-way analysis of variance to obtain the
optimal nonamer composition of mRNA sequences, and
applies a predictor to identify human mRNA subcellu-
lar localization. Recently, deep learning methods [44–47]
have been used to predict subcellular localization with
good results.
However, most existing RNA subcellular localization

classifiers only solve the problem of single-label classifica-
tion. In fact, a single primary RNA transcript is used to
make multiple proteins [48–50]. Therefore, it is of great
practical significance to expand RNA subcellular localiza-
tion into multi-label classification problem. In view of the
above research, there is no multi-label RNA subcellular
localization dataset available for this task. According to
RNALocate database, we extract multi-label classification
datasets about RNA-associated subcellular localizations
on various types of RNAs, and then construct subcellu-
lar localization datasets on four RNA categories (mRNAs,
lncRNAs, miRNAs and snoRNAs).
In this study, we utilize different nucleotide property

composition models to adequately represent important
information of nucleotide sequences. In the most critical
part, we achieve a major challenge is to fuse the multivari-
ate information through multiple kernel learning[51–58],
based on Hilbert-Schmidt independence criterion. The
optimal combined kernel can be put into an integration
support vector machine model for training a multi-label
RNA subcellular localization classifier. We follow Chou’s
5-steps rule [24] to go through the following five steps: (1)
construct a valid benchmark dataset to train and test the
predictor; (2) utilize different nucleotide property compo-
sition models to adequately represent important informa-
tion of nucleotide sequences; (3) achieve amajor challenge
is to fuse the multivariate information through multiple
kernel learning based on Hilbert-Schmidt independence
criterion, and the optimal combined kernel can be put into
an integration support vector machine model for train-
ing a multi-label RNA subcellular localization classifier;
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(4) properly perform cross-validation tests to objectively
evaluate the anticipated prediction accuracy; (5) establish
multiple user-friendly web-servers for different datasets.

Results
In this section, we compare various nucleotide representa-
tions, integration strategies and classification tools on our
novel benchmark datasets.

Evaluation measurements
Ten-fold cross-validation is a statistical technique to eval-
uate the performance of models in turn. Six parame-
ters are used to analyze the performance of model [59],
including Average Precision (AP), Accuracy (Acc), Cov-
erage (Cov), Ranking Loss (Lr), Hamming Loss (Lh) and
One-error (Eone).

Acc = 1
|D|

|D|∑

i=1

∣∣∣∣∣
Ŷi ∩ Yi
Ŷi ∪ Yi

∣∣∣∣∣ (1a)

Cov = 1
|D|

|D|∑

i=1
max
yp∈Yi

r̂(yp) − 1 (1b)

AP = 1
|D|

|D|∑

i=1

1
|Yi|

∑

yq∈Yi

|{yp|r̂(yp) ≤ r̂(yq), yp ∈ Yi}|
r̂(yq)

(1c)

Lr = 1
|D|

|D|∑

i=1

|{(yp, yq)|f̂ (yp) ≤ f̂ (yq), yp ∈ Yi, yq ∈ Ȳi}|
|Yi| × |Ȳi|

(1d)

Lh = 1
|D|

|D|∑

i=1

|Ŷi�Yi|
|L| (1e)

Eone = 1
|D|

|D|∑

i=1
| argmax f̂ (yp) /∈ Yi| (1f)

where |D| represents the number of samples, |L| repre-
sents the number of labels, r̂(y) indicates the rank of y in
Y on the descending order, f̂ (y) represents the score of y
predicted by the classifier, Y represents the real label set,

Ŷ represents the prediction label set, Ȳ denotes the com-
plementary set of Y,� stands for the symmetric difference
between two label sets.
For Coverage, Ranking Loss, Hamming Loss and One-

error, the model can achieve the best performance with
the smallest value. For Average Precision and Accuracy,
the model can achieve the best performance with the
largest value.

Performance of different nucleotide representations
We analyze seven different nucleotide property composi-
tion representations via 10-fold cross validation. Here, we
compare single-kernel feature models on four RNA sub-
cellular localization datasets, as shown in Table 1. It can be
observed that kmer achieves best performance onmRNAs
(AP:0.688) and lncRNAs (AP:0.745), NAC obtains best
performance on miRNAs (AP:0.785), and DNC gains
best performance on snoRNAs (AP:0.793). Details are
shown in Additional file 1: Table S5. Also, we compare
single-kernel feature models on four human RNA sub-
cellular localization datasets, as shown in Table 2. It
can be noticed that kmer achieves best performance on
mRNAs (AP:0.750), lncRNAs (AP:0.753), and snoRNAs
(AP:0.817), CKSNAP obtains best performance on miR-
NAs (AP:0.784). Details are shown in Additional file 1:
Table S6.
In order to further analyze characteristics, we make use

of random forest (RF) to calculate the importantce score
of each feature dimension. On four RNA datasets, feature
scores of mRNAs have more balanced overall distribution,
but feature scores of miRNAs and snoRNAs have irreg-
ular distributions, as shown in Fig. 1. This phenomena
is also reflected on four human RNA dataset, as shown
in Fig. 2. It indicates that miRNAs and snoRNAs have
shorter sequences with less regular nucleotide property
composition information.

Performance of different integration strategies
We study five different integration strategies with SVM
model as base classifier via 10-fold cross validation,
including binary relevance (BR) [59], ensemble classifier
chain (ECC) [60], label powerest (LP) [59], multiple kernel

Table 1 Average Precision of seven different nucleotide representations on four RNA datasets

Models mRNAs lncRNAs miRNAs snoRNAs

Kkmer4 0.688 0.745 0.782 0.782

Kkmer1234 0.626 0.730 0.775 0.775

KRCKmer 0.658 0.733 0.726 0.775

KNAC 0.572 0.722 0.785 0.773

KDNC 0.668 0.737 0.760 0.793

KTNC 0.686 0.741 0.751 0.774

KCKSNAP 0.664 0.725 0.773 0.773
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Table 2 Average Precision of seven different nucleotide representations on four human RNA datasets

Models H_mRNAs H_lncRNAs H_miRNAs H_snoRNAs

KKmer4 0.726 0.753 0.764 0.817

KKmer1234 0.750 0.739 0.768 0.815

KRCKmer 0.717 0.738 0.700 0.794

KNAC 0.722 0.729 0.772 0.796

KDNC 0.736 0.726 0.740 0.808

KTNC 0.726 0.732 0.716 0.803

KCKSNAP 0.723 0.738 0.784 0.800

learning with average weights (MK-AW), multiple ker-
nel learning with Hilbert-Schmidt independence criterion
(MK-HSIC).
Here, we compare five integrated SVM strategies on

four RNA subcellular localization datasets, as shown
in Table 3. It can be observed that MKSVM-HSIC
achieves best performance on mRNAs (AP:0.703), lncR-
NAs (AP:0.757), miRNAs (AP:0.787), and snoRNAs
(AP:0.800). Details are shown in Additional file 1: Table
S7. Also, we compare five integrated SVM strategies
on four human RNA subcellular localization datasets,
as shown in Table 4. It can be observed that MK-
HSIC achieves best performance on mRNAs (AP:0.755),
lncRNAs (AP:0.754), miRNAs (AP:0.791), and snoRNAs
(AP:0.816). Details are shown in Additional file 1: Table
S8. Overall accuracy of our integration strategy is signifi-
cantly higher than that of other four strategies. It can be

found that multiple kernel learning has an obvious advan-
tage over other general integration strategies in dealing
with classification problems.
According to MK-HSIC strategy, we optimize all

weights of effective kernels, in order to improve the corre-
lation between optimal combined kernel and ideal kernel.
All weights for seven kernels are shown in Fig. 3. Details
are shown in Additional file 1: Table S9. On miRNAs
dataset, KKmer1234 has highest kernel weight, and KNAC
has second highest kernel weight. On human miRNAs
dataset, KNAC has highest kernel weight. On other six
dataset, KDNC similarly has highest kernel weights.

Comparison with existing classification tools
We compare the performance of different classifiers for
solving multi-label classification problem via 10-fold cross
validation. We use all feature sets for training SVM

Fig. 1 Feature importantce scores of seven characteristics on four RNA datasets
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Fig. 2 Feature importantce scores of seven characteristics on four human RNA datasets

[61], RF [40], ML-KNN [59], extreme gradient boosting
(XGBT) [62], multi-layer perceptron (MLP) [63].
Here, we compare six classification methods on

four RNA subcellular localization datasets, as shown
in Table 5. It can be observed that MKSVM-HSIC
achieves best performance on mRNAs (AP:0.703), lncR-
NAs (AP:0.757) and miRNAs (AP:0.787), and XGBT
obtains best performance on snoRNAs (AP:0.806). Details
are shown in Additional file 1: Table S10. Also, we com-
pare six classification methods on four human RNA sub-
cellular localization datasets, as shown in Table 6. It can
be noticed thatMKSVM-HSIC achieves best performance
on mRNAs (AP:0.755), lncRNAs (AP:0.754), miRNAs
(AP:0.791), and snoRNAs (AP:0.816). Details are shown
in Additional file 1: Table S11. As is clearly reflected
by the chart, MKSVM-HSIC achieved best performance
on different RNA datasets, and XGBT and RF also have
good prediction results. It proves that our novel method
is valid, and our new benchmark dataset is correct and
meaningful.

In order to analyze the stability, we perform T-check on
MKSVM-HSIC via 10-fold cross validation. We calculate
mean value and standard deviation of Average Precision,
Accuracy, Coverage, Ranking Loss, Hamming Loss and
One-error, as shown in Fig. 4 on RNA dataset and Fig. 5
on human RNA dataset. It can be seen that the variance
of MKSVM-HSIC is small, so the stability and robust-
ness of our method is very excellent. Details are shown in
Additional file 1: Table S12.
Importantly, RNAs are assigned in specific locations of

a cell, enabling the cell to implement diverse biochem-
ical processes in the way of concurrency. To be spe-
cific, our novel method performs outstanding rather than
other prediction tools on our novel benchmark datasets.
Moreover, we establish user-friendly web server with the
implementation of our method.

Web server
A web server is built for the new proposed method in this pa-
per, the URL is http://lbci.tju.edu.cn/Online_services.htm,

Table 3 Average Precision of five different integration strategies on four RNA datasets

Integrations mRNAs lncRNAs miRNAs snoRNAs

SVM-BR 0.651 0.737 0.724 0.775

SVM-ECC 0.671 0.735 0.725 0.775

SVM-LP 0.652 0.738 0.712 0.775

MKSVM-AW 0.699 0.755 0.784 0.792

MKSVM-HSIC 0.703 0.757 0.787 0.800

http://lbci.tju.edu.cn/Online_services.htm
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Table 4 Average Precision of five different integration strategies on four human RNA datasets

Integrations H_mRNAs H_lncRNAs H_miRNAs H_snoRNAs

SVM-BR 0.720 0.731 0.670 0.794

SVM-ECC 0.711 0.731 0.673 0.800

SVM-LP 0.716 0.730 0.637 0.797

MKSVM-AWa 0.741 0.752 0.785 0.814

MKSVM-HSIC 0.755 0.754 0.791 0.816

including four servers: LocmRNA, LocmiRNA, LocmiRNA
and LocsnoRNA. Each one supports two prediction for-
mats, an on-line input single sequence or an entire mul-
tiple sequence upload file. The sequence format must be
.fasta. It will return the possibility of each label for RNA
subcellular localization, and also give the suggested labels
as final prediction result.

Conclusion
In this paper, we establish multi-label benchmark data
sets for various RNA subcellular localizations to ver-
ify prediction tools. Furthermore, we design an inte-
gration SVM prediction model with one-vs-rest strat-
egy to fuse a variety of nucleic acid sequence to iden-
tify RNA subcellular localization. Finally, we propose
user-friendly web server with the implementation of our
method, which is a useful platform for research com-
munity. However, we only consider the frequency infor-
mation of the sequence, and more characteristic infor-
mation can be added in the future.In addition, deep
learning can be introduced to solve the problem of mul-
tiple tags and multiple classifications, which may have
good results.

Methods
In this study, we establish RNA subcellular localization
datasets, and then propose an integration learning model
for multi-label classification. The flowchart of our method
is show in Figure S1.

Benchmark dataset
RNAs are generally divided into two categories. One
is encoding RNAs, such as messenger RNAs (mRNAs),
which play a very important role in transcription. Other
is non-coding RNAs, including long non-coding RNA
(lncRNA), microRNA (miRNA), small nucleolar RNA
(snoRNA), which play an irreplaceable regulatory role in
life. In order to study subcellular localization for Homo
sapiens, we further establish human RNA subcellular
localization datasets. Subcellular localizations of various
RNAs in cells are shown in Fig. 6.
We use the database of RNA subcellular localization in

order to integrate, analyze and identify RNA subcellular
localization for speeding up RNA structural and func-
tional researches. The first release of RNALocate (http://
www.rna-society.org/rnalocate/) containsmore than42,000
manually engineered RNA-associated subcellular locali-

Fig. 3Weights for seven different kernels on various RNA datasets

http://www.rna-society.org/rnalocate/
http://www.rna-society.org/rnalocate/
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Table 5 Average Precision of five different classifiers on four RNA datasets

Methods mRNAs lncRNAs miRNAs snoRNAs

SVM 0.651 0.737 0.724 0.775

RF 0.640 0.753 0.728 0.776

ML-KNN 0.576 0.683 0.673 0.748

XGBT 0.701 0.751 0.785 0.806

MLP 0.664 0.721 0.709 0.762

MKSVM-HSIC 0.703 0.757 0.787 0.800

zation and experimental evidence entries in more than
23100 RNA sequences, 65 organisms (e.g., homo sapiens,
mus musculus, saccharomyces cerevisiae), localization of
42 subcells (e.g., cytoplasm, nucleus, endoplasmic retic-
ulum, ribosomes), and 9 RNA categories (e.g., mRNA,
microRNA, lncRNA, snoRNA). Thus, RNALocate pro-
vides a comprehensive source of subcellular localization
and even insight into the function of hypothetical or new
RNAs.We extract multi-label classification datasets about
RNA-associated subcellular localizations on four RNA
categories (mRNAs, lncRNAs, miRNAs and snoRNAs).
The flowchart of mRNA subcellular localization dataset
construction framework is shown in Fig. 7.

RNA subcellular localization datasets
We extract four RNA subcellular localization datasets,
including mRNAs, lncRNAs, miRNA and snoRNAs. The
procedure for constructing RNA datasets is listed as fol-
lows.

• We download total RNA entries with curated
subcellular localizations from RNAlocate, and use
CD-HIT [64] to remove redundant samples with a
cutoff of 80%.

• We delete samples with duplicate Gene ID and
remove samples without corresponding subcellular
localization labels, and then construct four RNA
subcellular localization datasets.

• We count the number of samples for each category of
subcellular localization labels, and then select some

categories with the sample size greater than a
reasonable threshold (N/Nmax > 1/30).

The statistical distributions of these four RNA datasets
are shown in Fig. 8. Details are shown in Additional file 1:
Table S1-S2.

Human RNA subcellular localization datasets
We also extract four Homo sapiens RNA subcellular
localization datasets, including H_mRNAs, H_lncRNAs,
H_miRNA and H_snoRNAs. The procedure for con-
structing human RNA datasets is listed as follows.

• We screen out samples of homo sapiens on above
four RNA datasets, and construct four human RNA
subcellular localization datasets.

• We count the number of samples for each category,
and then select some categories with the sample size
greater than a reasonable threshold
(N/Nmax > 1/12).

The statistical distributions of these four human RNA
datasets are shown in Fig. 9. Details are shown in Addi-
tional file 1: Table S3-S4.

Nucleotide property composition representation
RNA sequence can be represented as follow: S =
(s1, · · · , sl, · · · , sL), where sl denotes the l-th ribonucleic
acid and L denotes the length of S. How to formu-
late varied length RNA sequences as fixed length fea-
tures, is the key point to effective operational problem-
solving. Many studies have shown that the RNA sequence

Table 6 Average Precision of five different classifiers on four human RNA datasets

Methods H_mRNAs H_lncRNAs H_miRNAs H_snoRNAs

SVM 0.720 0.731 0.670 0.794

RF 0.724 0.732 0.728 0.816

ML-KNN 0.687 0.677 0.607 0.775

XGBT 0.755 0.745 0.791 0.810

MLP 0.711 0.719 0.707 0.794

MKSVM-HSIC 0.755 0.754 0.791 0.816
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Fig. 4 The robustness of our novel method on four RNA datasets

can be encoded by nucleotide property composition
representation [65], which can profoundly affect the
way of body behaves. Here, we encode the RNA
sequence in order to better mine and explore information
patterns.

k-mer nucleotide composition
For k-mer descriptor, RNAs are represented as occur-
rence frequencies of k neighboring nucleic acids, which
has been successfully applied to human gene regula-
tory sequence prediction and enhancer identification. The

Fig. 5 The robustness of our novel method on four human RNA datasets
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Fig. 6 Schematic diagram of RNA subcellular localizations in cells

Fig. 7 The flowchart of mRNA subcellular localization dataset construction framework
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Fig. 8 The statistical distributions of four RNA subcellular localization datasets

k-mer (e.g. k = 2) descriptor can be calculated as
follows.

f (t) = N(t)
N − k + 1

, t ∈ {AA,AC,AG,TT} (2)

where N(t) is the number of k-mer type t, while N is the
length of a nucleotide sequence.

For k = 1, 2, 3, 4, there are four combinations together,
each of which has 4k distinct types of nucleotide char-
acteristics. Therefore, we extract 340-dimensional feature
vector Fkmer1234.
Only remaining 4-mer, there are 44 types of nucleotide

characteristics. Therefore, we extract 256-dimensional
feature vector Fkmer4.

Fig. 9 The statistical distributions of four human RNA subcellular localization datasets
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Reverse compliment k-mer
The reverse compliment k-mer (RCKmer) is a variant of
k-mer descriptor, which is not expected to be strand-
specific. For instance, there are 16 types of 2-mer (‘AA’,
‘AC’, ‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘CT’, ‘GA’, ‘GC’, ‘GG’, ‘GT’, ‘TA’,
‘TC’, ‘TG’, ‘TT’), ‘TT’ is reverse compliment with ‘AA’. After
removing the reverse compliment k-mer, there are only 10
distinct types of k-mer in the reverse compliment k-mer
approach (‘AA’, ‘AC’, ‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’,‘GA’, ‘GC’, ‘TA’).
For 4-mer with 256 types, after removing reverse com-

pliment 4-mer, there are 136 distinct types in the reverse
compliment k-mer approach. Therefore, we extract 136-
dimensional feature vector FRCKmer .

Nucleic acid composition
The nucleic acid composition (NAC) encodes the fre-
quency of each nucleic acid type in a nucleotide sequence,
which is similar to 1-mer. The frequency of each natu-
ral nucleic acid (‘A’, ‘C’, ‘G’, ‘T’ or ‘U’) can be calculated as
follows.

f (t) = N(t)
N

, t ∈ {A,C,G,T(U)} (3)

whereN(t) is the number of nucleic acid type t, whileN is
the length of a nucleotide sequence.
Therefore, we extract 4-dimensional feature vector

FNAC .

Di-nucleotide composition
The di-nucleotide composition (DNC) encodes the fre-
quency of each 2-tuple of nucleic acid type in a nucleotide
sequence, which is similar to 2-mer. The frequency of each
2-tuple of natural nucleic acid can be calculated as follows.

D(i, j) = Nij

N − 1
, i, j ∈ {A,C,G,T(U)} (4)

where Nij is the number of di-nucleotide type represented
by nucleic acid types i and j.
Therefore, we extract 16-dimensional feature vector

FDNC .

Tri-nucleotide composition
The tri-nucleotide composition (TNC) encodes the fre-
quency of each 3-tuple of nucleic acid type in a nucleotide
sequence, which is similar to 3-mer. The frequency of each
3-tuple of natural nucleic acid can be calculated as follows.

D(i, j, k) = Nijk

N − 2
, i, j, k ∈ {A,C,G,T(U)} (5)

where Nijk is the number of di-nucleotide type repre-
sented by nucleic acid types i, j and k.
Therefore, we extract 64-dimensional feature vector

FTNC .

Composition of k-spaced nucleic acid pair
The composition of k-spaced nucleic acid pair (CKSNAP)
is used to calculate the frequency of nucleic acid pairs sep-
arated by any k nucleic acids (k = 0, 1, 2, . . .). For each
k-space, there are 16 types of nucleic acid pair composi-
tion (‘A...A’, ‘A...C’, ‘A...G’, ‘A...T’, ‘C...A’, ‘C...C’, ‘C...G’, ‘C...T’,
‘G...A’, ‘G...C’, ‘G...G’, ‘G...T’, ‘T...A’, ‘T...C’, ‘T...G’, ‘T...T’).
For k = 0, 1, 2, 3, 4, 5, there are six different combina-

tions, each of which has 16 distinct types of nucleic acid
pair composition. Therefore, we extract 96-dimensional
feature vector FCKSNAP.

Multiple kernel support vector machine classifier
We apply radial basis function (RBF) on above feature sets
to construct corresponding kernels, respectively. The RBF
kernel is defined as follows.

Kij = K(xi, xj) = exp(−γ ‖xi − xj‖2), i, j = 1, 2, ...,N (6)

where xi and xj are the feature vectors of samples i and j,
N denotes the number of samples, and γ is the bandwidth
of Gaussian kernel.
The kernel set with seven distinct kernels is denoted as

follows.

K = {Kkmer4,Kkmer1234,KRCKmer,
KNAC,KDNC,KTNC,KCKSNAP} (7)

Hilbert-Schmidt Independence criterion-multiple kernel
learning
We use multiple kernel learning (MKL) to figure out
weights of above kernels, and then integrate them
together “Multiple kernel support vector machine classi-
fier”, “??”, and “??” sections. The optimal combinatorial
kernel can be calculated as follows.

K∗ =
7∑

p=1
βpKp, Kp ∈ RN×N (8)

The main purpose of hilbert-schmidt independence cri-
terion (HSIC) [66] is to measure a difference in the distri-
bution of two variables, which is similar to the covariance
and is itself constructed according to the covariance. Let
X ∈ RN×d and Y ∈ RN×1 be two variables from a
data set of Z = {

(xi, yi)
}N
i=1, which is jointly from some

probability distribution Prxy. HSIC measures the inde-
pendence between x and y by calculating the norm of
cross-covariance operator over domain X × Y.
Hilbert-Schmidt operator norm “Hilbert-Schmidt Inde-

pendence criterion-multiple kernel learning” section of
Cxy is defined as follows.

HSIC(F,G,Prxy) = ‖Cxy‖2HS (9)

Given set Z, empirical estimate of HSIC is computed as
follows.
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HSIC(F,G,Z) = 1
N2 tr(KU) − 2

N3 e
TKUe + 1

N4 e
TKeeTUe

= 1
N2

[
tr(KU)− 1

N
tr(KUeeT ) − 1

N
tr(UKeeT )

+ 1
N2 tr(Uee

TKeeT )

]

= 1
N2 tr[K(I − 1

N
eeT )U(I − 1

N
eeT )]

= 1
N2 tr(KHUH)

�= HSIC(K,U)

(10)

where F is the RKHS of feature set X, G is the RKHS of
label set Y, e = (1, ..., 1)T ∈ RN×1, H = I − eeT/N ∈
RN×N (centering matrix), K,U ∈ RN×N are kernel matri-
ces with Kij = k(xi, xj) and Uij = l(yi, yj), I ∈ RN×N is
the identity matrix. The stronger the dependence between
K and U, the larger the value. K and U are independent
between each other, when HSIC(K,U) = 0.
Enligthened by HSIC [67], we define optimization func-

tion as follows.

max
βββ ,K∗ HSIC(K∗,U) (11a)

HSIC(K∗,U) = 1
N2 tr(K

∗HUH) (11b)

subject to K∗ =
P∑

p=1
βpKp, (11c)

βp ≥ 0, p = 1, 2, ...,P, (11d)
P∑

p=1
βp = 1 (11e)

where K∗ ∈ RN×N is the optimal kernel of feature space,
and U = ytrainyTtrain ∈ RN×N is ideal kernel matrix (label
kernel), βββ ∈ RP×1 is the kernel weight vector. We aim to
maximize HSIC between K∗ and U.
Convex quadratic programming problem can be solved

as follows.

min
βββ ,K∗ − 1

N2 tr(K
∗HUH) + ν1‖βββ‖2 (12a)

subject to K∗ =
P∑

p=1
βpKp, (12b)

βp ≥ 0, p = 1, 2, ...,P, (12c)
P∑

p=1
βp = 1 (12d)

where ν1 is L2 norm regularization term. The final training
and testing kernels are linearly weighted byβββ , respectively.

Support vectormachine
Support vector Machine [68] was first proposed by Cortes
and Vapnik [69]. It deals primarily with dichotomies.

Given a dataset of instance-label pairs {xi, yi}, i =
1, 2, ...,N , the classification decision function realized by
SVM is expressed as follows.

f (x) = sign[
N∑

i=1
yiαi · K(x, xi) + b] (13)

where xi ∈ R1×d and yi ∈ {+1,−1}.
Solving the following convex Quadratic Programming

(QP) problem can obtain the coefficient αi.

Maximize
N∑

i=1
αi − 1

2

N∑

i=1

N∑

j=1
αiαj · yiyj · K(xi, xj)

(14a)
s.t. 0 ≤ αi ≤ C (14b)

N∑

i=1
αiyi = 0, i = 1, 2, ...,N (14c)

where C is a regularization parameter that controls the
balance between boundary and misclassification errors,
and when the corresponding αj > 0, xj is called support
vector.

One-vs-rest strategy
We use an indirect strategy to solve multi-label classifica-
tion problem, which can be solved by converting multi-
label problem intomultiple binary classification problems.
The one-vs-rest strategy is to treat one class as positive
samples and the rest classes as negative samples. We can
build a binary classifier for each class label, thus construct
a total of k binary classifiers.
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