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a b s t r a c t 

Objectives: We hypothesised that one or more of the non-antibiotic candidates selected for this study 

would demonstrate antibiotic activity against Staphylococcus aureus . 

Methods: We determined minimum inhibitory concentrations (MICs) and minimum bactericidal concen- 

trations (MBCs) for non-antibiotic drugs (amlodipine, azelastine, ebselen and sertraline) against five clin- 

ical S. aureus isolates and one quality control strain using the Microplate Alamar Blue Assay (MABA). 

Our research group selected clinical isolates obtained from nasal and wound swab cultures of patients 

with skin and soft-tissue infections who were seen at primary care clinics in the South Texas Ambulatory 

Research Network (STARNet). 

Results: Three of the non-antibiotic drugs had identical MICs for all isolates: amlodipine, 64 μg/mL; 

azelastine, 200 μg/mL; and sertraline, 20 μg/mL. MICs for ebselen were 0.25 μg/mL (SA-29213, A1019 

and J1019), 0.5 μg/mL (A32 and B60) and 1 μg/mL (B72). MBCs for amlodipine, azelastine and sertraline 

were within one dilution of their MICs, indicating bactericidal activity for all test isolates. Ebselen MBCs 

were one to two dilutions higher in most isolates, also indicating bactericidal activity for all test isolates. 

Conclusion: In summary, all four non-antibiotics demonstrated in vitro activity to varying degrees against 

S. aureus clinical isolates. Ebselen was the most potent of the four non-antibiotics tested. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial 

Chemotherapy. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

For decades, drug discovery and development was largely 

guided by a ‘one drug–one target’ approach, also known as a ‘lock 

and key’ model, which focused on the identification of a single 

drug that selectively binds to one single target while avoiding 

any ‘off-targets’ that could produce undesirable or adverse effects. 

Until recently, this was the prevailing principle of drug design 

but it has since shifted from a ‘one drug–one target’ model to a 

‘one drug–multiple targets’ model, otherwise known as ‘polyphar- 

macology’ [ 1 , 2 ]. While it is true that the interaction of a drug 

with its off-targets can lead to adverse effects in certain cases, it 
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is also this very concept that creates opportunities to find new 

treatments. Drug repurposing is the discovery of unknown off- 

targets of existing drugs. Many of the repurposed success stories 

occurred through the serendipitous discovery of these off-targets. 

Now, however, the same success can be achieved through a more 

deliberate, systematic approach. 

After a near 40-year innovation gap in antibiotic drug discovery, 

and with antibiotic resistance rates persistently on the rise, it is 

no surprise that drug repurposing is being pursued as another op- 

tion for developing antimicrobials. Staphylococcus aureus , for exam- 

ple, remains one of the most burdensome antibiotic-resistant infec- 

tious pathogens in hospital and community settings. Large library 

collections of US Food and Drug Administration (FDA)-approved 

non-antibiotic drugs and other small molecules (proven safe but 

not approved) are now available for investigators to perform high- 

throughput screening. Several drug classes have shown evidence 

of possessing antibacterial properties. These include calcium chan- 
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Table 1 

Whole-genome sequencing (WGS) and antibiotic susceptibilities a for clinical isolates 

Isolate Resistance gene(s) b 

MIC ( μg/mL) 

OXA CLI ERY GEN SXT DOX TET VAN CIP 

SA-29213 None ≤0.5 ≤0.25 ≤0.5 ≤0.5 ≤10 ≤0.5 ≤4 ≤0.5 ≤0.5 

A1019 mecA ≥4 ≤0.25 ≤0.5 ≤0.5 ≤10 ≤2 ≤4 ≤0.5 ≤0.5 

A32 mecA, ermC, tetK, gyrA (S84L) ≥4 ≥4 ≥8 ≤0.5 20 ≤2 ≥16 1 ≥8 

B60 gyrA (S84L), norA ≤0.5 ≤0.25 ≤0.5 ≤0.5 ≤10 ≤2 ≤4 ≤0.5 ≥8 

B72 ermC, tetK ≤0.5 ≥4 ≥8 ≤0.5 > 320 4 ≥16 1 ≤0.5 

J1019 norA ≤0.5 ≤0.25 ≤0.5 ≤0.5 ≤10 ≤2 ≤4 ≤0.5 ≤0.5 

OXA, oxacillin; CLI, clindamycin; ERY, erythromycin; GEN, gentamicin; SXT, trimethoprim/sulfamethoxazole; DOX, doxycycline; 

TET, tetracycline; VAN, vancomycin; CIP, ciprofloxacin. 
a From VITEK®2 automated system; shaded areas indicate resistance. 
b WGS data were used to identify antimicrobial resistance genes using ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) 

database. 

nel blockers [3] , antihistamines [ 4 , 5 ] and psychotropic medications 

such as selective serotonin reuptake inhibitors [ 6 , 7 ]. In addition, 

another group of drugs, which possesses a unique mechanism of 

disrupting the thioredoxin system of microbes (auranofin, ebselen, 

PX-12), has been making headlines recently [8–10] due to increas- 

ing potential to be used as antibacterial agents. Interestingly, each 

of the drugs discussed here are either approved or under develop- 

ment for non-anti-infective indications. Because of our interest in 

drug repurposing for the development of antibiotics, we chose one 

drug from each of these classes to investigate against S. aureus . We 

aimed to assess the in vitro activity of four non-antibiotic drugs, 

namely amlodipine, azelastine, ebselen and sertraline, against S. 

aureus using the Microplate Alamar Blue Assay (MABA). 

2. Central hypothesis, specific aim and objectives 

2.1. Central hypothesis 

Drug repurposing, or identifying new uses for existing drugs, 

has emerged as an alternative to traditional drug discovery pro- 

cesses involving de novo synthesis. Drugs that are currently ap- 

proved or under development for non-antibiotic indications may 

possess antibiotic properties and therefore may have repurposing 

potential, either alone or in combination with an antibiotic. The 

objective of the proposed research was to utilise novel screening 

tools to characterise the antibiotic effects of select non-antibiotic 

drugs against S. aureus clinical isolates. We hypothesised that one 

or more of the non-antibiotic candidates selected for this study 

would demonstrate antibiotic activity against S. aureus . 

2.2. Specific aim and objectives 

The aim of this study was to quantify the in vitro antibiotic ac- 

tivity of each non-antibiotic drug against S. aureus clinical strains 

with known resistance genes. 

Objective 1.1: To determine minimum inhibitory concentrations 

(MICs) for non-antibiotic drugs (amlodipine, azelastine, ebselen 

and sertraline) against S. aureus using the MABA. 

Objective 1.2: To determine minimum bactericidal concentra- 

tions (MBCs) for non-antibiotic drugs (amlodipine, azelastine, eb- 

selen and sertraline) against S. aureus using the MABA. 

3. Methods and rationale 

3.1. Staphylococcus aureus isolates 

Non-antibiotic MICs and MBCs were determined for five S. au- 

reus clinical isolates and one quality control strain ( S. aureus ATCC 

29213). Clinical isolates were selected from a previous clinical and 

epidemiological study conducted by our group [11] . These isolates 

were obtained from nasal and wound swab cultures of patients 

with skin and soft-tissue infections (SSTIs) who were seen at pri- 

mary care clinics in the South Texas Ambulatory Research Net- 

work (STARNet). As previously described [11] , samples were plated 

onto prefilled tryptic soy agar plates (Hardy Diagnostics, Santa 

Maria, CA, USA) and were incubated at 35–37 °C for 24 h. Cefox- 

itin screening tests were used for the identification and isolation 

of methicillin-resistant S. aureus (MRSA) [11] . VITEK®2 AST-GP75 

cards (bioMérieux, Durham, NC, USA) were used to determine the 

susceptibility of MRSA study isolates to antimicrobials [11] . An- 

timicrobial MICs were interpreted according to Clinical and Labora- 

tory Standards Institute (CLSI) document M100-S12 ( Table 1 ) [11] . 

Resistance genes were identified using whole-genome sequenc- 

ing (WGS) (BioProject PRJNA352260 ) as described previously [11] . 

Each clinical isolate was genetically and phenotypically distinct 

from one another. 

3.2. Selection of non-antibiotic drug candidates 

Several drugs were initially considered for this study. Candi- 

dates in each drug class ( Table 2 ) were evaluated and selected 

based on several criteria as follows. 

• Safety and tolerability: drug candidates had to have proven 

safety and tolerability data in humans. FDA approval was also 

preferred. 
• Dosage forms/routes: we also considered dosage forms and 

routes of administration, with oral, inhalation or intranasal 

routes being preferred over parenteral medications. 
• Different drug classes: we selected drugs that represented var- 

ious therapeutic classes (one from each class, rather than all 

from one class). 
• Antibiotic activity: we sought drugs for which antibiotic activity 

has been demonstrated previously, but with limited data. If this 

activity appeared among several drugs within a class or a gen- 

eralised ‘class effect’, the drug that demonstrated the greatest 

potency was selected. 
• Efflux pump inhibition: we also considered whether a drug had 

previously been shown to inhibit P-glycoprotein efflux pumps, 

since this has previously been correlated with intrinsic antibi- 

otic activity [14] . 

After consideration of all of the above factors, we chose one 

drug from each of the following classes: calcium channel block- 

ers (amlodipine); selective serotonin reuptake inhibitors (sertra- 

line); and antihistamines (azelastine). In addition to the three non- 

antibiotics, we included ebselen, a unique organoselenium com- 

pound with antioxidant and anti-inflammatory properties that has 

demonstrated biological activity for a variety of targets [ 15 , 16 ]. Al- 

though not yet FDA-approved, ebselen has been shown to be safe 

in humans and is being evaluated in phase II trials for bipolar 
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Table 2 

Non-antibiotic drugs [ 12 , 13 , 17 , 23 , 24 , 26 , 28 , 37 ] 

Generic drug name Drug class or primary indication FDA approved Mean peak plasma concentration Concentrations for MIC determination ( μg/mL) 

Amlodipine Ca + channel blocker Yes 6–14 ng/mL 12.5–256 

Azelastine Antihistamine Yes 200 pg/mL 12.5–400 

Ebselen Antioxidant No 30–83 ng/mL a 0.12–4 

Sertraline SSRI Yes 100–500 ng/mL 2.5–160 

FDA, US Food and Drug Administration; MIC, minimum inhibitory concentration; SSRI, selective serotonin reuptake inhibitor. 
a Based on 20 0–160 0 mg/day orally during a phase I clinical trial [37] . 

disorder as well as for the treatment and prevention of hearing 

loss [ 17 , 18 ]. In vitro studies have also observed antimicrobial ac- 

tivity for a wide range of infectious pathogens, including S. aureus 

[ 19 , 20 ]. 

3.3. Non-antibiotic drugs: solubility and storage 

Standard laboratory-grade powders were obtained for the fol- 

lowing non-antibiotic drugs: amlodipine besylate (Tocris, Min- 

neapolis, MN, USA); ebselen (Cayman Chemical, Ann Arbor, MI, 

USA); azelastine (Selleck Chemicals, Houston, TX, USA); and sertra- 

line (Selleck Chemicals). Stock solutions were prepared according 

to the manufacturer’s instructions and were stored at –80 °C. Aze- 

lastine was solubilised in distilled water (up to 35 mg/mL), while 

amlodipine, ebselen and sertraline were solubilised in dimethyl 

sulfoxide (DMSO). Each drug was further diluted with cation- 

adjusted Mueller–Hinton broth in 96-well microtitre plates for the 

MABA. The highest concentration of DMSO remaining in microtitre 

wells did not exceed 2% (v/v). 

3.4. Selection of non-antibiotic drug concentrations 

Non-antibiotic drug concentrations used for in vitro testing are 

shown in Table 2 . These were similar to concentrations that were 

tested in a small number of prior reports that evaluated the in 

vitro antibacterial effects of non-antibiotics [21–23] . While the in 

vitro drug concentrations used in this study generally exceed those 

observed clinically, they might still be clinically useful. Drug con- 

centrations are most commonly assessed from samples collected 

from plasma; however, plasma concentrations are not the only in- 

dicators of drug exposure. Additional factors such as route of ad- 

ministration, site of infection, and drug concentration at tissue 

sites must also considered. Sertraline concentrations in brain tis- 

sue, for example, can be 20- to 40-fold higher than in plasma 

[ 24 , 25 ]. Azelastine is an antihistamine that is available for use as 

a nasal spray. As one may expect, the drug concentrates in the 

nasal passages—not in plasma—after intranasal administration [26] . 

If azelastine has antibiotic activity, it is possible that the drug 

may impact S. aureus nasal colonisation or potentially other impor- 

tant bacterial flora. Furthermore, several alternative mechanisms 

of drug delivery currently exist, in which high concentrations of 

antibiotics are required for effectiveness. Exam ples include an- 

tibiotic lock therapy, aerosolised antibiotics, antibiotic-impregnated 

catheters and topical antibiotics. 

Note that ebselen is not yet approved by the FDA. Peak plasma 

concentrations shown in Table 2 are from a phase I trial using oral 

doses up to 1600 mg/day. Additional trials are currently underway 

using similar oral doses, but it is unknown at this time whether 

this indication or dosing range will gain FDA approval. 

3.5. Antibiotic susceptibility testing 

3.5.1. Determination of minimum inhibitory concentrations (MICs) 

and minimum bactericidal concentrations (MBCs) 

Standard broth microdilution procedures were followed accord- 

ing to CLSI methods, but with the addition of alamarBlue® dye 

(Invitrogen, Carlsbad, CA, USA). Bacterial cultures were inoculated 

in 96-well, flat-bottom microtitre plates containing serially di- 

luted drugs at a final concentration of ∼10 5 CFU/mL. To prevent 

evaporation, a volume of 200 μL of sterile water was added to 

outer-perimeter wells [18] . Control wells included Mueller–Hinton 

broth with alamarBlue® (background) and Mueller–Hinton broth 

with alamarBlue® plus bacteria (growth control). alamarBlue® was 

added at a volume equal to 10% of the total volume, while protect- 

ing from light exposure, prior to incubating for 16–20 h at 35 ±
2 °C. MICs were defined as the lowest drug concentration that pre- 

vented a change in colour. In addition, 10 μL samples were with- 

drawn, primarily from growth control wells, and plated for colony 

counting. MICs were recorded and contents from wells for which 

there was no growth were plated onto Mueller–Hinton agar plates 

and incubated 18–24 h at 35 ± 2 °C. The MBC was defined as the 

minimum drug concentration resulting in a ≥99.9% reduction ( ≥3 

log 10 ) in CFU/mL from the initial inoculum. 

3.5.2. Rationale for selection of antibiotic testing methods 

An advantage of the broth microdilution technique compared 

with other susceptibility testing methods (i.e. disk diffusion, agar 

dilution) is that once MICs are obtained, they can be used to derive 

bactericidal concentrations with an additional step (see MBC de- 

terminations). The addition of a growth indicator, such as alamar- 

Blue®, provides even more of an advantage. Resazurin, the active 

ingredient in alamarBlue®, is a cell-permeable non-toxic blue dye 

that undergoes an oxidation–reduction reaction after entering the 

cell, changing from non-fluorescent blue (oxidised form) to highly 

fluorescent, pink-coloured resorufin (reduced form). The extent of 

this colour conversion represents cell viability and can be assessed 

qualitatively by visual inspection of colour change. 

3.6. Data analysis 

MICs and MBCs were recorded for each non-antibiotic drug and 

bacterial isolate and were interpreted as follows: MBC/MIC ratio 

≥4 indicated bacteriostatic activity; and MBC/MIC ratio ≤2 indi- 

cated bactericidal activity. Assays were performed in duplicate and 

were repeated at least once. 

4. Results 

Three of the non-antibiotic drugs had identical MICs for all iso- 

lates: amlodipine, 64 μg/mL; azelastine, 200 μg/mL; and sertra- 

line, 20 μg/mL ( Table 3 ). MICs for ebselen were 0.25 μg/mL (SA- 

29213, A1019 and J1019), 0.5 μg/mL (A32 and B60) and 1 μg/mL 

(B72). MBCs for amlodipine, azelastine and sertraline were within 

one dilution of their MICs, indicating bactericidal activity for all 

test isolates. Ebselen MBCs were one to two dilutions higher in 

most isolates, also indicating bactericidal activity for all test iso- 

lates. 

5. Discussion and conclusion 

We quantified the antibiotic effects of four non-antibiotic drugs 

(amlodipine, azelastine, ebselen and sertraline) against S. aureus 
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Table 3 

Non-antibiotic susceptibilities (in μg/mL) 

Isolate 

Amlodipine Azelastine Sertraline Ebselen 

MIC MBC MIC MBC MIC MBC MIC MBC 

SA-29213 64 128 200 200 20 20 0.25 0.5 

A1019 64 64 200 200 20 20 0.25 0.5 

A32 64 64 200 200 20 40 0.5 1 

B72 64 64 200 200 20 40 1 1 

B60 64 128 200 200 20 40 0.5 1 

J1019 64 64 200 200 20 40 0.25 0.5 

MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration. 

clinical strains using the MABA. All four non-antibiotics demon- 

strated in vitro activity to varying degrees against S. aureus clinical 

isolates. Ebselen was the most potent of the four non-antibiotics 

tested, with MICs between 0.25 μg/mL and 1 μg/mL and MBC/MIC 

ratios of 1–2. This range is consistent with what prior inves- 

tigations have observed against S. aureus [ 16 , 27 ]. In fact, eb- 

selen has demonstrated bactericidal activity various multidrug- 

resistant strains of S. aureus , including vancomycin-intermediate 

and vancomycin-resistant strains [21] . Additionally, ebselen has 

been shown to inhibit toxin production as well as biofilm forma- 

tion [19–21] . 

Concentrations of non-antibiotics used in this study are higher 

than average plasma concentrations reported in humans. This does 

not, by default, rule out their clinical utility since plasma concen- 

tration is not the sole metric for assessing adequate drug expo- 

sure, even if it is the most practical. Sertraline plasma concentra- 

tions, for example, range from 0.1–0.5 μg/mL depending on the 

dose [28] . Sertraline MICs for Cryptococcus neoformans , a pathogen 

known to cause meningitis in acquired immune deficiency syn- 

drome (AIDS) patients, range between 1 μg/mL and 10 μg/mL 

[ 29 , 30 ]. Although concentrations in this range are not achieved in 

blood with approved doses, sertraline may be 20- to 40-fold higher 

in brain tissue, which, in the case of cryptococcal meningitis, is 

the site of infection. Furthermore, the standard of care for treating 

infections from Cryptococcus spp. and other difficult-to-treat infec- 

tions is to use a combination of antimicrobials [31–33] . 

Amlodipine MICs were also considerably higher than mean 

plasma concentrations (32 μg/mL vs. 14 ng/mL). However, prior 

studies have suggested that doses required to effectively treat an 

infection in vivo may be significantly lower than doses used in 

vitro to inhibit bacterial growth [23] . Amlodipine also appears to 

have an anti-inflammatory effect, which is something that can- 

not be reflected in the susceptibility test results. Dutta et al. ob- 

served a downregulation of expression of the inflammatory cy- 

tokines interferon- γ , interleukin-1 β and tumour necrosis factor- α
in mice treated with amlodipine compared with non-treated mice 

[34] . 

With ebselen not yet approved by the FDA, there has been some 

uncertainty as to its pharmacokinetics and dosing. Ebselen doses of 

50 mg/kg given orally and 1 mg/kg/h by intravenous infusion pro- 

duced peak plasma concentrations up to 15 μg/mL and 12 μg/mL, 

respectively, in rat models [ 35 , 36 ]. Ebselen MICs would then fall 

within a clinically achievable range, as concluded by previous in- 

vestigators [ 21 , 27 ]. However, a phase I study of ebselen at doses up 

to 1600 mg orally per day performed in healthy volunteers found 

that peak plasma concentrations ranged between 30 ng/mL and 83 

ng/mL [37] . A follow-up phase II study determining the safety and 

efficacy of ebselen given at 20 0, 40 0 or 60 0 mg twice daily for the 

prevention of noise-induced hearing loss has been published [17] . 

Additional trials are currently underway using similar oral doses, 

but it is unknown at this time whether this indication or dosage 

form will obtain FDA approval. Sound Pharmaceuticals, Inc. has 

been developing ebselen for several years for the treatment and 

prevention of noise-induced hearing loss. Given the many biolog- 

ical targets of ebselen, however, eventual pursuit of an unrelated 

indication and altered dosing regimen would not be surprising. 

While non-antibiotic MICs in this study may be too high to 

achieve in blood, concentrations may still be relevant at other 

tissue sites, even with minimal to no systemic exposure. Fur- 

thermore, non-systemic medication applications such as antibiotic 

lock therapy, aerosolised antibiotics and antibiotic-impregnated 

catheters actually require high concentrations in order to be effec- 

tive [38–40] . Azelastine, an antihistamine available as a nasal spray, 

shows only negligible presence (pg/mL) in blood but can deliver a 

total daily dose of up to 274 μg/mL in each nostril [26] . We ob- 

served inhibitory and bactericidal activity at concentrations of 200 

μg/mL against S. aureus . It is therefore plausible that the amount 

of azelastine exposure from the nasal spray could be enough to 

impact S. aureus nasal colonisation or potentially other important 

bacterial flora. This also raises an important question as to whether 

or not frequent use of such a medication could impact not only 

colonisation but also antibiotic resistance. 

This was a proof-of-concept study using clinical isolates col- 

lected in primary care clinics from patients with SSTIs. Using real- 

world isolates made the study more translational. However, none 

of the clinical isolates were resistant to vancomycin or daptomycin, 

therefore we were unable to compare the non-antibiotic drugs 

against clinical isolates with those phenotypes. Furthermore, some 

clinicians believe that appropriate management of patients with 

SSTIs includes assessment and eradication of nasal colonisation; 

therefore, isolates both from nasal and wound swabs were stud- 

ied. Ultimately, this study is most applicable to patients presenting 

to primary care clinics with SSTIs. 

In summary, all four non-antibiotics demonstrated in vitro ac- 

tivity to varying degrees against S. aureus clinical isolates. Ebse- 

len was the most potent of the four non-antibiotics tested, with 

MICs of 0.25–1 μg/mL and MBC/MIC ratios of 1–2. In fact, eb- 

selen has demonstrated bactericidal activity various multidrug- 

resistant strains of S. aureus , including vancomycin-intermediate 

and vancomycin-resistant strains. In addition, ebselen has been 

shown to inhibit toxin production as well as biofilm formation. 

When viewed in the context of available literature, these data 

suggest that the non-antibiotic candidates selected for this study 

might have future potential as antibiotics. 
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