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Abstract: The Industrial Internet of Things (IIoT) refers to the employment of the Internet of Things
in industrial management, where a substantial number of machines and devices are linked and
synchronized with the help of software programs and third platforms to improve the overall pro-
ductivity. The acquisition of the industrial IoT provides benefits that range from automation and
optimization to eliminating manual processes and improving overall efficiencies, but security remains
to be forethought. The absence of reliable security mechanisms and the magnitude of security features
are significant obstacles to enhancing IIoT security. Over the last few years, alarming attacks have
been witnessed utilizing the vulnerabilities of the IIoT network devices. Moreover, the attackers can
also sink deep into the network by using the relationships amidst the vulnerabilities. Such network
security threats cause industries and businesses to suffer financial losses, reputational damage, and
theft of important information. This paper proposes an SDN-based framework using machine learn-
ing techniques for intrusion detection in an industrial IoT environment. SDN is an approach that
enables the network to be centrally and intelligently controlled through software applications. In
our framework, the SDN controller employs a machine-learning algorithm to monitor the behavior
of industrial IoT devices and networks by analyzing traffic flow data and ultimately determining
the flow rules for SDN switches. We use SVM and Decision Tree classification models to analyze
our framework’s network intrusion and attack detection performance. The results indicate that the
proposed framework can detect attacks in industrial IoT networks and devices with an accuracy
of 99.7%.

Keywords: industrial internet of things (IIoT); software-defined network; intrusion detection;
machine learning

1. Introduction

For a long time, precarious infrastructures, such as communication networks, electric
systems, and industrial systems, have customarily worked in segregation from extrinsic
networks, such as the Internet. However, advanced technologies, such as artificial intelli-
gence and software-defined networking, are progressively being combined in such rigid
environments to provide further benefits, such as increased flexibility and improved quality.
The definition of the SDN is as follows: “In the SDN architecture, the control plane and
data plane are decoupled, network intelligence and state are logically centralized, and
the underlying network infrastructure is abstracted from the applications” [1]. The SDN
centralizes the switch control functions into an SDN controller. The switches then function
as packet-processing devices and carry out the commands from the SDN controller [2].
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The SDN controllers can use machine learning and deep learning techniques to improve
network security and monitoring [3]. The Industrial Internet of Things (IIoT) is another
such technology. The typical Internet of Things consists of devices from simple sensors
to smartphones and wearable ones that are connected. Combining these interconnected
devices with automated systems makes it possible to collect information, analyze it, and
create an action to assist someone with a specific task or learn from the process. In reality,
it ranges from smart mirrors to beacons in stores and beyond. The Industrial Internet of
Things is an innovative attempt to set up a smart manufacturing environment by employing
the benefits of the Internet of Things in industrial process management. Industrial IoT
focuses on machine-to-machine (M2M) communications, machine learning, and big data
to enable enterprises and industries to have better reliability and efficiency in their opera-
tions. Leveraging the industrial IoT is revolutionizing factory and industrial segmentation
by presenting its eminence. The Industrial Internet of Things is swiftly progressing and
comprises several services and industries, as shown in Figure 1. In the hospitality industry,
the IoT can be helpful in understanding guests’ context and predicting their needs through
intelligence and embedded sensors. There are endless possibilities with the IoT in the
healthcare sector. The telemedicine system is based on the IoT. It is a practice of providing
medical care by using data communications and interactive audiovisuals. Educational
institutions are also taking advantage of various IoT applications. For instance, the IoT is
being used in e-learning, m-learning, and u-learning.

Figure 1. IoT in different sectors.

The financial services sector also seems to be taking up the IoT. Insurance companies
use telematics applications to foretell and assess the possible risks that might result in
a claim from the client. Energy companies use smart grids to capture analytics, improve
security, and allow for rapid restoration when power failures occur. The IoT is changing
how the retail market works. Automated checkouts are installed on the front side of the
stores. This solution allows workers to focus on business opportunities and needs instead
of spending time as a cashier. One of the finest examples of industries that are adopting IoT
applications is the manufacturing industry. The manufacturers are using the IoT to keep
track of production flow during the production process. Through the data gathered from
IoT devices, manufacturers can measure the quality of items.

The automated industry relies on the Industrial Control System (ICS). The ICS consists
of various types of controllers that are used to control the industrial plants and monitor
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their performance to guarantee their accurate operations [4,5]. There are various types of
ICSs, such as distributed control systems (DCS), programmable logic controllers (PLC),
supervisory control, and data acquisition systems (SCADA). Since the introduction of
the IoT in industrial systems, they have changed into open architecture environments.
As a result, industrial control systems have become vulnerable to security threats and
attacks. A survey conducted by the UK Government has estimated that the average cost
of a cyber-security breach ranges from £75,000 to £311,000 for small and medium-sized
enterprises (SMEs) and from £1.46m to £3.14m for larger organizations. The Stuxnet attack
against a nuclear power plant in Iran in 2010 is one of the most prominent cyber attacks.
An SQL injection attack through a Trojan called the Night Dragon was conducted in 2010
to target oil companies globally. In 2013, the energy companies of North America were
targeted by a Trojan called Dragonfly, and, in 2014, by Havex [6]. Some of the significant
cyber incidents in ICSs are mentioned in Table 1.

Table 1. Major ICS cyber-incidents [7].

Year Name Type

1903 Marchone Wireless Hack Attack

2000 Maroochy Water Attack

2010 Stuxnet Malware

2010 Night Dragon Malware

2011 Flame Malware

2012 Shamoon Malware

2013 New York Dam Attack

2013 Havex Malware

2014 German Steel Mill Attack

2014 Dragonfly Campaign

2014 Black Energy Malware

2016 “Kemuri” Water Company Attack

2017 CRASHOVERRIDE Malware

2017 NotPetya Attack

2017 TRITON Malware

The Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) at-
tacks are the most prominent attacks that prevent legitimate users from accessing services
for which they have paid. These types of attacks have become serious security risks for
computer networks, causing a drop in network performance by consuming resources
and deactivating services [8]. The DoS/DDoS also affects industrial IoT networks and
devices [9–11]. Jamming attacks are also carried out against industrial IoT devices and
networks. In this attack, fake signals are sent to interrupt proceeding radio transmissions
of the IoT devices, and it further depletes the energy, bandwidth, CPUs, and sensors or
memory resources of the IoT devices during failed communication attempts [12–14]. Thus,
the security of industrial IoT devices and networks is one of the most critical concerns for
researchers nowadays. There are various challenges with the implementation of security
within industrial IoT networks and devices. Industrial IoT systems are heterogeneous
systems containing several types of devices, types of data being shared and transferred,
methods of communication, different resource levels of the devices, and system configura-
tions. Each of these elements adds up to the challenges of IoT security. Secondly, billions of
devices are connected and provide a vast area of research to focus on when considering
resiliency, nominal function, and security.
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Previously, the ICSs were autonomous systems, and they were isolated from the world.
Thus, they were not open to attacks. However, the increase in connectivity of ICSs with
the Internet for industrial management and communication for information transmission
has made these systems more vulnerable to cyberattacks and anomalies. Thus, security
has become a significant concern in industrial IoT systems because of their sensitive nature.
The reliability, safety, and availability of industrial IoT systems are compromised by the
lack of security parameters in the communication protocols.

1.1. Problem Statement

The IIoT makes use of the IoT technology in ICSs, i.e., industrial control systems. Since
ICSs perform operations continuously, they also produce a large amount of data. These
systems have become vulnerable to network attacks and other malicious attacks due to
internet connectivity. Therefore, it is not possible to ensure the authenticity of the data.
Thus, ensuring the security of IIoT devices and the IIoT network is a significant problem
that needs to be solved.

1.2. Limitations of Existing Work

Various intrusion detection and classification schemes employing artificial intelligence
have been studied in the literature [15]. Most of the security frameworks developed to
secure industrial IoT networks had a high false alarm rate. Furthermore, they were unable
to detect unknown attacks on the network. Hence, they were not very effective in securing
industrial IoT networks against network attacks, resulting in costly damages to industrial
IoT networks, data losses, and loss of revenue. Thus, we used machine learning algorithms
and SDN technology in our framework for the effective detection of malicious attacks,
network intrusion, and the identification of abnormal behavior in industrial IoT networks
and devices.

1.3. Contributions of this Paper

The major contributions of our paper are manifold:

1. In this paper, a discussion on cyber attacks and security threats to the industrial IoT
environment is given.

2. We propose an SDN-based security framework to detect industrial IoT network
intrusion by analyzing traffic flow data.

3. The main objective of our work is to protect industrial IoT devices and networks
against malicious attacks and security threats. For that purpose, we consider different
attacks on industrial IoT environments, such as DoS/DDoS attacks, jamming attacks,
and man-in-the-middle attacks.

4. We use machine learning algorithms, i.e., SVM and Decision Tree on an SDN controller,
for early intrusion detection within a network or device of the industrial IoT and
determine the flow rules for the SDN switches based on analyzed data.

5. We evaluate the proposed SDN-based security framework using the NSL-KDD intru-
sion detection dataset.

6. The evaluation results show that the proposed framework provides high efficiency of
security and can detect intrusion and malicious attacks in industrial IoT networks.

2. Literature Review

Several studies have been conducted to analyze the security vulnerabilities in IIoT
systems. Various challenges prevent securing the IIoT and ensuring end-to-end security
in the IIoT environment. In this section, we present brief descriptions of the various
types of research conducted for the IIoT environment. These types of research mainly
focus on the attacks on the IIoT environment and several other threats to the IIoT systems.
George et al. [16] proposed a graph-based framework to represent the vulnerability re-
lationship in the IIoT network. It also helps in the risk assessment of the IIoT network.
They also proposed various risk mitigation strategies for improving IIoT network security.
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Furthermore, they discussed methods to identify hot spots in the IIoT networks. The
proposed system performance is evaluated by simulating with graphs of varying sizes and
structures. Rubio et al. [17] presented the analysis of applying Opinion Dynamics in the
IIoT environment. They addressed how the Opinion Dynamics algorithm can improve
attack traceability in the IIoT environment. The proposed system is evaluated through
a case study, and the results demonstrate the feasibility of the approach in IIoT infras-
tructures. AL-Hawawreh et al. [18] proposed a deep learning-based model that can learn
using the information gathered from TCP/IP packets for anomaly detection in IICSs. The
authors developed the model by a continuous training process that is carried out using
a deep auto-encoder and a deep feed-forward neural network framework evaluated using
NSL-KDD and UNSW-NB15.

Samsonov et al. [19] presented various approaches to provide security in IIoT environ-
ments. They employed edge and fog computing technologies, various data transmission
technologies, cryptographic techniques, IIoT device protection, and blockchain technology
to secure IIoT systems. However, they have not discussed the system reconfiguration
for new tasks, the motive for choosing security mechanisms, and shared IIoT devices
management. Teochew [20] addressed various security problems in the IIoT. The author
also discussed various attacks on different IIoT architecture layers, attacks based on ap-
plication scenarios, and third-party hardware/software-based attacks. Furthermore, the
recommendations for approaching these security challenges are discussed.

Esfahani et al. [21] proposed a hash and OR operation-based lightweight authentica-
tion mechanism for M2M communication in an IIoT environment. The authors claim that
the proposed system has a low computational cost, storage, and communication overhead
while confidentiality, authentication, and session key agreement are achieved. Moreover,
the proposed system also resists specific security attacks, i.e., man-in-the-middle attacks,
modification attacks, replay attacks, and impersonation attacks. Wing et al. [22] proposed
a blockchain-based solution to secure the IIoT through its security technology and tools.
They further gave recommendations to guide future blockchain developers and researchers.
Chen et al. [23] analyzed the security threats in IIoT systems and designed a protection
framework for securing IIoT systems. The author analyzed the security threats to the IIoT
through the communication protocols used and the main functionalities for each level of
typical IIoT architecture. They identified the concealed dangers in the data processing
layer, data transmission layer, and data acquisition layer. The proposed security framework
provides protection measures against security threats in these layers. Choo et al. [24]
presented various performances, privacy, and security-related issues of the IIoT. They
addressed existing cryptographic solutions presented in 21 papers. Lastly, they presented
various potential research agendas. Sinai et al. [25] presented the concept of the IoT, IIoT,
and Industry 4.0. They addressed various opportunities and challenges associated with
these systems. The work also focuses on the security challenges of IIoT systems that
originate from the high sensitivity of managed information. Bakhshi et al. [26] addressed
various security issues and threats in the IIoT. They focused mainly on the security threats
on a cloud-side layer, consisting of abstraction levels and data accumulation, of the IoT.
The authors referred to the Cisco and Microsoft Azure IoT architectures as the reference
models. Further, they subdivided the threats based on security attacks and vulnerabilities.
Kwon et al. [27] analyzed the security issues of the provisioning process in the IWSN by
investigating the necessary ISN standards, i.e., WirelessHART, ISA 100.11.A, and Zigbee,
an ISA 100.11a-certified device, and various provisioning process-related research works.
They tested and analyzed the provisioning process using ISA 100.11a to verify its security
issues. Lastly, they discussed the future research direction on providing security for the
IWSN in the IIoT age. The summary of the techniques presented above is listed in Table 2.

Numerous studies have been proposed for the detection of malicious traffic and attacks
in the industrial IoT. From the studies discussed above, it is noticed that machine learning
algorithms could improve network security in the IIoT environment. Moreover, it is also
observed that the models for securing IIoT networks are still under development. For this
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purpose, we combined SDN technology and machine learning algorithms for intrusion
detection in IIoT networks.

Table 2. Major works in IIoT.

Paper Year Main Idea

[16] 2018 Proposes a graph-based framework to represent the vulnerability relationship in
IIoT networks.

[17] 2020 Presents the idea of applying Opinion Dynamics in the IIoT environment.

[18] 2018 Proposes a deep learning-based model that can learn using the information
gathered from TCP/IP packets for anomaly detection in IICSs.

[19] 2019

Presents various approaches to provide security in IIoT environments. The
authors employed edge and fog computing technologies, various data

transmission technologies, cryptographic techniques, IIoT device protection, and
blockchain technology to secure IIoT systems.

[20] 2020 Discusses various attacks on different IIoT architecture layers, attacks based on
application scenarios, and third-party hardware/software-based attacks.

[21] 2017 Proposes a hash and OR operation-based lightweight authentication mechanism
for M2M communication in the IIoT environment.

3. IoT, Industrial IoT, and Industry 4.0
3.1. IoT

The IoT refers to a system of billions of interrelated physical devices, i.e., computing
devices, digital and mechanical machines, animals, people, or objects connected to the
Internet, and can transfer and share data over the Internet.

Layers of IoT

The essential IoT layers act as the backbone of IoT systems. These layers can form
the basis of the development of effective IoT multilayered architecture. These layers are
discussed below and summarized in Table 3.

Table 3. Representation of IoT by Seven Layer Architecture.

Layer Services Provided

Perception Layer Actuators, Sensors, Devices, Controllers, Machines

Transport Layer Protocols, Communications, WiFi, Networks, Bluetooth

Processing Layer Data Accumulation, Data Abstraction

Application Layer
Smart Applications, Decision-Making Software, Device Monitoring and

Control Services, Artificial Intelligence and Machine
Learning-Based Solutions

Edge Layer Preprocessing on Local Servers, Gateways, and other Edge Nodes across
the network

Business Layer Business Models, CRM, Business Intelligence Programs

Security Layer Device Security, Cloud Security, Connection Security

• Perception Layer: This is the physical layer that consists of sensors, actuators, devices,
and machines. Sensors, i.e., gauges, meters, and probes, sense and gather information
about the industrial IoT environment. The actuators used in lasers, motor controllers,
and robotic arms translate electrical signals from IoT systems into physical actions.

• Transport Layer: This layer transports the sensor data between the perception layer
and processing layer using technologies, such as WiFi, LPWAN, Ethernet, and ZigBee.
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• Processing Layer: This layer is also called the middleware layer. The processing layer
is responsible for collecting information from the transport layer and performing
processing on it [28].

• Application Layer: The application layer is responsible for interacting with end-users
directly. It consists of various applications, such as mobile apps, device monitoring
software, business intelligence services, etc. All the applications have their application
layer protocols.

There are some additional layers in IoT systems to cater to the business needs of IoT
systems. These layers are described below:

• Edge Layer: This performs the preprocessing of data close to the edge. It occurs on
local servers, gateways, and other edge nodes across the network.

• Business Layer: The business layer is the layer on which businesses, based on collected
data, can make decisions.

• Security Layer: The security layer covers all the IoT layers mentioned above. It
includes device security, connection security, and cloud security.

3.2. Industrial IoT

The industrial IoT refers to the utilization of the IoT in the industrial sector and
business settings. The industrial IoT is the intersection of operational technology (OT)
and information technology (IT). An advance notification is generated from a machine
about an approaching breakdown; the cloud-based intelligent factory floors obtain the
status of assembly-line production or the progress of raw materials in real time. These are
examples of how future industries and factories will work. Industrial Control System: An
industrial control system refers to hardware devices and software integration that support
and monitor critical infrastructures. It includes a programmable logic controller (PLC),
a remote terminal unit (RTU), an intelligent electronic device (IED), a control server, a
distributed control system (DCS), supervisory control and data acquisition (SCADA), and
sensors [29].

Components of Industrial IoT

The components of the industrial IoT can vary concerning the application. However,
generally, they are categorized into three areas discussed below and shown in Figure 2.

Figure 2. Components of industrial IoT.

• Front-End Edge Devices: Front-end edge devices, i.e., sensors or control devices, are
responsible for data collection and acting on the data. This data can be a temperature
reading, accelerometer reading, or video feed. The sensors/devices can be used
as individual units or multiple sensors bundled together, and the sensors can be
embedded into devices that perform more tasks than just sensing things.

• Connectivity Technology: Once the data is collected, the next step is to send the data
to the cloud. Similarly, the cloud sends back commands to the industrial IoT system.
Industrial IoT systems rely majorly on wireless technology, including Bluetooth, Mesh
Networks, WiFi, and LPWAN.
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• Industrial IoT Platform Data Analysis: The industrial IoT system contains industrial
IoT software for the analysis of acquired and transmitted data. The industrial IoT
software can also make decisions and push commands back to the controls at the edge.

3.3. Industry 4.0

Industry 4.0 is the term often used for the fourth industrial revolution. Industry 4.0,
which includes the industrial IoT and smart manufacturing, combines physical production
and operations with smart digital technologies, big data, and machine learning to build
a more complete and well-connected environment for organizations focused on supply
chain management and manufacturing. It is defined as the current trend of data exchange
and automation in manufacturing technologies, including the Internet of Things, cyber-
physical systems, cognitive computing, cloud computing, and creating a smart industry or
factory. Industry 4.0 is based on the cyber-physical system, i.e., intelligent machines. These
systems use modern control systems with software systems embedded and connected to
the IoT through Internet addresses. In this way, production and products get connected to
the network and can communicate, enabling value creation, real-time optimization, and
new ways of production. The objective is to monitor the processes and assets in real time,
enabling processes to make autonomous decisions and fulfill customer needs. Industry 4.0
is characterized in the following way:

• Provides more automation compared to the third industrial revolution;
• Shifting from centralized industrial control systems to systems where intelligent

products define the production steps;
• Bridging the gap between the digital and physical world using cyber-physical systems;
• Customization or personalization of products;
• Closed-loop control systems and data models.

4. Proposed Methodology

In this section, we propose an SDN-based model for attack detection in an industrial
IoT environment. The proposed framework comprises three components, i.e., industrial
IoT devices, a centralized SDN controller, and SDN-enabled switches, as shown in Figure 3:

Figure 3. SDN-Based Model for Industrial IoT Anomaly Detection.

• The industrial IoT device is any IoT-enabled device operating in the industry. Indus-
trial IoT devices may include drilling gears, green energy devices, smart meters, smart
irrigation devices, smart frost systems, smart assembly lines, and various sensors. All
of these devices are connected to the allocated SDN-enabled switch.

• Each industry is assigned an SDN switch to connect its devices. The switch is SDN-
enabled and security policies are installed within it. The SDN-enabled switches
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monitor the traffic flow in industrial IoT devices and provide traffic data to the
SDN controller.

• The industrial IoT devices are connected to the SDN switches and these switches are
connected to the SDN controller. The machine learning algorithm is applied to the
SDN controller to detect anomalous traffic and the abnormal behavior of the traffic
flow. As a result, the flow rules are defined for the switches.

The industrial IoT devices working in the same industry are connected to the SDN-
enabled switch. The SDN-enabled switches provide the traffic flow data to the SDN
controller, responsible for determining whether the traffic flow is normal or anomalous.
Based on the analyzed data, it determines the flow rules for the SDN-enabled switches.
Based on these rules, the SDN-enabled switches perform various operations on the traffic
flow, such as complete flow blocking, partial flow blocking, and blacklisting the attack
source. For anomaly detection, a machine learning algorithm is applied to an SDN controller.
Machine learning techniques can aid in developing security policies for SDN controllers by
accurately predicting potential susceptible hosts [30].

Dataset: We evaluate the performance of the framework using the NSL-KDD dataset,
which is used for network intrusion detection. The reasonable number of test and train
set records makes this dataset run experiments affordably on a complete set instead of
selecting a small portion of the dataset randomly. Each record contains 41 attributes that
describe various aspects of the flow and are labeled as either an attack type or normal.
The 42nd attribute contains information on the various five kinds of network connection
vectors, which are divided into one normal class and four attack classes. The NSL-KDD
dataset has the following advantages:

• The train set contains no duplicated records, therefore, the classifier will not provide
any biased outputs.

• There are no duplicate records in the test set, resulting in higher reduction rates.

In this dataset, there are 22 different types of attacks classified into four major types
of attacks [31]. The four attack types are classified as DoS, R2L, Probe, and U2R. These
attacks are shown in Table 4.

Table 4. Attacks in NSL-KDD [31].

Types of Attacks Attacks in Training Set of NSL-KDD

DoS Neptune, back, smurf, pod, land, teardrop

Probe Portsweep, satan, Nmap, ipsweep

R2L Warezclient, ftpwrite, warezmaster, IMAP, guess password, spy,
phf, multihop

U2R Butteroverflow, rootkit, perl, loadmodule

Data Preprocessing: In data preprocessing, feature selection is done to select the subset
of the most relevant features. For feature selection, we have used a correlation-based feature
selection (CFS) algorithm. Correlation is a measurement of the linear relationship between
two or more variables. The reason for using CFS for feature selection is that useful variables
have a strong correlation with the target. The variables should also be uncorrelated with
one another but correlated with the target. We can predict one variable based on the other
if the two are correlated. As a result, if there is a correlation between two features, the
model only requires one because the second does not provide any new information. Using
the CFS algorithm, 23 uncorrelated features were selected for prediction. Support Vector
Machine(SVM): Support Vector Machine (SVM) is a supervised learning technique used for
the regression and classification of problems. The kernels and algorithms in SVM are used
to analyze the data for regression and classification. The SVM algorithm’s goal is to create
a decision boundary or best line that can segregate the n-dimensional space into the classes
such that in the future new data points can be easily put into an incorrect category. The best
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line is called the hyperlink. For creating a hyperlink, SVM chooses the extreme points. The
extreme points are called support; hence, the algorithm is named Support Vector Machine.

Decision Tree: The Decision Tree is a supervised machine-learning technique where the
data is split based on a certain parameter. The Decision Tree contains two types of entities,
i.e., leaves and decision nodes. The leaves are outcomes, whereas; on the decision nodes,
the data is split. There are two types of decision trees based on the target variable type:

• Categorical Variable Decision Trees: Categorical Variable Decision Trees are those
which have categorical target variables.

• Continuous Variable Decision Trees: Continuous Variable Decision Trees are those
which have continuous target variables.

The proposed SDN-based framework effectively overcomes the problem of network
anomaly detection in the industrial IoT. The SDN controller has a global view and receives
monitoring information from the SDN switches. The SDN switches are responsible for
monitoring the industrial IoT devices’ traffic flow and sending each packet of flow to the
SDN controller. The SDN controller detects anomalous behavior through the data provided
by the switches. The machine learning algorithm is applied to the SDN controller for
detecting potentially dangerous network traffic. Based on the classified data, the SDN
controller determines the traffic flow rules for the switches, which makes this framework
effective in network anomaly detection.

5. Experimentation and Results

We used the NSL-KDD dataset in our analysis, which is used for network intrusion
detection. The machine learning techniques, i.e., SVM and Decision Trees, are used to
evaluate the effectiveness of the proposed model. We assessed the machine learning
algorithms by using the following quality metrics [32]:

Accuracy =
TN + TP

FP + FN + TP + TN
(1)

Precision =
TP

FP + TP
(2)

Recall =
TP

FN + TP
(3)

F1-score = 2 × Recall × Precision
Recall + Precision

(4)

5.1. Classification Using SVM

The NSL-KDD dataset is classified using the linear SVM model and quadratic SVM
model of classification. The benefit of using SVM is that, while it is a linear model, we
can utilize the kernels to represent the linearly non-separable data. Moreover, SVM uses
considerably less memory and is more efficient in large dimensional spaces. The dataset in
the linear and quadratic SVM models is classified using 125,973 observations. The accuracy
of the quadratic SVM classifier model is higher compared to the linear SVM model. The
prediction speed of the linear SVM model is greater compared to the quadratic SVM model.
The training time taken by the linear SVM model to classify the NSL-KDD dataset is 699.22 s;
whereas; it is 465.28 s in the quadratic SVM model. The summary of the results of both of
the SVM models is shown in Table 5.

Since the quadratic SVM model shows greater accuracy compared to the linear SVM
model, the confusion matrix for the classified data in the quadratic SVM model is shown in
Figure 4, which summarizes the performance of the quadratic SVM classification model.
Figure 4a shows the number of observations against the predicted class and true class.
Figure 4b shows the true positive rates and false negative rates. Figure 4c shows positive
predictive values and false discovery rates.
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(a)

(b)

(c)

Figure 4. Confusion Matrix for data classification using Quadratic SVM model. (a) Number of
Observations; (b) TP Rates/FN Rates; and (c) Positive Predictive Rates/False Discovery Rates.



Sustainability 2023, 15, 9001 12 of 18

The scatter plot, ROC curve, and parallel coordinates chart for the NSL-KDD dataset
using the quadratic SVM model are given in Figure 5. The horizontal lines in the scatter
plot in Figure 5a depict an excellent fit to the data. The ROC curve in Figure 5b shows
the area under the curve (AUC) to be 1.00 or 100%, which denotes an ideal curve for data
classification. Thus, the positive and negative results are distinguished 100% of the time
using this classifier. The parallel coordinates plot for the dataset in the quadratic SVM is
shown in Figure 5c.

(a)

(b)

(c)

Figure 5. Classification using Quadratic SVM Model. (a) ROC Curve using Quadratic SVM Model;
(b) Scatter Plot using Quadratic SVM Model; (c) Parallel Coordinates Plot using Quadratic SVM Model.
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Table 5. Summary Linear SVM and Quadratic SVM Classification Results.

Model Accuracy Prediction Speed Training Time

Linear SVM 99.3% 1300 obs/s 699.22 s

Quadratic SVM 99.7% 1100 obs/s 465.28 s

5.2. Classification Using Decision Tree

The NSL-KDD dataset is classified using a Decision Tree classifier model, i.e., Fine Tree
and Medium Tree. A Decision Tree is a quick technique to find the most important variables
and relationships between two or more variables. In comparison to other classification
algorithms, they are extremely quick and efficient. Moreover, there is no outsider influence
or missing data in the Decision Tree; the Decision Tree requires less data. The dataset is
classified using 125,973 observations. The accuracy of the Acceptable Tree classifier model
is much higher than the Medium Tree classifier model. The prediction speed of a Fine
Tree classifier is also much higher than a Medium Tree classifier. The training time of the
Fine Tree classifier model is 11.029 s; whereas, it is 35.687 s for the Medium Tree classifier
model. The summary of the results of both of the Decision Tree classifier models is shown
in Table 6.

Table 6. Summary of Fine Tree and Medium Tree Classification Results.

Name of Model Accuracy Prediction Speed Training Time

Fine Tree 99.4% 570,000 obs/s 11.029 s

Medium Tree 95.9% 190,000 obs/s 35.687 s

Since the Fine Tree classifier model shows greater accuracy compared to the Medium
Tree classifier model, the confusion matrix for the classified data using the Fine Tree model
is shown in Figure 6, which summarizes the performance of the Fine Tree classification
model. Figure 6a shows the number of observations against the predicted class and true
class. Figure 6b shows the true positive rates and false negative rates. Figure 6c shows the
positive predictive values and false discovery rates.

The scatter plot, ROC curve, and parallel coordinates chart for the NSL-KDD dataset
using the Fine Tree model are given in Figure 7. The ROC curve in Figure 7a shows the
area under the curve (AUC) to be 1.00 or 100%, which denotes an ideal curve for data
classification. Thus, the positive and negative results are distinguished 100% of the time
using the Fine Tree classifier model. The horizontal lines in the scatter plot in Figure 7b
depict an excellent fit to the data. The parallel coordinates plot for the dataset in the Fine
Tree model is shown in Figure 7c.

5.3. Performance Analysis

We classified our data using the SVM models and Decision Trees as shown in Figure 8.
In the SVM model, we used the linear SVM model and Quadratic SVM model; whereas,
in the Decision Trees, the Fine Tree model and Medium Tree model were used. The
comparison of the accuracy of the classifier models is shown in Figure 8a. The bar chart
shows the accuracy of the Quadratic SVM model to be 99.7%, which is the highest compared
to the other three models. Thus, the Quadratic SVM model is the most accurate data
classification model used in our experimentation. The comparison of the prediction speed
of the classifier models is shown in Figure 8b. The bar chart shows the prediction speed
of the Fine Tree classifier model to be 570,000 obs/s, which is the highest compared to the
other three models. Thus, the Fine Tree model is the highest prediction speed model used
in our experimentation.
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(a)

(b)

(c)

Figure 6. Confusion Matrix for data classification using Fine Tree model. (a) Number of Observations;
(b) TP Rates/FN Rates; (c) Positive Predictive Rates/False Discovery Rates.
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(a)

(b)

(c)

Figure 7. Classification using Fine Tree Model. (a) ROC Curve classification using Fine Tree model;
(b) Scatter Plot classification using Fine Tree model; (c) Parallel Coordinates Plot for classification
using Fine Tree model.
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(a)

(b)

(c)

Figure 8. Comparison of various functions. (a) Accuracy of Classification Models; (b) Prediction
Speed of Classifier Models; (c) Training Time of Classifier Models.

The comparison of the training time of the classifier models is shown in Figure 8c. The
bar chart shows the training time of the Fine Tree classifier model to be 11.029 s, which is
the least compared to the other three models. Thus, the Fine Tree model is the least used
training time model in our experimentation. The summary of the accuracy, prediction
speed, and training time of the classifier models are shown in Table 7.

Table 7. Summary of Linear SVM and Quadratic SVM Classification Results.

Name of Model Accuracy Prediction Speed Training Time

Linear SVM 99.3% 1300 obs/s 699.22 s

Quadratic SVM 99.7% 1100 obs/s 465.28 s

Fine Tree 99.4% 570,000 obs/s 11.029 s

Medium Tree 95.9% 190,000 obs/s 35.687 s
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6. Conclusions and Future Work

IoT deployment in the industrial sector has several benefits, such as optimization,
automation, the elimination of manual processes, and increased efficiency. However,
security remains a challenge in industrial IoT devices and networks. The security threats
and cyber-attacks on industrial IoT networks and devices cause industries and businesses to
suffer financial losses, reputational damage, and the theft of important information. Many
approaches and frameworks have been applied for intrusion detection in industrial IoT
devices and networks. Machine learning techniques play a vital role in these approaches.
In this work, we proposed an SDN-based framework using machine learning techniques to
detect threats and cyber-attacks in industrial IoT networks and devices. We used the NSL-
KDD dataset in our experimentation for classification. SVM and Decision Tree classification
models are used for the evaluation of our framework. The performance of the SVM and
Decision Tree is evaluated, and the quadratic SVM showed 99.7% accuracy. In the future,
we will employ newer data sources to enhance the adaptability and efficacy of this study.
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