
University of South Wales
Prifysgol De Cymru

Faculty of Computing, Engineering and Science
M.Sc. Project

Avoiding, Preventing, and Mitigating CPU-based Side Channel Attacks:
A Best Practice Guide

Thomas Phillip Harris, BSc. AMBCS.

18044611

First Supervisor: Dr. Richard Ward
Second Supervisor: Peter Eden
Year of Study: 2022
Scheme: M.Sc. Computer Systems Security

University of South Wales
Prifysgol De Cymru

Faculty of Computing, Engineering and Science

STATEMENT OF ORIGINALITY

This is to certify that, except where specific reference is made, the work
described in this project is the result of the investigation carried out by
the student, and that neither this project nor any part of it has been
presented, or is currently being submitted in candidature for any award
other than in part for the M.Sc. award, Faculty of Computing,
Engineering and Science from the University of South Wales.

Signed: Thomas Phillip Harris

1

Abstract

The aim of this project is to perform extensive research on a variety of side-channel

attacks, their effects, and how they are mitigated. Using this large pool of

information, the attacks and their mitigation techniques will then be further explained

using existing (secondary) and email/conversational based interviews with others

(primary). Furthermore, there will be primary resources created for this project, in the

form of a guide and interactive tutorial which allow academics (students, lecturers,

and researchers) to broaden their knowledge on side-channel attacks and their

mitigation techniques. The guide will be in a written format which is available online

within both a GitHub repository and on a website that is also hosted on GitHub.

Alongside this guide will be an interactive tutorial created using one of many

available tools to provide a range of effective learning for the target audience.

The purpose of this project is to gather existing research on various

CPU-based side-channel attacks and their mitigation strategies into a single source

(referred to as a Best Practice Guide, or BPG). This source will be created as the

deliverable for this project and will be suited towards academia to be used as a

teaching aid. The BPG will contain a variety of both secondary (peer reviewed

articles and journals) and primary sources (contact with researchers within the field).

The BPG will be distributed in several ways, physically as a paper copy to allow

hands on and portable use, online hosted on a previously constructed website to

allow access at all times (internet access willing), and in an interactive format using a

popular learning service called ‘TryHackMe’. This allows the creation of rooms that

can be used to teach a particular cyber security technique or software. Using

TryHackMe, a room will be created with brief information on side-channels attacks in

general, with more readily available sub-tutorials on a specific attack (Spectre or one

of its variants). Using these, users would learn the workings of a side-channel attack

from the safety of a sandboxed and isolated VM that accompanies the room. There

will be various objectives and ‘quests’ for users to fulfil that move forward with the

end goal of embedding an understanding of side-channel attacks in a practical

sense.

The predicted conclusion of this project will be a fully finished and

comprehensive report and BPG on five CPUd side-channel attacks and their

2

mitigation techniques. The BPG being an effective teaching aid and referenceable

document for future research. Furthermore, the BPG will have several forms to allow

different individuals and academia (lecturers, students, researchers) to have access

should they be offline, online, or away from their PC/laptop.

3

Acknowledgements
I would like to thank the University of South Wales for their support in everything I did

regarding this course and my further career. I would also like to thank my lecturers

for the continued support and communication they have provided throughout this

year, they have been invaluable despite the continuing upheaval due to Covid-19.

Furthermore, I would extend a special thank you to Dr. Richard Ward, who has gone

above and beyond to ensure work I have been carrying out has been to an extremely

high standard, he has also pushed me towards a career opportunity with the

University and as such I am now employed by USW, which is greatly aiding my

dissertation and my growth as a computer and cyber security professional.

I would also like to thank those within my personal life, particularly my family

who have always pushed me to be the best I can, as well as providing whatever

support I may have needed throughout my time in the course. My partner Shelby

should have special mention for being a steady ground for me to return to when I

began to struggle, her continuing support has allowed me to step back when I have

been overwhelmed, ensuring I am able to return to the work and excel where I had

once struggled.

4

Table of Contents

1.0 Introduction 1

1.1 Aims and Objectives 2

1.2 Table of Figures 3

2.0 Literature Review 4

3.0 Methodology 16

4.0 Side-Channel Attacks 20

4.1 Power-Analysis Attack 20

4.2 Cache-Based Attack 24

4.3 Time-Based Attack 26

4.4 Differential Fault Analysis Attack 28

4.5 Acoustic Cryptanalysis Attack 29

5.0 Best Practice Guide 31

5.1 Planning and Design 31

5.2 The Guide 31

5.3 Deliverable Evaluation 32

6.0 Conclusion 34

References 37

Appendices 43

5

1.0 Introduction

Each chapter within this report will have a topic, each with their own sub-topics. This

first chapter (Introduction) contains the aims and objectives of the project, the outline

of what research is primary (carried out by the project lead) or secondary (gathered

research from peer-reviewed sources), and the description of content within each

chapter.

As this project leans towards the study of existing research carried out by

other researchers in the field, the majority of the work within the report and the BPG

will be sourced from other studies, such as peer-reviewed journals and articles.

There will be some primary research carried out in the form of contact with other

researchers studying the same subject area. The BPG will be created using a

culmination of both primary and secondary research with references provided where

appropriate. This BPG will be created by the project lead and have language and

structure suitable for academic use.

1

1.1 Aims and Objectives

1. Research and report upon a variety of side-channel attacks, their effects, and

how they are mitigated.

a. Study and understand a significant number of peer reviewed primary

and secondary sources.

b. Of these sources, understand the workings of CPU-based side-channel

attacks along with their mitigation strategies.

c. Author a report on the topic of side-channel attacks and their mitigation

strategies.

2. Select five appropriate CPU-based side-channel attacks using suitable

terminology.

a. Evaluate chosen CPU-based side-channel attacks and justify their

mention based on scope.

b. Ensure all information pertaining to technical areas are suitable for

those with no understanding of CPU-based side-channel attacks can

follow the research that has been done.

c. Evaluate methods to distribute the report through a most suitable

channel, such as online (hosted on a website), and in paper format.

3. Create a best practice guide (BPG) which will inform academia on the various

side-channel attacks, and their mitigation techniques.

a. Provide a brief overview of what a side-channel attack is, along with

the more specific CPU-based side-channel attack.

b. Use five main CPU-based side-channel attacks as the base for the

BPG.

c. Describe in detail each attack, their effects, and their mitigation

techniques.

d. Create and publish a TryHackMe ‘room’ to allow users to try a

side-channel attack (a variant of Spectre) on a Linux VM without fear of

damaging their systems.

2

1.2 Table of Figures

Figure 1 Transient.fail (2022) diagram of Spectre and Meltdown 14

Figure 2 Transient.fail (2022) brief overview of Spectre-type attacks along with

relevant references 15

Figure 3 Adapted Waterfall model used in the context of the planning and

management of the project 21

Figure 4 Le et al (2008) equation to calculate the secret key through a Mono-bit

Differential Power Analysis 25

Figure 5 Graphical representation of both correct and incorrect key guesses 26

Figure 6 Example used in Le et al (2008) (referred to as Figure 11) with a scenario

using a signal size of L = 100. This represents the distribution of templates both in a

real sense and through the use of the MD and ML metrics. 27

Figure 7 Framework diagram created for this report using the model created and

utilised by Bulck et al (2017) (referred to as Figure 1) which outlines the process of

Single-Stepping SGX enclaves 29

Figure 8 Genkin et al (2017) Fig.5 Acoustic measurements of various CPU

operations recorded using a spectrogram 34

3

2.0 Literature Review

The security of a device, be this a desktop computer or mobile phone, is integral in

protecting the privacy of those who use them. While many security issues are related

to software accessing sensitive information related to a person or a system,

hardware related issues can be just as damaging, if not more so.

A CPU-based side-channel attack (which includes cryptographic systems), as

defined by Su and Zeng (2021 p.1), is an attack which “utilize shared CPU caches

within the same physical device to compromise the system’s privacy (encryption

keys, program status, etc.)”. This is an attack that uses a misconfiguration of the

firmware or microarchitecture of a CPU to leak information that the CPU has access

to through a side-channel or cache (although these attacks are also commonly used

on cryptographic devices and systems that also use cryptographic keys). There have

been several journals and peer-reviewed papers detailing studies on this topic which

will be described and explained in detail throughout this paper, as well as creating a

Best Practice Guide for academia to use in their teaching of this more specific type

of attack.

While there are many distinct types of side-channel attacks that target various

different aspects of a computer system, this paper looks into the more specific

CPU-based side-channel attacks, particularly how they occur, the scale of damage

they can cause, and possible mitigation strategies (if any exist). An understanding of

the basic concept of a CPU-based side-channel attack is essential before going

in-depth on the various attacks. The cache of a CPU is a storage device, structured

in such a way that enables it to be extremely fast at reading and writing (when

compared to memory), although this means it is smaller than memory and as such

the verbosity of the data stored within is lower. When a CPU uses any form of data, it

first calls the cache to ensure this data isn’t available already, if it is this is

considered a cache hit and if it is not available in the cache, this is a cache miss.

Knowing this clarifies the concept of a side-channel attack as one that uses CPU

firmware misconfiguration to access information that is present in the cache, allowing

an attacker to steal its contents.

4

The first concept of a CPU-based side-channel attack was first considered by

Percival (2005) who stated that the shared memory cache (the CPU cache) ‘permits

a malicious thread (operating, in theory, with limited privileges) to monitor the

execution of another thread, allowing in many cases for theft of cryptographic keys’.

In his paper, Percival (2005) first introduces the ability to steal information

(particularly the cryptographic keys of a system) from the CPU cache by running a

malicious process on the targeted system. This process reads and records the

‘footprint’ created by OpenSSL which is recorded in the cache and as each set of

calculations of both multiplications and squaring’s occur, each leaves a different

‘footprint’ of bits. Percival goes on to state that ‘in the case of OpenSSL we can

typically identify the multiplier to within two possibilities in 50% of the modular

multiplications.’, which, in simpler terms, means the secret cryptographic key used

within OpenSSL can be calculated just by collecting the ‘footprint’ of bits stored in the

CPU cache. Within his paper, Percival (2005) also put forward several solutions or

mitigations to this danger, although this section will only include the most effective (to

avoid the unsuitable or unrealistic solutions). One solution suggested was the

application of the kernel scheduler, as stated by Percival (2005):

‘Recognizing that a side-channel between threads is only dangerous if the

threads are operating at different privileges — or, put another way, if the

threads are not permitted to debug each other — the scheduler could be

written in such a way as to use the credentials of threads in the process of

determining which threads should be scheduled with which (virtual)

processors’

By doing this the threads that are not authorised (incorrect credentials) will not

be scheduled on each processor and therefore not have the access to the data

within the CPU cache (as they would neither have the need nor credentials to access

it). Percival (2005) goes on to say that this method would have its drawbacks,

particularly regarding performance as the kernel needs to verify and evaluate the

threads to ensure they have the permission and credentials to share a processor

core at several points (to further ensure that the side-channel is allowed to be

created).

5

There are numerous attacks that take advantage of the CPU firmware which

is what this paper will be focusing on. Of the examples of side-channel attacks, there

are five which will be the focus on both the method of performing this attack, as well

as the different mitigation strategies (if any) for each. The previous two attacks

mentioned above are referred to as cache-based side-channel attacks and timing

attacks, respectively. Further attacks that will be mentioned are the power-analysis

attacks, allocation-based attacks, acoustic cryptanalysis attacks, and Thermal

Attacks. Alongside these, infamous attacks that have recently made the news will

have special mention, these being Spectre and Meltdown (for cache-based attacks)

and the recent Hertzbleed (which is part of a newly conceptualised family of attacks,

frequency side channels, as of 2022).

In general, a Power Analysis attack involves an attacker analysing the power

consumed by a cryptographic device, and in knowing the various changes in voltage

within the device (which occur through small movements of electrical currents),

attackers can then learn small pieces of information about the data being

manipulated by the cryptographic device. There are two types of Power Analysis

attacks, Simple Power Analysis (SPA), and Differential Power Analysis (DPA), both

involve some form of monitoring the power consumption to learn information, but the

first (SPA) uses a visual examination of the current used by a device over a period of

time, whilst the second (DPA) monitors this same power consumption but rather than

monitoring just the device as a single entity, it monitors various cryptographic

operations within a single cryptographic device (Kocher et al, 1999, p. 2-5). There is

also a further sub-attack of the Power Analysis variety called a Correlation Power

Analysis (CPA), this involves monitoring the power consumption of a cryptographic

device (focusing on one particular cryptographic method), having the victim encrypt

multiple plaintext data sets and recording the power consumption of each, begin

attack the secret key in small parts (referred to as subkeys), and then using the

closest guessed subkeys, piece together a full correct secret key. Luo et al (2018)

carried out a study that used a CPA attack to recover data that was stored on a

GPU. A GPU was targeted as they state, ‘they have been redesigned and are used

to accelerate a wide range of applications, including deep neural networks, image

reconstruction and cryptographic algorithms.’ In their study they were able to recover

the ‘last round of key bytes of an AES (Advanced Encryption Standard)

implementation on an NVIDIA TESLA GPU’ and because of this study it showed

6

clear need for the strengthening and hardening of GPUs against threats such as

side-channel attacks.

Side-channel attacks can also be carried out by monitoring the number of

resources assigned to a process (rather than the resources that have been used);

these are referred to as Allocation-Based Side-Channel attacks. Angel et al (2020)

have carried out a study that discovered a vulnerability that allows attacking the part

of the CPU responsible for allocation resources to a process (in the case of their

study, the MPM or Metadata-Private Messenger). By attacking this element of the

CPU, Angel et al (2020) proved existing MPMs ‘vulnerable to traffic analysis’. This

not only shows the danger in the leaking of any data via a side-channel, but also

shows that many existing systems are vulnerable to a side-channel attack, allowing

information that may be classified or extremely sensitive in nature to be read by

anyone with the capability of performing this type of side-channel attack. Angel et al

(2020) also provide a mitigation technique through the form of PRAs (Private

Resource Allocators) which is defined in the paper as ‘a new cryptographic primitive’

that allows the allocation of resources to all clients ‘without revealing to the clients

whether any other clients received resources’.

In a similar concept as the Power Analysis Attack, the Thermal Attack uses

the temperature of a CPU against itself, particularly when this temperature is

monitored by a thermal interface that unprivileged users have access to. Kim and

Shin (2022) implemented their own version of a Thermal Attack called

‘ThermalBleed’, this attack targeted the KASLR (Kernel Address Space Layout

Randomisation) within Linux systems. The KASLR simply randomises the location of

the Kernel code within the memory each time the system boots (Daniel Lopez Azana

2017). Kim and Shin (2022) had predicted that it would be possible to ‘distinguish

between a cache hit and a physical memory access in memory load operations’, this

means there is a proven method (using thermal analysis) of telling address

translations that hit a TLB (Translation Lookaside Buffer) from those that miss.

Remzi and Andrea (2018) state that the TLB stores ‘recent translations of virtual

memory to physical memory. It is used to reduce the time taken to access a user

memory location.,’ and by distinguishing the difference between a hit and a miss on

the TLB, Kim and Shin (2022) state that they are able to ‘infer the TLB status on core

0 from core 5 in an i7-8700’. By having this inference, by understanding the TLB

status on one core within the CPU, the others can be inferred without the need for

7

one-by-one analysis. This study shows clear evidence for the need for necessary

security protections to be in place when considering CPU core temperature status

and other software used to monitor CPU temperature, without said security

protections the use of any of this software pose a security risk particularly with Intel

CPUs. The study goes on to state that the best method of mitigating this vulnerability

is preventing any non-privileged used from accessing the CPU temperature by

requiring admin access to access the thermal interface.

Acoustic Cryptanalysis is a form of attack that uses the sound a CPU makes

as it performs tasks and procedures as a method of understanding the type of

cryptographic process performed, along with different patterns of operations and

memory access. Shamir and Tromer (2007) state in their thesis, ‘RSA

signature/decryption sounds different for different secret keys’, the two prove this by

carrying out an attack on modern CPUs (modern at the time) and were able to

‘exploit acoustic emanations from modern computers, wherein the power circuitry

creates vibrations that are modulated by CPU activity’. They had performed this

attack against the RSA cryptographic computation, which allowed leakage of

sensitive information on the RSA computation which, in their own words, ‘provide

strong evidence that key recovery may be possible.’ Within their paper, Shamir and

Tromer (2007) also detail mitigation techniques, ‘mitigation can be achieved through

algorithmic techniques’ and the implementation of ‘careful circuit design and use of

high-quality components, or by through shielding and physical access controls’. Of

these techniques, the only method relevant to a CPU consumer (rather than a

manufacturer) would be the shielding/physical access controls, a consumer is unable

to determine the materials/components used in the creation of a CPU, or in fact the

design of the circuitry on which the CPU works.

The concept of side-channel attacks is one that little is known about. Even

now, as of writing this paper, new attacks have been researched and devised. One

research group (Wang et al 2022) has devised a new family of side-channel attacks

which they describe as evolving from Power side-channel attacks into their newly

coined Remote Timing attacks. In their paper they state that ‘in modern Intel (and

AMD) x86 CPUs, DVFS-induced frequency variations depend on the current power

consumption, and hence the data being processed.’. The attacks devised by the

group, when run against a post-quantum cryptographic method called SIKE

(Supersingular Isogeny Key Encapsulation) developed by Jao et al (2017), could

8

perform a ‘full key recovery attack through remote timing’. Alongside the attack, the

authors of the paper also outlined a method of mitigating this form of attack by

ensuring the thermal and/or power limits are not hit (as the reaching of these limits is

when the DVFS system kicks in). To stop these limits being hit, Wang et al (2022)

suggested turning off Turbo-Boost and other similar functionalities from the BIOS

screen. While the previous mitigation strategy works in relation to CPUs, Wang et al

(2022) had also outlined one that refers specifically to ciphers in which they suggest

‘removing secret-dependent leakage in cryptographic software’, which in relation to

SIKE, prevents attacker-based ‘ciphertexts from triggering secret-dependent

computations on 0s’. In their paper, Wang et al (2022) state that this exploit is

present on a range of CPUs (both Intel and AMD) from 11th Gens, down to older 6th

and 7th Gens.

There are several specific attacks from the Cache-based side-channel attack

family, specifically Spectre and Meltdown, which target the data being passed

through the cached memory of other programs. Both attacks differ slightly by both

target the memory cache of a system (this being the side-channel) and attempt to

recover information stored in the cache at the time of the attack. Both attacks can

retrieve any information, be it passwords used by a password manager, or stored

credit cards in a software wallet, from the CPU cache without the user's knowledge.

Figure 1 is a branching diagram of both Meltdown and Spectre created by Graz

University (2020), showing each attack, their variants, and the differing strategies

each variant can use. Figure 2 is a further example of the information available on

the diagram by Graz University (2020) which shows an explanation of whichever tab

has been clicked on, along with appropriate references and diagrams (if applicable).

9

Figure 1 Transient.fail (2022) diagram of Spectre and Meltdown

10

Figure 2 Transient.fail (2022) brief overview of Spectre-type attacks along with relevant references

Horn et al (2018) carried out a study on Meltdown, which they described as an

attack that ‘exploits side effects of out-of-order execution on modern processors to

read arbitrary kernel-memory locations including personal data and passwords.’.

This attack targets the performance feature called ‘out-of-order’ execution which

‘schedules subsequent operations to idle execution units of the core’ which improves

the speed at which a CPU can run processes. As shown by the study (Horn et al

2018), the out-of-order execution feature has negative connotations through the

potential of leaking information due to timing differences with the execution of both

sequential and out-of-order execution. Horn et al (2018) further states that an

attacker can ‘dump the entire kernel memory by reading privileged memory in an

out-of–order execution stream’. Horn et al (2018) also discusses some

countermeasures, both in hardware and software form, which can mitigate or prevent

Meltdown. One hardware mitigation they begin with is ‘to disable out-of-order

execution’ although they go on to state that this would have a significant negative

impact on the performance of the CPU. A further, more realistic, hardware mitigation

11

strategy they suggest is ‘to introduce a hard split of user space and kernel space.’

This mitigation would ensure that the user space resides in the lower half of the

address space whilst the kernel space resides in the upper half, allowing any

memory fetch to determine what request would constitute a violation of the security

boundary ‘without requiring further lookups,’ these being checks the CPU would

make against the requests using existing security boundaries.

Spectre differs from Meltdown as it targets the branch predictor and

speculative execution aspects of a CPU and exploits these to execute operations

that do not usually occur during normal program execution. These operations are

executed as they are incorrectly predicted by the branch predictor which then leads

to them being speculatively executed, which can then allow leaking of information via

the cache (again, referred to as a side-channel). Kocher et al (2018) state in their

paper that ‘At a high level, Spectre attacks trick the processor into speculatively

executing instruction sequences that should not have been executed under correct

program execution.’ Kocher et al (2018) have shown that is possible to use what

they call transient instructions, which they define as instructions whose effects on the

‘nominal CPU state are eventually reverted’, and the influence on what transient

instructions are speculatively executed, it is entirely possible to leak whatever

information is stored within the victim’s memory address space at the time of

execution. Spectre is delivered via a small program which can be run as a

standalone program or as a parallel program, in the paper, Kocher et al (2018)

created a small program (as a PoC) which delivers a secret message and stores it in

the cache memory, which is then accessed and retrieved by a malicious attacker

program, allowing them to view the secret message purely by reading the sequence

of instructions within a process. The sequence of instructions, as Kocher et al (2018)

explains, ‘acts as a covert channel transmitter that leaks the victim’s memory or

register contents.’.

To remain within the scope of this paper, only the general description of

Spectre attacks is used, however Kocher et al (2018) does go into further detail on

the different variants of Spectre and how they can be used against a CPU. Finally, a

number of mitigation strategies are discussed at length along with their advantages

and disadvantages regarding performance of a system that may implement them.

The first is disabling speculative execution which stops Spectre at the root, although

Kocher et al (2018) does state that this would cause ‘a significant degradation in the

12

performance of the processor.’. A further mitigation strategy outlined which is more

effective at preventing JavaScript based Spectre attacks is to separate the

processes from the secret data, like the way Google Chrome isolates each site into

separate processes (Chromium 2018), which would prevent a process that is

affected by Spectre from accessing secret data in use by another. One theoretical

mitigation strategy as mentioned by Kocher et al (2018) is the prevention of secret

data (which is accessed via speculative execution) being accessed or used by

operations that may leak it. One mitigation strategy discussed that is not considered

particularly effective is under section VII subsection D of the paper by Kocher et al

(2018), Limiting Data Extraction from Covert Channels which mitigation has been

implemented by various major web browsers which have ‘degraded the resolution of

the JavaScript timer, potentially adding Jitter’ (Microsoft Blogs 2018) to mitigate the

attack. Jitter is a concept within telecommunications and electronics which allows

‘deviation of true periodicity of a presumably periodic signal’ (Wolaver D H 1991),

this will prevent the acquisition of timing sources (which provide the information

which leads to secret keys and other such information being leaked). This mitigation

strategy is not as effective as previous ones however as, ‘while this approach may

decrease attack performance, it does not guarantee that attacks are not possible.’

Preventing Branch Poisoning is the final mitigation strategy discussed by Kocher et

al (2018) which was implemented by both Intel (Intel 2018) and AMD (AMD 2018)

through the extension of a mechanism that had three alternate controls for

controlling the indirect branches and their interaction with the data and processes in

use. The first, called Indirect Branch Restricted Speculation (IBRS), ‘prevents

indirect branches in privileged code from being affected by branches in privileged

code from being affected by branches in less privileged code.’ The second

mitigation, called Single Thread Indirect Branch Prediction (STIBP), ‘restricts branch

prediction sharing between software executing on the hyperthreads of the same

core.’ Finally, the third mitigation strategy, called the Indirect Branch Predictor Barrier

(IBPB), ‘restricts branch prediction sharing between software running before setting

the barrier from affecting branch prediction by software running after the barrier.’

BranchScope (identified as CVE-2018-9056), new type of side-channel attack

that targets the directional branch predictor (sharing similarities with Spectre), has

been presented by Evtyushkin et al (2018) as an attack that relies on an attacker

inferring ‘the direction of an arbitrary conditional branch instruction in a victim

13

program by manipulating the shared directional branch predictor.’ As standard in

modern CPUs and microprocessors, the Branch Prediction Units (or BPUs) are used

to ensure instruction delivery is not interrupted across a number of conditional

branches (branches whose instructions are executing, pending a ‘condition’ that

needs to be met). As more operations and processes can be executed on a single

physical core, a BPU is required to sustain the previously mentioned instruction

delivery across multiple condition branches. In general, side-channel attacks

targeting the branch predictor focus on one aspect of the BPU, the Branch Target

Buffer (BTB) which relies on the conditional branch being satisfied, which then has

its target updated (the predicted instruction to be executed and the result of the

previous), allowing an attacker to see ‘whether or not a particular victim branch is

taken’ (Evtyushkin et al 2018). In BranchScope, the directional predictor is targeted

as the location from which to leak information, which allows an attacker to perform a

side-channel attack that targets branch predictors even with protections being placed

on the BTB. BranchScope can overcome a natural mitigation that modern CPUs

provide (this being the ‘unpredictability of the complex hybrid prediction

mechanisms’) by generating only one-level predictions regardless of the multi-level

predictors being in place within the processor. Furthermore, Evtyushkin et al (2018)

go on to show that BranchScope is not limited by other mitigations that are in place

to defend the BTB from side-channel attacks.

Evtyushkin et al (2018) developed a number of mitigations that are

implemented both in software and the hardware to harden the relevant systems

against BranchScope by providing BPUs that are secured against side-channel

attacks. The first of these mitigations is a technique called ‘if-conversion’ (Choi et al

2001) which an optimization method for compilers that will change any conditional

branch used into ‘sequential code using conditional instructions such as cmov’ which

removes conditional branch instructions, entirely invalidating the BranchScope

attack. As a minor note, this mitigation technique also displayed a capability to

mitigate timing-based side-channel attacks as well, particularly with its ease of

implementation. Alongside this software-based mitigation, some hardware

mitigations have been proposed, one such mitigation being ‘partitioning the BPU’ to

ensure that the victim and attacker structures are not shared, this is more relevant

when an SGX enclave is targeted as those and normal code will then have distinct

and separate branch predictors, preventing malicious code from affecting the branch

14

predictor, which would lead to leakage of information from the SGX enclave. Finally,

the ‘Randomization of the PHT’ (PHT referring to the Pattern History Table) prevents

collisions (the predictability of these being the primary requirement for BranchScope)

by modifying the indexing functionality of the PHT to ensure some data received by

the software entity is unique (the software entity, for example, could be ‘part of the

SGX hardware state, or simply some random number generated by the process’). By

ensuring the randomization is periodic, both BranchScope and probing attacks are

prevented (although as Evtyushkin et al (2018) state, this does cause some

performance degradation).

RetBleed is a newly discovered variant of the speculative execution

side-channel attack ‘Spectre,’ this attack is relevant on both x86-64 and ARM

processors (with particular focus on more modern and recent Intel and AMD chips).

Registered under CVE-2022-29901, this vulnerability was discovered and

researched by Wikner and Razavi (2022). As stated in their paper, Retbleed is a

‘Spectre-BTI attack that leaks arbitrary kernel memory on fully patched Intel and

AMD systems’ which they say is made possible by two discoveries, the first being

that ‘return instructions behave like indirect branches under certain

microarchitecture-dependant conditions’ and the second being the ability of an

attacker can ‘arbitrarily control the predicted target of such return instructions’. The

name Retbleed comes from the already implemented mitigation for other Spectre

variants (notably variant 2, Branch Target Injection, or BTI, attacks) called Retpoline

which is marketed as a protection that ‘converts vulnerable branches into protected

returns’ (Quinn 2021), otherwise known as the mitigation to stop Spectre. With this

attack being able to bypass Retpoline, Wikner and Razavi (2022) proposed new

mitigations, one of which was to prevent speculation, which has been further

developed by AMD called “jmp2ret, which prevents speculation by replacing returns

in the kernel with direct jumps to a return thunk’ (Wikner and Razavi 2022), the

purpose of this mitigation is to reduce the surface of the attack target to one single

return from all instructions (rather than a return from each instruction) thus lowering

the amount of information ‘leakable’ from the returns. While the previous is now

implemented by AMD CPUs, Intel have also developed a mitigation proposed by

Wikner and Razavi (2022) called eIBRS (enhanced Indirect Branch Restricted

Speculation) which is an ‘always on’ version of IBRS the intention of which is to

isolate instruction executions, when necessary, rather than all the time. This works

15

by having the instruction to isolate a particular execution (WRMSR) only running

when necessary.

3.0 Methodology

This project has been carried out and a deliverable produced using a variety of tools

and sources to ensure a standard of quality is maintained and a level of

professionalism remains consistent in every aspect of the project. This section will

detail the methodology used in both research and production of the BPG, as well as

methods of critical evaluation and review both from the perspective of the project,

and from an external third party.

This project has been planned and managed using the Waterfall methodology;

the revised model proposed by Winston W Royce (Appendix A), although the model

layout is simplified to fit the needs of the project. The waterfall model was chosen as

the basis of managing and planning the project as it allows clear stages of planning,

implementation, and feedback, while also remaining adaptive for any changes that

may occur. Figure 3 is a diagram of the model used in planning and managing the

project; it clearly shows sub-sections (those with dashed arrows rather than solid)

which, while not absolutely necessary for project completion, do aid it significantly in

terms of quality of the final report and BPG. The model created for this project

follows the base format, analysis of what is needed, creation of the structure of

various deliverables and documents, write-up of the initial document and

deliverables, acquisition of feedback from third parties, a changes stage in which

feedback is taken into account, and finally the official completion of the project and

all deliverables being ready to be deployed/published.

16

Figure 3 Adapted Waterfall model used in the context of the planning and management of the project

Creating this report following professional standards and guidelines required

further reading on the topic of authoring scientific research articles (as this is a

primarily research focused article). One source of further reading provided a great

deal of information on both the style and substance of various sections of the report,

Cargill and O’Connor (2009) provided an effective framework for initially laying out

the report (of course some changes were made to better suit the type of research

being carried out. The structure provided, which Cargill and O’Connor (2009 p. 9-15)

refer to as ‘AIMRaD’ which is a standard article structure that includes ‘Abstract,

Introduction, Materials and methods, Results, and Discussion’ which has been

applied to this report as a starting point. A highly effective graphical representation of

the format used in this report is the hourglass structure model created by Cargill and

O’Connor (2009 Fig 2.1 p. 10-11).

The ‘Study Skills Handbook’ by Cottrell (2003) provided a great deal of

information on the practice of planning of this project (and led to the use of the

Waterfall model as the management plan). Cottrell (2003) has many sections within

her book that outline methodology for writing subjectively and providing evidence

and professionally reviewed papers to support both statements and questions. One

quote that has been a significant influence on the writing style, ‘use evidence

selectively, too many may obscure your line of reasoning.’, this is evident throughout

the paper as any references made link well with previous or upcoming statements

17

and ideas, without taking away from the primary research carried out, and

overshadowing the ideas put forward in the title, aims, and objectives of this paper.

To research the overall concept of a CPU-based side-channel attack only

professional, peer-reviewed, or journal published sources were used. To ensure only

these sources were used, only official repositories of research papers and journals

were used, e.g., IEEE. Referencing of these sources followed the USW Harvard

format to ensure a standard style is used for ease of reading. The sources will be

critically viewed to avoid any bias that may come from personal view of the research

or from any bias that may exist in the source. Furthermore, results of each study

researched will be viewed objectively as to ensure the results and conclusion of this

project being influenced by the opinions or biases of any other researcher.

Understanding the concept of side-channel attacks required personal learning

to provide both a comprehensive report, and a concise and understandable guide. To

understand the various concepts and ideas within the broad field of side-channel

attacks, a significant amount of time was poured into researching the various families

of attacks, as well as the more infamous attacks within each family. Special focus

was placed on the more expansive topics (cache-based and power-analysis) as with

a general understanding of these, this could then be translated into any other

attacks. Evidence of this wide-ranging research is evident in the literature review in

section 2.0 and then further within section 4.0 where specific attacks are the focus.

To create the BPG which is intended for academic use, a collection of the

most effective sources on both CPU-based side-channel attacks as a general topic,

and in further depth on the five chosen attack families as outlined in the previous

chapter. The layout and structure of the BPG will follow a technical document format,

with specific language being used to suit academia and for the purpose of informing

those who read it with a theoretical and practical understanding of the content.

Following along the idea of an online guide with an academic use (i.e., used

by lecturers, students, and researchers), the creation of a TryHackMe (TryHackMe

2022) room to provide an interactive feature of the guide will allow those who

consider themselves kinaesthetic learners to benefit from the use of the BPG whilst

also gaining more practical experience not only with the use of side-channel attacks,

but also with the debugging in a ‘blue-team’ perspective, i.e. learning how attacks

such as these work and how to identify programs that perform them.

18

To create an effective online teaching and learning tool, it is essential that the

complex methods and ideas are translated into a format that can be easily

understood for users with little to no prior experience with the topic. This is where the

importance of the THM room became apparent, having this sandbox environment

where a beginner could learn and watch demonstrations whilst answering questions

to cement their understanding of side-channel attacks. The methods and language

used to create this effective tool was greatly influenced by Akhmedova (2022) who

stated that the creation of interactive teaching materials within computer science and

information technology should focus on two central ideas, ‘person centered

approach’ and ‘individual and differential approach to students in education’. The first

idea of a person-centred approach can be achieved through the creation of materials

that appeal to all types of learners by creating both interactive and passive

resources. This reason is the primary justification for the use of THM rooms as it

allows the publishing of written material, which requires users to read, audio/visual

material, which users can see demonstrations, and interactive VMs. All the learning

materials provided previously are accompanied by questions which will reinforce the

knowledge acquired, ensuring that the interactive materials are accessible to all

learners. The second central idea of having an individual and differentiated approach

to the audience can be reinforced through a multiplatform guide that allows users to

either read a detailed guide online/downloaded offline or take part in the

aforementioned interactive materials. The focus on these two ideas is further

reinforced by Akhmedova (2022) as they state, ‘it is necessary to develop work plans

and theoretical material and adapt the educational process to this approach.’.

Finally, each aspect of the work will be evaluated and critically reviewed to

ensure the highest possible standards of work are achieved. To do this the work will

be written up in drafts, draft one which will be evaluated and reviewed by the project

lead, draft two which will be evaluated and reviewed by a primary supervisor, and

then finally a third draft which will be the final, finished product. This will allow both

changes felt necessary by the project lead can be implemented and changes in

either language or structure can be carried out before a refreshed draft is then sent

to the supervisor(s). The supervisor(s) will then provide feedback on more specific

details such as content in various chapters or layout/structure of various sections.

Finally, the third draft will be the culmination of all changes that may need to be

19

made after the refreshed draft is sent to supervisor(s). This will be considered the

final revised paper.

20

4.0 Side-Channel Attacks
This section will go into greater detail on five chosen side-channel attacks, these

being, power-analysis attack, cache-based, time-based, remote timing, and acoustic

cryptanalysis. The reasoning for selecting these five over others is simply down to

the resources available, there are several professional papers available which quite

effectively explain each attack, but they are written under the presumption that the

reader will already understand the topic at hand. This section will be written only

under the assumption that the reader is a competent IT/technology specialist who is

capable of understanding concepts, but not methods, of side-channel attacks. For an

extremely simple yet concise diagram, refer to appendix S.

4.1 Power-Analysis Attack
Power-analysis attacks are those that use the power output by a device

(CPUs in the case of the report) when it is performing certain processes, such as

cryptographic processes or operations. In the most basic terms, examining the

power output allows the discovery of the secret key used in a cryptographic

operation and in turn information that is in use by said device. A study by Ren et al

(2016) exposed a significant threat from power-analysis against 32-bit CPU smart

cards, particularly within China where the use of these devices is more prevalent.

During their study, they had created a PoC attack based on the power-analysis

concept and were able to ‘mount successful attacks on the 3DES in a real-life 32-bit

CPU smart card’, a successfully attack being that which was able to recover the

3DES keys (the secret keys used for encryption/decryption). A study by Le et al

(2008) explains, at length, the technical workings of power-analysis attacks, along

with the two distinct categories:

‘Attacks without a reference device (e.g., Differential Power Analysis,

Correlation Power Analysis) and attacks using a reference device (e.g.,

Template Attack, Stochastic Model Attack).’

Le et al (2008) explains that attacks without a reference device (as mentioned

above) can be derived from the original Differential Power Analysis (DPA) attack,

‘which is based on the fact that the power dissipation to manipulate bit b to 1 is

21

different from the power dissipation to manipulate it to 0’ which means that the attack

analyses the power used to manipulate the values of various bits, noticing even the

slightest difference in power output. DPA attacks also incorporate a concept referred

to as Hamming weight which is defined as the number of symbols within a string (in

the case of DPA attacks, the number of bits) that differ from the default bit value of 0,

which Warren Jr (2002) (See appendix C) also refers to as the ‘population count’ of a

string of bits. Within their paper, Le et al (2008) propose an equation to calculate the

correct key used in the cryptographic system (Figure 4). Broken down this equation

has several distinct parts, Δ is the difference in the key assumption each time a key

guess is attempted, b refers to the bit that is being manipulated (or not) and whose

result relies on the power dissipation occurring. The Σ (sum of) the further fractions

refer to the sum of the G0,k and G1,K groups when multiplying them with the DPA

signal (which corresponds to the key assumption). Finally, the sums of these are

then divided by the total number of elements within the G groups (as denoted by

N1,k) and the results of both fractions then subtracted from one another, giving the

result of the key assumption as

(b) = -Δ1, 𝑘
Σ𝐺1,𝑘𝑊 𝐶𝑖()

𝑁1,𝑘
Σ𝐺0,𝑘𝑊 𝐶𝑖()

𝑁0,𝑘

Figure 4 Le et al (2008) equation to calculate the secret key through a Mono-bit Differential Power
Analysis

Le et al (2008) also included a graphical representation (Figure 5) of the result

of the previous equation showing DPA signals when both correct and incorrect keys

are discovered, giving a visual representation of the DPA attack.

Figure 5 Graphical representation of both correct and incorrect key guesses

Along with the Power-analysis attacks that do not use a reference device,

there are also those that do. A template attack as defined by Le et al (2008) as

having two stages ‘the profiling stage to learn about the device and the key

22

extraction stage to detect the secret key.’. The profiling stage they refer to uses a

variety of signals in the creation of a database (this database being dedicated to one

singular device) which becomes an integral part of the template attack as it stores

various templates which are used during the attack. The definition of a ‘template’

within the bounds of a template attack means the number of templates referenceable

is extremely large. Le et al (2008) provides an example of how large using DES, for

which they state there are, ‘26 possibilities for Ci, and 26 possibilities for Kk. Hence

there are in total 212 = 4096 templates’, C referring to the text and K referring to the

key assumption. As the number of templates is so large using a DES system as the

basis of the attack is impractical to say the least, for this reason Le et al (2008)

recommends using the ‘bit values like the output of an S-box’ as its output contains

four bits and as such, 16 templates (24). The key extraction stage is used to

determine the correct key, which uses database that has been created using the

templates in the profiling stage, to determine the most successful template within the

database, the maximum likelihood metric (ML) is used which is applied to the result

of the extraction of the information, the best template to use is then considered the

on with the highest ML. Alongside the ML, Le et al (2008) also refers to a ‘minimal

distance metric’ (MD), which is used in conjunction with the ML metric in

representing the distributions of templates in a graphical format (which they had

displayed in their Figure 11, (see Figure 6 below)).

Figure 6 Example used in Le et al (2008) (referred to as Figure 11) with a scenario using a signal size of L = 100.
This represents the distribution of templates both in a real sense and using the MD and ML metrics.

While many Power analysis attacks require physical access to the

CPU/device being targeted, Lipp et al (2021) proposes attacks that can be defined

as ‘software-based power side-channel attacks’ which are aimed at various Intel

servers, desktop, and laptop CPUs. The attack is performed using the RAPL

interface which is Intel’s Running Average Power Limit as access to this interface

does not require privileged access and as such allows direct access to the values

23

that ‘correlated with power consumption, forming a low-resolution side channel..’

Lipp et al (2021) has stated that using ‘sufficient statistical evaluation’ of the values

provided by RAPL, they can see clear ‘variations in power consumption, which

distinguish different instructions and different Hamming weights of operands and

memory loads.’. Furthermore, using this method of attack, Lipp et al (2021) shows

how ‘an unprivileged attacker is able to leak AES-NI keys from Intel SGX and the

Linux kernel’ along with breaking the KASLR (Kernel Address-Space Layout

Randomization). SGX refers to the instruction code set used within some Intel CPUs

that allow a number of user and operating system level codes to define areas of

memory to be defined as private, which are referred to as enclaves, the contents of

which is intended to be inaccessible from any external source. As a basis for their

study, Lipp et al (2021) used existing studies on software-based attacks against

mobile devices for websites (Qin and Yue 2018) and ‘app fingerprinting, UI inference,

password length guessing, and geolocation estimation.’ (Yan et al 2015). Lip et al

(2021) propose PLATYPUS (Power Leakage Attacks: Targeting Your Protected User

Secrets) that uses observed changes in ‘power consumption with a resolution of up

to 20 kHz’, allowing the execution of various instructions and operands to be

differentiated by power usage within the processor. To perform the attacks, Lipp et al

(2021) repurposed ‘previously published techniques for microarchitectural attacks

and apply them in our software-based power analysis attack.’ Such techniques are

called Single-Stepping and Zero-Stepping. Single-Stepping, as first introduced by

Van Bulck et al (2017), which interrupts ‘the victim enclave after every single

instruction’ by using SGX-Step, an open-source framework for SGX enclaves, to

‘configure untrusted page table entries and/or x86 APIC (Advanced Programmable

Interrupt Controller) timer interrupts’ which was created and maintained by Bulck et

al (2022). Single-Stepping works by manipulating the APIC to ‘construct

high-resolution, low-noise channels to spy on enclaved execution,’ which allows

observations per instruction (also referred to as ‘maximal temporal resolution’ by

Bulck et al 2017), Figure 7 by Bulck et al (2017) provides an effective graphical

model of the framework for performing single-stepping on SGX enclaves. The full

process of Single-Stepping follows a sequential six step format, step one involves

the APIC timer sending an interrupt which then arrives at the enclave, in step two the

processor executes the procedure responsible for storing the ‘execution context in

the enclave’s SSA (State Save Area) frame, initializes CPU registers, and vectors to

24

the kernel-level interrupt handler.’ which then leads to step three during which the

kernel module created by Bulck et al (2022) is then registered within the APIC even

call back list, allowing it to be called on each occurrence of the timer interrupts. By

having this occur on each interrupt, highly customized and specific kernel-level code

can be inserted into the enclave’s SSA frame, allowing SGX-Step ‘to retrieve the

stored instruction pointer from the interrupted enclave’s SSA frame using the

EDBGRD instruction..’ This feeds into step four in which the kernel returns to the

user space AEP (Asynchronous Exit Pointer) trampoline which is used to release

resources of completed processes and executions while waiting for an

asynchronous/parallel process to complete. Once ready, the next step, step five,

causes ‘any attack-specific user mode [made] spy code can be easily run, before the

single-stepping adversary configures the APIC timer for the next interrupt, as this

step ends the final step, leads to the ERESUME instruction to run, which is defined

by FelixCloutier (2019) as an instruction which ‘resumes execution of an enclave that

was interrupted due to an exception or interrupt, using the machine state previously

stored in the SSA.’.

Figure 7 Framework diagram created for this report using the model created and utilised by Bulck et al (2017)
(referred to as Figure 1) which outlines the process of Single-Stepping SGX enclaves

Mitigating these Power analysis attacks relies on keeping statistical values on

power consumption hidden (or at least protected behind an admin privilege level).

4.2 Cache-Based Attack
While many attacks are named for the feature of a CPU or cryptographic device they

target, acoustic, timing, power, the cache-based attacks are named for the

side-channel they take advantage of, namely the cache. Different attacks within this

family can use different cache types as side-channels for information leakage but the
25

most infamous two attacks, Spectre and Meltdown, use the cache memory and

memory addresses within the cache. This section of the report will focus solely on

Spectre attack as this can be seen as the cause of the growing concern around

these forms of attacks.

As previously mentioned in section 2.0 Spectre is a side-channel attack that

attacks the speculative execution and branch predictor of a CPU, which are the

components used in improving the performance by queuing predicted instructions

and operations based on a predicted (or speculated) result. These queued, predicted

instructions can sometimes be mispredicted and then become categorised as

transient instructions which is at the core of the Spectre vulnerability. Transient

instructions are a danger to CPUs as they can affect and modify the

microarchitecture of the processor, even when the instruction is reversed, leaving no

previous trace of the instruction execution within the architecture of the CPU. Jann

Horn and Paul Kocher both discovered the Spectre vulnerability, Horn with Google’s

Project Zero (2018) and Kocher in collaboration with Daniel Genkin, Mike Hamburg,

Mortiz Lipp and Yuval Yarom in June 2017 (although the vulnerability was not made

public until January 2018). The presentation by Paul Kocher at the Security and

Privacy Symposium (2019) includes a summary of how the Spectre attack is

performed, first the speculation scenario (and thus a computational error) is

theorised which leads to a normally safe computation (this could even be a simple ‘if

else’ statement) that when speculated, becomes unsafe and causes a computational

error with the transient instruction and thus the error required or desired to lead to

the information leaking through a side-channel.. A diagram created by Kocher et al

(2018) effectively shows the theory behind the branch predictor and how it works in

practice (Appendix V), this feature of most modern CPUs will speculate that a certain

instruction set or function will need to run and prepare this for execution, upon

reaching this instruction set, if the speculated instruction was incorrect the result of

this is reversed (thus the term transient instruction is then assigned). However, this

reversal; as stated previously, does not undo the microarchitectural changes and as

such the state of the processor can be obtained by an attacker, providing information

leakage through a side-channel (in the case of cache attacks, the side-channel is the

cache memory used in programs). Spectre is delivered via a program which an

attacker will use to mistrain the branch predictor to get transient instructions to affect

the state of the processor’s microarchitecture, which then opens the way for

26

information to leak through the cache memory. Kocher et al (2018) states that a

branch predictor can be ‘mistrained’ by running the function/call a few times with

either the same or similar values that satisfy a certain condition, which leaves the

branch predictor open to predict and then speculatively execute the mispredicted

instruction.

An essential idea to note regarding both speculative execution and the branch

predictor is that the result (being transient instructions and the Spectre attacks) are

not bugs in the sense that there is an error in the computational process of the CPU.

A bug is defined as something that happens that is unexpected or something that

can be considered outside of the scope of what the device or software should do. All

elements involved in Spectre all compile ‘with architecture specs’ (Kocher 2019), the

branch predictor learns and predicts based on previous results, the speculative

execution correctly reverses the architectural state, the read instructions only fetch

information the victim is allowed to read, the caches are storing the state of the

microarchitecture, and all covert and side-channels are well known.

Kocher (2019) has proposed the idea that Spectre, rather than being

something developed in response to improving security, is actually a ‘symptom of

excessive architectural ambiguity’ which he explains is caused by the lack of defined

rules that state whether information is shared (or not) between different processes

and thus if all processes are given access to the same information, all processes

need strengthening.

4.3 Time-Based Attack
A time-based side-channel attack (also called a timing attack) uses the time taken to

process different inputs into a system (such as a CPU performing a cryptographic

operation), when measuring the time taken to perform particular operations using

particular inputs, the ‘timing channels can leak data or keys across a controlled

perimeter’ and while it is thought that this information is of minor note, Kocher (1996)

presents a number of attacks that ‘exploit the timing measurements from vulnerable

systems to find the entire secret key’.

An attacker can analyse these varying processing times with precision

instruments, focusing on the processing times of each input. The analysis of each

allows an attacker to move backwards through the inputs with the result of

compromising the cryptography system in place and thus leakage of information

27

from the CPU into a side-channel. Kocher (1996) explains that ‘the attack can be

tailored to work with virtually any implementation that does not run in fixed time’ and

that there is a sole requirement for beginning any of the attacks, calculating 𝔁 (also

referred to as the secret key). Both Diffie-Hellman and RSA can be attacked in a

comparable manner as Kocher (1996) explains that both are defined as ‘private-key

operations’ which, at their core, ‘consist of computing R = 𝒚𝘻 mod 𝓃’. Within this

equation, the 𝓃 is known by all, also referred to as public, 𝒚 is discoverable by an

eavesdropper, after which the attacker’s primary goal is the discovery of the value of

𝔁, the secret key. For the attack to succeed, the victim must compute 𝒚𝘻 mod 𝓃 over

several iterations, with the value of 𝒚 changing each time. Within these several

iterations, the attacker will be privy to 𝒚, 𝓃, and the computation time (this can be

prevented however, if new secret exponents (key) of 𝔁 are chosen for each iteration).

Using the above calculation, any non-fixed time cryptographic operations can be

attacked with a timing attack, allowing any attacker to retrieve the secret key 𝔁, using

it on the cipher text and then retrieving the data that was initially secured, this allows

virtually any similar cryptographic operations to be broken by retrieving the secret

key all through simply applying known values and the computation time into an

equation.

Mitigating timing attacks, as proposed by Kocher (1996), come in both

architectural and physical controls, one such architectural mitigation technique can

be introduced for ‘blinding signatures’ which prevents an attacker from being privy to

the ‘input to the modular exponentiation function.’. A further architectural mitigation

is the introduction of ‘constant-time cryptography’ which ensures all operations take

a constant amount of time, which relates to the operation that takes the longest. This

prevents any relevant information regarding the time taken to perform an operation

from being involved as the time remains ‘constant’ throughout the life of the device

(ChosenPlaintext 2022). There is a similar (yet far more inefficient) method of

mitigation that uses the same concept as constant-time cryptography by suggesting

each instruction or operation is followed by a random ‘sleep’ period which then

eliminates the precise measurements required for performing such attacks. This is

inefficient however as an attacker can just take more measurements to see through

the ‘noise’ or random ‘sleep’ periods, which again is countered by adding more

noise, leading to a significant slowdown in code execution.

28

4.4 Differential Fault Analysis Attack
First proposed and used by Biham and Shamir (2006), the Differential Fault Analysis

(or DFA) attack that allows an attacker to analyse a number of ciphertexts (anywhere

from 50-200) and then ‘extract the full DES key from a sealed tamper-resistant DES

encryptor’. As stated, DFA is capable of breaking ‘many additional secret key

cryptosystems including IDEA, RC5, and Feal’, which further lends to the danger of

this attack. Biham and Shamir (2006) go on to present a model which they call

‘asymmetric fault’ which can be performed on a cryptographic device (such as a

CPU), allowing an attacker to extract the secret key with no knowledge of the

‘structure and operation of the cryptosystem’. The base operation of this attack as

outlined by Biham and Shamir (2006) is

‘The smart card is assumed to have random transient faults in its registers,

with some small probability of occurrence in each bit, so that during each

encryption/decryption there appears a small number of faults (typically one)

during the computation, and each such fault inverts the value of one of the

bits, either from zero to one or from one to zero’

This is shown in their paper as they describe how an attacker will use the

smartcard (or cryptographic device) to encrypt unknown plaintext into ciphertext

twice. Upon comparison of the two encryptions if a difference is observed then it can

be assumed that a fault occurred in one of the encryptions, providing them with two

distinctly different ciphertexts derived from the same plaintext and encryption

technique. This attack has been proven to be effective in finding the whole last

subkey within the analysis of 50-200 ciphertexts’ by ‘simulating random single-faults

in all the rounds’. The discovery of the subkey is essential as it contains 48/56 of the

key bits, the knowledge of which allows an attacker to guess the ‘missing 8 bits in all

the possible 28 = 256 ways’ (Biham and Shamir 2006).

This form of attack can be mitigated easily by increasing the number

(generally doubling) ‘of encryption operations during a single round’ which Khan et al

(2014) states ‘has proven to mitigate such kind of attack’ which is further supported

by Zhou and Feng (2005) who discovered an effective countermeasure to this type

of attack by computing ‘the whole or a part of the rounds twice (including key

scheduling).’ Although this has been noted to ‘degrade the whole performance.’

29

4.5 Acoustic Cryptanalysis Attack
Best defined by Genkin et al (2017), ‘the attack can extract full 4096-bit RSA

decryption keys from laptop computers (of various models), within an hour, using the

sound generated by the computer during the decryption of some chosen ciphertexts’.

Genkin et al (2017) has shown this type of attack can be performed ‘using a plain

mobile phone placed next to the computer, or a more sensitive microphone placed

10 meters away.’, which shows the capability of this attack as it can be performed by

relatively low-tech recording devices as long as they are close enough to the victim’s

device. To begin this attack, Genkin et al (2017) first had to differentiate between the

different operations (and accompanying sounds) performed by the CPU, which was

done by running a custom program which loops several instructions, these

instructions were ‘HLT (CPU sleep), MUL (integer multiplication), FMUL

(floating-point multiplication), main memory access (forcing L1 and L2 cache

misses), and REP NOP (short-term idle)’. An example of the sound recorded upon

execution of each of these operations is available from Genkin et al (2017) labelled

as Fig. 5 in their paper, for the purpose of completeness it has also been included

below as Figure 8.

Figure 8 Genkin et al (2017) Fig.5 Acoustic measurements of various CPU operations recorded using a
spectrogram

Tromer (2004) specifically targeted the sound produced when using the RSA

cryptographic operation. He had chosen the GnuPG 1.2.4 implementation, using it to

write short messages and then ‘signing’ them using the 4096-bit RSA encryption key.

As with the later paper by Genkin et al (2017), Tromer (2004) began the use of a
30

spectrogram to visualise the sound produced by the CPU, while also elaborating that

the bright horizontal strips (which are also visible on Figure 8) represent the

computer being in an ‘idle’ state. Alongside this visible idle state, Tromer (2004) also

proves the transition between the two exponents (the transition between plain to

ciphertext) is clearly visible as ‘halfway through the signing operation there us a

transition at several frequency bands’. An key part of this attack is when the attacker

is able to distinguish between different keys within RSA, particularly identifying these

keys solely on sounds as each key causes its own unique sound, Tromer (2004)

himself states that using ‘GnuPG 1.2.4 to sign a fixed message using 7 different

4096-bit RSA keys randomly generated beforehand’ he was able to view a unique

spectral signature each time a signing was completed.

The danger with this attack is how easy it is to collect the recordings, as

previously mentioned a mobile phone placed near the target device is sufficient in

collecting the information required to perform the attack (although it is still complex in

utilising this data as a spectrogram would be required to fully understand the data).

The danger of this attack can be mitigated in a number of ways, both physical and

digital, Tromer (2004) provides a number of possible methods, such as the use of

‘sound dampening equipment’ in an attempt to reduce or eliminate the noise

produced by the target device, or on the other end of the same idea, masking the

produced sound by performing a louder, more over-bearing sound. Further physical

mitigations as suggested by Tromer (2004) is to ensure ‘careful circuit design and

high-quality electronic components’ which will reduce the vibrations and therefore

sound produced by the device. One digital mitigation proposed by Tromer (2004) is

the implementation of further ‘algorithmic techniques to reduce the cryptanalytic

usefulness of the emanations to attacker’.

31

5.0 Best Practice Guide

5.1 Planning and Design
To prepare a foundation for the BPG, Appendix Y was written to both plan the layout

and store all information regarding the BPG (structure, content, deadline, and

scope). Using this, an effective guide was developed which has a concise section on

five different side-channel attacks, those who suggested/proposed such attacks, and

the most effective mitigation strategies. Again, as stated previously, this guide is

aimed at academics such as lecturers, students, and other researchers who may use

this as either a reference, or appendix content to learn more about the topic of

side-channel attacks.

The structure of the guide followed a simple format. The first page contains a

brief introduction to the content of the guide, followed by a short section on the

author alongside a table of contents (hyperlinked for online users). Finishing with a

page long section on the topic of side-channel attacks, introducing the reader to the

theory behind the attacks, and brief examples of the attack. After planning the

structure, a brief of the content was created, describing five side-channel attacks

including (Acoustic Cryptanalysis, Timing, Cache, Power analysis, and Allocation

based attacks), how they perform in practice, and how they are best mitigated.

The deadline and scope were also considered within the plan. The deadline of

the end of July was chosen as August was considered the month for changes to the

final draft and finalising both deliverable and report. The scope of the guide required

setting some limitations as to the content within, as it is easy to include too much

detail and saturate the guide with equations and scientific formulae, particularly on

certain attacks. By enforcing a limit of only outlining attacks while providing an

in-depth description of the technicalities of each, using peer-reviewed sources, the

content of the guide could be considered comprehensive whilst retaining the purpose

of providing a resource for academics (students, lecturers, researchers etc.) to use.

5.2 The Guide
The guide itself is in two forms, a physical/online guide book which can be

read here, or as a physical copy (only provided on request), and in the form of a

‘TryHackMe’ room which allows a more hands-on approach to the topic which is

available here. The guide as a physical or online resource contains a plethora of

information and references, allowing those who consider themselves as visual or
32

http://tomisee.github.io/
http://tryhackme.com/jr/spectresidechannelattack

aural learners to benefit from it, as well as having the easily accessible (as is it

downloadable) file available whenever it is needed. The TryHackMe room allows

those who consider themselves to be kinaesthetic learners to answer various

questions on the topic, being rewarded with points should they complete the room. A

video within both in the TryHackMe room and the appendices of this report (see

appendix P) provides a visual demonstration of the Spectre side-channel attack,

using a PoC file stored in a repository hosted on GitHub.

5.3 Deliverable Evaluation
The development of the guide has been a significant hurdle in this project as it

has been necessary to fully understand each aspect of side-channel attacks

(particularly those included within the guide). However, the TryHackMe room has

been an extremely effective tool in teaching the basics of at least one side-channel

attack, as well as putting forward and teaching the theory behind all side-channel

attacks. The idea that information can leak through a side-channel once sufficient

information on the system has been attained (such as the secret key, cryptographic

operation, or memory addresses used) has been effectively shown using the guide.

While having similar content to the report, the guide provides simpler

information which targets academics who may not be as versed about side-channel

attacks, whilst also going into detail where appropriate. By compacting the

information relevant to the reader, the guide allows a basic understanding which the

author feels is more relevant for the target audience. The guide also works very well

both standalone and parallel to the TryHackMe room as both contain different topics.

While the TryHackMe room focuses on the cache-based side-channel attacks

(specifically Spectre), the guide provides overall information on five chosen attacks

and their mitigation strategies.

For future development, there are several areas of improvement particularly

within the TryHackMe room which suffered due to the time constraints that existed

after a sizeable portion of time was allocated to the guide and report write-up. One

improvement would be the inclusion of a custom VM (Virtual Machine) in which a

user would be able to run the Spectre PoC (or indeed others, such as Meltdown) on

a device and see the results first hand. Secondly, more specific attacks within the

guide to allow a greater range of information, or more hands-on and

casual-user-centric mitigation strategies that those users could attempt without the

33

need for manipulating the microprocessor or changing specific settings within the

CPU. Finally, the guide would benefit massively from a website specifically designed

for the topic of side-channel attacks, allowing a repository of sorts to be created. This

would house a large number of resources and content that beginners, academics,

and CPU/microarchitecture amateurs/professionals can use to both pursue new

research and support existing research.

34

6.0 Conclusion
The purpose of this paper is to provide insight into the concept of side-channel

attacks, along with creating a comprehensive guide that provides invaluable

information and sources for academics (such as students, lecturers, and

researchers) in their own research. The information gathered from a number of

primary and secondary sources was standardised, allowing any reader to pick up the

paper or guide and understand the content needing only a rudimentary knowledge in

the field of IT/computer science.

At the start of this project, there was no one place that had a comprehensive

set of information on numerous side-channel attacks and as such the collection of

this information (particularly section 2.0 Literature Review) required in-depth

understanding of the topic in-order to explain the more complex concepts within

side-channel attacks to beginners. This project provided an opportunity not only to

learn about professionally researched topics such as differential power analysis and

acoustic cryptanalysis but also to study some more unknown attacks and recent

attacks that have been discovered in the last year, such as Hertzbleed and

BranchScope.

Before beginning this project, the author had only knowledge of side-channel

attacks through lessons taught within university and as such focused solely on

Spectre and Meltdown to meet the requirements of assessments. By using

side-channel attacks as the topic for this dissertation, a wider range of knowledge

was acquired, along with a greater understanding of the concepts and ideas that are

involved in side-channel attacks. One key idea learned through the completion of this

project was the use of a public and private exponent in carrying out cryptographic

sequences, particularly the involvement of said exponents within side-channel

attacks (such as power analysis and timing attacks) as an attack vector. A more

specific pair of concepts learned about during this project was the hamming weight

and hamming distance which are defined as a comparison of two bytes, looking at

the number of symbols different from zero (0) and the number of differentiating

symbols, respectively.

This work has provided a key contribution to the academic sector on the topic

of side-channel attacks through the deliverables created. The guide allows access to

a peer-reviewed and professional repository of information that works as a ‘getting

started’ guide, or as a further reading area. The TryHackMe room provides a secure

35

location users can test themselves on side-channel attacks and view a

demonstration on the Spectre side-channel attack. The guide has also been hosted

on a blog created by the author and hosted by Github Pages which allows free

hosting of a site, this allows the guide to be available online, and in a downloadable

format.

There are a number of areas that can be further developed to improve this

project significantly in the future. One such area being the enhancement of the

TryHackMe room and possibly even expanding this into its own learning pathway on

TryHackMe (a collection of rooms that provide a user with all tools and knowledge

necessary to be considered knowledgeable in that area). Another area for

improvement would be creating a platform for the learning materials to be hosted on,

for example, an expanded version of the website which also hosts tools, source

code, and demonstration videos. Finally, expanding the range of demonstrations

available on the YouTube channel to cover all types of side-channel attacks would

benefit both the purpose of this project and the research area.

With further time and resources, one avenue that would be explored are the

practical side of attacks mentioned in section 4.0 Side-Channel Attacks. This

includes accessing sensitive sound equipment and spectrographs to record various

outputs of the target devices (such as CPUs). This would provide an opportunity to

explore the practical elements of these attacks and the technicalities involved

allowing the creation of more demonstrations and guides. Finally, this project has

raised a number of issues with regards to the standard of writing for many research

papers that come under the topic of side-channel attacks. Many of the concepts

within, require mathematical equations and an understanding of electronics to fully

appreciate them. This project did attempt to solve this by standardising a great deal

of information into a less complex style, with further explanations provided where

necessary. While successful, collaboration with existing specialists who have

developed their own projects and frameworks that look at this specific security

vulnerability, such as Mitre’s ATT&CK framework (2022), the quality of the language

standardisation, and the number of attacks and/or mitigation techniques would

improve vastly.

This project has been successful in answering the issue posed by the title

‘Avoiding, Preventing, and Mitigating Side-Channel Attacks: A Best Practice Guide’

as a comprehensive guide has been created with standard language and

36

explanations of complex topics alongside a number of distribution techniques that

allow users to access this guide in both an online and offline format. Furthermore,

the inclusion of visual and interactive materials means those with different learning

styles can still benefit. The language used and the format followed make both this

paper and the guide suitable for academics, such as students, lecturers, and

researchers.

37

References

Akhmedova, K. (2022) ‘Theoretical Foundations for the Creation of Electronic

Interactive Educational and Programming in the Topic “Computer Science and

Information Technology”’ International Journal of Innovations in Engineering

Research and Technology 2022, Vol 9, Issn 4, pp. 150-152, Available at:

https://media.neliti.com/media/publications/429596-theoretical-foundations-for-the-cr

eation-b88e707e.pdf (Accessed: 03/08/2022)

AMD (2018) Software Techniques for Managing Speculation on AMD Processors

developer.amd.com, 01/02, Available at:

http://developer.amd.com/wordpress/media/2013/12/Managing-Speculation-on-AMD-

Processors.pdf (Accessed: 27/06/2022); archived atWayback Machine

(https://archive.org/web/) >

http://developer.amd.com/wordpress/media/2013/12/Managing-Speculation-on-AMD-

Processors.pdf

Angel, S. Kannan, S. Ratliff, Z. (2020) ‘Private resource allocators and their

applications’ IEEE Symposium on Security and Privacy (SP), 2020, pp. 372-391, doi:

10.1109/SP40000.2020.00065.

Azana, D, L. (2017) Differences between ASLR, KASLR and KARL, Daniloaz.com,

07/07, Available at:

https://www.daniloaz.com/en/differences-between-aslr-kaslr-and-karl/ (Accessed:

20/06/2022)

Biham, E. Shamir, A. (2006) ‘Differential Fault Analysis of Secret Key

Cryptosystems’. Crypto 1997: Advances in Cryptology — Crypto ‘97, pp. 513-525,

Available at: https://link.springer.com/content/pdf/10.1007/BFb0052259.pdf

(Accessed: 10/08/2022)

Bulck, J, V. Lipp, M. Gyselnck, J. Bognar, M. (2022) SGX-Step [GitHub] Available at:

https://github.com/jovanbulck/sgx-step (Accessed: 08/07/2022)

38

Bulck, J, V. Piessens, F. Strackx, R. (2017) ‘SGX-Step: A Practical Attack Framework

for Precise Enclave Execution Control’, Proceedings of the 2nd Workshop on

System Software for Trusted Execution, Shanghai China, 28 October, Association for

Computing Machinery, New York: Association for Computing Machinery, Available at:

https://dl.acm.org/doi/pdf/10.1145/3152701.3152706 (Accessed: 05/07/2022)

ChosenPlaintext (2022) A Beginner’s Guide to Constant-Time Cryptography [Online],

Available at:

https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.

html (Accessed: 08/08/2022)

Canella, C. Bulck, J, V. Schwarz, M. Lipp, M. von Berg, B. Ortner, P. Piessens, F.

Evtyushkin, D. Gruss, D. (2019) ‘A Systematic Evaluation of Transient Execution

Attacks and Defenses’ USENIX Security Symposium 2019, Available at:

https://arxiv.org/abs/1811.05441 (Accessed: 29/06/2022)

Cargill, M. O’Connor, P. (2009)Writing Scientific Research Articles, 2nd Edn,

Sussex: Wiley-Blackwell

Choi, Y. Knies, A, D. Gerke, L. Ngai, T-F. (2001) ‘The Impact of If-Conversion and

Branch Prediction on Program Execution on the Intel Itanium Processor’

Proceedings of the 34th Annual International Symposium on Microarchitecture 2001,

Austin, Texas, USA, December 1-5 2001, Available at:

https://www.researchgate.net/publication/221005549_The_impact_of_if-conversion_

and_branch_prediction_on_program_execution_on_the_Intel_Itanium_processor

(Accessed: 02/08/2022)

Chromium (2018) Site Isolation. Available at:

https://www.chromium.org/Home/chromium-security/site-isolation/ (Accessed:

27/06/2022)

Cottrell, S. (2003) The Study Skills Handbook, 2nd Edn, New York: Palgrave

MacMillan

39

Evtyushkin, D. Riley, R. Abu-Ghazaleh, N. Ponomarev, D. (2018) ‘BranchScope: A

New Side-Channel Attack on Directional Branch Predictor’ ACM SIGPLAN Notices

2018, [Online], Vol 53, Issn 2, pp. 693-707, Available at:

https://dl.acm.org/doi/abs/10.1145/3296957.3173204 (Accessed: 02/07/2022)

FelixCloutier (2019) ERESUME — Re-Enters an Enclave [Online] Available at:

https://www.felixcloutier.com/x86/eresume (Accessed: 05/07/2022)

Guo, Y. Chen, X. Mei, H. Yan, L. (2015) ‘A Study on Power Side Channels on Mobile

Devices’ Internetware ‘15: Proceeding of the 7th Asia-Pacifica Symposium on

Internetware, Wuhan China, 6 November. New York: Association for Computing

Machinery. Available at: https://dl.acm.org/doi/proceedings/10.1145/2875913

(Accessed: 05/07/2022)

https://www.researchgate.net/publication/309024581_A_Study_on_Power_Side_Cha

nnels_on_Mobile_Devices,

IEEE Symposium on Security and Privacy (2019) Spectre Attacks Exploiting

Speculative Execution. Available at:

https://www.youtube.com/watch?v=zOvBHxMjNls&t=664s (Accessed: 04/08/2022)

Intel (2013) Enhanced Security Features for Confidential Computing Intel Platform

Security Technologies, Available at:

https://cdrdv2.intel.com/v1/dl/getContent/723693?explicitVersion=true (Accessed:

05/07/2022)

Intel (2018) Speculative Execution Side Channel Mitigations, Revision 3.0, Available

at:

https://www.intel.com/content/dam/develop/external/us/en/documents/336996-specul

ative-execution-side-channel-mitigations.pdf (Accessed: 27/06/2022)

Kim, T. Shin, Y. (2022) ‘ThermalBleed: A Practical Thermal Side-Channel Attack’

IEEE Access, vol 10, pp. 25718-25731., doi: 10.1109/ACCESS.2022.3156596.

40

Kocher, P. (1996) Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems, pp. 3-9, Available at:

https://paulkocher.com/doc/TimingAttacks.pdf (Accessed: 08/08/2022)

Kocher, P (2019) ‘Spectre Attacks: Exploiting Speculative Execution’ 40th IEEE

Symposium on Security and Privacy 2019, Available at:

https://www.ieee-security.org/TC/SP2019/ (Accessed: 04/08/2022)

Kocher, P. Horn, J. Fogh, A. Genkin, D. Gruss, D. Haas, W. Hamburg, M. Lipp, M.

Mangard, S. Prescher, T. Schwarz, M. Yuval, Y. (2018) Spectre Attacks: Exploiting

Speculative Execution, Available at: https://spectreattack.com/spectre.pdf

(Accessed: 27/06/2022)

Kocher, P. Jaffe, J. Jun, B. (1999) ‘Differential Power Analysis’ Advances in

Cryptology — CRYPTO’ 99, Vol 1666, Available at:

https://paulkocher.com/doc/DifferentialPowerAnalysis.pdf (Accessed: 19/06/2022)

Le, T-H. Canovas, C. Clédière. (2008) An Overview of Side Channel Analysis

Attacks, Available at: https://dl.acm.org/doi/pdf/10.1145/1368310.1368319

(Accessed: 30/06/2022)

Lipp, M. Kogler, A. Oswald, D. Schwarz, M. Easdon, C. Canella, C. Gruss, D. (2021)

‘PLATYPUS: Software-based Power Side-Channel Attacks on x86’ 2021 IEEE

Symposium on Security and Privacy (SP), Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9519416 (Accessed:

05/07/2022)

Lipp, M. Schwarz, M. Gruss, D. Prescher, T. Haas, W. Fogh, A. Horn, J. Mangard, S.

Kocher, P. Genkin, D. Yarom, Y. Hamburg, M. (2018) Meltdown: Reading Kernel

Memory from User Space, Available at: https://meltdownattack.com/meltdown.pdf

(Accessed: 27/06/2022)

41

Microsoft Edge Team (2018) Mitigating speculative execution side-channel attacks in

Microsoft Edge and Internet Explorer, Available at:

https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations

-microsoft-edge-internet-explorer/ (Accessed: 27/06/2022)

Mitre (2022) ATT&CK Framework, Available at:

https://attack.mitre.org/matrices/enterprise/ (Accessed: 02/09/2022)

Percival, C. (2005) ‘Cache Missing for Fun and Profit’, BSDCan 2005, Ottawa 13

May. Massachusetts Institute of Technology. Available at:

http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf (Accessed: 16/06/2022)

Qin, Y. Yue, C. (2018) ‘Website Fingerprinting by Power Estimation Based

Side-Channel Attacks on Android 7’ TrustCom/BigDataSE 2018, Available at:

https://inside.mines.edu/~chuanyue/papers/TrustCom2018Power.pdf (Accessed:

05/07/2022)

Quinn, R. (2021) ‘What is “Retpoline?”’ Assured Information Security Available at:

https://www.griffissinstitute.org/what-we-do/gi-lecture-education-series-presentations/

giles-retpoline#:~:text=Retpoline%20stands%20for%20return%20and,jmp%E2%80

%9D%20and%20%E2%80%9Ccall%E2%80%9D. (Accessed: 22/08/2022)

Ren, Y. Wu, L. ‘Power Analysis Attacks on Wireless Sensor Nodes using CPU Smart

Cards’ 22nd Wireless and Optical Communication Conference 2013, pp. 665-670,

Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6676458&tag=1

(Accessed: 29/06/2022)

Su, C. Zeng, Q. (2021) ‘Survey of CPU Cache-Based Side-Channel Attacks:

Systematic Analysis, Security Models, and Countermeasures’. Security and

Communication Networks, Vol 2021, p.1-15. Available at:

https://doi.org/10.1155/2021/5559552. (Accessed: 16/06/2022)

42

Tromer, E. Shamir, A. (2007) Hardware-Based Cryptanalysis. PhD thesis. Scientific

Council of the Weizmann Institute of Science. Available at:

https://www.cs.tau.ac.il/~tromer/papers/tromer-phd.pdf (Accessed: 26/06/2022)

TryHackMe (2022) Hands-on Cyber Security Training with Real-World Scenarios

Available at: https://tryhackme.com (Accessed: 29/06/2022)

Wang, Y. Paccagnella, R. Tang, H, E. Shacham, Hovav. Fletcher, C, W. Kohlbrenner,

D. (2022) ‘Hertzbleed: Turning Power Side-Channel Attacks into Remote Timing

Attacks on x86’ 31st USENIX Security Symposium, Boston 10-12 August 2022.

Available at: https://www.hertzbleed.com/ (Accessed: 16/06/2022)

Wikner, J. Razavi, K. (2022) ‘RetBleed: Arbitrary Speculative Code Execution with

Return Instructions’ Usenix Security ‘22 Technical Sessions, Available at:

https://www.usenix.org/conference/usenixsecurity22/technical-sessions (Accessed:

16/06/2022)

Wolaver, D, H. (1991), Phase-Locked Loop Circuit Design, Englewood Cliffs, N.J:

Prentice Hall.

43

Appendices

Appendix A

Royce, W, W. (1970) ‘Managing the Development of Large Software Systems’

Technical Papers of Western Electronic Show and Convention (WesCon) August

25–28, 1970, Los Angeles, USA. Available at:

http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf (Accessed:

29/06/2022)

Appendix B

In One Lesson (2013) How a CPU Works Available at:

https://www.youtube.com/watch?v=cNN_tTXABUA (Accessed: 30/06/2022)

Appendix C

Warren Jr, H, S. (2013) Hacker’s Delight 2nd edn Boston: Addison-Wesley

44

Appendix D

Luo, C. Fei, Y. Luo, P. Muhkerjee, S. Kaeli, D. (2012) ‘Side-Channel Power Analysis

of a GPU AES Implementation’ 33rd IEEE International Conference on Computer

Design: VLSI in Computers and Processors, (ICCD) 2015, Available at:

https://ieeexplore.ieee.org/abstract/document/7357115 (Accessed: 30/06/2022)

Appendix E

Ambrose, J, A. Ragel, R, G. Parameswaran, S. ‘RIJID: Random Code Injection to

Mask Power Analysis Based Side Channel Attacks’ 44th Annual Design Automation

Conference 2007 Available at: https://dl.acm.org/doi/abs/10.1145/1278480.1278606

(Accessed: 30/06/2022)

Appendix F

Zhao, X. Guo, S. Zhang, F. Wang, T. Shi, Z. Liu, H. Ji, K. Huang, J. (2013) ‘Efficient

Hamming Weight-Based Side-Channel Cube Attacks on PRESENT’ Journal of

Systems and Software Vol 86 (Issn 3) pp. 728-743 Available at:

https://www.sciencedirect.com/science/article/pii/S0164121212003081 (Accessed:

30/06/2022)

Appendix G

Shamir, A. Tromer, E. Genkin, D. (2016) ‘Acoustic Cryptanalysis’ Journal of

Cryptology, Vol 30 pp. 392-443, Available at:

https://link.springer.com/article/10.1007/s00145-015-9224-2#Sec44 (Accessed:

20/07/2022)

Appendix H

Kocher, P (2018) spectre_poc.c [GitHub] Available at:

https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a

(Accessed: 11/07/2022)

Appendix I

Schwarzl, M. Borrello, P. Saileshwar, G. Müller, H. Schwarz, M. Gruss, D. (2021)

Practical Timing Side Channel Attacks on Memory Compression, Available at:

https://arxiv.org/abs/2111.08404 (Accessed: 21/07/2022)

45

Appendix J

Wong, W, H. Timing Attacks on RSA: Revealing Your Secrets through the Fourth

Dimension. Available at: https://www.cs.sjsu.edu/faculty/stamp/students/article.html

(Accessed: 21/07/2022)

Appendix K

Kocher, P, C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems, Available at:

https://www.rambus.com/wp-content/uploads/2015/08/TimingAttacks.pdf (Accessed:

21/07/2022)

Appendix L

Mushtaq, M. Mukhtar, M, A. Lapotre, V. Khurram, B, M. Gogniat, G. ‘Winter is here! A

decade of cache-based side-channel attacks, detection & mitigation for RSA’

Information Systems (2020) Available at:

https://hal.archives-ouvertes.fr/hal-02537540/document DOI:

https://doi.org/10.1016/j.is.2020.101524 (Accessed: 26/07/2022)

Appendix M

Liu, F. Yarom, Y. Ge, Q. Heiser, G. Lee, R, B. (2015) ‘Last-Level Cache

Side-Channel Attacks are Practical’ 2015 IEEE Symposium on Security and Privacy

17-21 May 2015, San Jose USA. Available at:

https://ieeexplore.ieee.org/document/7163050 (Accessed: 28/07/2022)

Appendix N

Page, D. (2003) ‘Defending against cache-based side-channel attacks’ Information

Security Technical Report March 2003. Vol 8 Issn 1, pg. 30-44. Available at:

https://www.sciencedirect.com/science/article/pii/S1363412703001043 (Accessed:

28/07/2022)

Appendix O

Black, E, P. (2006) ‘Hamming distance’ Dictionary of Algorithms and Data Structures

Available at: https://www.nist.gov/dads/HTML/HammingDistance.html (Accessed:

28/07/2022)

46

Appendix P

Harris, T (2022) Demonstration of Basic Spectre POC Available at:

https://youtu.be/UzKwc-MbEVM (Accessed: 15/07/2022)

Appendix Q

Angel, S. Kannan, S. Ratliff, Z. (2020) ‘Private Resource Allocators and their

Applications’ 2020 IEEE Symposium on Security and Privacy (SP), Available at:

https://eprint.iacr.org/2020/287.pdf (Accessed: 01/08/2022)

Appendix R

Barker, E. (2020) ‘Guideline for Using Cryptographic Standards in the Federal

Government’ Cryptographic Mechanisms, Available at:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175Br1.pdf

(Accessed: 01/08/2022)

Appendix S - Standard fundamentals of any side-channel attack

Figure 9 Created for the purpose of this report

47

Appendix T - Diagram of attack on an SGX-Enclave

Appendix U

Richards, J (2021) An Integrated Cyber Threat Hunting Program Applying Machine

Learning for Enhanced Intelligence Capabilities, [Online] Available at:

https://pure.southwales.ac.uk/ws/portalfiles/portal/9872387/MSc_Thesis_Joshua_Ric

hards.pdf (Accessed: 03/08/2022)

Appendix V - Concept behind the branch predictor and speculative execution

Kocher, P. Horn, J. Fogh, A. Genkin, D. Gruss, D. Haas, W. Hamburg, M. Lipp, M.

Mangard, S. Preacher, T. Schwarz, M. Yarom, Y. (2020) ‘Spectre Attacks: Exploiting

48

Speculative Execution’ Communications of the ACM July 2020, Vol 63, Issn 7,

Available at: https://cacm.acm.org/magazines/2020/7/245682-spectre-attacks/fulltext

(Accessed: 04/08/2022)

Appendix W

Dusart, P. Letourneux, G. Vivolo, O. (2008) ‘Differential Fault Analysis on A.E.S’

ACNS 2003: Applied Cryptography and Network Security, pp 293-306, Available at:

https://link.springer.com/content/pdf/10.1007/978-3-540-45203-4_23.pdf (Accessed:

10/08/2022)

Appendix X - Project Logbook

Event Description Date

Meeting 1 First meeting with Dr. Richard Ward. See ‘Meetings’
section for information on points discussed - Primary
point was the possible topic area and work required.

14/04/22

Meeting 2 See ‘Meetings’ section for information on points
discussed - Primary point was the research proposal
and its contents

29/04/22

Research Proposal Research proposal that contained preliminary
information on the project, as well as the outline of
any possible ethical issues. This proposal also
included an outline and approximation of the time
commitments each part of the project may require,
alongside a Gantt chart.

09/05/22 -
15/05/22

Baseline research
collected

A variety of secondary sources were collected from
books, and peer reviewed articles and journals to
form a baseline for both the literature review, and
initial research section of the report.

25/05/22 -
31/05/22

Meeting 3 See ‘Meetings’ section for information on points
discussed - Primary point was the completion of the
Ethics form, which was completed and sent to
Richard (the primary supervisor) to be signed. Once
the Ethics form was signed, it was then sent to
Daniel Cunliffe to be recorded as completed.

06/06/22

Official start of
project

After meeting 3, work had officially begun on the
project. The structure, format, and layout of the

06/06/222

49

document was completed, leaving only the content
to carry out. Various comments were left on each
section of the structure to ensure each section was
understood as it was reached.

Meeting 4 See ‘Meetings’ section for information on points
discussed - Primary point was how to create the
BPG, also discussed was how to create a true
methodology, primary supervisor also loaned
several books on creating and using a good
methodology. A fifth meeting was scheduled for
June 21st which would be the first in-person meeting
of the timeline.

17/06/22

Literature Review
begun

Parallel to meeting 4, the literature review was
started, and several sources cited and explained
regarding the basics of what a side-channel attack
is, as well as the various families of attacks that will
be analysed and included in the BPG.

17/06/22

Meeting 5 See ‘Meetings’ section for information on points
discussed - The purpose of this meeting was
primarily for the primary supervisor to provide the
books to assist with the writing of the methodology
of this project. There was also some discussion on
the BPG such as the format (which was decided to
be a technical document), and avenues of
distributing it. One avenue that was discussed at
length was hosting it on TryHackMe as a room
(either informational or interactive) to allow users to
test a side-channel attack (most likely Spectre) in a
sandboxed and isolated environment. There was
some minor discussion regarding making the BPG
available on the web both as a downloadable
attachment and as a section on the website itself
(the website would be the one created as part of the
bachelor’s dissertation in 2021).

21/06/22

Best Practice Guide
Plan

A plan of the BPG has been created and
topics/content has been considered. A technical
document/manual template was chosen as this
allowed professionalism while still being clear and
concise.

21/06/22

Best Practice Guide The best practice guide has been started although
formatting will undoubtedly change as it will require
fine-tuning to fit the standard of a technical
document.

27/06/22

Meeting 6 See ‘Meetings’ section for information on points
discussed - The purpose of this meeting was

05/07/22

50

primarily to answer queries on the format of the
dissertation, particularly about the references,
appendices, and figures (and table of). Alongside
this, there was some discussion on the current aims
and objectives and the primary supervisor had
suggested a slight change to Aim 2 from creating a
report to selecting the five appropriate attacks.
Objectives for Aim 2 and 3 were also changed to
better reflect the requirements and more effectively
justify the scope of the project.

Meeting 7 See ‘Meetings’ section for information on points
discussed - The purpose of this meeting was a
cursory discussion on the practical and deliverable
element of the project, the main focus for the rest of
July will now be the deliverable, particularly the BPG
and the TryHackMe room. A further meeting was
arranged for the next week at a different time than
usual.

12/07/22

Meeting 8 See ‘Meetings’ section for information on points
discussed - The purpose of this meeting was
regarding the deliverable progress being made,
specifically the creation of the TryHackMe room.
Supervisor feedback was positive, and the
supervisor also stated that he would run through the
room before the next meeting (21/07/2022) to
prepare feedback. Upon next meeting a large
portion of the guide should be complete and ready
for preliminary feedback.

19/07/22

Completion of BPG
and request for
feedback

The deliverable has now been completed and the
supervisor has been contacted for feedback. The
deliverable has taken two forms, one is the BPG
(Best Practice Guide) which is a detailed guide on
five distinct side-channel attacks, along with their
mitigation techniques. The second deliverable form
is the TryHackMe (THM) room which contains
information and an interactive activity which
culminates in questions that a user will answer to
affirm their knowledge after reading through the
resources provided. Finally, within the THM room a
video has been created which allows users to watch
a live demonstration of Spectre on the creators PC,
seeing the leaked information being received
through a side-channel.

02/08/2022

Meeting 9 See ‘Meetings’ section for information on points
discussed - This meeting was more impromptu than
previous as time constraints forced an earlier
meeting than intended although this was no issue,

03/08/2022

51

both for the project or for the supervisor. This
meeting was a short progress update for the
supervisor, informing him that the deliverable has
been finished, along with most of the report. The
supervisor advised adding some more materials to
the deliverable (the BPG) such as visual materials
describing some of the attacks.

Plan for visual
materials for
deliverable

A brief plan and brainstorming document have been
put together to create some visual materials for
various side-channel attacks. These visual materials
will be in the form of diagrams and a video (if time
constraints allow).

04/08/2022

Creation diagrams
for the report

Alongside the textual content of the guide, a number
of diagrams have been drawn up that show the
operation of side-channel attacks.

04/08/2022

Website prepared
and adapted for
deliverable hosting

Originally a personal blogging site created some
months ago, the GitHub pages site,
tomisee.github.io, will have the guide available both
as a download or as a readable article on the site.
The site has been created using a one file delivery
system using Markdown to easily create a simple
location to host this deliverable for free.

09/08/2022

52

http://tomisee.github.io/

