
Communication and Conflict Issues in Collaborative Software Research Projects

Cornelia Boldyreff, David Nutter and Stephen Rank
 Faculty Of Applied Computing Sciences

 University of Lincoln
 {cboldyreff,dnutter,srank}@lincoln.ac.uk

Abstract

 The Open Source Component Artefact Repository (OS-
CAR) was developed under the auspices of the GENESIS
project to store data produced during the software
development process. Significant problems were
encountered during the course of the project in both the
development itself and management of the project. The
reasons for and potential solutions to these problems are
examined with the intention of developing a set of
guidelines to enable participants in other collaborative
projects to avoid these pitfalls.
 We wish to make it clear that we attach no opprobrium
to any of the participants in the GENESIS project as
many of the issues we outline below have solutions only
visible with hindsight. Instead, we seek to provide a fair-
minded critique of our role and the mistakes we made in
a fairly typical two-year EU research project, and to
provide a set of recommendations for other similar
projects, in order that they can (attempt to) avoid
suffering similarly.

1. Introduction
 The GENESIS [7] platform is an Open Source software
engineering environment designed to non-invasively
complement an organisation's existing development
practices. The GENESIS project initially developed all of
the components that comprise the platform as a closed-
source research project, however the intention from the
start was to release the software as Open Source [3]. One
component, developed at the University of Durham and
now maintained and evolved in new projects at the
University of Lincoln, is OSCAR [10, 4, 5]. This tool is
intended to support the storage and retrieval of large
collections of heterogeneous software artefacts. The other
components of GENESIS include a work-flow
management system and a project management tool,
including a metrics generation and browsing tool. The
consortium itself consisted of four development
(academic) partners and two industrial partners.
 Numerous problems occurred in each phase of the
project, some of which affected the success of the
OSCAR tool within GENESIS and some which have

impacted upon the chances of successfully using OSCAR
after the end of the GENESIS project. These problems
were either common in other research projects or caused
by circumstances peculiar to the GENESIS project.
 Problems that are also found in other software
development research projects include the effects of short
timescales and rapid staff turnover. Even simple mistakes
may not be rectified in time to prevent adverse effects
later on in the project and the loss of access to key
developers, often PhD students, fixed-term contract
researchers, or students employed for short-term summer
projects, and the ensuing loss of their knowledge may
hamper ongoing maintenance of the software produced.
Multiple re-writes of existing functionality--rather than
steady evolution--are also common in research projects.
Certain pieces of academic software have been re-written
several times instead of being evolved from their original
source code. An example of this approach is the
development of the CodeWalker visualisation tool [9].
Often this approach is used because the original software
cannot easily be adapted to new research needs, or the
program comprehension overhead precludes re-use. Re-
writes may occur for other reasons as well; for example
the replacement of the Berkeley Packet Filter in
OpenBSD with an alternative with a less restrictive
license.
 The development practices within research projects are
often chaotic. For the most part, this is not a problem
locally as development teams are small and thus
communication overheads and conflicts within teams are
minimized. When collaboration between multiple
partners is required, an agreed process, even if unwritten,
is necessary for effective collaboration.

2. Issues Within The GENESIS Project
 A major flaw was over-ambition; the research goals of
OSCAR were both lofty and difficult to achieve and
evaluate successfully in a short timescale. The mere
presence of lofty goals is not in itself a problem since
they do ensurethat there are possibilities for future
research and that these possibilities are under
consideration in the earliest phases of the project.
However, researchers as software developers should be
very careful about the goals they seek to implement in the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

context of their immediate project. Of course when
applying for research funds, proposals must convince
their reviewers that the proposed research will tackle
difficult problems and explore innovative solutions,
possibly involving speculative elements.
 OSCAR also aimed to solve numerous problems expe-
rienced by our industrial partners, instead of a single
problem at first and subsequent attempts to solve others.
Consequently the initial requirements were very broad
and complex. A concerted effort to decompose these
requirements into simpler, smaller sub-requirements
would have made the chosen rapid-release approach
feasible. As it was, to satisfy even one requirement
necessitated a significant amount of work on
infrastructure, design and development before the code to
address the requirement could be written. The
requirements placed upon OSCAR by the other
components in the system meant that significant
functionality was required before OSCAR could be
integrated with those components.
 Finally, all parts of the GENESIS projects failed to
provide suitable prototypes or mock-ups at the earliest
possible phase of the project meaning the industrial
partners were often unclear about what each platform
component was supposed to do or how they would
interact with it. Simpler individual requirements within
OSCAR would have made implementing a very, very
basic prototype early on in the project much easier.
 While most of the features were desirable if OSCAR
was to be a proper production tool, they were not
necessary for a proof-of-concept and should have been
relegated to later phases of the project. Following the
principle of "release early, release often. . . " [11], a better
approach would have been to drastically simplify the core
of the initial version of OSCAR, aiming to have a very
simple (even simplistic) version available as soon as
possible, enabling the OSCAR team to fulfil the second
half of that dictum: ". . . And listen to your customers".
Good advice for all development teams is to play the
expectations game; promise very little and over deliver.
Doing the converse and thus disappointing one's
consortium partners causes tension. Satisfying the
project's reviewers may be in conflict with this strategy
however, if it is not explicitly clarified.
 One significant problem peculiar to the GENESIS
project was the lack of decision on a common platform
for development and deployment of the GENESIS
environment. This issue also manifested itself in the
choice of development tools by each partner. OSCAR in
particular was developed exclusively in a Linux
environment for much of the project in order to take
advantage of the useful Free software tools available such
as ready-made if simple version control in the form of
CVS and accessory packages such as ViewCVS and
StatCVS. The systems used by the OSCAR developers
were ignored and perhaps not so readily familiar to the
development partners at other institutions. Perhaps as a

result of this, the attempt to set up a centralised CVS
repository for the whole project failed when most develop
ers ignored the repository and continued using their own
methods and tools.
 Problems of quality in the external dependencies of
OSCAR were also apparent. In particular, the jCVS [8]
code used to connect to a CVS pserver installation was
poorly documented and difficult to use, resulting in major
delays when implementing the CVS interface component
and an extensive code review with associated refactoring.
Instead, a simple interface class using execution calls to
an external CVS binary would have performed the tasks
successfully without requiring such a significant coding
effort.
 Compounding the quality problem, key external depen-
dencies of OSCAR were found not to run under Windows
after several months of development. These components
included the CVS pserver tool and the PostgreSQL
database. Despite this problem, the OSCAR code was
flexible enough to be ported to Windows and MySQL
very quickly, albeit at the cost of some features and
significant expenditure on maintenance of the two
separate database back-ends.
 Conflicts also arose between the versions of certain
dependencies that the GENESIS components had. For
example, the OSCAR code relied on a very modern
version of the XML parser tools, requiring a complex set-
up process to install them where the JDK would use
them. The versions required by OSCAR at one point
conflicted with the requirements of other components of
GENESIS, requiring a work-around.
 The most important lesson here is that projects should
agree on the components to use and the features they
must have, including what platform they should run on if
appropriate before development starts in earnest. These
decisions should be taken at an early stage, even if the
chosen platform is not to the liking of a minority of
development partners. In the case of the GENESIS
project, Windows would have been a suitable consensus
platform as only the OSCAR team preferred Linux as
their development environment. If at all possible use of
multiple platforms should be avoided as using multiple
platforms is unwieldy, especially in a demo session!
 Though much interest in the OSCAR concept and our
prototype was shown by potential users outside the
institutions participating in the GENESIS project, our
software dissemination activities were very poorly
organised. Presentations at conferences often attracted
potential users, andon occasion our web presence elicited
interest from companies that were interested in using the
system. Therefore, if attracting external users is a goal,
we think that the development of an information pack
including a gold CD, or at the very least a flyer, should
proceed alongside the software development instead of
being an activity conducted in the final stages. The
information pack need not contain software initially, but
a collection of all the papers, presentations and other

useful documentation would be very helpful to potential
users. The web presence itself was limited, and the job of
maintaining it was never really carried out. In order to
attract users, it is key to show that the project is active by
having a frequently-updated web presence. As
academics, however, we were given credit for our
publications, not for our web sites!
 Finally, there was the failure to ensure sustained
collaboration between partners in the consortium. The
OSCAR development team was often excluded from
decision making since all the other development partners
were located close together in the same country, meaning
they could meet frequently to discuss development
issues. Much of these discussions and decisions had no
impact on the OSCAR component, but this lack of
communication did not foster good working
relationships. The OSCAR team could only meet the
other partners infrequently due to the difficulty of all the
partners getting to the same location. Therefore, the bulk
of the development partners were able to identify
integration risks far faster and earlier than the OSCAR
team managed to do. These failings are not attributable to
the personnel involved: geographical distance has a
deleterious effect on coordination and productivity in
software engineering projects [6]. Many open source
projects, however, do manage to avoid or work round
these problems.

3. Resolving Conflict: Our Experiences
 Within the OSCAR team the use of unit testing was
extremely helpful; they fulfilled the need to test an API
and provided comprehensive yet simple example
programs for most parts of the system. However, relying
on test-cases alone to document one's system is extremely
poor practice, whatever the current XP adherents may
advocate!
 The introduction of elements of XP philosophy (pair
programming, API agreement by test cases) and the use
of code reviews were found to be effective at promoting
communication. The largest subsystem that was reviewed
and refactored was the CVS interface code. Other
subsystems that were refactored include the Workspace
management subsystem, the user session code, the
graphical client and the introduction of a logging aspect
throughout the OSCAR code.
 Components were reselected and repurposed to address
issues related to the complex and inefficient
implementation code. For example, our custom data-
binding code developed to transform artefacts into XML
and vice-versa was replaced by the Castor framework to
improve quality and flexibility. Also, the meta-data
storage component was supplemented with the CVS
repository so the unreliability or possible non-availability
of the RDBMS would not affect a running OSCAR
instance. Thus it became possible to run OSCAR without
PostgreSQL if necessary.
 Since continuous integration with the rest of GENESIS

did not occur, an internal customer for the services of OS
CAR for testing purposes was required. The CoDEEDS
project needed a data storage component to contain the
details of software components, design constraints and
decisions taken to satisfy those constraints with the
available components in a particular software system
[1,2]. Though integration with CoDEEDS identified
many problems with OSCAR, these problems caused
delays in the development of the CoDEEDS system while
its developer waited for bugs in OSCAR to be fixed.
Ideally such a collaboration shouldhave begun at the
inception of both projects rather than towards the end
since otherwise the problem of balancing the ongoing
development of each project with the need to maintain
stable software or requirements for the other project to
work with gave rise to conflicting demands on the
OSCAR developers. Balancing the differing needs of
each partner is difficult; industrial partners require
dependable software to solve problems whilst academic
partners wish to explore novel software solutions.
 Risk management plans and scheduling are very
important for academic projects since their schedules are
so tightly constrained that even a single poor design
decision can massively impact the outcome of the project.
Once again, we advise that sub-projects such as OSCAR
play the expectations game; promise very little and
attempt to deliver more.

4. Conclusions
 Our research development work was more or less
demand-driven by the other partners implying that
software would be exchanged regularly between partners.
Unfortunately, release management and thus the prospect
of early integration with the other components of
GENESIS was poor, partially due to the conflicting
configuration management philosophies of the OSCAR
team and other development partners. For example, the
OSCAR team prepared nightly builds with the intent that
the other partners would download the nightly builds to
try them each day. However, the other partners preferred
a managed release program with software released in full
at particular intervals with the bugs in each release fixed
independently of the ongoing development effort.
 Ideally consensus on the management of the release
process or a conscious decision not to bother should have
been achieved early in the project to the satisfaction of all
parties. Additionally it is unreasonable to expect that
small development teams should support more than one
stable release of the software at once. The best solution is
probably a compromise; a stable release should be
maintained where possible and a nightly build produced
to track the cutting-edge development. Additionally, the
developers using OSCAR should have anticipated the
need to be somewhat adventurous rather than expecting
all bugs to be discovered, isolated and fixed by the
OSCAR developers alone.

 The choice of tools in the wider GENESIS project also
caused certain conflict and collaboration problems for the
developers of OSCAR and other system components. The
main tool for development was the web-based SiteScape
Forum which, similar to the BSCW environment, allows
documents to be uploaded, placed under version control
and comments attached to them. Though useful when
preparing monolithic documents or similar deliverables,
this tool was not suitable for managing source code.
Consequently, all the partners developed their own ways
of managing the source of their components leading to
conflicts and difficulty when releasing software.
 Since an effort had been made to provide a single tool
for all users, with some success for certain types of
artefact, the lack of a suitable configuration management
system was an unfortunate omission.
 The development of OSCAR was hampered in the
main by poor collaboration and communication within
the immediate project team and the wider project. The
irony of a project dedicated to creating collaborative
software being unable to collaborate effectively has not
escaped the authors, though the poor support offered by
the SiteScape system and e-mail for collaborative code
development in contrast to the effective support they
offered for collaborative document development is at
least partially to blame. Misguided or careless choices of
implementation technology also delayed the project
extensively. The ready availability of supposedly re-
usable Open Source components is a double-edged
sword; while they may save implementation time they
may also waste it if of poor quality. Finally, the nature of
short-term research projects themselves also contributed
to the problems; recovering from bad decisions was that
much harder as there was little free time or resources to
use when repairing the damage.
 The largest failing of the GENESIS project was the
seeming inability to retain external users, despite a large
number of enquiries into the software. In part this may be
explained by the lack of maturity of the project's
software, but mainly by the fact that dissemination of the
software as Open Source was relegated to the end of the
project; almost an afterthought. The interest, solicited and
unsolicited that GENESIS recieved from users indicates
that a real need for this software exists and that the
project carelessly failed to take advantage of this.
 Interaction with the wider community was
consequently limited, even though one of the express
goals of the project was to engage the Open Source
community with the product. The overall project strategy
may have been at fault: initial closed development was
intended to "seed" external activity by providing already
mature software to the community but instead made the

project appear moribund much of the time. Using
SourceForge or a similar site from the beginning may
have helped visibility and provided better common tool
support.

5. References
 [1] C. Boldyreff and P. Kyaw. A framework for developing a
 design evolution environment. In Proceedings of the 27th
 Annual International Computer Software and Applications
 Conference (COMPSAC). IEEE, 2003. Dallas, Texas.
 [2] C. Boldyreff, P. Kyaw, D. Nutter, and S. Rank. Architec-
 tural framework for a collaborative design environment. In
 Proceedings of Second ASERC Workshop on Software Ar-
 chitecture, 2003. Banff, Canada.
[3] C. Boldyreff, J. Lavery, D. Nutter, and S. Rank.

Open Source development processes and tools. In J. F. et al,
editor, Proceedings of the 3rd Workshop on Open Source
Software Engineering, pages 1518, 2003.

 [4] C. Boldyreff, D. Nutter, and S. Rank. Active artefact man-
 agement for distributed software engineering. In Work-
 shop on Cooperative Support for Distributed Software En-
 gineerng Processes, Proceedings of COMPSAC 2002, pages
 10811086. IEEE, August 2002.
 [5] C. Boldyreff, D. Nutter, and S. Rank. Open source artefact
 management. In J. F. et al, editor, Proceedings of the 2nd
 Workshop on Open Source Software Engineering, pages 3
 10, 2002.
 [6] J. A. Espinosa, R. E. Kraut, S. A. Slaughter, J. F. Lerch, J.

D. Herbsleb, and A. Mockus. Shared mental models,
familiar-ity, and coordination: A multi-method study of
distributed software teams. In Proceedings of the 23rd
International Conference in Information Systems (ICIS),
pages 425433, Barcelona, Spain, 2002.

 [7] M. Gaeta and P. Ritrovato. Generalised environment for
process management in cooperative software engineering. In

 International Computer Software and Applications Confer-
 ence, volume 26, pages 10491059, Oxford, England, Au-
 gust 2002. IEEE.
 [8] The jCVS project. http://www.jcvs.org, 2003.
 [9] M. Lanza. Codecrawler: Lessons learned in building a soft-
 ware visualisation tool. In G. Canfora, M. van den Brand,
 and T. Gym'othy, editors, Proceedings of the Seventh Euro-
 pean Conference on Software Maintenance and Reengineer-
 ing, pages 409418. IEEE Computer Society, 26-28 March
 2003.
[10] D. Nutter, S. Rank, and C. Boldyreff. Architectural

requirements for an Open Source Component and Artefact
Repository System within GENESIS. In Proceedings of the
Open Source Software Development Workshop, pages 176
196. University Of Newcastle, February 2002.

[11] E. S. Raymond. The Cathedral and the Bazaar: Musing
 on Linux and Open Source by an accidental revolutionary.
 O'Reilly and Associates, 1999.

