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The brainstem reticular formation

is a small-world, not scale-free, network
M. D. Humphries*, K. Gurney and T. J. Prescott

Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK

Recently, it has been demonstrated that several complex systems may have simple graph-theoretic

characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been

applied to the gross neural connectivity between primate cortical areas and the nervous system of

Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the

medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions.

First, this work constitutes the first model (and quantitative review) of this important brain structure for

over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain

connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the

extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is

configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type

networks under assumptions which are amenable to quantitative measurement.

Keywords: reticular formation; small world; scale-free; networks; computational neuroanatomy

1. INTRODUCTION

Many real-world systems can be represented as networks

(a set of nodes joined by links indicating an interaction).

Recently, graph-theorists have demonstrated that even

the most complex of these systems may have

simple characterizations. So-called ‘small-world’

(Watts & Strogatz 1998) and ‘scale-free’ (Barabasi &

Albert 1999) networks have been found within such

diverse structures as food webs, the internet, and power

grids (Albert & Barabasi 2002). These two network types

are of interest because of the special properties that are

known to ensue if the underlying network satisfies the

criteria for either or both. Recently, several authors have

studied these network types in the context of gross neural

connectivity between primate cortical areas (Hilgetag et al.

2000; Sporns et al. 2002) and between C. elegans nervous

system components (Watts & Strogatz 1998).

Our aim here is to extend this work to a specific network

of the vertebrate brain, making two key contributions.

First, thiswork constitutes the first graph-theoretic analysis

of vertebrate brain connectivity at the neural network level:

we analyse the structure of the medial reticular formation

(RF) of the brainstem due to its extraordinary configur-

ation of sensory andmotor connections (see below) and for

its relevance to our work on action selection (see §5).

Second, this work constitutes the first model—and

quantitative review—of this important brain structure for

over three decades. In addition, by applying graph-

theoretic analysis to an exploration of plausible neural

network structural models, this work contributes new

methods to the nascent field of computational neuroanat-

omy (Ascoli 1999). We believe it is useful to analyse neural

networks for their small-world and scale-free properties

because each network type conveys a set of functional

advantages compared to a true random network, and yet

the determination of network type can be made primarily

using anatomical data.

A small-world network is characterized by the following

two features. (i) Dense interconnectivity within small

groups of nodes: two common neighbours of one node are

more likely to be neighbours of each other than two nodes

selected at random. Note that if the nodes exist in physical

space, for example people or neurons, then the nodes of a

highly inter-connected group will tend to be physically

close in space. (ii) The average shortest path length is

small: to connect any two nodes only a small number of

intermediate nodes are typically traversed, due to long-

range links between the small groups of nodes (Watts &

Strogatz 1998).

In a real network, nodes are not uniformly connected.

A given node has b links—the node’s degree. Over all nodes

in the network, the degree distribution P(b) defines the

probability that a randomly selected node has b links in the

network. The corresponding cumulative degree distribution

F(b) defines the probability that a randomly selected node

has at most b links. For many real networks, this

distribution is best fitted by a power-law (F(b)wb
Kt,

tO0; Barabasi & Albert 1999), which is a straight line on a

log–log plot. The power-law fit implies that: (i) the

network has no ‘typical’ node, in the sense that a Gaussian

distribution would have a mean node; (ii) the distribution

is scale-invariant. Thus, networks with a power-law

distribution have been dubbed ‘scale-free’.

The identification of either small-world or scale-free

topologies implies particular dynamic properties of the

network, e.g. stability (Li & Chen 2003), which may be

beneficial to biological neural networks (see §5). The plan

of the paper is as follows. First, we review the available

data on medial RF anatomy, and propose a new structural

organization. We define two models which generate the set
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of plausible structures, then attempt to discern why this

structure exists. The graph-theoretic analysis is applied to

determine whether the structure could be explained by the

need to give the neural network the functional advantages

associated with each network type.

2. THE VERTEBRATE BRAINSTEM RETICULAR

FORMATION

The vertebrate RF lies within the centre of the brainstem

and midbrain. It extends rostrally from the spinal cord’s

junction with the medulla, through the pons, to terminate

at the border with caudal-most intralaminar thalamus,

beneath the superior colliculus (figure 1a). The RF is sub-

divided into a bewildering array of fields and nuclei ( Jones

1995). Many of these have been assigned distinct func-

tional roles (see electronic supplementary material A),

except for a major component of the RF: the fields

comprising the medial core running the length of the

medulla and pons.

In a landmark paper (Kilmer et al. 1969), Warren

McCulloch and colleagues proposed that this region was

the substrate for the selection of an organism’s global

behavioural state. They also described a computational

model which demonstrated that the known neuroanatomy

of the medial RF supported this function (Kilmer et al.

1969). Recently, we have demonstrated that this model

supports action selection when implemented as a robot

control architecture, but concluded that it warrants

substantial revision as a model of the medial RF

(Humphries et al. 2005b). Despite numerous unique and

intriguing features (detailed below), and its comparatively

large areal extent, this region has received no modern

functional evaluation. However, before we can evaluate its

potential functional roles in simulation, we must establish

its structure. What follows describes our collation of

modern studies of the medial RF into a coherent

quantitative model of its anatomy.

(a) Physical boundaries and neuron types

We include only the major neuron types of, and sensory

inputs to, the medial RF between, rostrally, the border

between the caudal and oral pons and, caudally, the spinal

cord. The rostral limit is imposed because medial fields

within the oral pons have been ascribed specific rather

than general functions and the characteristic giant-bodied

cells rarely appear rostral to the caudal/oral pons border

( Jones 1995).

(i) Projection neurons

Numerous staining studies (for example, Scheibel &

Scheibel 1967; Newman 1985) have demonstrated that

the medial RF contains a medium-to-giant-bodied neuron

characterized by far-reaching bifurcating axons running

rostro-caudally, for which the long branch reaches either

the forebrain or spinal cord (the latter being dominant);

extensive collateralization along the axon, the first

occurring at least 100 mm from the cell body; a radial

dendritic tree, flattened along the rostro-caudal axis so

that the dendritic zone is disc shaped; and with dendritic

branches specifically directed at sources of passing fibres

(for example, the descending sensory trigeminal or

ascending spinothalamic tract axons). A recent review

suggests that these cells are glutamatergic ( Jones 1995).

As all of these cells appear to project outside the

medial RF, we refer to them as projection neurons.

Electrophysiological studies have demonstrated that

synaptic connections between these neurons, formed by

terminals of the axon collaterals, are sufficient to induce

excitatory post-synaptic potentials (Ito & McCarley

1987). Therefore, these projection neurons appear both

anatomically and functionally connected.

The number of projection neurons is suggested by an

analysis of data presented in a recent study (Holmes et al.
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Figure 1. Schematic summary of the vertebrate reticular

formation’s anatomical organization.Directional arrows apply

to all panels. (a) Sagittal section of cat brain, showing relative

size and location of reticular formation (RF) and medial core.

Abbreviations: CPu, caudate-putamen; SC, superior collicu-

lus; SN, substantia nigra. (b) Sagittal section of the brainstem;

the dendritic trees (grey lines) of the projection neurons (one

cell body shown, open circle) extend throughout the medial

RF along the dorso-ventral axis but extend little along the

rostro-caudal axis. These dendritic trees contact axon

collaterals of both ascending sensory systems (black dashed

line) and far-reaching axons of the projection neurons (the

axon of the depicted cell body is shown by the solid black line);

ST is the spinothalamic tract. (c) The cluster model of RF

organization.Themedial RF comprises stacked clusters (three

shown) containingmedium-to-large projection neurons (open

circles) and small-to-medium inter-neurons (filled circles);

cluster limits (grey ovals) are defined by the initial collaterals

from the projection neuron axons. Their radial dendritic fields

allow sampling of ascending and descending input from both

other clusters (solid black lines) and sensory systems (dashed

black line). The interneurons project predominantly within

their parent cluster.
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1994). Holmes et al. (1994) estimated that GABAergic

cells form approximately 10–20% of the cells in this area.

Given that spinally projecting medial RF cells are rarely

GABAergic ( Jones et al. 1991), and thus none of the

GABAergic cells are likely to be a projection neuron, then

the projection cells constitute at least 70% of the cell

population of the medial RF.

(ii) Interneurons

The existence of an interneuron cell-type in the medial RF

is more controversial, but there is substantial evidence for

its existence. Stained examples of small-to-medium sized

neurons with sparse dendritic trees and oval bodies have

been reported within this region (Bowsher & Westman

1970; Mason & Fields 1989; Jones et al. 1991), and these

neurons are morphologically distinct from the projection

neurons described above. From the limited data available,

it appears that their axons preferentially project medio-

laterally, rather than rostro-caudally, with collateral

terminals concentrated within the parent cell’s dendritic

field (Mason & Fields 1989). Jones et al. (1991) stained

morphologically similar cells for GAD, suggesting that

these interneurons may be GABAergic. Holmes et al.

(1994) demonstrated that selective destruction of GABA-

ergic cells in medial RF resulted in a corresponding

proportional decrease in GABAergic terminals; the

decrease was confined to within a 1 mm radius from the

individual damaged cell bodies, which concurs with

the limited axon terminal extent of the neurons described

by Mason & Fields (1989). Moreover, Jones et al. (1991)

report that roughly 45% of synapses on the dendrites of a

typical large/giant cell are GABAergic. As sensory input to

themedial RF comes from regions known to use excitatory

neurotransmitters, and retrogradely labelled spinally

projecting GABAergic projection neurons are rare within

the medulla RF ( Jones et al. 1991), these synapses may

originate from an interneuron. We conclude from this data

that there is a small-to-medium sized inhibitory inter-

neuron within the medial RF, which constitutes the

10–20%ofGABAergic cells (detailed above) in this region.

We also note that researchers have demonstrated the

actions of presumed locally projecting GABAergic inter-

neurons in other regions of the RF (e.g. Hayar et al. 1996).

(b) Sensory input

Although we intend to study here only the structural

properties of our model, a review of the patterning of

sensory input is necessary both to emphasize why the

medial RF is of importance and to explain themodel’s basic

structural elements. Numerous studies have demonstrated

that medial RF cells respond to a wide variety of sensory

stimuli, and that many are multi-modal (Siegel 1979). The

pattern of afferent inputs suggests that the medial RF

receives information on every sense available to an animal,

including balance (vestibular), pain, proprioception (via

collaterals from the gracile and cuneate nuclei), auditory,

and whisker systems (Salibi et al. 1980; Yates & Stocker

1998; Kleinfeld et al. 1999; Cant & Benson 2003).

The combination of multiple sources of sensory input

to, and the dendritic organization of the projection neuron

(§2) is strong evidence that they all receive some form of

direct sensory input from peripheral sources. Moreover,

the collaterals of ascending and descending tracts from

which the input originates are arranged in a striking

manner (figure 1b), running perpendicular to the main

axon, and seemingly in juxtaposition with the axon

collaterals from the giant cells themselves (Scheibel 1984).

3. THE MODEL ARCHITECTURE

Based on the anatomy described above, we propose that

there exists within the medial RF a quasi-independent

grouping of cells which we term a cluster. The neural

architecture resulting from this hypothesis is depicted in

figure 1c and has some similarities to the ‘poker-chip’

anatomy proposed by Scheibel & Scheibel (1967).

Each cluster contains a set of neighbouring medium-to-

giant bodied projection neurons and small-to-medium

bodied local interneurons.We define the extent of a cluster

as the region in which there are no axon collaterals from

any of its projection neurons (and, therefore, projection

neurons make no connections within their own clusters).

The limited rostro-caudal extent of collateral input from

the passing sensory tracts, and corresponding flattening of

the projection neurons dendritic fields, suggest that their

cell bodies are roughly adjacent in the medio-lateral,

dorsal-medial plane (that is, in coronal section). Thus,

given the anatomical data reviewed above, a single cluster

would be approximately 200 mm long in the medial RF,

corresponding to the initial axon collateral of the

projection neurons. The interneurons are assumed to

project only within their parent cluster, due to their limited

projection radius (1 mm), to the concentration of the

majority of their axon terminals within their own dendritic

fields, and to the predominantly medio-lateral (rather than

rostro-caudal) projections of their axons. They make

connections with both other interneurons and projection

neurons within their cluster.

We define two models which generate the proposed

cluster structure of the medial RF. The first is a stochastic

model, which creates a structure equivalent to the adult

configuration of the neural tissue. The second is a

generative model which approximates the post-natal

development of the structure, and uses the first model to

generate its initial state.

(a) The stochastic model

Every one of theNc clusters in the model has n neurons (or

nodes); the total number of nodes T within the model is

thus TZNc!n. Within each cluster a certain proportion r

of nodes are deemed to be the projection neurons, the

remainder are deemed to be interneurons. From the data

reviewed above, we set bounds 0.7%r!0.9.

Given an estimated size for the clusters, we may

determine a rough estimate for the number of clusters

within the medial RF. From the UCLA Laboratory Of

Neural Imaging (LONI) rat brain atlases (www.loni.ucla.

edu), we have estimated the rostro-caudal extent of the

medial RF to be at least w7 mm, If we assume that the

clusters are stacked end-to-end rostro-caudally and each is

200 mm long, then there are at least 35 of them. Thus, we

set bounds 35%Nc%75.

Three parameters define the stochastic connectivity

between nodes. For each projection neuron node, the

probability of forming a connection c between itself and

another cluster is P(c). If a connection is made, then P( p)

is the probability that the projection neuron forms a

connection p with a given neuron in that cluster. Finally,
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P(l ) denotes the probability of connection l between an

interneuron node and any other node in its cluster. The

probabilities P(l ), P( p) are constant, independent of

particular clusters and nodes within clusters. However,

two model variants were defined by two choices of

distribution for P(c). Data from Grantyn et al. (1987)

suggest a spatially uniform model for which we assigned

P(c)Z0.25 for all clusters. In contrast, McCulloch and

colleague’s RFmodel (Kilmer et al. 1969) used a distance-

dependent distribution (William Kilmer, personal com-

munication), typical of models of neural connectivity

(Hellwig 2000). Thus, if there are d intervening clusters

between the projection neuron node and the target cluster

(so for adjacency dZ1), then P(c)Zd
Ka; we use aZ1

throughout.

As we are interested here only in the network structure

of the model, we need not assign weights to these

connections (as is common practice in neural network

models) but simply use the above probabilities to define

(directed) edges in the connectivity graph.

(b) Pruning model

An alternative model was constructed in which the

connections were defined by a procedure analogous to

the development process, rather than a stochastic model

of the final, adult configuration of the neural structure.

Unlike many other neural structures, most, if not all,

medial RF cells exist at birth (Hammer et al. 1981).

Thus, developmental changes wrought by experience-

dependent plasticity must be mainly restricted to cell

connectivity.

One dominant form of post-natal connectivity change

is that of synaptic pruning (Bourgeois & Rakic 1993). This

process is characterized by synaptic overgrowth and

subsequent pruning to adult levels during the neo-natal

period. Within the developing medial RF, synaptic pre-

cursors in the form of proto-spines significantly increase in

number immediately following birth, then decline to

immediate pre-birth levels by post-natal day 20 (Hammer

et al. 1981). This suggests that synaptic overgrowth occurs

immediately after birth, followed by pruning.

Simple models of the pruning process propose that it

maximizes the potential for Hebbian learning given known

metabolic constraints (Chechik et al. 1998). Assuming

that a network could support only a limited number of

synapses, Chechik et al. (1998) report that optimal

synaptic pruning can be achieved using a minimal-value

deletion scheme—removing all connections below a given

absolute weighted value. We adopt that scheme here to

generate an alternate ‘pruning’ anatomical model of the

medial RF, using the following algorithm.

(i) Generate an over-growth anatomical model: using

either collateral probability variant, create a

stochastic anatomical model at the upper limits of

its connection parameter intervals (here using

P( p)ZP(l )Z0.9).

(ii) Assign each resulting graph edge a weight value wij

(Gamma distribution, aZ10, bZ0.02; a Gamma

distribution with these parameters approximates a

normal distribution, and is used so that all weight

values are initially positive— sign is then assigned

according to connection type, inter-neuron or

projection neuron).

(iii) Loop until the expected synapse total E(Ns) is

reached (see electronic supplementary material B),

computed from target values of P(l ) and P( p),

labelled tl and tp, respectively.

(a) Learn: adjust proportionfunits’ input synapses

with random values from normal distribution

(mZ0, sZ0.025)— this variance is chosen to be

smaller than the approximate variance of the

Gamma distribution used to generate the initial

weight values. Units are chosen with probability

proportional to total weighted input. (This is a

statistical approximation of Hebbian-style

learning. Given sufficient time, for a given series

of sensory input patterns, neurons with the

greatest synaptic efficacy on their inputs are

more likely to respond (or not respond,

depending on the sign of total) and, therefore,

their inputs are more likely to be strengthened

orweakened according to the correctness of that

response. Given the central limit theorem, for a

sufficiently large set of input patterns and a

sufficiently large network, the total synaptic

changewill tend towards a normal distribution).

(b) Prune: remove all jwijj!t.

Thus, we begin with a structure representing the

overgrown synaptic density with all cells in position, and

then repeat a process of synaptic weight change—

representing plastic changes due to learning and sensory

experience—and synaptic pruning. Again, the final

resulting model is a graph of connectivity—final weights

are converted to a binary connection matrix.

4. ANALYSES OF THE ARCHITECTURE

For the graph-theoretic analyses, the stochastic model

parameters were chosen from the following sets: NcZ{35,

45, 55, 65, 75}, nZ{30, 40, 50}, rZ{0.7, 0.8, 0.9},

P( p)Z{0.1, 0.5, 0.9} and P(l )Z{0.1, 0.5, 0.9}. Each

possible combination {Nc, n, r, P( p), P(l )} formed by

selecting from these parameter sets defined a class of

models, giving 5!34Z405 classes in total. The entire set

of classes was tested with a single instantiation of each of

the spatially uniform and distance-dependent collateral

variants (totalling 810 instantiations).

For the pruning model, we set fZ0.3 and tZ0.2, and

chose the target values from the following sets: tpZ{0.1,

0.3, 0.5} and tlZ{0.1, 0.3, 0.5}.Values forNc,n, and rwere

taken from the sets above. Again, each possible combi-

nation of these parameters defined 405 classes in total; a

single model instantiation of each of the collateral variants

was analysed per class. Thus, a total of 810 instantiations

were also assessed for the pruning model—giving a total of

1620 instantiations tested across both anatomical models

for small-world and scale-free topologies.

(a) Small-world analysis

A cluster model forms a graph with T nodes and a mean of

k links per node. To be quantitatively defined as a small-

world network, values for two network properties must be

compared to their values for the equivalent random graph.

The characteristic path length L is the average length of the

shortest path between any two nodes in the graph; the

clustering coefficient C is a measure of howmuch neighbours
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of each node are also neighbours of each other (for

quantitative definitions see, e.g. Watts & Strogatz 1998).

When comparing a small-world network s to a random

network r of the same T, k value, it is found that LszLr and

that Cs[Cr. For networks with small numbers of nodes

(w200–3000), it is known that CsOCr is sufficient to

demonstrate small-world properties (Montoya & Sole

2002). Typically, these relationships are calculated for

datasets forming a single network, and so the presence of a

small-world topology is decided by inspection of the

generated L, C values. As we are generating large

numbers of networks, we propose a simple quantitative

definition of these relationships. This will allow us to

explore the extent to which the small-world topology

changes with parameter variation: in other words, it is a

measurement of ‘small-world-ness’.

For each instantiated cluster RF model ci, we created a

random graph ri with the same T, k values as ci. Let the

characteristic path lengths for ci and ri be Li
c, Li

r,

respectively, and the corresponding clustering coefficients

be Ci
c, Ci

r. These values were computed for the two

graphs and used to form the following ratios: gi
ZCi

c=C
i
r,

liZLi
c=L

i
r and Si

Zgi
=li. Thus, to meet the small-world

criteria given above, themodel cimust fulfil the conditions:

g
i
O1 and S

i
O1. The latter condition indicates that the

magnitude ratio betweenC for model and random graph is

greater than the magnitude ratio between L for model and

random graph. It is this value we use as an indicator of

comparative ‘small-world-ness’. For comparison, we

computed S for small-world neural networks already

evaluated in the literature: from Watts & Strogatz

(1998), for C. elegans’s entire neural net, SZ4.75; from

Hilgetag et al. (2000) S values for cortical area connectivity

are: macaque visual, SZ1.81; macaque somatosensory,

SZ1.77; macaque whole cortex, SZ2.78; cat whole

cortex, SZ1.86.

Models were grouped by {r, P(l ), P( p)} or {r, tl, tp}

combination for analysis, yielding 27 groups with 15

models per group for each anatomical model and collateral

variant combination, ordered by T.

(i) Results: stochastic model

For the spatially uniform collateral variant, 11 (out of 27)

of the groups fulfilled all the criteria for a small-world

topology for all 15 of the member models. The maximum

value of Su
maxZ4:66 was obtained for parameter combi-

nation {rZ0.7, P(l )Z0.9, P( p)Z0.1}. The distance-

dependent collateral variant had S
i
O1 for all 27 of its

parameter combinations. Themaximum Sd
maxZ10:05 was

for the same parameter combination as the spatially

uniform models. In fact, for both collateral probability

variants, ordering the parameter combinations by mean,

median, or maximum S results in the same first six

parameter combinations (see electronic supplementary

material C). The variation in small-world topology

(figure 2) was consistent across both collateral variants,

with higher S for ascending P(l ) (resp. P( p)) for a given

value of P( p) (resp. P(l )). Taken together, this is evidence

that the small-world topology is a robust property of the

network with respect to the distribution of collaterals.

(ii) Results: pruning model

For both the spatially uniform and distance-dependent

collateral variants, every tested model fulfilled the small-

world topology criteria above (figure 3). Again, the same

parameter combination {rZ0.7, tlZ0.3, tpZ0.5} for both

collateral variants resulted in the maximum S value, of

Sd
maxZ13:47 and Su

maxZ6:34 for the distance-dependent

and spatially uniform collaterals, respectively. Ordering

the parameter combinations by Smax results in the same

nine top parameter combinations for both collateral

variants (except positions 2 and 3, which are inverted).

And, again, the variation in small-world topology (figure 3)
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Figure 2. Variations in small-world topology for the stochastic anatomicalmodel. (a)Distance-dependent collaterals. (b) Spatially

uniform collaterals. A value of zero indicates that the model did not meet the minimum criteria for the topology.
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was consistent across both collateral variants: for a given

value of tl, S increased with increasing tp; however, S was

roughly constant with increasing tl.

(iii) Robustness of the results

Each of the S i values computed for the analysis above was

based, directly or indirectly, on a single instantiation of the

stochastic anatomical model per {Nc, n, r, P(l ), P( p)}

class. Given that three of the stochastic model parameters

are probabilities, there could be considerable variation of

topology across instantiations of a particular group. We

therefore tested the robustness of the small-world

topology for the parameter group and collateral variant

which resulted in maximum S
i for each anatomical model

(values reported above). For both anatomical models’

Smax parameter groups, two sets of 50 instantiations

were created. One set had the minimum quantity of cells

(NcZ35, nZ30) and one set had the maximum quantity

of cells (NcZ75, nZ50) to assess the variation at the

extremes of the models. A corresponding set of equivalent

random networks (same k, T ) was created for each set of

50 models.

We computed the mean and standard error of each

model set’s S values to determine the robustness of the

reported values. We also tested the corresponding

distributions of model and random network clustering

coefficients to verify that they were drawn from signifi-

cantly different populations. Each distribution was tested

for normality using the Lillefors test at the pZ0.05

confidence limit. If either distribution of C significantly

deviated from normality, then the distributions were

compared using the Mann–Whitney U-test, otherwise a

standard Student’s t-test was used.

The S values were remarkably invariant for all tested

models. The coefficients of variation ðCVZs= �xÞ for the

model sets (figure 4a) show that the variability in S was at

least one order of magnitude smaller than the mean value.

All tested models also had significantly greater mean

clustering coefficients hC i than the corresponding random

network populations ( p!0.001). Figure 4b illustrates the

difference in population hC i, and the small variation in C

for the tested networks. Thus, we conclude that the

topology is present in every instantiation of the models

tested, and that it is robust across the instantiations of a

particular parameter class.

(b) Scale-free analysis

Previous analyses of the scale-free properties of real-world

networks have assumed them to be undirected graphs

(Amaral et al. 2000). However, as a neural network is by

definition a directed graph, we look separately at F(b) (the

cumulative degree distribution) for input and output links,

and for the undirected links (counting any connection

made on a node). We compute F(b) (input, output, and

undirected) for each model instantiation from a class,

invert it (see electronic supplementary material D), and fit

with exponential, power-law, truncated power law and

Gaussian distributions as these are all typical fits to

patterns found in real-world connection distribution data

(Amaral et al. 2000). The goodness-of-fit for each of the

model curves was quantified using (corrected) Akaike’s

information criterion (AICc; Motulsky & Christopoulos

2004), an information-theoretic score which accounts for

the different number of coefficients in the fitted curves. By

definition, the curve with the lowest AICc value is the

closest fit of those tested.

The input and undirected degree distributions were all

best-fit by a Gaussian for the distance-dependent and

spatially uniform collateral versions of both the stochastic

and pruning models (example in figure 5a); of the output

degree distributions, all were best-fit by a Gaussian

except two instantiations of the distance-dependent

collateral version of the stochastic model which were

both best-fit by an exponential. An exponential fit is
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Figure 3. Variations in small-world topology for the pruning anatomical model. (a) Distance-dependent collaterals. (b) Spatially

uniform collaterals. Every model met the criteria for the topology.
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shown in figure 5b—a poor fit to the extreme end of the

distribution tail is evident. Re-plotting on a log-linear scale

shows that the exponential fit to the output distribution

was the least-worst rather than an accurate fit (figure 5c).

By fitting curves to the corresponding degree distributions

P(b), we have determined that these poorly fitted F(b)

follow a double Gaussian distribution (see electronic

supplementary material D). The lack of genuine expo-

nential fits to F(b) means that none of the models were

classic random graphs (Albert & Barabasi 2002). We

conclude that, to the extent that the anatomical models

reflect its organization, the medial RF is unlikely to have

a scale-free topology.

5. DISCUSSION

We have provided the first quantitative review and

structural model of the medial RF based on modern data.

Considered as a graph, the proposed cluster model is likely

to have small-world but not scale-free properties. There-

fore, if the cluster structure is an accurate model of medial

RF anatomy, this work is the first identification of small-

world topologies at the vertebrate neuronal network level.

No power-law or truncated power-law fits to the

cumulative degree distributions of either anatomical

model were found. The absence of these fits over the

1620 separate model instantiations across the full range of

the connection probability parameter space suggests that

this result is robust. The anatomical models, therefore,

predict that themedial RF does not have the properties of a

scale-free network. The dominance of Gaussian fits to the

cumulative degree distribution was unsurprising, given

that the combination of statistical distributions used to

generate the models would tend to a normal distribution

according to the central limit theorem. Amaral et al. (2000)

found that entire neural net of C. elegans followed an

exponential cumulative degree distribution, but there is no

other evidence to suggest that a normal cumulative

distribution of neural connectivity is unexpected for

vertebrate brain regions (we briefly address the question

of the likelihood of ever finding a scale-free network in

neural tissue in electronic supplementary material E).

The small-world topology was most robustly identified

for the pruning rather than the stochastic anatomical

model, for the distance-dependent collateral version of

both, and for the lower likely proportion of projection

neurons. The results for the anatomical models were also

remarkably consistent across both collateral probability

variants (see electronic supplementary material F for

consideration of the P( p) and P(l ) dependencies).

Confirmation that the actual medial RF conforms to a

small-world topology is thus dependent only on showing

that the combination of a spatially uniform collateral
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distribution and stochastic anatomical model is invalid.

Analysis of connectivity between primate visual cortex

pyramidal cells has shown the distribution of contacts to

be distance-dependent, falling as a Gaussian with

increasing separation of the cell bodies (Hellwig 2000).

A recent theoretical result has shown that by assuming

distance-dependent long-range connections within cortex,

there is a trade-off between neuron separation and total

axonal wiring length that can be optimized according to

brain size (Karbowski 2001), which cortex at least seems

to achieve (Cherniak 1994; Laughlin & Sejnowski 2003).

Thus, the data based on individual stained cells suggesting

a spatially uniform collateral arrangement in the medial

RF (Grantyn et al. 1987) are at odds with the body of work

demonstrating the advantage of distance-dependent

projections. A detailed quantitative study of collateraliza-

tion within the medial RF, specifically the density of

axonal branching points as a function of distance from the

cell body, is required to resolve this incongruency.

How then should we decide between the anatomical

models? Though grossly simplified, the developmental

model has some appealing features—it accounts for the

medial RF’s structure as a result of immediate post-birth

experience, and thus more closely follows the network’s

development. A complete model would incorporate initial

cell placement and axongrowth, but that is bothbeyond the

scope of this paper, and lacking the necessary supporting

studies in the experimental literature.Nevertheless, there is

an enticing congruency in that synaptic pruning by

minimal deletion—as used here—results in optimal

Hebbian learning (Chechik et al. 1998), that small-world

networks are more effective at learned pattern recall than

regular or random networks (Morelli et al. 2004), and that,

as we have demonstrated, a small-world network can be

generated using a statistical approach to synaptic pruning.

The pruning model could be invalidated by demonstrating

that synaptic pruning does not occur in the developing

medial RF, which could be shown by changes in density of

pre-synaptic markers immediately following birth.

(a) Functional implications

The demonstration of probable small-world but not scale-

free topologies allows us to make some general hypotheses

about functional properties of the medial RF, which may

in turn explain the existence (and evolution) of the cluster

structure. Scale-free networks are typified by a few highly

connected nodes—‘hubs’—and are thus resilient to

randomly placed damage or failure, but susceptible to

targeted attacks on the hubs, which remove a dispropor-

tionate amount of the links in the network (Albert &

Barabasi 2002). Putative neural networks with this

topology may thus be resilient to diseases, which cause

cell death, as they would typically require a high

percentage of cell loss before overt functional effects are

seen. The lack of a scale-free topology, therefore, implies

that such hubs do not exist, and that random cell death

would cause a proportional loss of network connectivity,

with its associated functional effects.

Neural networks based on the canonical small-world

network model have been studied for their dynamic

properties using a variety of artificial neurons and

connection types. Rapid cross-network synchronization

(Lago-Fernandez et al. 2000; Masuda & Aihara 2004),

consistent stabilization (Li & Chen 2003) and increased

persistence of activity (Roxin et al. 2004) have all been

reported for small-world networks, when compared to

equivalent regular and random networks. Each of these

properties has been found to be desirable in specific neural

systems—for example, the rapid synchronization is a

property of processing in the locust olfactory system.

Each of these properties may also be desirable in a system,

such as the medial RF, which directly associates sensory

input to motor output.

To elaborate: the afferent and efferent connectivity of

the projection neurons creates a single synaptic relay

between the ascending sensory systems and the spinal

motor circuits. Yet there is considerable behavioural and

neurophysiological evidence that the medial RF is the

neural substrate of both action selection (Humphries et al.

2005a) and instrumental conditioning (Buchwald 1975)

in the isolated brainstem. Thus, the internal processing of

the medial RF appears to support the representation and

learning of an action repertoire. The dynamic properties

just listed may each contribute to this: rapid cross-network

communication could facilitate both competition between

and simultaneous recruitment of action representations

competing for selection; consistent stabilization could

ensure that some representation is always recalled; and

persistent activity could in turn ensure that the recalled

representation remains active to drive the appropriate

motor response. The accuracy of such speculation remains

to be established in dynamic exploration of the structural

models proposed here, and in the extension of current

small-world neural network research to cases with more

realistic neural constraints (such as distance-dependent

transmission delays).

In conclusion, this study has proposed that the medial

RF has a cell-cluster based structure, which is likely to have

a small-world but not scale-free topology, and that this

topology is robust across considerable parameter variation

and invariant across instantiations of a parameter set.

This work was funded by EPSRC grant GR/R95722/01. We
thank T. Stafford, B. Mitchinson, and two anonymous
referees for comments on earlier versions of this manuscript.
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