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Abstract 
Introduction: Leishmaniasis is a disease with high mortality rates and 
approximately 1.5 million new cases each year. Despite the new 
approaches and advances to fight the disease, there are no effective 
therapies. 
Methods: Hence, this study aims to screen for natural products' 
structural analogs as new drug candidates against leishmaniasis. We 
applied Computer-aided drug design (CADD) approaches, such as 
virtual screening, molecular docking, molecular dynamics simulation, 
molecular mechanics–generalized Born surface area (MM–GBSA) 
binding free estimation, and free energy perturbation (FEP) aiming to 
select structural analogs from natural products that have shown anti-
leishmanial and anti-arginase activities and that could bind selectively 
against the Leishmania arginase enzyme. 
Results: The compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-
methylphenyl)-(9CI), echioidinin, and malvidin showed good results 
against arginase targets from three parasite species and negative 
results for potential toxicities. The echioidinin and malvidin ligands 
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generated interactions in the active center at pH 2.0 conditions by 
MM-GBSA and FEP methods. 
Conclusions: This work suggests the potential anti-leishmanial activity 
of the compounds and thus can be further in vitro and in vivo 
experimentally validated.
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Introduction
Leishmaniasis is an ancient disease that has been described in archaic ceramics, statues, and writings, and in molecular
findings from mummified human bodies and archaeological material.1 The disease causes high morbidity and mortality
worldwide, where about one billion people are at risk of infection across 98 countries, with over 1.5million new cases and
20,000-40,000 deaths reported each year.2,3 The increase in leishmaniasis incidence and prevalence is mainly attributed
to several risk factors that are man-propelled,4 whereas, in many regions, the transmission pattern shows expansion, with
new territories affected by the disease.5,6 Also, leishmaniasis has gained greater importance inHIV-infected patients as an
opportunistic infection in areaswhere both pathogens are endemic.7 Leishmaniasis is caused by the protozoan parasites of
the genus Leishmania (Kinetoplastida: Trypanosomatidae), which has a digenetic life cycle that alternates between the
midgut of sandflies and the phagolysosomes of mammalian macrophages.8 When exposed to extreme environmental
changes, such as low pH, the parasites respond to the acidification of their environment by changing the pattern of
expression of several proteins.9,10 About 21 parasite species can infect mammals and many of them cause human
disease11 and the clinical manifestations depend on both the parasite species and the hosts’ immune response,12 varying
from a chronic, slow-to-heal disease known as tegumentary leishmaniasis (TL), to a potentially fatal form of the disease,
namely, visceral leishmaniasis (VL), in which parasites disseminate to internal organs, such as the liver, spleen, and bone
marrow.13

Despite significant progress, the development of a human vaccine remains hampered by significant gaps in the
development pipeline14; and the treatment against disease has used drugs that cause side effects in the patients, such
as myalgia, arthralgia, anorexia, fever, and urticaria, as well as toxicity in the liver, kidneys, and spleen.15 Therefore, the
necessity for cost-effective treatment which promotes the cure completely, with few side effects, low relapse rates, high
effectiveness, and a reduction of toxicity remains.16 The number of drugs derived from natural products (NPs) present in
the total amount of drug launchings in the market over four decades represents a significant source of new pharmaco-
logical entities,17 while a series of secondary plant-purified products has already been described with leishmanicidal
potential.18–21 Likewise, computer-aided drug design (CADD) can be defined as computational approaches that are used
to discover, develop, and analyze drug and active molecules with similar biochemical properties,22 and this has become
crucial for screening of potential metabolite databases from natural sources that can be repurposed against diseases for
faster, safer, and cheaper drug development.23,24 The strategy of target-based drug discovery is used extensively by the
pharmaceutical industry and has been applied to leishmaniasis.25,26 However, in silicomethods to identify new potential
drugs to be applied against leishmaniasis present limitations, such as the dependency on the quality, accuracy, and
completeness of the information present in databases.27 The arginase (ARG) enzyme has recently obtained considerable
attention since new studies have highlighted it as a potential therapeutic target in leishmaniasis.28 ARG is the first enzyme
of the polyamine pathway and catalyzes the conversion of L-arginine to L-ornithine and urea, down-regulating the
polyamine pathway, affecting the parasite growth and infectivity.29 The inhibition results in a lack of protection against
reactive oxygen species (ROS), which damages Leishmania’s genetic material and ultimately leads it to die by
apoptosis.30 As a result, various NPs have demonstrated anti-arginase action,31,32 and the majority of these NPs have
also demonstrated a strong affinity against humanARG.33 In the current study,we usedCADD techniques, such as virtual
screening, molecular docking, and molecular dynamics simulations, to identify structural analogs of NPs that have
demonstrated anti-leishmanial and anti-ARG activities and that may bind specifically to the Leishmania ARG. Our goal
was to identify a promising compound candidate that could be used in the treatment of leishmaniasis.

Methods
Data collection
The search for natural products with anti-leishmanial and anti-ARG activities was performed at the Nuclei of Bioassays,
Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB) online web server (version 2017) (http://
nubbe.iq.unesp.br/portal/nubbe-search.html, accessed on 23 January 2022), which contains the information of more than
2,000 natural products and derivatives34; while the “anti-leishmanial property” was selected in the biological properties
segment of the web server. The bibliographic data extraction, regarding the compounds found in NuBBEDB, was
performed from the National Center for Biotechnology Information (NCBI) databases (https://www.ncbi.nlm.nih.gov/
pubmed/, accessed on 07 February 2022); and the simplified molecular-input line-entry system (SMILES) was searched
and retrieved from PubChem server (https://pubchem.ncbi.nlm.nih.gov/, accessed on 10 February 2022).35 Likewise, the
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physicochemical properties: total molecular weight (MW), octanol/water partition coefficient (iLOGP), number of
H-bond acceptors (HBAs), number of H-bond donors (HBDs), and the topological polar surface area (TPSA), for each
compound were calculated within the Osiris DataWarrior v5.2.01 software36; and, the rotatable bonds (RB); number of
heavy atoms (NHA); and synthetic accessibility (SynAcce) were calculated within SwissADME server (http://www.
swissadme.ch/index.php, accessed on 15 February 2022).37

Structural analogs search and virtual screening
The SMILES from the compounds were used for high throughput screening to investigate structural analogs by the
SwissSimilarity server (http://www.swisssimilarity.ch/index.php, accessed on 01 March 2022)38; whereas the commer-
cial class of compounds was selected and the Zinc-drug like compound library, which comprises 9’205’113 molecules,
with the combined screeningmethod, was chosen for the high throughput screening to achieve the best structural analogs.
The zinc-drug like compound library selection allowed the screening of compounds in the subsequent commercially
available chemical libraries: Enamine, ChemBridge, Maybridge, Asinex, AsisChem, Otava, SPECS, TimTec, Vitas,
Life Chemicals, ChemDiv, and Innovapharm.39 Threshold values for positivity were selected by default parameters.
Also, the FASTA sequences of the ARG sequences from L. infantum (A4IB49), L. mexicana (Q6TUJ5), L. braziliensis
(A4HMH0), and Homo sapiens (P05089) were retrieved from UniProt database (http://www.uniprot.org/, accessed
on 03 March 2022) (RRID:SCR_002380), and subjected to automated modeling in SWISS-MODEL40 (RRID:
SCR_018123), whereas the best model was selected based on the GQME and QMEAN4 scores.

Furthermore, the compounds were imported into Open Babel (RRID:SCR_014920) within the Python Prescription
Virtual Screening Tool41 and subjected to energy minimization. PyRx (RRID:SCR_018548) performs structure-based
virtual screening applying molecular docking simulations using the AutoDock Vina tool42 (RRID:SC_011958), whereas
the drug targets were uploaded as macromolecules. For the analysis, the search space encompassed the whole of the
modeled 3D models, and the molecular docking simulation was then run at an exhaustiveness of 8 and set to only
output the lowest energy pose. The Osiris Data Warrior software was employed to calculate the potential tumorigenic,
mutagenic, and reproductive effects, and irritant action of selected compounds predicted by comparison with a
precompiled fragment library derived from the Registry of Toxic Effects of Chemical Substances (RTECS) database.36

Molecular dynamics simulation
Ligands preparation was based on the results from the virtual screening analysis; while the geometry optimization of
these compounds was made in the Avogadro v. 1.2.0 program43 (RRID:SCR_015983) and the ACPYPE (AnteChamber
PYthon Parser interfacE)44 server was employed to generate the topologies and parameters for molecular dynamics
(MD) simulation. We determined the 3D structural conformation of L. infantum ARG by homology modeling with
L. mexicana ARG (PDB ID: 4ITY) as a template in the SWISS-MODEL online server40 and afterwards we determined
the protonation/deprotonation states at pH 2.0 and pH 7.0 in the PDB2PQR.45 Since ARG is a trimeric metalloprotein
with three active sites binding to two manganese atoms (Mn+2), we fixed the Mn+2 coordination with active site residues
and a hydroxyl molecule (OH�1), considering the following coordination: first Mn+2 with His114 (ND1), ASP137
(OD2), ASP141 (OD2), ASP243 (OD2) and the second Mn+2 with ASP137 (OD1), HIS139 (ND1), ASP243 (OD1) and
ASP245 (OD2). The MD simulation was reproduced in GROMACS v. 202046 (RRID:SCR_014565), considering the
AMBER9947 force field. The systems were solvated with the TIP3P water model, and Na+1 or Cl�1 ions were added for
neutralization. The box size was 12�12�12 nm. Thus, the energy minimization was performed with the steep-descent
algorithm with 20000 steps of calculation. The MD simulation was done in two steps; the first step was in the canonical
ensemble (NVT) considering distance restraint ofMn+2 to the active site by 5 ns. The second step was theMD production
in the isothermal-isobaric ensemble (NPT) with a time of 100 ns. The V-rescale48 thermostat was used to regulate the
temperature at 309.65K and the Parrinello-Rahman barostat at a reference pressure of 1 bar.Molecular dockingwas done
with the DockThor online server49; in the last frame, the molecular docking at two pH conditions was used as a receptor.
A grid was considered in the active site of ARG (ChainA). The complex models with the best scores were chosen, and
these were subsequently simulated in the isothermal-isobaric ensemble NPT for 100 ns. Gibbs free energy was calculated
by the molecular mechanics-generalized Born surface area (MM-GBSA)50 method in gmx_MMPBSA tool based on
AMBER’s MMPBSA.py, and AmberTools2051 (RRID:SCR_014565) package was used. Additionally, to compare the
binding free energy studies, we include the free energy perturbation (FEP) analysis where the Bennett acceptance ratio
(BAR) calculates the free energy differences.52 This analysis is achieved with the free energy implementation by the
GROMACS tool.

Statistical analysis
Results were entered intoMicrosoft Excel (version 10.0, Microsoft Corporation, Redmond,WA, USA) spreadsheets and
analyzed by GraphPad Prism version 9.4.0 for Windows, GraphPad Software, San Diego, California USA, (http://www.
graphpad.com) (RRID:SCR_002798). To evaluate the correlation between the binding affinities of the compounds
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against the protein targets, they were placed in a linear regression plot and analyzed by Pearson’s correlation coefficient;
differences were considered significant when p<0.05. Further, the selectivity score of binding affinities was calculated as
described53; where a selectivity value >1 indicates a priority of the compounds to bind to the parasite ARG over the
human target. Heatmaps were constructed in the R programming environment (version 4.0.3) using the “heatmap 2”
function in the package “gplots”.54

Results
Data collection and virtual screening
In this work, a search was performed in the NuBBEDB for NPs that had been described with anti-leishmanial and anti-
ARG activities. The search in the database resulted in 33 NPs described with anti-leishmanial activity, whereas six of
them had also been described as inhibitors of ARG activity. Startlingly, all the NPs selected were described in the same
article, in which the compounds were isolated from Byrsonima coccolobifolia species and tested for in vitro anti-ARG
activity.55 Since no anti-leishmanial activity was reported in the article, a cross-reference search for each compound was
performed in the PubMed database to validate the properties. Thereafter, the SMILES from quercetin (NuBBE_122),
isoquercetin (NuBBE_123), quercitrin (NuBBE_161), (+)-syringaresinol (NuBBE_214), catechin (NuBBE_287) and
(-)-epicatechin (NuBBE_866) were obtained from PubChem and submitted to physicochemical properties analysis
related to an absorption, distribution, metabolism, and excretion (ADME) profile; Lipinski’s rule of five (MW, iLOGP,
HBAs andHBDs),56 the quantitative estimate of drug-likeness (TPSA, RB,NHA and the number of alerts for undesirable
substructures)57 and the synthetic accessibility,58 of the NPs are shown in Table 1.

To find structural analogs to the six NPs selected, a search of the SwissSimilarity server employing the commercial zinc-
drug like compound library was performed, resulting in 400 analogs for each NP; however, the search comprised a high
degree of redundancy between the analogs and a step in which duplicated compounds were excluded was executed,
resulting in a total of 1499 unique compounds selected for virtual screening (Figure 1). The virtual screening results
against Leishmania infantum and human ARG, which shown a 44% of sequence identity, are plotted in Figure 1A,
where a positive linear relationship between the binding affinities of the compounds toward both targets is shown
[Pearson r:0.931; r2:0.868]. Later, aiming to select compounds that showed higher affinity toward L. infantum ARG,
the selectivity was calculated, and compounds with scores >1 were screened, resulting in 25 compounds selected
(Figure 1A). Since in vitro evidence of inter-species differences in the susceptibility of parasites to anti-leishmanial drugs
has been reported,59 putative drug candidates must be active against several species of the parasite60; in this way,
the selectivity of the compounds against L. mexicana and L. braziliensis ARG were also calculated and plotted in a
heatmap; each compound’s results showed differences in their affinities profile (Figure 1B). Also, to select potential
nontoxic candidates, the tumorigenic, mutagenic and reproductive effects, as well as irritant action were assessed
for the 25 compounds (Figure 1C). Thus, the compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-methylphenyl)- (9CI)
(ZINC39120134) (Figure 1D), echioidinin (ZINC14807307) (Figure 1E), andmalvidin (ZINC897714) (Figure 1F) were
selected for further analysis, since they showed favorable binding affinities against the three parasite species targets and
negative results for potential toxicities.

Molecular dynamics simulations (MDS)
L. infantumARG is an enzymewith trimeric conformation (ChainA, ChainB, andChainC) and its structure showed stable
behavior during a 100 ns ofMDS performed at pH 2.0 and pH 7.0 (Figure 2). Here we included themetal ions (Mn+2) and
one hydroxyl molecule (OH�1) for each active site, and it was observed that some regions lose their structural
conformation at pH 2.0 conditions (green color). In addition, compared to ARG at pH 7.0, ARG at pH 2.0 exhibits
large structural alterations and high variations per residue (see Figure 3A and 3B). In Figure 3C, the radius of gyration
shows lower compaction of whole protein during the MDS at pH 7.0 than at pH 2.0. The report of the trajectory of each

Table 1. Natural compounds description selected in the NuBBE database.

NuBBE ID PubChemID Name MW iLOGP TPSA HBA PAINS Brenk SynAcce

NuBBE_122 5280343 Quercetin 302.240 1.630 131.36 7 1 1 3.230

NuBBE_123 5378597 Isoquercetin 464.380 2.110 210.51 12 1 1 5.320

NuBBE_161 5353915 Quercitrin 448.380 1.270 190.28 11 1 1 5.280

NuBBE_214 100067 (+)-Syringaresinol 418.440 3.520 95.84 8 0 0 4.360

NuBBE_287 1203 Catechin 290.270 1.470 110.38 6 1 1 3.500

NuBBE_866 72276 (-)-epicatechin 290.270 1.470 110.38 6 1 1 3.500

MW:Molecularweight; iLOGP: octanol/water partition coefficient; TPSA: topological polar surface area;HBA:numberofH-bondacceptors;
HBD: Number of H-bond Donors; RB: rotatable bonds; NHA: number of heavy atoms; SynAcce: synthetic accessibility.
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complex system (enzyme-ligand) and the protein without ligand is shown in Figure 4. Since the root-mean-squared
deviation (RMSD) is a noteworthy analysis to verify the similarity between a protein-bound and not bound ligand.61 The
RMSDvalues in nm are presented that were taken from theChainA of each protein in different pH conditions, whereas the
enzyme-ligand systems presented greater conformational changes in the substrate-binding site (Figure 4A). Likewise,
radius of gyration (RG) analysis verifies the compactness of protein structures, where the lowest RG demonstrates the
tightest packing and high conformational stability.62 The results showed that, at pH 2.0, low compactness and a large
broadening of themacromolecules are reported (Figure 4B). Figure 4C shows the root-mean-squared fluctuation (RMSF)
per residue of the backbone, where high fluctuations were shown from residue 50 to 100 in both systems. From the
enzyme-ligand simulation results, we take each simulation’s last frames (Figure 5). The compounds ZINC14807307 and
ZINC897714 generate exciting interactions in the active center at the pH conditions evaluated and, at pH 7.0, hydrogen
bonds are observed, which benefits enzyme-ligand coupling.

Figure 1. Virtual screening of the compounds selected from the NuBBE database. Binding affinities toward
L. infatum and H. sapiens ARG targets were analyzed by linear regression and Pearson’s correlation coefficient. Solid
orange line: linear regression; dotted orange lines: 95% confidence intervals. The solid green square was calculated
using the maximum binding affinities of the 6 NPs (A). Normalized binding affinities heatmap of 25 selected
compounds on L. infantum, L.mexicana, and L. braziliensis against their humanhomolog (B). Binary heatmap showing
positive (red) or negative (blue) predicted toxicities (C). Chemical structure of ZINC39120134 (D), ZINC14807307 (E),
and ZINC897714 (F).
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Binding free energy estimation
The binding free energy analysis of pH 2.0 and pH 7.0 from the frames of each simulation is shown in Table 2. The
propitious energetic contribution with a binding free energy of -28.59 kcal/mol (ZINC897714/pH2) maximum and
-14.07 kcal/mol (ZINC14807307/pH2) minimum were obtained. The estimated phase-gas binding free energy (ΔGgas)

Figure 2. Structural conformation of ARG with its active site. Colors blue and green represent the cartoon
representation of pH 2.0 and pH 7.0. The red box shows the active site of ARG.

Figure 3. RMSD, SASA, and RG analysis. (A) RMSD is shown the conformational changes reported at pH 2.0.
(B) SASA shows a greater solvent access surface area to ARG at pH 2.0 than at pH 7.0. (C) RG shows the same
behavior as RMSD.
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provided the highest energy contributions for ZINC897714 in both pHs. Contrary, the van der Waals energies (ΔEvdW)
provided the highest energy contributions at pH 2.0 in ZINC897714.

It is well understood that hydrophobic interactions favorably contribute to binding. The electrostatic energies (ΔEele)
contributed positively to the binding enzyme-ligand, which the best energy was -24.76 kcal/mol (ZINC897714/pH2).
Despite this, the solvation energies (ΔGsolv) offset the negative electrostatic interactions, thus unfavorably contributing
to the binding of ZINC897714 to ARG in both pHs (ZINC897714/pH2 = 29.64 kcal/mol and ZINC897714/pH7 = 22.18
kcal/mol). These results show that the protonation states at a given pH can positively or negatively favor the enzyme-
ligand binding, where it is expected that at a pH above 7.0 the enzyme-ligand binding can be increased.

Figure 4. Plots of MD simulation of each complex. More significant conformational changes of ARG enzyme are
shown at pH 2.0. (A) RMSD plot of ChainA concerning the whole protein. (B) RG analysis. (C) RMSF per residue of
backbone.
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In an attempt to improve the enzyme-ligand binding energy analysis, the FEP approach was used, which estimates the
difference in free energy between two states (A state and B state) by slowly change from one state to another. A state
corresponds to the initial state of free energy and B state corresponds to the final state. This study sampled 20 microstates
with a time of 20 ns for each microstate; the results are presented in Table 3. Herein, it is observed that, at both pHs,

Figure 5. 2D representation of the last frame of each complex. (A) Last frame at pH 2.0. and (B) Last frame at pH
7.0. Green represents the hydrophobic interaction between enzyme-ligand, color sky blue represents the hydrogen
bond interaction.

Table 2. MM-GBSA binding free energy estimation average values.

Energy component ZINC39120134 ZINC14807307 ZINC897714

pH2 pH7 pH2 pH7 pH2 pH7

ΔEvdW -20.22 -23.65 -20.41 -23.62 -33.46 -32.06

ΔEele -2.08 -3.93 -4.41 -5.24 -24.76 -18.38

ΔEgb 10.37 12.63 13.26 14.98 33.90 26.00

ΔEsurf -2.62 -3.02 -2.51 -3.15 -4.26 -3.83

ΔGgas -22.30 -27.58 -24.83 -28.86 -58.22 -50.44

ΔGsolv 7.75 9.62 10.75 11.02 29.64 22.18

ΔGTotal -14.55 -17.96 -14.07 -17.04 -28.59 -28.26

ΔEvdW = VanDerWaals energy; ΔEele = electrostatic energy; ΔEgb = electrostatic contributionfree energy calculated by generalized Born;
ΔGgas = estimated phase-gas binding free energy; ΔGsolv = estimates binding free energy solvent; ΔG TOTAL = estimated binding free
energy. Values of energy in kcal/mol.

Table 3. FEP and MM-GBSA average values of ΔG TOTAL in kcal/mol.

Compound FEP pH2 FEP pH7 MM-GBSA pH2 MM-GBSA pH7

ZINC39120134 3.38 4.77 -14.55 -17.96

ZINC14807307 -6.27 -4.08 -14.07 -17.04

ZINC897714 -2.80 -0.29 –28.59 -28.26

Page 9 of 25

F1000Research 2023, 12:93 Last updated: 13 JUL 2023



the best compounds occurred in the following order: ZINC14807307 > ZINC897714 > ZINC39120134. On the other
hand, the compounds ZINC14807307 and ZINC897714 are shown to be stable at pH 2.0 conditions.

Discussion
The World Health Organization (WHO) considers leishmaniasis to be one of the major neglected global diseases and
responsible for millions of disability-adjusted life years (DALYs), representing one of the top burdens among the
neglected tropical diseases.63Worldwide, 13 countries have a high burden of VL (Bangladesh, China, Ethiopia, Georgia,
India, Kenya, Nepal, Paraguay, Somalia, South Sudan, Spain, Sudan, and Uganda), and 11 have a high burden of TL
(Afghanistan, Algeria, Colombia, Iran, Morocco, Pakistan, Peru, Saudi Arabia, Syrian Arab Republic, Tunisia, and
Turkey), while Brazil has a high burden of both clinical forms.64 Thus, TL treatment choice is based on the clinical
presentation and infecting species, while any person with VL signs and symptoms and a verified diagnosis warrants
chemotherapy.65 The range of currently available drugs for treating leishmaniasis is relatively small and it includes
repurposed molecules, such as amphotericin B, miltefosine, and paromomycin; while few new drug candidates reached
clinical trials in the last decades.66,67 For these reasons, the investigation of new therapies has been very active recently,
and a wide range of compounds have been identified as potential hits and leads.68 The unique and vast chemical diversity
of NPs places them as a major component of the biologically relevant chemical space,69 while NP classes like alkaloids,
coumarins, flavonoids, lignans, neolignans, quinones, and terpenoids have demonstrated anti-leishmanial activity.70

Several of these that target LeishmaniaARG have been investigated for their potential as new drug candidates, although
quercetin,71–73 catechin, (-)-epicatechin, (+)-syringaresinol, isoquercetin, quercitrin, resveratrol, and cinnamic acid
derivatives had shown in vitro efficacy.31,33,74 Additionally, certain NPs had demonstrated favorable in vivo effectivity,
including epigallocatechin gallate,75 gallic acid,76 rosmarinic acid,77 and quercetin.78,79 The equilibrium between
biological activity and pharmacological qualities is one of several aspects, nevertheless, that restricts the translation of
NPs into commercial drugs.80,81 In silico based drug repositioning potential for discovering new applications for existing
drugs and for developing new drugs in pharmaceutical research and the industry has gained importance82,83; whereas, in
the chemical structure and molecule information approach, the structural similarity is incorporated with molecular
activity and other biological information to identify new associations.84

The present work aimed to apply CADD approaches to select analogs to NPs with known anti-leishmanial and anti-ARG
activities; although results of the quercetin analogs, the anthocyanin malvidin (ZINC897714; PubChem CID: 159287),
and the flavone echioidinin (ZINC14807307; PubChem CID: 15559079) showed favorable binding affinity to
L. infantum, L. mexicana, and L. braziliensis ARG and no predicted toxicity. Besides that, in the ARG super-family,
the active site is conserved in all organisms, which includes the coordination of divalent metal Mn2+,85 and differences
between the parasite and its human homolog have been described,86,87 highlighting the possibility to target selectively
the parasite enzyme. However, recently, cinnamides88 and 1-phenyl-1H-pyrazolo[3,4-d] pyrimidine synthetic deriva-
tives89 have been described as potential selective inhibitors of parasite ARG and have shown in vitro anti-leishmanial
activity. A major bottleneck of drug discovery for leishmaniasis was aimed at the in silico workflow proposed, which is
that compounds must show activity in the acidic environment of the phagolysosome90; thus, the analyzed compounds
in this work showed stable enzyme-ligand interaction and favorable binding free energy at pH 2.0 in MDS analysis.
However, when taking into consideration the target product profile (TPP), proposed by the Drugs for Neglected Diseases
initiative (DNDi), which includes regard for the oral route of administration for new candidates,91 both ADME profiles
showed the potential for oral route administration and high bioavailability, but onlymalvidin results have been ratified by
experimental studies published elsewhere.92–94 Furthermore, malvidin has shown the potential to be an antioxidant, anti-
hypertensive, anti-inflammatory, anti-obesity, anti-osteoarthritis, anti-proliferative, and anticancer drug candidate,95–99

whereas to the best of our knowledge no research has been published studying the potential pharmacological activity of
echioidinin. Anthocyanins are commonly found in many plants, while the most common types are cyanidin, delphinidin,
pelargonidin, peonidin, petunidin, and malvidin, which are distributed in fruits and vegetables in 50%, 12%, 12%, 12%,
7%, and 7% proportions, respectively.100 These molecules are more stable at a lower pH solution, and in such conditions
the flavylium cation formed enables the anthocyanin to be highly soluble in water.101 The physicochemical properties
offered by anthocyanins should be considered of interest for anti-leishmanial drug discovery since the parasite is adapted
to live in parasitophorous vacuoles of infected macrophages in mammalian hosts, where it survives, proliferates, and is
responsible for the development of the active disease.102 Recently, the anthocyanidin profile of Arrabidaea chica has
been examined and its anti-leishmanial activity analyzed,103 and carajurin (PubChem CID: 44257040) showed the
highest activity against the intracellular parasites, altering all parameters of in vitro infection.104 Additionally, it has been
shown that carajurin leads to a decrease in themitochondrial membrane potential, an increase in ROS production, and cell
death by late apoptosis in L. amazonensis.105 Furthermore, flavones showing anti-leishmanial potential have been
described in the literature,106 whereas apigenin (PubChem CID: 5280443) and luteolin (PubChem CID: 5280445) have
shown the potential of inhibiting the growth of L. amazonensis.107
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Limitations of the present study should be also mentioned, such as the protein dynamics and complex stabilities with
MDS lasting within nanoseconds scales (0-100 ns), while most structural dynamics and biological activities of proteins
occur within timescales of microseconds and milliseconds.108 Even so, complex dynamics and interactions between
enzymes and ligands have been reported using nanosecond timescales.109,110 Additionally, the work did not include
in vitro or in vivo validation. It is important to note that anti-leishmanial in vitro assays have drawbacks, including
metabolic differences between the amastigote and promastigote stages,111 variations in drug effectiveness and suscep-
tibility among parasites isolated from patients,112 and a variety of biochemical pathways linked to drug-resistant
phenotypes in the parasite,113,114 which can lead to false positive results. Additionally, numerous animal models are
used in the validation tests for VL and TL drug candidates; however, due to insufficient translation to human disease, their
predictive value is frequently low. Furthermore, reliable main models for VL are frequently employed, including Syrian
golden hamsters and BALB/c mice,115,116 while there are no validated animal models for TL since different species
experience varied clinical symptoms, and current models lack human characteristics such as pathophysiology, symp-
tomatology, and treatment response.117

Conclusion
In the first screening, this work identified three substances with natural products structural analogs with potential effects
against Leishmania ARG using in silico analysis from the available data and research of natural products found in
databases. The substances were: ZINC39120134 (3,4-dihydro-2-(2-methylphenyl)-(9CI)), ZINC14807307 (echioidinin)
and ZINC897714 (malvidin), where the most suitable compounds were ZINC14807307 and ZINC897714, showing
favorable binding affinity to L. infantum, L. mexicana, and L. braziliensis ARG, no potential toxicity and stability at
pH 2.0; important factors due to the acidic environment of the phagolysosomes of mammalian hosts. Taking into
consideration that the oral bioavailability of malvidin has experimental data published and that its pharmacological
potential has been widely studied, the results presented in this work warrant further in vitro and in vivo studies using
malvidin to confirm its potential as a drug candidate against leishmaniasis.

Data availability
Underlying data
Figshare. Supplementary material. https://figshare.com/articles/dataset/Supplementary\_material\_xlsx/21867822.118

This project contains the following underlying data:

• Table S1. (Compounds obtained by chemical similarity against the natural products analyzed)

• Table S2. (Virtual screening results of the compounds selected against L. infatum and H. sapiensarginase
enzymes)

• Table S3. (Virtual screening results of the compounds selected against L. braziliensis and L. mexicana arginase
enzymes)

• Table S4. (Toxicity prediction of the selected compounds)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).
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Authors used computer-aided tools to better understand anti-leishmanial activity of natural 
products-based analogs toward arginase binding. Based on 33 ant-leishmanial NPs, authors 
selected 6 compounds able to inhibit ARG; selected 1499 analogs and filtered 25 compounds by 
selectivity and bonding affinity towards ARG from Leishmania. Three out of 25 analogs were 
further investigated and authors affirm they are good hit to be validated. The rational is quite 
clear and the manuscript well organized. However, several points must be addressed in order to 
improve impact and paper quality 
 
Comments

 Authors initially selected 33 anti-leishmanial natural products on NuBBE database. More 
than one year after their access I’ve got 33 selected NPs with anti-leishmanial properties, 
which I think is very limited. Some of anti-leishmanial NPs I know, were not listed there. This 
must be highlighted as one of the study limtations. Several other molecules are missing 
which would improve manuscript impact. 
 

○

Page 4 (1st paragraph): I suggest the authors to rerun ADME analysis on pkCSM tool, 
considering ADMET https://biosig.lab.uq.edu.au/pkcsm/ 
 

○

Page 4 (2nd paragraph): I understand that SWISS-MODEL can be a very useful tool. However ○
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some limitations could impact on assertiveness. Considering our recent advances on 
modelling, I encourage authors to consider AlphaFold and after comparing with Swiss-
model results highlight any study limitations or confirm that swiss-model was enough to 
reach the main goal. https://www.nature.com/articles/s41586-021-03819-2 
 
Page 4 (3rd paragraph): "The Osiris Data Warrior software... and reproductive effects" In 
order to improve toxicity prediction, not only based in a fragment library, I strongly 
encourage authors to perform analysis using graph-based tools. Please find below a link 
were several of these tools could be used. For example cardioToxCSM, embryoToxCSM, 
pdCSM-PPI, toxCSM, mCSM-lig… https://biosig.lab.uq.edu.au/tools 
 

○

Page 4 (4th paragraph): Why authors considered pH 2.0 (acidic), once the parasitophorous 
vacuole is around pH 4.7-5.2? I suggest that authors consider more realistic pH inspired by 
real measures of Leishmania PV 
https://pubmed.ncbi.nlm.nih.gov/1689700/#:~:text=We%20found%20statistically%20different%20mean,to%205.26%20for%20parasitophorous%20vacuoles.
; https://link.springer.com/article/10.1007/s40495-020-00209-6 
 

○

Page 5 (3rd paragraph): "...all compounds with scores... in 25 compounds selected" Please 
provide a table showing all selectivities (>1) to the selected compounds. Fig 1B is showing 
binding affinities but we need to see the relationship with selectivity 
 

○

Page 5 (3rd paragraph): "Thus the compounds.. potential toxicities" This is partially true. 
When carefully analyzing Fig 1B, I agree with the authors that compounds ZINC897714 and 
ZINC39120134 showed acceptable binding affinities among the three testes Lesihamnia 
species. However, compound ZINC14807307 presented divergent binding affinities when 
comparing the three tested species. Additionally, compound ZINC44545549 presented the 
bests binding affinities - with comparable BA considering ZINC..7307 for L. mexicana - 
although it was not included in further analysis. Based on that I suggest to authors to 
consider ZINC44545549 for the pipeline. 
 

○

Page 5 (4th paragraph): "... it was observed..(green color)" What about pH 4-5, which match 
with Leishmania PV 
 

○

Fig 1: Instead of predicting only 4 toxicity parameters, authors are encouraged to run 
pkCSM (graph-based ADMET prediction experimentally curated) and predict: 
 
ABSORPTION 
- water solubility 
- Caco2 permeability 
- Instestinal abssorption 
- skin permeability 
- P-glycoprotein substrate 
- P-glycoprotein I inhibition 
- P-glycoprotein II inhibition 
DISTRIBUTION  
- VDss (human) 
- Fraction unbound (human) 
- BBB permeability 

○
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- CNS permeability 
METABOLISM 
- CYP2D6 substrate 
- CYP3A4 substrate 
- CYP1A2 inhibitor 
- CYP2C19 inhibitor 
- CYP2C9 inhibitor 
- CYP2D6 inhibitor 
- CYP3A4 inhibitor 
EXCRETION 
- Total celarance 
- Renal OCT2 substrate 
TOXICITY 
- AMES toxicity 
- Max tolerated dose (human) 
- hERG I inhibitor 
- hERG II inhibitor 
- Oral Rat acute toxicity (LD50) 
- Oral rat chronic toxicity (LOAEL) 
- Hepatotoxicity 
- Skin sensitization 
- T. pyriformis toxicity 
- Minnow toxicity 
 
All parameters can be show as binary heatmap (as in Fig 1B) including hierarchical 
clustering to better visualization 
 
Page 10 (1st paragraph): "ZINC14807307...pH 2.0 conditions" Please consider ZINC44545549 
for this conclusion! 
 

○

Page 10 (3rd paragraph): "...showed favorable.. no predicted toxicity" Toxicity prediction in 
the work is very poor and must be reinvestigated. Selected compounds (25) showed the 
highest binding affinity around 1.25 (Fig. 2B). Authors must provide what it represents in 
terms of selectivity. Reference antileishmanial candidates such as miltefosine and 
amphotericin B, show SI of hundreds. This is a study limitation and additional experimental 
validation are required to make predictions trustable

○

Minor
Page 3 (2nd paragraph): "...been described with leishmanicidal..." Please confirm that in 
references 18-21 we found indeed leishmanicidal agents, otherwise, replace the term 
leishmanicidal by anti-leishmanial  
 

○

Page 3 (2nd paragraph): "..apoptosis." Please replace by programmed cell death.. 
https://pubmed.ncbi.nlm.nih.gov/23202528/ 
 

○

Fig 1: Font size within Fig 1 should be reduced. They are too big compared to the other fonts 
 

○

First paragraph of discussion is introduction and should be removed, since the main 
theoretical basis was already provided in introduction section

○
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This review was initially made by one of our PhD candidates, in which I agree with the highlighted 
points and selected the major concerns for the final version of this review 
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Authors have tried drug repurposing for Leishmaniasis and targeted arginase of L. infantum. There 
are some questions to be answered by authors:

Which pdb structure (pdb id) of human L-arginine was selected (
https://www.uniprot.org/uniprotkb/P05089/entry#structure) for docking? 
 

1. 

What is the sequence & structure level similarity between human and L. infantum ARG 
proteins? Give the justification of selection for ARG protein as target for drug discovery 
based on that similarity. 
 

2. 

Any reason for selection of two pH values (2 & 7) and also how have they changed the pH 
during simulation. Are there any experimental data / results to support these pH values? 
 

3. 

Fig 3 (A) and 4 (A) – rmsd of same protein is different or they represent different simulations 
/ protein structure? Kindly explain. 
 

4. 

How are the resultant compounds better than ones shown in Garcia et al., (2019)1 
and Carter et al., (2021)2?

5. 

Minor points: authors can check Kumari et al., (2023)4 and Saha & Nath Jha (2023)4, for workflow 
and Leishmania related updates. 
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Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly
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Reviewer Expertise: Computational Biophysics, Molecular Dynamics simulations, Drug design and 
discovery

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 10 Jul 2023
Miguel Angel Chavez-Fumagalli 

1)  Authors have tried drug repurposing for Leishmaniasis and targeted arginase of L. 
infantum. There are some questions to be answered by authors: 
ANSWER: I appreciate your evaluation and helpful criticism. To enhance the 
manuscript, we have taken into consideration your suggestions. 
 
2) Which pdb structure (pdb id) of human L-arginine was selected 
https://www.uniprot.org/uniprotkb/P05089/entry#structure) for docking? 
ANSWER: I appreciate your analysis. As mentioned in the methods section, we 
obtained the Homo sapiens ARG's FASTA sequence, carried out automated modeling in 
Swiss-Model, and chose the top models. 
 
3) What is the sequence & structure level similarity between human and L. infantum ARG 
proteins? Give the justification of selection for ARG protein as target for drug discovery 
based on that similarity. 
ANSWER: I value what you pointed out. We addressed this crucial issue raised by the 
reviewer in the text's results sections by adding comments. While the discussion and 
introduction sections of the work have advocated for the choice of ARG as a target. 
 
4) Any reason for selection of two pH values (2 & 7) and also how have they changed the pH 
during simulation. Are there any experimental data / results to support these pH values? 
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 ANSWER: I value what you pointed out. Our research focused on a significant obstacle 
to the development of leishmaniasis drugs: the requirement that drugs work in the 
acidic environment of the phagolysosome. This important information is included in 
the introduction and discussion portion of the article. The pH ranges selected were 
intended to compare variations in the target dynamics and complex stabilities under 
the two settings. 
 
5) Fig 3 (A) and 4 (A) – rmsd of same protein is different or they represent different 
simulations / protein structure? Kindly explain. 
ANSWER: I appreciate your perceptive observation. Figure 4 contrasts the target 
dynamics and complex stabilities at pH 2 or 7 (with the two molecules and without), 
lasting within nanoseconds. Figure 3 depicts the target at both pHs without binding a 
molecule.  
 
6) How are the resultant compounds better than ones shown in Garcia et al., (2019)1 and 
Carter et al., (2021)2? 
ANSWER: I appreciate your astute observation. Compared to the results obtained for 
most of the chemicals mentioned in the cited studies, our findings are, nonetheless, 
preliminary. Since 2000, numerous in vitro, in vivo, and silico studies have been 
conducted to assess natural product’s potential as an antileishmanial substance. as a 
single module, using nanocarriers and delivery systems [Alanazi AD, Ben Said M. Plant 
Bioactive Ingredients in Delivery Systems and Nanocarriers for the Treatment of 
Leishmaniasis: An Evidence-Based Review. Iran J Parasitol. 2022 Oct-Dec;17(4):458-472. 
doi: 10.18502/ijpa.v17i4.11272. PMID: 36694570; PMCID: PMC9825702.]. The approach 
outlined in this study aims to use a logical search for novel candidate molecules in 
which structural similarities to compounds that have been extensively investigated 
may result in novel molecular activities. While choosing substances that showed the 
potential for oral absorption and were selective against the parasite target. Malvidin 
performed the best in this case, however, it should first be studied in vitro and in vivo 
in order to meet the criteria for a candidate. 
 
7) Minor points: authors can check Kumari et al., (2023)4 and Saha & Nath Jha (2023)4, for 
workflow and Leishmania related updates. 
ANSWER: We value your highly regarded suggestion. I will definitely consider it in 
future studies.  
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de Extremadura, Badajoz, Extremadura, Spain 
2 Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad 
de Extremadura, Badajoz, Extremadura, Spain 

I have no further comments to make.
 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Arginase, Protein structure

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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The authors of this study employed various CADD techniques to screen structural analogs of 
natural products that could potentially serve as new therapeutic agents against leishmaniasis. The 
study is well-oriented and well-planned, particularly about how the screening of candidate 
molecules has been carried out from various compound libraries. This last point seems to be the 
best and most consistent aspect of the work in its current format. 
 
However, all the work on simulating the molecular dynamics of the interaction between the 
ligands and the arginase of L. infantum is based on the structure determined in Swiss-Model, using 
the structure of the arginase of L. mexicana as a template. Since the entire study relies on this 
structure determination being accurate, it is crucial that sufficient structural data be incorporated 
into this work to convincingly demonstrate that the structure determination obtained in silico is 
the best possible. 
 
In this regard, some issues also arise that should be addressed:

Have any refinements been made to the structure initially obtained from Swiss-Model to 
improve it? 
 

1. 

Why has only the arginase from L. infantum been chosen for dynamic simulation studies, 
and not the arginases from L. brasiliensis and/or L. mexicana, whose structures are known? It 
would be interesting to compare the dynamic data obtained for L. infantum with those 
obtained for L. mexicana, whose structure is known.

2. 

Another important point that limits the work presented, in which I agree with the authors, is that 
the time scales obtained for the stabilities of the arginase-ligand complexes are surprisingly short. 
Although the authors discussed this in the discussion section, their explanation seems implausible 
to me. To clarify this point, I suggest comparing the stability times of the complexes with those 
obtained with the physiological ligand, arginine, and comparing the arginine complexes with 
human and L. mexicana arginases, both of which are proteins with known structures.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable
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Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Arginase, Protein structure

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 11 May 2023
Miguel Angel Chavez-Fumagalli 

REVIEWER 1 
The authors of this study employed various CADD techniques to screen structural analogs 
of natural products that could potentially serve as new therapeutic agents against 
leishmaniasis. The study is well-oriented and well-planned, particularly about how the 
screening of candidate molecules has been carried out from various compound libraries. 
This last point seems to be the best and most consistent aspect of the work in its current 
format. 
ANSWER: Thank you for your assessment and constructive criticism. We have included 
all the recommendations described below to improve the manuscript. 
 
However, all the work on simulating the molecular dynamics of the interaction between the 
ligands and the arginase of L. infantum is based on the structure determined in Swiss-
Model, using the structure of the arginase of L. mexicana as a template. Since the entire 
study relies on this structure determination being accurate, it is crucial that sufficient 
structural data be incorporated into this work to convincingly demonstrate that the 
structure determination obtained in silico is the best possible. 
ANSWER: I appreciate your observation. We made comments in the methods sections 
of the text to address this crucial point brought up by the reviewer. 
 
In this regard, some issues also arise that should be addressed: 
Have any refinements been made to the structure initially obtained from Swiss-Model to 
improve it? 
ANSWER: Thanks for your assessment. As stated in the methods section we performed 
an automated modeling analysis and selected the best models for each target. 
 
Why has only the arginase from L. infantum been chosen for dynamic simulation studies, 
and not the arginases from L. brasiliensis and/or L. mexicana, whose structures are known? 
It would be interesting to compare the dynamic data obtained for L. infantum with those 
obtained for L. mexicana, whose structure is known. 
ANSWER: Thank you for your keen observation. We chose the ARG from L. infatum 
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since it is the species that causes leishmaniasis, it has the most severe form of the 
disease, and if VL is confirmed, therapy against it is required. While many of the 
natural compounds included in this study bind to highly conserved residues in 
Leishmania ARG, according to docking experiments conducted by numerous labs. In 
fact, a lot of them seem to use the same residues regardless of their structural 
classification [da Silva, Edson Roberto, et al. "Cinnamic acids derived compounds with 
antileishmanial activity target Leishmania amazonensis arginase." Chemical Biology & 
Drug Design 93.2 (2019): 139-146.]. Additionally, we restricted our research to New 
World Leishmaniasis because, as far as we are aware, no other crystal structures 
outside L. mexicana ARG have been deposited. 
 
Another important point that limits the work presented, in which I agree with the authors, is 
that the time scales obtained for the stabilities of the arginase-ligand complexes are 
surprisingly short. Although the authors discussed this in the discussion section, their 
explanation seems implausible to me. To clarify this point, I suggest comparing the stability 
times of the complexes with those obtained with the physiological ligand, arginine, and 
comparing the arginine complexes with human and L. mexicana arginases, both of which 
are proteins with known structures. 
ANSWER: I appreciate your observation. We made comments in the methods and 
results sections of the text to address this crucial point brought up by the reviewer. 
We carried out the MDS at 100 ns under the same conditions as those mentioned 
earlier in the manuscript. Since the parasite replicates in the macrophages, stability at 
low pH is the requirement that a medication must meet, as stated in the article. 
Several of the natural products that were employed as models for the selection of the 
structural analogs have demonstrated intracellular action in vitro.  
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