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Background: Breast invasive carcinoma (BRCA) is a malignant tumor with high
morbidity and mortality, and the prognosis is still unsatisfactory. Both ferroptosis
and cuproptosis are apoptosis-independent cell deaths caused by the imbalance
of corresponding metal components in cells and can affect the proliferation rate
of cancer cells. The aim in this study was to develop a prognostic model of
cuproptosis/ferroptosis-related genes (CFRGs) to predict survival in BRCA
patients.

Methods: Transcriptomic and clinical data for breast cancer patients were
obtained from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases. Cuproptosis and ferroptosis scores were
determined for the BRCA samples from the TCGA cohort using Gene Set
Variation Analysis (GSVA), followed by weighted gene coexpression network
analysis (WGCNA) to screen out the CFRGs. The intersection of the
differentially expressed genes grouped by high and low was determined using
X-tile. Univariate Cox regression and least absolute shrinkage and selection
operator (LASSO) were used in the TGCA cohort to identify the CFRG-related
signature. In addition, the relationship between risk scores and immune infiltration
levels was investigated using various algorithms, and model genes were analyzed
in terms of single-cell sequencing. Finally, the expression of the signature genes
was validated with quantitative real-time PCR (qRT‒PCR) and
immunohistochemistry (IHC).

Results: A total of 5 CFRGs (ANKRD52, HOXC10, KNOP1, SGPP1, TRIM45) were
identified and were used to construct proportional hazards regression models.
The high-risk groups in the training and validation sets had significantly worse
survival rates. Tumor mutational burden (TMB) was positively correlated with the
risk score. Conversely, Tumor Immune Dysfunction and Exclusion (TIDE) and
tumor purity were inversely associated with risk scores. In addition, the infiltration
degree of antitumor immune cells and the expression of immune checkpoints
were lower in the high-risk group. In addition, risk scores and mTOR, Hif-1, ErbB,
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MAPK, PI3K/AKT, TGF-β and other pathway signals were correlated with
progression.

Conclusion: We can accurately predict the survival of patients through the
constructed CFRG-related prognostic model. In addition, we can also predict
patient immunotherapy and immune cell infiltration.
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Introduction

Breast cancer is the most common cancer in women worldwide
(Dumas et al., 2020) and seriously endangers women’s lives and
health. There were approximately 2.3 million new cases and
685,000 deaths in 2020 (Lei et al., 2021). Breast cancer is a
significantly heterogeneous cancer (Yeo and Guan, 2017), and
with the continuous development of treatments in the form of
surgery, chemotherapy, radiotherapy, targeted therapy, endocrine
therapy, etc. (Singh et al., 2021), the survival of breast invasive
carcinoma (BRCA) patients has improved. However, some patients
still face the risk of recurrence and death. Currently known clinical,
pathological and molecular features cannot accurately predict the
prognosis of patients; thus, we still urgently need new prognostic
markers to evaluate the prognosis of patients and to guide treatment.

Cuproptosis (Tang et al., 2022) and ferroptosis (Dixon et al.,
2012) are novel cell death modes that do not depend on apoptotic
pathways. The main cause of ferroptosis is the continuous
generation of lipid reactive oxygen species (ROS) caused by
excessive intracellular iron (Wang et al., 2022). Once ROS levels
exceeds the ROS ability to resist oxygen, the ROS will produce
oxidative stress, which will damage mitochondria, the endoplasmic
reticulum and nucleic acids in cells and finally lead to cell death.
Studies have shown that abnormal regulation of ferroptosis is closely
related to the occurrence of various human diseases, including
ischemic organ damage (Yan et al., 2020), neurodegeneration
(Jakaria et al., 2021) and tumors (Mou et al., 2019). However,
induction of ferroptosis can prevent malignant progression of
tumors in patients, inhibit conventional therapy-resistant cells,
and enhance the effectiveness of immunotherapy (Xu et al.,
2021). Interestingly, Suppressor of fused homolog (SUFU)
inhibits ferroptosis sensitivity in breast cancer cells through the
Hippo/YAP pathway (Fang et al., 2022). Cuprotosis is the latest form
of programmed cell death to be discovered. Maintaining an adequate
amount of copper plays an important role in maintaining function
and homeostasis in all living organisms. Excess copper will interact
with fatty acylated components in the tricarboxylic acid (TCA)
cycle, resulting in abnormal aggregation of fatty acylated proteins
and loss of Fe-S cluster proteins (Tsvetkov et al., 2022), at which
point proteotoxic oxidative stress is activated, causing cells to
undergo “copper toxicity,” which in turn leads to cell death (Li
S-R. et al., 2022). In addition, this inhibition of the TCA cycle can
affect ferroptosis. Thus, through the TCA cycle, both cuproptosis
and ferroptosis can be affected (Gao et al., 2019).

In this study, we innovatively linked cuproptosis and ferroptosis.
The CFRGs that can predict OS in BRCA patients were screened out
by means of bioinformatics, and a proportional hazards regression
model was constructed. Based on this model, we can effectively

predict the prognosis of patients and help them personalize their
treatments.

Material and methods

Data resources

The necessary data were acquired from The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/), comprising of RNA-
sequencing (RNA-seq) data, clinical information, and simple
nucleotide variation data from a total of 1182 BRCA patients.
Fragments per kilobase million (FPKM) was selected for mRNA
expression profiling. We also acquired RNA-seq data and clinical
information from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/, ID: GSE20685, GSE42568,
GSE58812). Specifically, GSE20685 contained RNA-seq and clinical
data of 327 breast cancer samples, GSE42568 contained RNA-seq and
clinical data of 104 breast cancer samples and 17 normal breast samples,
and GSE58812 contained RNA-seq and clinical data of 107 breast
cancer samples. To ensure uniformity, themRNA expression data in the
TCGA and GEO databases were transformed into transcripts per
million (TPM) data by log2 transformation. We downloaded a total
of 65 ferroptosis-related genes from the Molecular Signatures Database
(MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/) and an
additional 19 cuproptosis-related genes from the literature (Tsvetkov
et al., 2022) (Ren et al., 2021) (Tao et al., 2021) (Selvaraj et al., 2005).

CFRG identification based on GSVA and
WGCNA

GSVA is an algorithm used to analyze gene expression data and
functional annotation. It can display the differences in samples on
different gene sets by calculating gene set scores. The algorithm does
not require standardization and is very fast, so it is widely used in
biomedical research. A GSVA of the GSE42568 samples was
performed on ferroptosis and cuproptosis genomes to obtain
ferroptosis and cuproptosis scores, respectively. The hub genes
were screened by weighted gene coexpression network analysis
(WGCNA) based on their scores. Scale-free and average
connectivity analyses were performed on modules with different
power values using the PickSoftThreshold function to set the soft
threshold power to 5. Then, the corresponding dissimilarity matrix
(1-TOM) and topological overlap matrix (TOM) were obtained.
Pearson correlation analysis was performed on coexpression
modules with cuproptosis and ferroptosis scores after TOM.
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X-tile software is a software designed by Yale University to
calculate the optimal cutoff value for survival curves. We calculated
the optimal cutoff values for the cuproptosis score and ferroptosis
score in the TCGA cohort with this software and divided the scores
into high- and low-score groups, respectively. Subgroups with both
high and low scores for both cuproptosis and ferroptosis were
selected. According to specific criteria (|log2FC| ≥ 1 and
FDR<0.05), the “DeSeq2” R package was used to screen out the
high and low subgroup differentially expressed genes (DEGs), and
then the DEGs were cross-referenced with the genes screened by
WGCNA, and the final genes were identified as CFRGs.

Establishment and validation of the CFRGs
prognostic model

After screening out CFRGs related to prognosis, we used five
machine learning methods—decision tree, random forest, least
absolute shrinkage and selection operator (LASSO), extreme
gradient boosting (XGBoost) and gradient boosting decision tree
(GBDT)—to evaluate the survival weights of the CFRGs.
GSE42568 was used as the training set, and the first 30 genes
were selected to construct the LASSO Cox model. With the
median risk score as the critical value, the model was divided
into a high-risk group and a low-risk group. The overall survival
(OS) of the high and low risk groups was analyzed using the KM
curve. Subsequently, Kaplan‒Meier (KM) analysis was performed
on the high- and low-risk groups using the “survival” and
“survminer” R packages, and 1-, 3-, and 5-year receiver operating
characteristic (ROC) analyses were performed with the “timeROC”
R package to evaluate the sensitivity of the model. Finally, the TCGA
and GEO cohorts (GSE20685, GSE58812) were used as the
validation set, and the obtained prognoses were selected for
validation. In addition, we constructed a nomogram by
combining the risk score and clinical data.

Analysis of signature and immune-related
markers

We used seven algorithms from the Tumor Immune Estimation
Resource (TIMER) database, including TIMER, CIBERSORT,
CIBERSORT-ASB, QUANTISEQ, MCPCOUNTER, XCELL, and
EPIC, to analyze signatures and immunity. In addition, we evaluated
the differences in immune cell infiltration and immune function
between high-risk and low-risk subgroups using the single-sample
gene set enrichment analysis (ssGSEA) algorithm. Furthermore,
differences between high- and low-risk groups in immune
therapy biomarkers were also analyzed through TIDE (http://tide.
dfci.harvard.edu/)), TMB, and immune checkpoint.

Characterization of OCFRGs (optimal
cuproptosis/ferroptosis related genes) by
single-cell RNA sequencing

Single-cell RNA-seq data for 12 samples were obtained from the
GSE149655 dataset in the GEO database. The sequencing data were

analyzed using the “Seurat” R package, and low-viability cells were
removed. Using the CreateSeuratObject function, and based on
specified criteria, low-quality cells were further removed
(min.cells<3, min. features<50, percent. mt < 50). The filtered
single-cell RNA sequencing (scRNA-seq) data were then
normalized, and 1,500 genes with large coefficients of variation
between cells were generated and subsequently subjected to
principal component analysis (PCA) for dimensionality reduction
of the scRNA-seq data. The top 4 PCs were selected for cell
clustering analysis using the distributed stochastic neighbor
embedding (t-SNE) algorithm. Through the DEGs of each
cluster, the cell clusters were tool annotated. Finally, we analyzed
the expression levels of OCFRGs in different clusters.

Enrichment analysis of GSEA and GSVA

DEGs in high-risk and low-risk subgroups were screened and
GSEA was performed using the GSEA software (https://www.gsea-
msigdb.org/gsea/index.jsp). In addition, GSVA was used to perform
GSVA on high-risk and low-risk subgroups using the “GSVA” R
package. We collected some pathways closely related to the
occurrence and development of tumors from the literature,
including Hippo, Wnt, MAPK, PI3K/AKT, TGF-β, NF-kB,
Notch, AMPK, JAK-STAT, PD-1/PD-L1, mTOR, Ras, TNF, HIF-
1, ErbB, Nrf2, as well as functions and pathways related to
cuproptosis and ferroptosis, including GLUTATHIONE
PEROXIDASE ACTIVITY, P53 SIGNALING PATHWAY,
GLUTATHIONE METABOLIC PROCESS, LIPID
HOMEOSTASIS, PENTOSE PHOSPHATE PATHWAY,
TRICARBOXYLIC ACID CYCLE, MITOCHONDRIAL
TRICARBOXYLIC ACID CYCLE ENZYME COMPLEX,
TRICARBOXYLIC ACID CYCLE ENZYME COMPLEX,
REGULATION OF OXIDATIVE STRESS INDUCED CELL
DEATH, RESPONSE TO OXIDATIVE STRESS, CELL
MIGRATION INVOLVED IN SPROUTING ANGIOGENESIS,
IRON METABOLISM. We used GSVA to calculate the
enrichment score for each pathway and evaluate the correlation
between risk score and sex enrichment score.

Risk subtype analysis of drug sensitivity

In order to assess the sensitivity of high and low risk groups to
drugs, we used the “pRRophetic” R package to analyze the RNA-seq
data of BRCA based on the Genomics of Drug Sensitibity in Cancer
(GDSC) database. The level of half maximal inhibitory
concentration (IC50) reflects the patient’s sensitivity to drugs.

Immunohistochemistry validation of the
protein expression levels of OCFRGs

Five breast invasive ductal carcinoma tissue chips were purchased
from Shanghai Outdo Biotech Company (Shanghai, China). Each
tissue chip includes 45 cancer tissues and 45 paracancerous tissues.
ANKRD52 (rabbit polyclonal, catalog number: GTX32443, Genetex),
HOXC10 (rabbit polyclonal, catalog number: ab153904, Abcam),
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KNOP1 (rabbit polyclonal, catalog number: ab126512, Abcam),
SGPP1 (rabbit polyclonal, catalog number: ab126512, Abcam):
ab126512, Abcam) and TRIM45 (rabbit polyclonal, catalog
number: TA505920, origene). The results of the
immunohistochemical staining were scored. Semiquantitative
scoring was performed according to the staining intensity and the
percentage of positive cells: No staining, pale yellow (light yellow
particles), medium (brown yellow particles), and heavy (dark brown
particles) were scored as 0, 1, 2, and 3, respectively. According to the
percentage of positively stained cells in the total number of cells, 0%
was scored as 0, 5%–25% was scored as 1; 26%–50% was scored as 2;
51%–75% was scored as 3; and >75% was scored as 4 points. The final
score was the sum of the staining intensity and the percentage of
positive cells. The sum of the staining intensity and the percentage of
positive cells was less than 6 for the low expression group and ≥6 for
the high expression group. Five 400x high-power fields were randomly
selected for each sepction, the staining intensity and percentage of
positive cells were scored in each field, and the average value was
calculated. The immunohistochemical staining results were
microscopically adjudicated by two pathologists in an independent,
double-blind manner.

Quantitative real-time PCR

Normal breast epithelial MCF-10A cells and three human breast
cancer cell lines, SK-BR-3, MDA-MB-231, andMCF-7, were obtained
from the Central Laboratory of Shandong Provincial Hospital. Total
RNA was extracted using TRIzol reagent (Invitrogen, United States).
ComplementaryDNA (cDNA) was synthesized using the PrimeScript
RT kit (Takara). Supplementary Table S2 shows the primer sequences
for Quantitative real-time PCR analysis of OCFRGs.

Western blotting

Cells were lysed in cold Radioimmunoprecipitation assay
(RIPA) buffer. The same amount of protein was subjected to
SDS-PAGE, and then transferred to PVDF (polyvinylidene
fluoride) membrane. Block with nonfat dry milk containing
TBST for 1 h. The primary antibody (Western blot and IHC
universal primary antibody) was diluted according to the
instructions and incubated overnight at 4°C. After washing with
TBST, the secondary antibody was added and incubated for 1 h at

FIGURE 1
The workflow of the research. The figure shows the process of constructing and analyzing the DFRG-related signature.
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FIGURE 2
Discovery of prognostic CFRGs by WGCNA and Score grouping. (A) The distribution and trends of scale free topology model fit and mean
connectivity along with soft threshold. (B) The clustering of gens among different modules by the dynamic tree cut and merged dynamic method. The
graymodules represent unclassified genes. (C) Average correlation betweenmultiple modules and tumor development, cuproptosis and ferroptosis. The
color of the cell indicates the strength of the correlation, and the number in parentheses idicates the p-value for the correlation test. (D) According
to specific criteria (p < 0.05, |Log2FC|≥1), 1712 DEGs wew screened for high and low score groups of cuproptosis and ferroptosis. (E) 541 CFRGs were
obtained from WGCNA and high and low score groups.
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room temperature. After washing the membrane, it was developed
using enhanced chemiluminescence (ECL) chromogenic solution.

Statistical analysis

The bioinformatics analysis, statistical analysis, and machine
learning aspects of this study were all performed with R software
(version 4.0.1). Statistical tests included the Pearson chi-square test
and Wilcoxon rank-sum test. Kaplan-Meier analysis was used to
assess OS in both groups of patients. p < 0.05 was considered to be
statistically significant.

Results

Identification of cuproptosis/ferroptosis-
related genes

The specific process of this study is shown in Figure 1, which
includes the acquisition of data, the acquisition of cuproptosis

and ferroptosis-related genes, the construction and validation of
the signature, the analysis of clinical data, the analysis of
immune cell infiltration levels, and the analysis of pathways
and functions.

We used the pickSoftThreshold function in the WGCNA R
package to automatically select a soft threshold of 5 (Figure 2A).
Multiple genemodules were divided by the dynamic cuttingmethod,
and the mergeCloseModules function was used to perform cluster
analysis on each module into fewer modules and mark them with
different colors (Figure 2B). To determine the correlation of
coexpression modules with genetic differences between normal
and tumor samples that may contribute to tumor development,
cuprotosis score and ferroptosis score, we used Pearson correlation
analysis, and the results showed that the module “turquoise” had the
strongest correlation (R (Turmor) = 0.86, R (cuproptosis) = 0.77, R
(ferroptosis) = 0.57) (Figure 2C).

X-tile software was used to determine the optimal cutoff values
for the survival curves of the cuproptosis and ferroptosis scores in
the TCGA BRCA cohort (Supplementary Figure S1). Patients with
high cuproptosis and ferroptosis scores and patients with low
cuproptosis and ferroptosis scores were divided into two groups,

FIGURE 3
Screening and Models Construction of OCFRGs. (A) Forest plot of univariate Cox regression analysis (only showing the top 30 CFRGs related to
survival). (B) Differences in survival between samples with high and low expression of OCFRGs (p < 0.05). (C) Selecting the best value of lambda through
LASSO regression. (D) LASSO coefficient configuration of 5 OCFRGs. (E) Distribution of patients based on the median risk score in the training set.
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and DEGs were screened out with |log2FC| ≥ 1 and FDR<0.05 as
criteria (Figure 2D). By analyzing the intersection of the genes
screened by means of DEGs and WGCNA, a total of 541 CFRGs
were identified (Figure 2E).

Establishment and validation of the CFRG
prognostic model

Survival-related CFRGs were screened by using Cox regression
analysis (Figure 3A). The survival-related weights of the CFRGs
were evaluated using five machine learning algorithms, including
decision tree, random forest, LASSO, XGBoost, and GBDT. The top
30 CFRGs with average scores (Supplementary Table S1) were
selected to screen genes and to construct models by means of
LASSO Cox regression analysis. According to the best λ value,
5 prognostic genes (Figure 3B) were selected and signature was

constructed (Figure 3C,D). Calculation of the risk score was
conducted as follows:

Risk Score � 0.4024*ANKRD52 exp .( ) + 0.1025*HOXC10 exp .( )

+ 0.2146*KNOP1 exp .( ) + −0.3069*SGPP1 exp .( )

+ −0.4003*TRIM45 exp .( )

Based on the median training set risk score, BRCA patients were
divided into high- and low-risk groups and further analyzed
(Figure 3F). In the training and validation sets, the KM curve
showed that the OS (Overall survival) in the high-risk group was
lower than that in the low-risk group (Figure 4A), which was
statistically significant (p < 0.05). The ROC curve of the training
set showed that the AUCs at 1 year, 3 years, and 5 years were 0.76,
0.726, and 0.728, respectively. The AUC of the TCGA cohort was
0.734, 0.713, and 0.756, and that of GSE58812 was 0.784, 0.714, and
0.698. This indicates that our model has reliable predictive
performance. We constructed a nomogram, in which Age (p <

FIGURE 4
Performance evaluation of model prognosis and construction of nomogram. (A) KM curve shows the difference between high and low-risk groups
in OS for GSE42568, TCGA cohort, GSE20685, and GSE58812. (B) ROC curves show the predictive efficiency of risk scores for GSE42568, TCGA cohort,
GSE20685, and GSE58812 at 1, 3, and 5 years. (C)Column chart of overall survival prediction at 1 year, 3 years, and 5 years. The red line shows an example
of how to predict prognosis. (D) The difference in survival between high and low-score groups in nomogram. (E) The predictive.
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0.001), Stage (p < 0.001), and risk score (p < 0.01) were all
statistically significant (Figure 4C). In the nomogram, the OS of
high-scoring patients was significantly lower than that of low-
scoring patients (Figure 4D), which was statistically significant
(p < 0.05). The column chart had good predictive performance
with AUCs of 0.876, 0.773, and 0.727 at 1, 3, and 5 years,
respectively.

Clinical analysis of the signature

We analyzed the relationship between OCFRGs (ANKRD52,
HOXC10, KNOP1, SGPP1, TRIM45) and clinical data. The results
showed that the expression level of HOXC10 differed significantly in
different T andN stages and was statistically significant. In addition, the
higher the expression level ofHOXC10, the later the T stage andN stage
of the patient (see Figures 5A,B). The expression levels of KNOP1 and
SGPP1 also differed significantly in different T stages (see Figures 5C,D)
and were statistically significant. We also analyzed the correlation
between the expression levels of OCFRGs, risk score, and the
expression levels of ER, PR, and HER2 (see Figure 5E). The results
showed that the expression level of ANKRD52 was positively correlated
with ER (R = 0.28). TRIM45 was also positively correlated with ER (R =
0.38) and PR (R = 0.33). There were also differences in stage, T stage,
and M stage between the high-risk and low-risk groups (Figure 6A).

Analysis of risk subtypes and immune
markers

We analyzed the relationship between several immune-related
markers and the risk subtypes. The results showed that the expression
of numerous immune checkpoints was different between high and
low-risk groups (Figure 6A), especially CD274 (PDL1, Programmed

Cell Death 1 Ligand 1). Additionally, TMB (tumor mutational
burden) and TIDE (tumor immune dysfunction and exclusion) are
considered important immune therapymarkers. Our study found that
TMB and TIDE were also different between high and low-risk groups.
The results based on the ssGSEA algorithm showed that the
expression levels of Mast cells, B cells, NK cells, and Neutrophils
also differed between high and low-risk groups. Moreover, according
to the results from TIMER database (Figure 6B), all immune-related
markers had different expression levels between the high and low-risk
groups. It is worth noting that all of the immune-related analyses had
statistical significance (p < 0.05).

In terms of immune cell infiltration, the expression of OCFRGs
was mainly correlated with the infiltration levels of neutrophils and
regulatory T cells (Tregs). The expression of ANKRD52 was
negatively correlated with the infiltration level of activated
dendritic cells (aDCs) (R = −1.4, p < 0.001, Figure 6C), and the
expression level of HOXC10 was negatively correlated with the
infiltration level of Tregs (R = −0.076, p = 0.014, Figure 6D). The
expression level of KNOP1 was negatively correlated with the
infiltration level of neutrophils (R = −0.22, p < 0.001, Figure 6E),
and the expression level of SGPP1 was positively correlated with the
infiltration level of neutrophils (R = 0.34, p < 0.001, Figure 6F). The
expression level of TRIM45 was positively correlated with the
infiltration level of Tregs (R = −0.34, p < 0.001, Figure 6G).

Overview of the scRNA-Seq data generated
from BRCA

We obtained 14592 cells from 12 samples of GSE168410. A
total of 1,418 cells were obtained by screening the total cells
according to the intracellular gene features, the percentage of
chromosomal genes, etc. Afterward, the top 10 genes with large
coefficients of variation were labeled. Latitude reduction was

FIGURE 5
Clinical analysis of themodel. (A–D) By Kruskal–Wallis test, the expression differences of OCFRGs (ANKRD52, HOXC10, KNOP1, SGPP1, TRIM45) in T
stage and N stage were analyzed. (E) By calculating the Pearson correlation coefficient, the correlation between OCFRGs and the risk score and clinical
indicators ER, PR, HER2 of breast cancer were analyzed.
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performed using PCA (Figure 7A). The first 4 PCs were
retained for further t-SNE, and 13 cell subsets were obtained
(Figure 7B). The top 5 genes in each cluster were visualized with
a heatmap (Supplementary Figure S3). We used tools to
annotate the cell subsets, namely, fibroblasts, tissue stem
cells, epithelial cells, monocytes, endothelial cells,
chondrocytes, and T cells (Figure 7C). To investigate the
expression of marker genes in different cells, we visualized
them with t-SNE and violin plots (Figures 7D,E). OCFRGs were

highly expressed in epithelial cells; HOXC10, KNOP1, and
SGPP1 were highly expressed in fibroblasts; and only
SGPP1 was highly expressed in monocytes.

Analysis of function and signaling pathways

The biological functions of high- and low-risk groups were
analyzed using GSEA software, which revealed that certain

FIGURE 6
Analysis of immune cell infiltration related to the signature. (A) Differences in clinical data, CRGs, TMB, TIDE scores, check point and ssGSEA results
between high and low-risk groups. TIDE Scores and TMB are presented in the form of a bar chart and density plot respectively. (B) The differences in the
abundance of immune cell infiltration algorithms in TIMER2.0 database including TIMER, CIBERSORT, CIBERSORT-ABS, MCPCOUNTER, XCELLL and
EPIC between the high-risk and low-risk groups (the heatmap shows the results with statistical differences). (C–G) The correlation between
OCFRGs and immune infiltration level. The color represents the significance, with greener colors indicate higher significance. The size of the circles
represents the correlation coefficient.
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functions such as CELL CYCLE, CITRATE CYCLE/TCA CYCLE,
DNA REPLICATION, GLYCOLYSIS/GLUCONEOGENESIS,
MISMATCH REPAIR, PENTOSE PHOSPHATE PATHWAY,
and PROTEASOME were more active in the high-risk
group. On the other hand, the low-risk group exhibited
significant enrichment in ARACHIDONIC ACID
METABOLISM, MAPK SIGNALING PATHWAY, and
P53 SIGNALING PATHWAY (Figure 8A). Additionally, GSVA
analysis (Figure 8B) indicated that CELL CYCLE,
HOMOLOGOUS RECOMBINATION, MISMATCH REPAIR,
and DNA REPLICATION were more enriched in the high-risk
group, whereas INTESTINAL IMMUNE NETWORK FOR IGA
PRODUCTION, CYTOKINE CYTOKINE RECEPTOR
INTERACTION, TYROSINE METABOLISM, and
ARACHIDONIC ACID METABOLISM evidenced more
enrichment in the low-risk group. Remarkably, several signaling
pathways, including mTOR, HIF-1, and ErbB, were significantly
activated in the high-risk group, whereas other signaling pathways
such as MAPK, PI3K/AKT, TGF-β, and Ras were significantly
inhibited (Figure 8C). Furthermore, the scores for cuproptosis/

ferroptosis-related functional pathways, including
Nrf2 SIGNALING PATHWAY, P53 SIGNALING PATHWAY,
TRICARBOXYLIC ACID CYCLE, and REGULATION OF
OXIDATIVE STRESS INDUCED CELL DEATH, were
positively correlated with the risk score. In contrast, the scores
for GLUTATHIONE PEROXIDASE ACTIVITY,
GLUTATHIONE METABOLIC PROCESS, and IRON
METABOLISM were negatively correlated with the risk score.
All the aforementioned analyses exhibited statistical significance
(p < 0.05).

Drug sensitivity analysis between high and
low risk groups

Elesclomol is a potent copper ionophore that promotes
cuproptosis. Our analysis shows that the IC50 of various
anticancer drugs including elesclomol is different in the high-
and low-risk groups, and the IC50 values of high-risk groups are
generally higher than those of low-risk groups (Figure 9A–L).

FIGURE 7
Verification of OCFRGs through sc-RNA seq. (A) PCA of scRNA-seq data for preliminary dimensionality reduction. (B,C) tSNE plots of cells generated
from brest cancer tissue. The plots are colored by cell cluster, and the cells are clustered into seven sub-clusters. Each dot represents a breast cance cell.
(D) The expression of signature genes in BRCA visualized in tSNE. (E) Violin plots depicting the expression of signature genes in clusters of BRCA. The
y-axis shows the normalized read count. t-SNE:t-distributed stochastic neighbor embedding.
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Experimental verification of the expression
of OCFRGs

To explore the differences in the protein expression of OCFRGs
in normal tissues and adjacent tissues, we detected the expression
levels of ANKRD52, HOXC10, KNOP1, SGPP1, and TRIM45 in
tissues by using immunohistochemical staining. The results of
ANKRD52 level expressed that the HOXC10, KNOP1, and
TRIM45 in the tumor tissue were higher in the paracancerous
tissue, and the opposite was true for SGPP1 (Figure 10A). qRT-
PCR results showed that ANKRD52, HOXC10, KNOP1, and
TRIM45 were significantly higher in MCF-10A cells than other
cell lines, while SGPP1 was the opposite (Figure 10B). The results of
Western blotting also verified the results of the database
(Figure 10C).

Discussion

Cuproptosis was recently defined as a distinct type of regulated
cell death that occurs via a novel mechanism directly involving the
TCA cycle of mitochondrial metabolism. Conversely, Ferroptosis,

characterized by iron dependence, lipid peroxidation, and sensitivity
to lipophilic antioxidants, is a well-researched regulated cell death.
Literature suggests a relationship between Ferroptosis and TCA
cycle with dysregulation of the TCA cycle leading to the occurrence
of Ferroptosis. Additionally, TCA cycle metabolites serve as crucial
sources of peroxide production, playing a role in the occurrence of
Ferroptosis (Yang et al., 2022). Moreover, Gao et al. (Gao et al.,
2019) demonstrated the reduction of Ferroptosis by inhibiting the
mitochondrial TCA cycle.

According to the World Health Organization, in 2018 alone,
26,000 women worldwide were diagnosed with breast cancer. In the
United States and China, the incidence and death rates of breast
cancer vary among different ethnicities and races. White American
women have an incidence rate of 133.7 per 100,000, while Chinese
women have an incidence rate of 29.18 per 100,000. The death rates
are 19.7 and 6.59 per 100,000 for White American and Chinese
women, respectively (Giaquinto et al., 2022). Due to the high degree
of heterogeneity of breast cancer based on genetic status and
molecular subtypes, there are significant prognostic differences
among patients with various subtypes. Therefore, the discovery of
new prognostic biomarkers or models to guide clinical diagnosis and
treatment is essential.

FIGURE 8
Biological functions. (A) Significantly enriched pathwways in the high-risk and low-risk groups. The extremum located on the left side idicates a
psotive association between risk scores and pathway activity, and vice versa. (B) There is a significant difference in pathways between high-risk and low-
risk groups. Blue bars represent a positive correlation between risk scores and pathway aactivity, while yellow bars indicate the opposite. (C) The
correlation between riskscore and tumor important pathways, as well as cuproptosis/ferroptosis-related functions.
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Currently, cuproptosis, a recently discovered cell death
mechanism, has been studied in BRCA through the use of
bioinformatics approaches (Li Z. et al., 2022; Sha et al., 2022; Zou
et al., 2022). However, this study innovatively links cuproptosis and
ferroptosis to construct a robust prognostic model for BRCA. In this
study, we screened CFRGs obtained from GCTA and GEO databases
using WGCNA and X-tile. Next, LASSO was implemented to select
the optimal lambda value and five OCFRGs- ANKRD52, HOXC10,
KNOP1, SGPP1, and TRIM45were selected to build the model. These
genes may play an important role in the regulation of cuproptosis and
ferroptosis, or have a direct impact on the copper and ironmetabolism
of cells. ANKRD52 is reported to function as a tumor metastasis
suppressor in lung adenocarcinoma. In addition to being a member of
the PP6 holoenzyme, ANKRD52 inhibits tumor progression through
PP6c-mediated dephosphorylation of PAK1 (Lee et al., 2021).
ANKRD52 is reported to function as a tumor metastasis
suppressor in lung adenocarcinoma. However, t Our study has
identified a strong correlation between significantly elevated
ANKRD52 expression levels in the BRCA and a poor prognosis.
ANKRD52 showed a positive correlation with critical clinical
indicators including ER, PR, and HER2, and had a high-risk score
in our built model. Furthermore, we found that ANKRD52 expression
was inversely correlated with the infiltration of Th1 cells, a subtype of
antitumor immune cells.

Previous studies have confirmed that HOXC10 participates in
the development and progression of breast cancer and affects the
prognosis of breast cancer patients. The overexpression of
HOXC10 in breast cancer is related to drug resistance to
chemotherapy (Sadik et al., 2016) and a positive correlation
between immune cell infiltration and poor prognosis in BRCAs
(Zhang et al., 2022). Methylation of the HOXC10 promoter,
resulting in transcriptional repression, has been shown to
contribute to resistance to endocrine therapy in estrogen
receptor-positive breast cancer (Pathiraja et al., 2014) In addition,
studies have demonstrated that HOXC10 can promote tumor
growth in BRCA by upregulating the level of IL-6 to activate the
JAK2/STAT3 signal transduction pathway (Shen et al., 2022).
HOXC10 expression is dysregulated in various cancers, acting as
a carcinogenic driver associated with poor prognosis (Bao et al.,
2014). In this study, highly expressed HOXC10 in breast cancer
tissues and cells have been associated with high-risk scores,
correlated with lymph node infiltration at the time of tumor
detection, and positively associated with the infiltration of
antitumor immune cells such as CD8+ T cells, NK cells, and DCs.

Studies have shown that the expression of SGPP1 is low in
colorectal cancer and is correlated with tumor proliferation,
migration, and invasion. Similarly, low expression of SGPP1 in
triple-negative breast cancer strongly correlates with poor prognosis

FIGURE 9
Drug sensitivity in patients in high and low risk groups. (A)Cytarabine, (B)Gemcitabine, (C) Epotoside, (D) Vinblastine, (E)Camptothecin, (F)Cisplatin,
(G) Bryostatin.1, (H) Imatinib, (I) PD.0332991 (Palbociclib), (J) JNK. inhibitor.VIII, (K) AKT. Inhibitor.VII and (L) A.443654.
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(Nema and Kumar, 2021). In addition, our study found that
SGPP1 expression in breast cancer was associated with neutrophils,
macrophages, CD4+ and CD8+ cells. Likewise, TRIM45 also acts as a
tumor suppressor in brain tumors (Zhang et al., 2017) and non-small
cell lung cancer (Peng et al., 2020). In this study, we found that the
expression of TRIM45 in tumor tissues is higher than that in normal
tissues, which correlated with a better prognosis. Furthermore,
TRIM45 was highly positively correlated with clinical indicators ER

and PR in breast cancer. However, research on KNOP1 in tumors is
inadequate; therefore, more in-depth studies need to be conducted.

Single-cell RNA sequencing (scRNA-seq) analysis indicated
that fibroblasts have high expression levels of HOXC10, KNOP1,
and SGPP1. Cancer-associated fibroblasts (CAFs) are a
significant constituent of the tumor microenvironment (TME)
and have heterogeneous functions in cancer. Recent studies have
demonstrated that targeted CAF therapy, combined with

FIGURE 10
THemRNA and Immunohistochemistry of OCFRGs expression. (A)Differences in mRNA levels of OCFRGs between normal and various tumor cells.
(B) Immunohistochemical staining OCFRGs in BRCA and adjacent tissues. (C) Pcr verified the expression levels of OCFRGs in normal and tumor cells. (D)
Western blotting verified the expression levels of OCFRGs in normal and tumor cells.
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immunotherapy or chemotherapy, produces optimal therapeutic
outcomes. For instance, the elevated expression of HOXC10,
KNOP1, and SGPP1 in BRCA indicates that targeted CAF
therapy, along with other treatments, might be more effective.

In this study, we developed a LASSO Cox model using the
previously mentioned five OCFRGs, which successfully
distinguished breast cancer patients into high-risk and low-risk
groups. The model’s effectiveness was validated in three additional
datasets, CGA Cohort, SE20685, and GSE58812, and its diagnostic
efficiency was confirmed with a ROC curve analysis. Additionally, the
model showed remarkable predictive utility for patient prognosis as a
nomogram. Immune checkpoints and TMB are reliable
immunotherapy markers. Our investigation of immune checkpoints
and TMB in high- and low-risk groups revealed that the expression
levels of immune checkpoints, including VTCN1, CD200R1,
TNFRSF14, NRP1, TNFRSF4, CD40, CD200, CD44, TNFRSF25,
CD48, and CD40LG, decreased in the BRCA high-risk
group. Moreover, the risk score and TMB were positively
correlated, with TIDE being lower in the high-risk group compared
to the low-risk group. As such, the use of immune checkpoint
inhibitors (ICIs) may enhance efficacy in high-risk BRCA. Previous
research has demonstrated that ferritin therapy modifies tumor
immunity (Wang et al., 2019), leading to immune cells within the
tumor microenvironment (TME) to initiate lipid peroxidation and
undergo ferroptosis, which can influence their function and survival.
(Zuo et al., 2021). The use of ferroptosis inducers is a promising
approach to augment the effectiveness of immune checkpoint inhibitor
(ICI) therapy (Gao et al., 2022). In this study, the TIMER database was
utilized to quantify immune cell infiltration in BRCA patients within
the TCGA cohort. Our results indicated that Th1 and Th2 cells were
higher within the high-risk group, whereas CD4+ T cells, CD8+ T cells,
B cells, endothelial cells, and macrophages were lower.

Functional analysis revealed that genes within the high-risk
group were primarily enriched in glycolysis, gluconeogenesis, the
pentose phosphate pathway, and the cell cycle, whereas the
MAPK signaling pathway was inhibited. Of these metabolic
processes, glycolysis and gluconeogenesis are potential targets
for cancer treatment. Additionally, the pentose phosphate
pathway, which is a branch of glycolysis, plays a critical role
in combating oxidative stress and assisting glycolytic cancer cells
meet anabolic demands (Bao et al., 2014). The cell cycle is related
to tumor cell proliferation, and heightened cell cycle activity in
tumor cells inhibits antitumor activity. (Evan and Vousden,
2001). Moreover, the risk score was positively associated with
mTOR, Hif-1, and ErbB pathways, among others, and negatively
correlated with MAPK, PI3K/AKT, TGF-β, and Ras signaling
pathways, among others. These results can aid in the
investigation of the link between BRCA patients and signaling
pathways within high- and low-risk groups. Some studies
indicate that ferroptosis and cupperptosis may be targeted to
treat tumors (Wang et al., 2021; Oliveri, 2022). Moreover, the risk
score was positively associated with mTOR, Hif-1, and ErbB
pathways, among others, and negatively correlated with MAPK,
PI3K/AKT, TGF-β, and Ras signaling pathways, among others.
These results can aid in the investigation of the link between
BRCA patients and signaling pathways within high- and low-risk
groups. Some studies indicate that ferroptosis and cupperptosis
may be targeted to treat tumors.

In summary, we have systematically examined and discussed
the molecular changes, intracellular pathways, and immune cell
infiltration characteristics associated with cupperptosis and
ferroptosis in breast cancer (BRCA) in our study. After utilizing
bioinformatics techniques, we selected five OCFRGs (ANKRD52,
HOXC10, KNOP1, SGPP1, and TRIM45), verified their
differential expression in tumor and non-tumor biological tissue
samples at both the cellular and tissue level, and then analyzed
their relationship with tumor staging, cellular infiltration, and
clinical indicators. The prognostic model we developed was able
to reliably predict patient prognosis. Cell pathways closely related
to ferroptosis and cupperptosis, such as glycolysis,
gluconeogenesis, and the pentose phosphate pathway, were
distinguished by the model as high-risk groups. The scoring
model may offer guidance for clinical decision-making and
precision treatment for BRCA patients.

Conclusion

In conclusion, in this study we combined machine learning and
bioinformatics methods to establish a prognostic model for
5 OCFRGs in BRCA. Based on this model, the prognosis in
BRCA patients can be accurately predicted. In addition, the
degree of immune infiltration and immune resistance in patients
were also predicted. Our model guides clinicians in choosing the
optimal treatment strategy to personalize treatment.
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