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Hormonal contraceptive
exposure relates to changes
in resting state functional
connectivity of anterior
cingulate cortex and amygdala
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and Belinda Pletzer1,2*

1Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria, 2Department of
Psychology, University of Salzburg, Salzburg, Austria
Introduction: Hormonal contraceptives (HCs), nowadays one of the most used

contraceptive methods, downregulate endogenous ovarian hormones, which

have multiple plastic effects in the adult brain. HCs usually contain a synthetic

estrogen, ethinyl-estradiol, and a synthetic progestin, which can be classified as

androgenic or anti-androgenic, depending on their interaction with androgen

receptors. Both the anterior cingulate cortex (ACC) and the amygdala express

steroid receptors and have shown differential functionality depending on the

hormonal status of the participant and the use of HC. In this work, we

investigated for the first time the relationship between ACC and amygdala

resting state functional connectivity (rs-FC) and HC use duration, while

controlling for progestin androgenicity.

Methods: A total of 231 healthy young women participated in five different

magnetic resonance imaging studies and were included in the final analysis. The

relation between HC use duration and (i) gray matter volume, (ii) fractional

amplitude of low-frequency fluctuations, and (iii) seed-based connectivity during

resting state in the amygdalae and ACC was investigated in this large sample

of women.

Results: In general, rs-FC of the amygdalae with frontal areas, and between the

ACC and temporoparietal areas, decreased the longer the HC exposure and

independently of the progestin’s androgenicity. The type of HC’s progestin did

show a differential effect in the gray matter volume of left ACC and the

connectivity between bilateral ACC and the right inferior frontal gyrus.

KEYWORDS

resting state fMRI, brain connectivity, hormonal contraceptives, progestins, amygdala,
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1 Introduction

Consistent evidence has demonstrated ongoing plastic changes

in the adult brain, including those related to ovarian hormones (1,

2). From neurogenesis to remyelination, the neuroactive actions of

ovarian hormones are vast and still not fully understood (1, 3). In

humans, brain network dynamics are also affected by ovarian

hormone fluctuations, and more importantly, these effects appear

to be suppressed during the use of hormonal contraceptives (HCs)

(4). While women experienced physiological fluctuations of ovarian

hormones throughout their adulthood, HCs, nowadays one of the

most used contraceptive methods (5), abolish this cycle. In general,

HCs downregulate the hypothalamic–pituitary–gonadal axis,

decreasing the endogenous ovarian hormones’ production and

maintaining their levels low, comparable to the levels observed in

naturally cycling women during menses (6). In general, the

synthetic hormones’ bioavailability remains stable during the

active HC use and prevents follicle growth and ovulation (7, 8).

HCs usually contain a synthetic estrogen, ethinyl-estradiol, but on

the side of synthetic progestins, the range of compounds is wider.

The latter can be classified into androgenic or anti-androgenic,

depending on their interaction with androgen receptors (9, 10). On

the one hand, those progestins derived from 19-nortestosterone

(i.e., norethindrone, desogestrel, gestodene, and norgestimate) can

be classified as androgenic due to their rapid metabolism to

levonorgestrel, which demonstrates agonistic binding to the

androgen receptor (11). On the other hand, those progestins

derived from spironolactone (i.e., drospirenone), or from 17-

hydroxyprogesterone (i.e., chlormadinone acetate or cyproterone

acetate), can be classified as anti-androgenic due to their

antagonistic actions at the androgen receptor (12). Additionally,

dienogest, although derived from 19-nortestosterone, also exhibits

anti-androgenic activities (13).

Despite the sparsity of literature regarding HC effects on the

female brain, animal research and a few human studies hint at

structural (14, 15) and functional changes (see reviews by 16, 17)

related to HC use. Among the most consistently reported brain

areas in ovarian hormones research are those belonging to the

salience network. This network, crucial for emotion processing, is of

special interest given that adverse mood effects are the major reason

to discontinue HC use (18, 19). Both the anterior cingulate cortex

(ACC) and the amygdala, at the core of this network, express steroid

receptors (1, 3), and have shown differential functionality

depending on the hormonal status of the participant (20–22).

ACC not only shows differences in activation across the

menstrual cycle, but also has been reported to be thinner (23)

and to increase its activation to emotional stimuli (24) in HC users

compared to naturally cycling women. Likewise, amygdala structure

(25) and response to emotional stimuli differs between naturally

cycling women and HC users (26), and across the menstrual cycle

(27, 28).

Resting state functional connectivity (rs-FC), assessed as the

correlated activity of different brain areas in the absence of an

explicit task, offers a valuable measure to understand the brain’s

intrinsic network organization (29, 30). Nowadays, we can

investigate changes in rs-FC to disentangle the dynamics of the
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healthy brain functioning. Within this framework, neuroimaging

studies have shown differences in the intrinsic connectivity of the

salience network across menstrual cycle phase, and between

naturally cycling women and HC users (for a review, see 16).

Across the natural menstrual cycle, rs-FC between the ACC with

the middle frontal, superior temporal, transverse temporal, and

postcentral gyri (31) increased during the luteal phase when

progesterone levels are high (31). In a recent study, we also

described increased effective connectivity from the middle frontal

gyrus to the ACC, but decreased effective connectivity from the

medial prefrontal cortex to the ACC during the luteal phase (22).

However, decreased rs-FC between ACC, middle frontal gyrus, and

cuneus has also been described for luteal woman (32). Also, during

this phase, the amygdala rs-FC with the right middle frontal gyrus,

superior frontal gyrus, and paracentral lobule has been reported to

increase (31). During the late luteal phase, though, rs-FC between

the left amygdala and left angular gyrus and posterior cingulate

cortex was decreased compared to the mid-follicular phase (33).

Regarding the HC effects on rs-FC, Engman et al. (31)

investigated changes in the ACC and amygdala connectivity in

response to a levonorgestrel containing HC in a randomized,

placebo-controlled trial. They observed an increased rs-FC of the

right ACC with the precuneus and left superior frontal gyrus and a

decreased rs-FC between the right amygdala and the left postcentral

gyrus, during HC intake (31). Additionally, between-group

comparisons revealed increased rs-FC between the left ACC and

precuneus, and left amygdala and left postcentral gyrus and

precuneus for the naturally cycling luteal women compared to the

HC users (31). Active HC users have also shown an increased rs-FC

of the ACC within the salience network compared to naturally

cycling women (34), but decreased rs-FC between the salience

network and the left middle frontal gyrus, compared to both HC

inactive phase and naturally cycling women (32). Lisofsky et al. (25)

followed women before and after the start of HC use and reported

decreased rs-FC between the left amygdala and the right IFG.

However, these latter studies did not control for the androgenicity

of the HC used, and it remains unclear whether androgenic and

anti-androgenic HCs differentially modulate rs-FC of the salience

network. Given that exogenous testosterone in women decreases

connectivity between ACC and the inferior frontal gyrus (35), and

between amygdala and the orbitofrontal cortex (36), it seems

relevant to account for the type of progestin that the HCs

contain. In this work, we investigated for the first time the

relationship between ACC/amygdala rs-FC and HC use, while

controlling for the progestin’s androgenicity.

Furthermore, while Engman et al. (31) investigated the effects of

short-term HC-use (one intake cycle) on rs-FC of the salience network

nodes, Petersen et al. (32) included long-term HC users. Given that

results differ between the two studies, it is an interesting question

whether changes in rs-FC of the salience network accumulate over

time. Previous animal research has shown cumulative effects of sex

steroids on the brain substrate, ranging from molecular to cellular

levels (see reviews: 3, 37–40). In rodents, DNA de-methylation through

the estrogen receptor is time-dependent (38), while continuous vs.

sequential administration of progesterone elicits a differential gene

expression profile in the hippocampus (40). After neural damage,
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progesterone-dependent recovery is affected by treatment duration,

alongside differential effects on the cytoarchitectural structure (39).

Relatedly, time-dependent effects on synaptic transmission are

mediated by changes in shape and density of dendrites (39) and

neurotransmitter’s receptors (41). Other steroids’ cumulative effects

found in rodents include changes in the glial cells and consequent

myelination, with an important role in neuroprotection (37, 42).

Finally, and given that the reversibility of HC effects on the brain is

still in question, we further explored if the effects found in HC users

were replicated in previous HC users. Accordingly, we here opted for

studying in a large sample of women those time-dependent

associations that may accumulate over HC use duration,

differentiating between androgenic and anti-androgenic progestins.

In addition to addressing the temporal dynamics of HC effect or rs-

FC of the salience network, the pattern of associationsmight shed some

light into the endocrinological mechanisms underlying these effects. At

the moment, it remains unclear whether changes in rs-FC during HC

use are related to the progestagenic or androgenic/anti-androgenic

actions of the progestin component, estrogenic actions of ethinyl-

estradiol, or a by-product of HC effects on endogenous neurosteroids.

Given that the contraceptive effects of HC depend largely on the

progestin component, the focus with regard to neuroplastic changes

in response to HC is usually on the activation of progesterone

receptors. Synthetic progestins possess a higher binding affinity for

intracellular progesterone receptors than the endogenous hormone

(43). If cumulative effects of HC on the salience network depend on

progestagenic actions, we can expect effects as observed in the luteal

phase (e.g., increased connectivity of the ACC and amygdalae to the

middle frontal gyrus; 22, 31) to increase with increasing use

duration, irrespective of the androgenicity of the progestin.

Furthermore, one important consideration is that most of the

effects of endogenous progesterone are exerted through its

metabolite allopregnanolone. Synthetic progestins, however, are

not metabolized to allopregnanolone, which is a potent

modulator of one of the receptors for inhibitory neurotransmitter

g-aminobutyric acid (GABA) (for review, see 40). Although women

under HC have increased synthetic progestin levels with high

affinity for progesterone receptors , their c irculat ing

allopregnanolone levels seem to be decreased (androgenic HC: 44;

anti-androgenic HC: 45). Accordingly, if previously reported effects

along the natural menstrual cycle were related to endogenous

allopregnanolone rather than actions on the progesterone

receptor, we expect longer HC duration, related to decreased

ACC connectivity with the temporal lobe, middle frontal and

postcentral gyri connectivity (22, 31) while increased ACC

connectivity with the medial prefrontal cortex (22). Likewise, for

the amygdala, decreased connectivity with the middle, superior

frontal gyrus and paracentral lobule (31) would be expected. These

hypotheses are in line with results obtained from long-term HC

users in previous studies (32). On the other hand, animal research

hints a more complex scenario, in which allopregnanolone levels

depend on the type of progestin (see systematic review, 46). In

general, while androgenic progestins decrease allopregnanolone

levels in the brain; anti-androgenic progestins increase them. If

this is also the case in humans, further differential effects are
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expected for androgenic vs. anti-androgenic HCs related to levels

of allopregnanolone.

More importantly, related to the differential modulation of

androgen receptors by different progestins, opposite associations

to the duration of androgenic vs. anti-androgenic progestin use can

be expected. Although we would expect androgenic HC to have

similar effects as testosterone (e.g., decreased ACC–inferior frontal

gyrus and amygdala–orbitofrontal cortex connectivity; 35, 36), it is

noteworthy that endogenous testosterone is metabolized to

estradiol, acting also on estrogen receptors (47). Regarding

estrogenic effects on the salience network, higher rs-FC between

the amygdala and prefrontal and temporal areas has been reported

after an estradiol challenge in postmenopausal women (48). Within

naturally cycling women, increased connectivity between the

amygdala and cuneus, inferior frontal fyrus, precentral gyrus,

supramarginal gyrus, and temporal lobe has been described in the

presence of high estradiol levels, while increased connectivity

between amygdalae and the ACC has been described for low

estradiol levels (49). Accordingly, if cumulative HC effects on the

salience network are derived from the estrogenic actions of ethinyl-

estradiol, we expect connectivity between the amygdalae and

fronto-temporal areas to increase with use duration irrespective of

the androgenicity of the progestin.

In general, a decreased rs-FC of the ROIs with frontal areas like

middle frontal gyrus and inferior frontal gyrus is expected, related

to longer HC exposure (25, 32). We also expect an increased rs-FC

of the ACC with the precuneus and left superior frontal gyrus and a

decreased rs-FC between the amygdalae and the left postcentral

gyrus and precuneus, especially for HC with androgenic progestins

(31). Further differential effects of androgenic vs. anti-androgenic

HC will be explored.
2 Methods

2.1 Participants and procedure

A total of 231 healthy young women (105 current HC users and

126 past HC users and currently naturally cycling) were included in

the final analysis, from five different MRI studies (50–52).

Participants were recruited via flyers at the University of Salzburg

and via online advertisements. Most of the participants were

university students and all of them were right-handed. Main

exclusionary criteria for women were neurological, psychiatric, or

endocrine disorders, any medication intake, or any brain

abnormalities displayed on structural MRI. Note that differential

brain organization may underlie women’s susceptibility to HC

adverse mood side effects, which is the major reason for HC

discontinuation (19, 53).

In all studies, scanning sessions were scheduled in the active

phase of HC use for current HC users (second or third week of the

intake cycle), or locked to their menstrual cycle for naturally cycling

women (past users). For the latter, the majority of sessions were

scheduled during the early follicular phase (cycle days 1–8), except

for six participants that were in their mid-luteal phase (3–10 days
frontiersin.org

https://doi.org/10.3389/fendo.2023.1131995
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hidalgo-Lopez et al. 10.3389/fendo.2023.1131995
before onset of next menses). Participants had to confirm the onset

of next menses in retrospect.

As part of our standard screening questionnaire, information on

previous contraceptive use was collected. The participants were

subdivided into HC users with current androgenic HC use (A-HC;

n = 62) and current anti-androgenic HC use (AA-HC; n = 43), and

naturally cycling women with previous androgenic HC use (A-NC;

n = 45), previous anti-androgenic HC use (AA-NC; n = 52), and

unknown androgenicity of the HC (n = 29). Further details regarding

the categorization of progestins into androgenic or anti-androgenic

and the subsample size of each specific progestogenic component can

be found in the Supplementary Material.

Only women currently or previously using HCs with only one

and the same type of progestin (either A or AA) were included.

Specifically for naturally cycling women, only participants who had

not been using any HCs or IUDs for the past 6 months and had a

regular menstrual cycle, defined as between 21 and 35 days, and less

than 7 days of cycle length variability (54), were included. All

participants gave their signed written consent to participate in each

study. Every study was approved by the University of Salzburg’s

ethics committee and conforms to the Code of Ethics of the World

Medical Association (Declaration of Helsinki).

The androgenicity of HC was coded as a categorical variable

with the following levels: level “A”: androgenic, level “AA”: anti-

androgenic, and level “unknown”. Further details are described in

the following paragraphs. In order to compare age and HC use

duration between androgenic and anti-androgenic users,

independent-samples t-test was performed. For women currently

using HC, there was a significant difference in age between A-HC

(M = 21.31, SD = 2.55) and AA-HC (M = 22.58, SD = 3.57);

t(103) = −2.13, p = 0.04. Anti-androgenic users were, on average,

approximately 1 year older than androgenic users. Likewise, use

duration was significantly different between A-HC (M = 4.00, SD =

2.47) and AA-HC (M = 5.12, SD = 2.92); t(103) = −2.12, p = 0.04.

The HC use duration for anti-androgenic users was, on average,

approximately 1 year longer than the androgenic duration. For the

naturally cycling women, age and HC use duration were not

significantly different between women who had previously taken

androgenic or anti-androgenic HC (t > |2.5|, p > 0.05) (Table 1). HC

use duration was not related to ethinyl-estradiol levels (r < 0.01, p =

0.23), and the distribution of HC use duration by each different type

of progestin followed similar distributions.
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In order to control for possible moderation effects of ethinyl-

estradiol levels and given previously reported dose-dependent

cognitive effects (55), the following analyses were further

performed controlling for the levels present in the HC. No

interactive effect of pill duration by ethinyl-estradiol levels was

observed, and therefore, the rest of the analyses and results will

focus on the main effect of HC use duration and interaction with

HC androgenicity.
2.2 fMRI data acquisition

For each study, a resting state scan of approximately 9 min

duration was performed at the beginning of the scanning session.

Participants were instructed to close their eyes, relax, and let their

mind wander. One of the studies, however, instructed the

participants to leave their eyes open (HC = 20, 19% of the final

sample; NC = 28, 22% of the final sample). When the sample from

this study was excluded, partial correlations between HC use

duration and brain connectivity effects remained significant

(prage, type of scanner > |0.35|, p < 0.05). Therefore, participants

from all five studies were included in the following analyses. Two

types of scanners were used: a Siemens Magnetom TIM Trio 3 Tesla

and a Siemens Magnetom Prisma Fit 3 Tesla, both of them with a

64ch head coil (see Table 1 for demographics). Although we add a

regressor for potential confounding effects of the type of scanner in

all of the analyses, the combination of these datasets still poses a

conceptual limitation. The impact of Siemens Tim Trio to Prisma

upgrade has been assessed in different quantitative MRI measures

(56) and proton magnetic resonance spectroscopy (57). Higher

reliability was identified in most of the MRI outputs that were

investigated across the Prisma upgrade (56) and inter-scanner

variation had average values of approximately 2.2%–3.8% (56).

Although there is also a fair level of intra-vendor consistency in

individual scans (58), the present datasets also differed in their

respective sequences’ TR. Therefore, we explored additional

interactions of the type of scanner with the HC used duration

effects herein presented. No significant interactive effects

were found.

For the first four studies, functional and high-resolution

structural images were acquired on the TIM Trio scanner

following a field map acquisition. Functional images consisted of
TABLE 1 Participants’ demographics.

Current HC users Past HC users

Type of scanner TRIO PRISMA TRIO PRISMA

Type of progestin A AA A AA A AA Unknown A AA

Sample size (n) 32 20 30 23 24 32 29 21 20

HC use duration in years
M (SD)

4.71 (2.80) 4.89 (2.34) 3.25 (1.82) 5.32 (3.39) 4.24 (3.00) 4.65 (4.33) 2.09 (2.00) 3.97 (3.01) 3.80 (3.50)

Age
M (SD)

22.53 (2.77) 21.80 (2.84) 20.00 (1.44) 23.26 (4.05) 25.96 (4.62) 24.47 (3.72) 25.45 (5.51) 24.24 (3.32) 25.00 (4.00)
fr
HC, hormonal contraceptive; A, androgenic; AA, anti-androgenic; M, mean; SD, standard deviation.
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a T2-weighted gradient echo planar sequence with 36 transversal

slices oriented parallel to the AC-PC line (whole-brain coverage,

TE = 30 ms, TR = 2,250 ms, flip angle 70°, slice thickness 3.0 mm,

matrix 192 × 192, FOV 192 mm). For structural images, we

acquired a T1-weigthed 3D MPRAGE sequence (160 sagittal

slices, slice thickness = 1 mm, TE = 2.91 ms, TR = 2,300 ms, TI

delay 900 ms, flip angle 9°, FOV 256 × 256 mm). For the most

recent study, functional and high-resolution structural images were

acquired on the same MRI device, upgraded to the Prisma Fit

system. Functional images consisted of a T2-weighted gradient echo

planar sequence with 64 transversal slices oriented parallel to the

AC-PC line (whole-brain coverage, multi-slice interleaved, TE = 30

ms, TR = 1,400 ms, flip angle 69°, slice thickness 2.3 mm, matrix

202 × 202, FOV 202 mm). For structural images, we acquired a T1-

weigthed 3D MPRAGE sequence (176 sagittal slices, slice

thickness = 1 mm, TE = 2.91 ms, TR = 2,300 ms, TI delay 900

ms, flip angle 9°, FOV 256 × 256 mm). In the Prisma scanner study,

in order to create unwrapped field maps that can be used to do B0

inhomogeneity distortion correction of the functional scans, two

echo planar images (EPI) with opposite phase encode directions

were acquired right before the resting state.
2.3 fMRI data analyses

For functional images, the first six images of each session were

discarded. The remaining scans were despiked using 3d-despiking

as implemented in AFNI (afni.nimh.nih.gov). The resulting images

were pre-processed using SPM12 standard procedures and

templates including (i) realignment and unwarping of the

functional images using the field map, (ii) segmentation of

the structural images using CAT12, (iii) co-registration of the

functional images to the structural images, (iv) normalization of

functional images using the normalization parameters as estimated

by CAT12, and (v) spatial smoothing using a 6-mm kernel.

Additionally, for the Prisma scanner, the field map was calculated

from the two EPI images with opposite phase encoding using the

FSL “topup” tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP; 59),

and the Field Map Toolbox from SPM12 was used to calculate a

voxel displacement map to correct the BOLD EPI images (https://

lcni.uoregon.edu/kb-articles/kb-0003; 60). Pre-processing quality

control procedures included the automatic exclusion of

participants with excessive movement (>3 mm translation, >2°

rotation), visual inspection of structural and functional scans

ensuring adequate coregistration, and visually checking the

normalization to a standard T1 and an EPI MNI template.

Finally, we perform ICA-AROMA non-aggressive removal of

artifactual components on the resulting images. ICA-AROMA has

been shown to reduce motion-induced variation in fMRI signal,

while preserving the signal of interest (61).

2.3.1 Gray matter volume and fractional
amplitude of low-frequency fluctuations

Gray matter volumes from bilateral ACC and amygdala were

extracted using the get_totals script by G. Ridgeway (http://
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www0.cs.ucl.ac.uk/staff/gridgway/vbm/get_totals.m), each region

of interest (ROI) defined with the AAL atlas (62).

The fractional amplitude of low-frequency fluctuation (fALFF)

maps were calculated from pre-processed resting state images using

the DPABI toolbox (63). The fALFF is a measure of oscillatory

activity at the resting state, relative to the whole frequency range

(64). It is defined as the ratio of the power spectrum of low

frequency (0.01–0.08 Hz) to the average square root of each

frequencies power within this range (64, 65).

In order to assess the duration of the HC use*androgenicity

interactive effect on (i) gray matter volume and (ii) fALFF, they

were introduced as dependent variables in linear models in R

Version 1.4.1717, using the lm function from the stats package

(66). For all models, HC use duration, androgenicity, and their

interaction were included as fixed effects. In case no significant

interaction between androgenicity and HC use duration was

observed, the interaction was removed from the model and the

main effect of HC use duration was calculated across both groups.

For every model, age and type of scanner were added as nuisance

regressors (e.g., fALFF ~ duration of HC use*androgenicity + age +

type of scanner). For the models including gray matter volume, we

used the total intracranial volume (TIV) as an additional covariate

(e.g., GM IFG ~ duration of HC use*androgenicity +TIV + age +

type of scanner). All continuous variables were scaled prior to

analyses to allow for interpretation of effect sizes based on

standard deviations.

2.3.2 Seed-to-voxel connectivity analysis
We investigated bilateral ACC and amygdala functional

connectivity with AAL atlas-defined region of interest (ROI) (62).

Seed-to-voxel connectivity maps from these ROIs were estimated

for each subject using the CONN-toolbox standard procedures and

templates (67). The six movement parameters as well as five white

matter and cerebrospinal fluid components were used as regressors

during the denoising step. A band-pass filter of 0.008–0.09 Hz was

applied. For the group-level analysis, full factorial models were used

to evaluate the overall connectivity relation to HC use duration. For

each of the ROIs, the first-level contrast images were introduced

into a full factorial design in order to investigate the interactive

effect of duration of HC use and HC group (androgenic vs. anti-

androgenic). In case no significant interaction between

androgenicity and HC duration was observed, the main effect of

HC use duration was calculated across both groups. In order to

control for age and scanning upgrade, their interaction with the HC

group was additionally modeled as nuisance regressors. For this

second level, results were masked with an SPM gray matter

template, and we used an extent threshold of k = 20 voxels, an

uncorrected primary threshold of p < 0.001, and a secondary

cluster-level FWE-corrected threshold of p < 0.05 (indicated as

pFWE). In case a cluster of significant interaction between

androgenicity and HC use duration emerged, eigenvalues were

extracted from this cluster and partial correlations controlling for

age and type of scanner were performed separately for androgenic

and anti-androgenic HC users. In a follow-up analysis, we checked

if the effects in HC users were replicated in naturally cycling
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previous HC users. The first eigenvector of the time series across

voxels was extracted from the significant FWE-corrected clusters

found in HC current users, and partial correlations for naturally

cycling previous HC users were performed controlling for both age

and type of scanner. In case of no significant interaction between

androgenicity and HC use duration, the level “unknown” from HC

androgenicity variable was included in the partial correlation.

Otherwise, only known “A” and “AA” previous HC users were

included and partial correlations were explored separately.
3 Results

3.1 Gray matter volume and fractional
amplitude of low-frequency fluctuations

For the gray matter volume of the ROIs, there was an interactive

effect of HC use duration and androgenicity in the left ACC [b = −0.31,

SEb = 0.15, t(98) = −1.99, p = 0.049]. Current androgenic users showed a

smaller GM volume of the left ACC the longer the duration of HC use

(Figure S1). However, partial correlations were separated by

androgenicity, and controlling for age, TIV and scanner type did not

survive the significance threshold [prage, type of scanner, TIV = −0.05, p(57) =

0.73 for A-HC, and prage, type of scanner, TIV = −0.23, p(38) = 0.15 for

AA-HC].

No further significant relations were found for right ACC or

bilateral amygdala gray matter volume. Neither ACC nor amygdala

showed any previous HC use duration effect [all prage, type of scanner

<|0.015|, p(122) > 0.05].

No significant relations were found for bilateral ACC or

amygdala between fALFF and duration of HC use.
3.2 Seed-to-voxel connectivity analysis

Whole brain connectivity maps of bilateral ACC and amygdalae

are displayed in the Supplementary Material (S2–S5). For the ACC,

positive connectivity maps included insular and medio-temporal

areas, while negative connectivity maps included superior parietal

lobes and inferior frontal gyri. Positive connectivity maps for the

amygdalae included insular, middle cingulate, and ventromedial

prefrontal cortices, among other medio-temporal areas, putamen,

and thalamus. Negative connectivity maps for the amygdalae

included superior, middle frontal, and angular gyri, among others.

3.2.1 Main effect of HC use duration
For the ACC connectivity, we observed an inversed main effect

of current HC use duration and connectivity between the right ACC

and left post-central gyrus ([-54, -22, 49], 79 voxels, T = 4.63,

pFWE = 0.001), right posterior insula ([36, -16, 10], 67 voxels, T =

4.58, pFWE = 0.003), and right pre/post-central gyrus ([39, -16, 61],

121 voxels, T = 4.54, pFWE < 0.001). Functional connectivity

between the right ACC and these three clusters was lower the

longer the use of HC in current users, irrespective of the

androgenicity (Figure 1A). Connectivity between the right ACC
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and these three clusters of interest did not show any previous HC

use duration effect [all prage, type of scanner" < |0.015|, p(122) > 0.05].

We also observed an inversed main effect of HC use duration on

connectivity between bilateral amygdalae and prefrontal cortex.

Connectivity between bilateral amygdalae and the left middle

frontal gyrus ([-30, 35, 40], 37 voxels, T = 3.79, pFWE = 0.042, for

the left amygdala; [-30, 26, 46], 62 voxels, T = 4.42, pFWE = 0.004, for

the right amygdala) and between the right amygdala and the ventral

part of the superior frontal gyrus ([-21, 56, -5], 37 voxels, T = 4.47,

pFWE = 0.042) was lower the longer the duration of HC, irrespective

of the androgenicity (Figure 1B). Only for the connectivity between

the right amygdala and the left superior frontal gyrus did we observe

a similar effect of previous HC use duration in naturally cycling

participants [prage, type of scanner = −0.19, p(122) = 0.035].

Independently of the androgenicity type, the connectivity between

the right amygdala and the ventral part of the superior frontal gyrus

([-21, 56, -5], 37 voxels) was lower the longer the use of HC in

previous users (Figure S6).

3.2.2 Interactive effect of HC use duration and
HC androgenicity

We further observed an interactive effect of HC use duration

and androgenicity in the connectivity between left and right ACC

with the triangular part of the right inferior frontal gyrus ([45, 47,

-2], 50 voxels, T = 4.18, pFWE = 0.012, for the left ACC; [39, 47, -5],

39 voxels, T = 4.35, pFWE = 0.038, for the right ACC). For current

users of an androgenic HC, the connectivity between bilateral ACC

and the right inferior frontal gyrus was lower the longer the HC use

[prage, type of scanner = −0.46, p(58) < 0.001 for the left ACC; prage, type of

scanner = −0.44, p(58) < 0.001 for the right ACC]; for anti-androgenic

HC users, connectivity strength was higher the longer the HC use

[prage, type of scanner = 0.34, p(39) = 0.03 for the left ACC; prage, type of

scanner = 0.31, p(39) = 0.04 for the right ACC; Figure 2]. Connectivity

between the ACC and inferior frontal gyrus did not show any

previous HC use duration effect in naturally cycling participants [all

prage, type of scanner < |0.015|, p(122) > 0.05]. No interactive effect of

androgenicity and HC use duration was observed for the rs-FC of

the amygdalae.

In summary, for the current HC users, the connectivity between

the right ACC and right insula/bilateral post-central gyrus, and

between bilateral amygdalae and left prefrontal cortex, was lower

the longer the use of HC, irrespective of the androgenicity. For

androgenic HC users, the connectivity between bilateral ACC and

the right IFG was lower the longer the HC use; for anti-androgenic

HC users, connectivity strength was higher the longer the HC use.
4 Discussion

In this study, we investigated for the first time the differences in

the resting state functional connectivity (rs-FC) network of the

anterior cingulate cortices (ACC) and the amygdalae related to the

duration of androgenic (A) or anti-androgenic (AA) HC use. In

general, rs-FC of the ACC and temporoparietal areas, and between

the amygdalae with frontal areas, decreased the longer the HC
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exposure and independently of the progestin androgenicity.

Androgenicity did show a differential effect in the connectivity

between bilateral ACC and the right inferior frontal gyrus (IFG).

Longer HC use duration, irrespective of the androgenicity, was

related to decreased connectivity between the ACC and the insular

cortex, both involved in the salience network. Although naturally

cycling women show within salience network connectivity

increased related to enhanced endogenous progesterone (22, 53),

this effect was absent in women during HC use (53). The impact of

HC on salience-dependent processes such as motivation and

reward-oriented behavior has been related to a decrease of the

insula activation, for example, to sexual cues (68). In animal models,

this sexual behavior has been shown to be impaired by exogenous

hormonal treatment, changes suggested to be mediated by the

blunted levels of allopregnanolone (69). Conversely, Sharma et al.

(34) reported an increased salience within-network connectivity

with the medial superior frontal gyrus for the HC users compared to

the naturally cycling women (34). It needs to be noted, though, that

pubertal-onset HC users were included in this comparison and

given that this sub-group was reported to show significantly general
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increased connectivity compared to the adult-onset sub-group, it is

unclear to which extent they drove the direction of the results.

Contrary to our expectations, we did not find a decreased

connectivity between the amygdala and the postcentral gyrus and

precuneus (31). Instead, it was the ACC that showed decreased

connectivity to the bilateral pre/postcentral gyri the longer the HC

use. In a recent study analyzing effective connectivity in a placebo-

controlled trial, connections between the dorsal ACC and parietal

areas decreased during androgenic HC treatment (53). In naturally

cycling women, connectivity between the ACC and postcentral

gyrus increased during the luteal phase (31), and the connectivity

of the somatosensorial cortices was also positively related to

progesterone levels (70). Connectivity between amygdalae with

superior and middle frontal gyrus was also found decreased the

longer the HC use in the present sample, in line with Petersen et al.

(32). Moreover, although it did not survive the FWE correction in

the whole-brain analysis, the right amygdala also showed reduced

connectivity with the ipsilateral middle frontal gyrus, the longer the

HC use duration (see Supplementary Material, Figure S7).

Conversely, increased connectivity between these areas has been
FIGURE 1

Main effect of current HC use duration on ACC and amygdala connectivity. (A) Current HC users showed lower connectivity between the right ACC
and right insula/bilateral post-central gyrus, the longer the use of HC, irrespective of the androgenicity (in green). (B) Independently of the
androgenicity of the HC, current users showed lower connectivity between left (in blue) and right (in purple) amygdala with left prefrontal cortex the
longer the use of the HC. ACC, anterior cingulate cortex; PoCG, post-central gyrus; PI, posterior insula; amyg, amygdala; MFG, middle frontal gyrus;
SFG, superior frontal gyrus; HC, hormonal contraceptive; A, androgenic; AA, anti-androgenic.
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reported before during the progesterone-dominated luteal phase in

naturally cycling women (31).

Following the argument that while HC women have increased

synthetic progestin levels, their allopregnanolone levels remain

decreased (44, 45), and that some effects of endogenous

progesterone are exerted through this metabolite, these changes in

opposite directions may suggest that the ACC-insular/

somatosensorial and prefrontal–amygdalar connectivity positively

relates to allopregnanolone levels, which, in turn, remains decreased

during HC use. Relatedly, exogenous administration of

progesterone, which significantly increased allopregnanolone

levels, selectively increased amygdala reactivity (71). However,

although animal research corroborates these effects for

androgenic progestins, except for drospirenone (72), anti-

androgenic progestins appear to increase allopregnanolone levels

in the rodent brain (73, 74). On the other hand, although ethinyl-

estradiol has a greater affinity for estrogen receptors than

endogenous estradiol (75), it is administered in a much lower

dose and also shows a differential selectivity for the alpha

receptor type over the beta receptor type (76). The present

findings could be a consequence of the cumulative effect of

synthetic hormones, the abolishment of cyclic endogenous

hormonal fluctuations, or the combination of both.

Contrary to our hypotheses, we only found an interactive effect

of androgenicity and use duration for bilateral ACC. The

connectivity of these areas with the right inferior frontal gyrus

was lower the longer the androgenic HC use, while it was stronger

the longer the anti-androgenic HC use. In post-menopausal
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women, connectivity between these areas during memory tasks is

positively related to estradiol levels (77). Conversely, in pre-

menopausal women using HC, bilateral ACC–inferior frontal

gyrus connectivity has been reported to decrease after

testosterone administration, during an empathy-related task (35).

In male patients, anabolic androgen users showed decreased dorsal

attention network connectivity with superior and inferior frontal

gyri (SFG/IFG) and the ACC, related to use duration (78). Opposed

effects of HC depending on the androgenicity of their progestin

have also been extended to the behavioral level by some studies (see

review, 79). Although these findings indicate opposite cumulative

effects of androgenic vs. estrogenic modulation, both androgenic

and anti-androgenic progestins reduce overall testosterone

bioavailability (80, 81). Therefore, HC’s androgenicity impact

needs to be further elucidated, preferably in longitudinal placebo-

controlled trials.

Most of the effects observed in current HC users did not

replicate for previous HC users, which could be interpreted as

reversibility for such effects. Only the connectivity between the right

amygdala and the ventral area of the left superior frontal gyrus still

showed a decrease the longer the duration of previous HC use. We

have previously described an effect of HC exposure on gray matter

volume of subcortical structures, some of which also appear to

remain after discontinuation (82). Although some studies hint at a

chronic decrease in endogenous hormone levels many years after

cessation of HC use (83), and long-term effects in task performance

(84), the extent to which fronto-amygdalar connectivity is directly

influenced by a prolonged HC use is still undetermined. Further
FIGURE 2

Interactive effect of current HC use duration and androgenicity on the connectivity between left (in red) and right ACC (in orange) with right inferior
frontal gyrus (IFG). Current users of an androgenic HC (A-HC) showed lower connectivity between bilateral ACC and the right IFG the longer the HC
use. In contrast, current users of an anti-androgenic HC (AA-HC) showed stronger connectivity between bilateral ACC and the right IFG the longer
the HC use. ACC, anterior cingulate cortex; IFG, inferior frontal gyrus HC, hormonal contraceptive; A, androgenic; AA, anti-androgenic.
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longitudinal randomized placebo-controlled studies need to be

carried out in order to fully disentangle the causal effect of HC

and its reversibility after discontinuation.

Some remarks and limitations need to be noted. First, and

important for the interpretations of these results, is that while a

cross-sectional group comparison could identify those effects that

emerge after the first months of use, but do not accumulate over

time, here we investigated time-dependent associations. Therefore, for

those results conflicting with previous literature, an alternative

explanation is that following this early impact (that would explain

the group differences), the changes adapt/regress over time. Further

inconsistencies could also be partly attributable to the small sample and

effect sizes of past studies. Second, although the categorization of

progestins used here corresponds to their androgenic vs. anti-

androgenic effects, this does not always reflect the corresponding

androgenicity of the HCs. Progestins with a stronger androgenic

effect may be found in lower doses in the HC and therefore have

lower androgenic effects in the body once dosage is taken into account

(85).Third, HC-related differences could be modulated by a continued

suppression of the endogenous hormones, by the exposure to synthetic

hormones, and/or by the interaction of both effects. As previously

described, endogenous estradiol has a lower affinity for estrogen

receptors than ethinyl-estradiol, and endogenous progesterone also

differs to the different types of synthetic progestins in their extra-

progestogenic effects. For example, they present a different affinity and

agonist or antagonist modulation of gluco- and mineralocorticoid

receptors (86). Furthermore, the involvement of these receptors in

the regulation of the stress response is of special importance when

considering potential long-term effects of HC on the brain. Last, but

not least, we selected the present ROIs based on previous literature and

delimited by the AAL atlas (62) for replication purposes (31). However,

there are conceptual and practical challenges when selecting a specific

parcellation, including the lack of precision in terms of inter-individual

homologous correspondence in brain cortex (87, 88). Additional bias

towards smaller sub-networks instead of larger brain systems has also

been suggested for seed-based analyses (89).

Overall, these results in a large sample of women suggest

cumulative changes in functional connectivity patterns at rest

related to the extent of exposure to HC and the abolishment of the

endogenous fluctuation of ovarian hormones. Differential effects of

the type of progestin arose for some of these functional changes.

Given the widespread use of HC among women, and the early onset

of HC use, usually starting during adolescence, elucidating the

synthetic progestins effects and the functional implications of these

findings is of the utmost importance.
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