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Mitochondria are cellular organelles which generate adenosine triphosphate (ATP)
molecules for the maintenance of cellular energy through the oxidative
phosphorylation. They also regulate a variety of cellular processes including
apoptosis and metabolism. Of interest, the inner part of mitochondria—the
mitochondrial matrix—contains a circular molecule of DNA (mtDNA)
characterised by its own transcriptional machinery. As with genomic DNA,
mtDNA may also undergo nucleotide mutations that have been shown to be
responsible for mitochondrial dysfunction. During physiological aging, the
mitochondrial membrane potential declines and associates with enhanced
mitophagy to avoid the accumulation of damaged organelles. Moreover, if the
dysfunctional mitochondria are not properly cleared, this could lead to cellular
dysfunction and subsequent development of several comorbidities such as
cardiovascular diseases (CVDs), diabetes, respiratory and cardiovascular diseases
as well as inflammatory disorders and psychiatric diseases. As reported for
genomic DNA, mtDNA is also amenable to chemical modifications, namely DNA
methylation. Changes in mtDNA methylation have shown to be associated with
altered transcriptional programs and mitochondrial dysfunction during aging. In
addition, other epigenetic signals have been observed in mitochondria, in
particular the interaction between mtDNA methylation and non-coding RNAs.
Mitoepigenetic modifications are also involved in the pathogenesis of CVDs
where oxygen chain disruption, mitochondrial fission, and ROS formation alter
cardiac energy metabolism leading to hypertrophy, hypertension, heart failure
and ischemia/reperfusion injury. In the present review, we summarize current
evidence on the growing importance of epigenetic changes as modulator of
mitochondrial function in aging. A better understanding of the mitochondrial
epigenetic landscape may pave the way for personalized therapies to prevent
age-related diseases.
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Introduction

Mitochondria are double membrane organelles which are actively involved in a

multitude of cellular activities such as energy production in the form of adenosine

triphosphate (ATP), intracellular Ca2+ signalling, generation of reactive oxygen species

(ROS), and catalysis of metabolites (1). Physiologically, the high plasticity of mitochondria

makes them able to respond rapidly to cellular metabolic demands, such as during

physical activity or fasting (1). Mitochondria are dynamic organelles that constantly alter
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2023.1204483&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2023.1204483
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1204483/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1204483/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2023.1204483
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Mongelli et al. 10.3389/fcvm.2023.1204483
their shape, oscillating between two opposing processes, fission and

fusion, in response to different stimuli (1, 2).

In healthy individuals, these processes are well balanced. In

fact, if the organism requires more energy, two mitochondria

fuse together. To increase the amount of ATP, the cell

transcribes the nuclear genes encoding mitochondrial proteins

(NuGEMPs) which in turn promote the activity of the outer

mitochondrial membrane (OMM) proteins, Mitofusin 1 and 2

(Mnf1/2) and the inner mitochondrial membrane (IMM) protein,

Optic Atrophy Protein 1 (Opa1) (3).

On the other hand, under conditions of reduced energy

demand or in the presence of dysfunctional mitochondria, such

as during a sedentary lifestyle or aging, the fission mechanism

(the removal of a mitochondria) is enhanced (1). This

mechanism, triggered by the reduction of inner membrane

potential or by high ROS production, induces the interaction

among dynamin like 1 (Drp1), fission mitochondrial 1 (Fis1) and

mitochondrial fission factor (Mff) (4). In physiological

conditions, the unneeded or damaged mitochondrial fragments

are cleared by the autophagosome (mitophagy process), while the

accumulation of damaged mitochondria is strictly linked to the

exacerbation of neurodegenerative and cardiovascular diseases,

cancer and inflammation (5–8).

These mechanisms are also influenced by mitochondrial DNA

(mtDNA). In fact, cells contain 100–10,000 copies of mtDNA in

proportion to energy request (9). Despite some similarities with

the genomic DNA, the mtDNA has specific features. First, the

hereditary is not Mendelian because all mitochondria are

transmitted by uniparental model (maternal hereditament).

Second, the mtDNA is a circular covalently closed double

stranded DNA with a length of 16.5 kbs in human (10). To

distinguish the two strands, one is named “heavy” (the sense,

which is purine rich), and the other is named “light” (the

antisense, which contains high amounts of pyrimidine). The

mtDNA has 37 genes, which encode 13 polypeptides involved

into the oxidative phosphorylation, 2 rRNAs and 22 tRNAs (11).

Third, similar to genomic DNA, the mtDNA assumes a

secondary structure that regulates the genes transcription and the

synthesis of new mtDNA molecules (12). This upper level of

mitochondrial gene regulation has been named as

“mitoepigenetics” (13–15).
Features of mitochondrial epigenetics
(mitoepigenetics)

Unlike genomic DNA, mtDNA is not packed into nucleosomes

but is organized into protein complexes in which mtDNA is bound

to mitochondrial transcription factor A (TFAM) to form nucleoids

measuring 100 nm in diameter (16, 17). Despite its name, TFAM is

not the main transcriptional player; in fact, mitochondrial RNA

polymerase (POLRMT) and mitochondrial transcription factor

B2 (TFB2M) are mainly involved in mitochondrial mRNA

synthesis (18). However, it is essential for the maintenance,

expression and transmission of mitochondrial DNA (mtDNA).

Interestingly, post-translational modifications (PTMs) of TFAM
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play an important role in its affinity for mtDNA. In particular,

acetylation in lysine (K62, K76, K111 and K118) or

phosphorylation (S55 and/or S56) in serine can fine-tune TFAM-

DNA binding affinity (19).

Specifically, acetylation of TFAM at lysine 76 (K76) mediated

by GCN5L1 (General Control of Amino-Acid Synthesis, yeast

homolog-like 1) inhibits the binding of TFAM to the

mitochondrial transporter TOM70, resulting in reduced TFAM

import into mitochondria and mitochondrial biogenesis (20). In

contrast to these results, another work shows that increasing the

acetylation levels of TFAM does not alter its binding to mtDNA,

while significantly reducing TFAM-mediated DNA unwinding

capacity (21). Although the role of TFAM acetylation is still

debated, a growing body of evidence shows that PMTs in the

C-tail of TFAM are critical for the recruitment and positioning

of POLRMT (22) and TFBM2, leading to mitochondrial gene

transcription (18).

Sirtuins (Sirts) are an evolutionarily conserved family of class

III histone deacetylases that require NAD+ as a cofactor (23).

Among these Sirt3, 4 and 5 have been found in mitochondria

(24–26). However, only Sirt3 has been shown to have

deacetylation activity, whereas the role of Sirt4 is that of ADP-

ribosylase and lipoamidase, and Sirt5 is involved in succinylation,

malonylation, and glutarylation (27). Interestingly, one of the

targets of Sirt3 in the mitochondrion is TFAM (28) whose

deacetylation results in increased binding to mtDNA, thus

repressing gene transcription (28). Similarly, ERK2-mediated

phosphorylation of TFAM in serine 177 (29) increases the

binding of TFAM to mtDNA, resulting in suppression of

transcription (19, 29). In addition, recent work shows that

protein kinase A (PKA) regulates the phosphorylation of TFAM

in serine 55 and promotes its degradation (30, 31).

In the nucleus, gene expression is not only modulated by PTMs

of histones, but it is also regulated by the methylation in 5th

position of cytosine (5 mC) in cytosine-guanine dinucleotide

(CpG) at the level of regulatory sequences. Specifically, an

increase in DNA methylation triggers the inhibition of

transcription. The involvement and amount of methylated

mtDNA are still debated. Some works report that methylation is

a specific feature of genomic DNA that is not shared with

mtDNA (32, 33), while other studies show the presence of

methylation also at the level of mtDNA (34, 35, 36).

Interestingly, in mtDNA, methylation of gene promoters has

been observed at non-CpG sites (34). Although DNA

methyltransferases DNMT1, DNMT3a and DNMT3b were

shown to be active in mitochondria, their repression does not

affect the mtDNA methylome (34). In mitochondrial DNA, the

main methylation found is at the level of adenine (6 mA) at

adenine-thymine dinucleotides (ApT) (37). In addition,

accumulation of eukaryotic methyltransferase 4 MTA70

(METTL4) has been observed in the mitochondrial matrix (38),

and knock-out of METTL4 results in a 6 mA decrease in

mtDNA (38). Similar to nuclear DNA, in mitochondria 6 mA

attenuates the binding of TFAM to transcription factors (38),

suggesting the homology of the role of methylation in gene

expression. In the nucleus, demethylation of 6 mA is driven by
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AlkB homolog 1 (ALKBH1) and ALKBH4 (39). However, there is

currently no information on the mechanisms of 6 mA

demethylation in mtDNA.

Another branch of epigenetic regulation is the role of noncoding

RNAs (ncRNAs), a class of ribonucleic acid sequences that do not

carry protein translation information but are involved in gene and

protein regulation (40). Based on their length, ncRNAs are divided

into long non-coding RNAs (lncRNAs), which are longer than

200 nts, and small ncRNAs (sncRNAs), which are shorter than

200 nts and include miRNA, cirRNA, and piRNA (40). Several

roles have been established for lncRNAs: regulation of chromatin

structure by interacting with histones, repression or activation of

gene expression through hybridization with genomic DNA,

regulation of splicing, stabilization of messenger RNAs (mRNAs),

and sponging of miRNAs (41). On the other hand, miRNAs are

known to interfere with the translation mechanism due to their

complementarity with the 3′-untranslated region (3′UTR) of

mRNAs (42).

Interestingly, metastasis-associated lung adenocarcinoma

transcript 1 (MALAT1) was found in the mitochondrial matrix

where it interacts with mtDNA in several regions (43).

Specifically, this interaction represses the transcription of

cytochrome C oxidase II (COX2), NADH: Ubiquinone

oxidoreductase core subunit 3 (ND3) and cytochrome B (CYTB)

genes encoded at the mitochondrial level (43). In addition,

downregulation of MALAT1 in mitochondria leads to altered

mtDNA copy number, mitophagy, apoptosis, and abnormalities

in ATP production (43).

The RNA component of the RNase MRP ribonucleoprotein

(RNP) complex (RMRP) lncRNA has also been found in the

mitochondrial matrix where it acts as a primer for mtDNA

replication (44). Furthermore, RMRP associates with

nucleoporins involved in the export of small nuclear RNAs,

highlighting its interaction between nuclear and mitochondrial

epigenetic regulation (44).

Recent work reports the presence of mitochondria-specific

miRNAs, called MitomiRs, which are subsequently transported

into the cytosol to inhibit their target mRNAs or interact with

mitochondrial proteins (45). One example is MitomiR-2392,

which reduces the expression of mt-ND2, mt-ND4, mt-ND5, mt-

CYTB, and mt-COX1 genes through interaction with Argonaute

RISC Catalytic Component 2 (AGO2), which is present in the

mitochondrial matrix (46). Dysregulation of mitomiR-2392 leads

to altered cellular metabolism with decreased oxidative

phosphorylation and increased glycolysis (46). Due to AGO2′s
dual localization (cytosol and mitochondrial matrix) and ability

to bind RNA, it has been proposed as an importer of miRNAs

(47). Indeed, many miRNAs synthesized from genomic DNA

have been found in mitochondria where they inhibit their

targets. One example is miR-181c, which regulates levels of the

mitochondrial protein mt-COX1 (48). Interestingly,

overexpression of miR-181c did not change mt-COX1 mRNA

but significantly decreased mt-COX1 protein, suggesting that

miR-181c is primarily a translational regulator of mt-COX1 (48).

In addition, overexpression of miR-181c results in increased

mt-COX2 mRNA and protein content, with an increase in both
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mitochondrial respiration and reactive oxygen species generation,

causing mitochondrial dysfunction (48). Similarly, human miR-

198 and miR-765 have also been found in mitochondria, but

their targets have not yet been established (47).

A brief overview about the differences between epigenetics and

mitoepigenetics is summarized in Figure 1.
Mitoepigenetics in aging

The aging process leads to nuclear epigenetic alterations such

as remodelling of chromatin structure caused by changes in

DNA methylation and histone PTMs, telomere shortening, and

modulation of ncRNAs espression (49, 50, 51).
The effects of TFAM post-translational
modifications

TFAM plays an essential role in maintenance, expression, and

organization of mitochondrial DNA. Indeed, it is required for

efficient promoter recognition by mitochondrial RNA polymerase

and binds and induces significant conformational changes in

mtDNA. In muscles of aged flies, TFAM and mtDNA have been

found to form a more condensed structure than in juveniles (52)

impeding access to the mitochondrial transcriptomic machinery

with a subsequent reduction of gene expression. In detail, from

1 day of age to 12 weeks of age, the size of nucleoids decreases

while their number increases (52). Under normal conditions,

overexpression of TFAM leads to the reduction of Drosophila

lifespan, whereas in the presence of 1% H2O2, flies that up-

regulate TFAM resist the environment more, revealing that

TFAM is a central factor under severe oxidative stress and

mitochondria maintenance (53). Despite the lack of research on

TFAM and aging in mammals, the repression of mitochondrial

gene transcription in the presence of a high level of TFAM

protein is well known (54) suggesting a role of TFAM in aging.

Recently, it has been observed that DNA methyltransferase 3

alpha (DNMT3A) and ten-even-transposon 2 (TET2) regulates

the TFAM expression in macrophages (55). Specifically,

decreased DNMT3A and/or TET2 results in downregulation of

TFAM with subsequent cytosolic mtDNA release (55). The

presence of mtDNA in the cytosol is responsible for the

activation of cyclic GMP–AMP synthase (cGAS) signalling that

triggers interferon alpha (IFNα) production with subsequent

increase in inflammation (55).

Notably, in aging is well known the increasing of inflammation

state (named inflammaging) which involved several cytokines

included IFN (56). This finding suggests that TFAM migh

contribute to the burst of inflammation observed in aging. in

aging is well known the increasing of inflammation state (named

inflammaging) which involved several cytokines included IFN

(56). In young mice, lymphocyte-specific Tfam knockout

recapitulated the characteristics of mitochondrial dysfunction that

occurs in aged (22-month-old) wild-type mice, and this

mitochondrial decline is characterized by increased secretion of
frontiersin.org
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FIGURE 1

Differences between nuclear and mitochondrial Epigenetics. Despite different DNA structures (circular vs linear) and genome organizations (i.e. nucleoids
vs nucleosomes; methylation in adenosine vs cytosine), both types of epigenetics are aimed to regulate the gene expression.
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inflammatory cytokines, such as interferon-γ (IFN-γ) and tumor

necrosis factor-α (TNF-α) (57).

It is well known that nuclear translocation of p53 protein is

associated with increased aging due to its inhibition of PPARγ

co-activator 1α (PGC1α) and PGC1β (58). It is interesting to see

that in skeletal cells after endurance exercise, the presence of

nuclear p53 is reduced while its presence is increased in

mitochondria where it serves to positively modulate the activity

of the mitochondrial transcription factor TFAM (59). Based on

this evidence, physical activity in the elderly could also improve

mitochondrial function through the p53-TFAM interaction.
Methylation of mtDNA

Another epigenetic modification that occurs in aging is the global

decrease in the level of methylation in genomic DNA, which

cooperates with the modification of histones (60). Despite the

global decrease in 5mC, it has been observed that some specific

CpGs are particularly hypo- or hyper-methylated. This signature

has been used to develop so-called “epigenetic clocks” that are able

to specifically detect the biological age of individuals (61–65).

Although the most representative methylated base in mtDNA

is adenine, recent work shows a correlation between aging and
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5 mC methylation of mtDNA in the brain, where some 5 mCs

(in this case both CpG and non-CpG) were found to be

modulated (66). Unlike genomic DNA, aged mtDNA reveals a

pattern of global hypermethylation (66). This feature is likely due

to the loss of the ability of ten-eleven transposons (TETs) to

eliminate methylation on cytosines, caused by altered metabolism

in which the reduction of α-ketoglutarate (the cofactor of TETs)

was observed (67). In recent work, a significant increase in DNA

methylation levels was found according to age and the

administration of the low-calorie diet. Particularly, the increase

in methylation level represses genes involved in mitochondrial

biogenesis, suggesting that mitochondrial dynamics is driven by

age and diet (68). During aging, mitochondrial increase in

reactive-oxygenated species (ROS) has been reported to modulate

mtDNA (69, 70). Specifically, ROS-induced damage to mtDNA

reveals impaired production or mutation of enzymes involved in

oxidative phosphorylation, exacerbating mitochondrial

dysfunction and enhanced cellular senescence (69).
Mitochondrial non-coding RNAs

The correlation between miRNA and histone deacetylase has

been demonstrated during aging. Specifically, miR-9 and miR-
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34a have been found to be up-regulated in aging and both target

Sirt1 mRNA, which is found to be down-regulated contributing

to enhanced gene expression (71). In addition, Sirt1 is also

regulated by miR-181a, which is down-regulated during aging

instead (72). Repression of miR-181a in the elderly has been

associated with defects in T-cell activation (72). The lncRNAs are

also modulated in aging. For example, H19 is down-regulated in

senescent endothelial cells (73). Specifically, repression of H19

reflects increased phosphorylation of STAT3, which becomes

active and transcribes p16 and p21 reflecting cell cycle inhibition

(73). In addition, in cardiomyocytes (CM), lncRNA

ENSMUST00000134285 has been observed to control apoptosis. In

this case, in aged tissues, the expression of ENSMUST00000134285

is increased and inhibits MAPK11 activity, initiating the apoptotic

process (74).

Modulation of ncRNAs has also been observed in aging, and

the ncRNAome is tissue-specific. An example is miR-183-5p,

miR-199b-5p, miR-205-5p, and miR-200b-3p, which are up-

regulated in 3-month-old mice and are involved in the thymus

regression process (75). Similarly, modulation of the lncRNAome

during aging was found in the liver, where Meg3, Rian and Mirg

were found to be up-regulated, revealing increased inflammation,

repression of cell proliferation and metabolic changes (76). The

lncRNA nuclear-enriched abundant transcript 1 (NEAT1) was

found to be modulated in bone marrow mesenchymal stem cell
TABLE 1 Overview of mitoepigenetic modifications in aging.

Target Modification Effe
TFAM Condensed structure of nucleoids Less

Mt-DNA

Mt-DNA Increase of 5 mC • Re
• Im
• Ac

mt-DNA 5 mC age-related in brain • M

miR-181a Down-regulated • Re
• Ac
• Dy

miR-183-5p Up-regulation • Ti

miR-199b-3p

miR-205-5p

miR-200b-3p

Meg3 Up-regulation In liv
• In
• Pr
• M

Rian

Mirg

NEAT1 Up-regulation • Im
• Sw
• Sk

H19 Down-regulated • In
• Up
• En

ENSMUST00000134285 Up-regulation • In
• Ca
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(BMSC) senescence (77). Up-regulation of NEAT1 drives the

transition from bone cells to fat cells by hindering mitochondrial

function, while repression of NEAT1 reflects an increase in Sirt3

(77), which, as has been discussed previously, is responsible for

deacetylating TFAM (28).

In conclusion, the ncRNAs that are transcribed by nuclear

DNA and shifted to mitochondria have been found to modulate

oxidative stress response, Sirt1-dependent deacetylation,

inflammation, cell cycle and apoptosis confirming their

involvement in mitochondrial homeostasis leading to aging

process (Table 1).
Mitoepigenetics in cardiovascular
diseases

During aging, the risk of developing cardiovascular disease

(CVD) increases (78). On the other hand, various risk factors such

as unhealthy dietary regimens, physical inactivity, smoking, and

alcohol abuse play a major role in the development and

acceleration of cardiovascular diseases (2, 79, 80). Heart failure

(HF), coronary heart disease, rheumatic heart disease, and stroke

are among the leading causes of death globally (17.9 million per

year), and the involvement of epigenetics in the development of

these diseases has been extensively studied (81, 82, 83, 84, 85, 86).
cts Organism
contractility Drosophila (wing muscle)

pression of mitochondrial genes transcription
pairment of oxidative stress response
celerated aging

Humans and mammals

itochondrial brain-specific epigenetic clock Humans

pression of Sirt1
celerated aging
sregulation of T-cell activation

Humans

mus regression Mice

er:
crease of inflammation
oliferation arrest
etabolic changes

Mice

pairment of mitochondrial function
itching BMSCs to fat cell
eletal aging

Mice

crease of STAT3 phosphorylation¨
-regulation pf p16 and p21
dothelial senescence

Humans and mammals

hibition of MAPK11
rdiomyocytes apoptosis

Mammals
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However, growing evidence suggests the potential contribution of

mitoepigenetics in the pathophysiology of CVD.
Role of mtDNA methylation in CVDs

Modulation of the mtDNA methylation of the mt-COX2 gene

has been observed in human cardiac mesenchymal stem cells

(HMSCs) (87). In particular, senescent HMSCs reveal

hypermethylation of the COX2 gene, which appears to be

downregulated (87). On the other hand, overexpression of mt-

COX2 and inhibition of DNMT1 by 5-aza-2′-deoxycytidine
delay the senescence process (87). It has also been shown that, in

the rat model, depletion of mt-COX2 reduces ATP and acetyl-

CoA production. Consistently, the expression of genes related to

mitochondrial oxidation, were downregulated, while glycolytic

hexokinase 1 (HK1) was upregulated. These observations indicate

that COX2-deficient rats develop hypertension, heart failure, and

increased thrombotic events, probably as a result of dysregulation

of cardiac energy metabolism (88).

Analysis of mtDNA methylation was also performed in

platelets from CVD patients, where an increase in 5mC

methylation was found in comparison with healthy controls (89).

In particular, an increase in the methylation level of the mt-

COX1/2/3 gene and mitochondrial leucine 1 (mt-TL1) tRNA was

found (89). In line with these findings, in vascular smooth

muscle cells (VSMCs) platelet-derived growth factor-BB (PDGF-

BB) triggers the translocation of DNMT1 from the nucleus to the

mitochondria, where mtDNA methylation increases resulting in

suppression of gene expression (90). These increased levels of

methylation are also associated with mitochondrial dysfunction,

altered contractility of VSMCs, and aberrant cell growth (90).

Mitoepigenetics also seems to play an important role in CAD.

Indeed, comparing mtDNA methylation levels of peripheral blood

leukocytes from patients with stable coronary artery disease

(SCAD) and acute coronary syndrome (ACS), a lower level of

global 5 mC mtDNA was found in patients with ACS. In line

with these findings, hypermethylation of the D-loop region was

also detected in these patients, which is associated with reduced

mtDNA synthesis (91).
Regulation of TFAM and nucleoids in the
CVDs

In myocardial infarction, alteration of physiological functions

of mitochondria leads to modification of proteins and lipids and

inhibition of energy production, contractile capacity, cell

necrosis, or apoptosis. In the myocardium, oxidative stress

caused by ischemia/reperfusion (I/R) injury triggers nuclear

translocation of nuclear respiratory factor 1 (NRF1) and

upregulation of PPARG coactivator 1 alpha (PGC-1α), which

increase TFAM transcription and contribute to mitochondrial

biogenesis and repair, acting as a compensatory mechanism(92).

Interestingly, TFAM depletion reflects the loss of cellular ability

to respond to I/R damage. In CMs after the decrease in oxygen
Frontiers in Cardiovascular Medicine 06
level, the amount of TFAM increases as a compensatory

mechanism. Thereafter, its level progressively decreases revealing

the increase in ROS production and calcium mismanagement.

This phenomenon has been particularly observed in the later

stages of HF. Therefore, restoring TFAM levels by increasing

mitochondrial biogenesis and reducing ROS production could

protect cardiomyocytes from the oxidative damage of mtDNA

induced by I/R-injury (93).

Mitochondrial dysfunction is also a feature of hypertension

that leads to increase vascular oxidative stress. In particular, Sirt3

has been found to play a key role in maintaining endothelium

function (94). In the aortas of hypertensive mice, Sirt3 down-

regulation was found to result in worsened blood pressure,

vascular relaxation, superoxide and nitric oxide production, as

well as increased hypoxia-induced factor 1 alpha (HIF1α), pro-

inflammatory gene expression as well as vascular permeability

(94). In addition, reduction of Sirt3 leads to increased acetylation

of superoxide dismutase 2 (SOD2), resulting in loss of its

antioxidant activity (94).

Consistently, beneficial effects of Sirt3 have also been observed

(94). In a rat model, activation of the AMP-activated protein kinase

(AMPK)-PGC1α-Sirt3 signaling pathway was observed (94).

Specifically, PGC1α increases the expression of Sirt3, which in

turn deacetylates NRF1, the transcription factor responsible for

TFAM transcription (94). On the other hand, Sirt3 also acts

directly on TFAM allowing its translocation into mitochondria

and subsequently transcription of mitochondrial genes.

Activation of this pathway, thus on the one hand enhances

mitochondrial biogenesis and function while on the other hand

reduces ROS-dependent cellular stress (94). Interestingly, this

pathway can be stimulated by melatonin administration through

AMPK activation (94).

Consistently, beneficial effects of Sirt3 have also been observed

in myocardial I/R injury (95). In a rat model of I/R, activation of

the AMP-activated protein kinase (AMPK)-PGC1α-Sirt3

signalling pathway has been observed (95).. Specifically, PGC1α

increases the expression of Sirt3 which in turn deacetylates NRF1

the transcription factor responsible for TFAM transcription (95).

Moreover, Sirt3 also acts directly to TFAM allowing its

translocation into mitochondria and subsequently transcription

of mitochondrial genes. As a result,the biogenesis and function

are gained and ROS-dependent cellular stress is reduced (95).

Interestingly, this pathway can be stimulated by melatonin

administration, which acts by activating AMPK (95). Similarly,

the PGC1α-Sirt3-TFAM/NRF1 pathway was also found to be

repressed in a rat model of isoprotenerol-induced HF (96). Of

note, administration of perindopril improves cardiac function

through SIRT3 and PGC1α signalling pathway activation (96).
Mitomirs and mitochondrial lncRNAs
modulation in CVDs

In CVDs, several mitomiRs have been found to be involved in

the pathogenesis. An example is miR-181c, a nuclear-encoded

miRNA, which is translocated from nucleus to mitochondria and
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targets mt-COX1 mRNA (97). To mimic the HF condition, miR-

181c has been up-regulated targeting nanoparticles to heart (97).

The miR-181c- treated rats revealed a significant decrease in left

ventricular fractional shortening and markedly lower ejection

fraction (97). MiR-181c has also been found to regulate calcium

uptake in cardiomyocytes (98). The miR-181c loss can protect

the heart from I/R injury by modulating calcium transport

through the upregulation of mitochondrial calcium uptake 1

(MICU1) (98). In fact, in miR-181c−/− mouse model, the

molecular mechanism found is the involvement of mt-COX1

which up-regulates the transcription factor specificity protein 1

(Sp1) that in turn triggers the expression of MICU1 (98).

Several miRNAs are involved in the pathogenesis of CVD. One

example is miR-181c, a nuclear-encoded miRNA that is

translocated from the nucleus to the mitochondria and targets

mt-COX1 mRNA (97). To recapitulate an HF phenotype, miR-

181c was up-regulated by targeting nanoparticles to the heart

(97). Rats treated with miR-181c revealed a significant decrease

in fractional shortening and ejection fraction (97). It was also

found that miR-181c regulates calcium uptake in cardiomyocytes

(98). Thus, suppression of miR-181c may protect the heart from

I/R injury by modulating calcium transport through upregulation

of mitochondrial calcium uptake 1 (MICU1) (98). Indeed, in the

miR-181c−/− mouse model, the molecular mechanism found is

the involvement of mt-COX1 regulating the transcription factor

specificity protein 1 which in turn triggers the expression of

MICU1 preserving Ca2+ uptake in CMs after I/R injury (98).

Interestingly, in the human heart, up-regulation of miR-181c

leads to ventricular septal defects (99). In this condition, the

molecular mechanism of miR181c involves inhibition of bone

morphogenetic protein type 2 receptor (BMPR2) (99), which is

critical for septal formation and valvulogenesis (100).

Small RNA-seq performed in mitochondria isolated from

mouse failing hearts, showed that mitochondria-enriched

microRNAs in HF were associated with energy metabolism and

oxidative stress pathway (101). Little is known about these

mitomiRs in CVDs. However, miR-696 has been observed to

down-regulate PGC1α with subsequent impairment of

mitochondrial function in skeletal muscle (102). An analogous

mechanism might occur also during I/R injury in CMs, however

no information is currently available.

On the other hand, lncRNA growth arrest specific 5 (GAS5) is

known to sponge miR-532-5p and is up-regulated during I/R (103).

Specifically, this lncRNA is increased in I/R injury and is

responsible for phosphoinositide-3-kinase (PI3K)/protein kinase

B (AKT) downregulation, thus resulting in apoptosis (103).

Overexpression of GAS5 lncRNA during ischemic injury prevents

the development of an adverse cardiac phenotype (103).

Similarly, during stroke, miR-532-5p expression is strongly

reduced and is associated with increased infarct area, neuronal

apoptosis, and worsening neurological score (104). The up-

regulation of miR-532-5p enhances the PI3K/AKT pathway that

increases cell viability by attenuating neurological damage (104).

In hypoxia, the potentiation of miR-210 and its involvement in

CVD is well known (105). Iron-sulfur cluster assembly proteins 1

and 2 (ISCU1/2) have been found to be a target of miR-210 in
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mitochondria (106). Increased miR-210, under oxygen-deficient

conditions, reduces the level of ISCU1/2, which is involved in

iron-sulphur clusters for electron transport and mitochondrial

redox reactions (106). Consequently, downregulation of ISCU1/2

impairs metabolism and cell survival.

MitomiRs are also involved in cardiac hypertrophy. MiR-485-5p

has been found repressed in mouse hypertrophic heart where it

interacts with the mitochondrial anchored protein ligase (MAPL).

In turn, the downregulation of MAPL reveals the over-expression

of the mitochondrial fusion protein 2 (MFN2) which induces the

mitochondrial fission (107). In hypertrophic hearts, miR-485-5p

up-regulation was shown to reduce LV wall thickness (107).

miR-485-5p is also regulated by metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1) (108) that is over-

expressed in hypoxic condition (109). In CVD patients, high level

of circulating MALAT1 has been observed in association with

inflammation and hypoxia (110). Notably, in hepatocellular

carcinoma it has been found that MALAT1 binds the mtDNA

modifying the mitochondrial structure, reducing oxidative

phosphorylation and ATP production, decreasing mtDNA copy

number, and activating the apoptosis (43). Despite the increase of

MALAT1 in CVDs, no work reports the modulation of

mitochondrial gene expression upon MALAT1-mtDNA interaction.

Figure 2 reports a brief overview of mitochondrial epigenetics

in cardiovascular diseases.
Future perspectives of mitoepigenetics
in treatment

Mitoepigenetics is arising as a new marker of aging (51) and

CVDs (13). However, therapeutic interventions, that specifically

target a mitoepigenetic factor, are difficult to develop due to the

strict correlation to the genomic regulation. An example is

represented by DNMT1 which methylates nuclear DNA and it

translocates into mitochondria where acts on the mtDNA (36,

66, 90, 111). The inhibition of DNMT1 with 5-aza-2′-
deoxycytidine has been observed to decrease the amount of 5 mC

in mitochondria associated to the improvement of mt-COX2

expression (87). However, the hypomethylation has been

observed in genomic DNA in response to 5-aza-2′-deoxycytidine
administration which induces genomic instability and tumor

growth (112). Similarly, the inhibition of HDACs by SAHA

reverts the heart remodelling through increased H3 acetylation

(113). However, no data are available on SAHA effects on

mitochondrial deacetylases that regulate TFAM. Analogously,

several miRNAs have shown an active interplay between cytosol

and mitochondrial matrix (45). Hence, modulation of their

activity within a specific cellular compartment (without altering

the other) remains challenging.

Physical activity is known to influence nuclear epigenetics by

increasing lifespan through activation of sirtuins, including the

mitochondrial protein SIRT3 (114). During the exercise, there is

upregulation of mitochondrial TFAM as well as of protein

involved in beta-oxidation, Krebs cycle and electron transport

chain. This results in improvement of ROS clearance, enhancing
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FIGURE 2

Mitoepigenetics of cardiovascular diseases. Several epigenetic modifications might occur in mitochondrial matrix. The mt-DNA methylation occurs
mainly in Adenine of L-chain. However, the 5mC in H-chain has been found to have a regulatory function. In fact, the increase of 5mC has been
observed in aged mitochondria as well in mitochondria leucocyte of SCAD patients. In parallel, high level of 5mC in mt-COXQ and in mt-TL1
promoters triggers the HF and hypertension. Additionally, the retains of TFAM acetylation, caused by the decrease of Sirt3 activity, has been observed
in HF. Little is known of SAHA effects in mitochondrial regulation, however we might suppose that SAHA modulates the expression of mt-COX1, mt-
NDS, and mt-CYTB contributing to Takotsubo disease reversion. Pivotal roles have also been observed in mitochondrial ncRNA regulation. Higher
level of miR-181c is leaded to the worsening of I/R injury as well the up-regulation of miR-696, miR-532 and miR-630 triggers the HF. The
impairment of metabolism has been associated to the increase of miR-210 through the repression of ISCU1/2. The down-regulation of mitochondrial
miR-485 increases MAPL2 expression which stimulates the hypertrophic growth. lncRNAs are involved in CVD too. In fact, MALAT1 has been found to
bind the D-Loop of mt-DNA inhibiting the synthesis of new mt-DNA. The reduction of mt-DNA copy number reflects the alteration of mitochondrial
structure and the impairment of the oxidative phosphorylation.
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the fusion process between functional organelles and the removal

of dysfunctional mitochondria reduce thus reducing the onset of

senescence (115). Interestingly, in the elderly population (65 ± 7

years), exercise alters the mtDNA methylome in skeletal muscle

making it similar to that of younger men (116).

In conclusion, mitoepigenetics and epigentetics seem to

cooperate for the cellular homeostasis. In fact, both systems share

proteins (i.e., DNMT1) and ncRNAs (i.e., MALAT1, miR485

which are synthetized in the nucleus and shuttled in

mitochondia and an alteration of one mechanism might

modulate the other (43, 87, 107). As an example, Dunham-Snary

(112, 116) demonstrated that mtDNA can modulate nuclear gene

expression in adipose tissue (117).

Application of machine learning to identify novel cardiac

biomarkers reveals that total nuclear methylation and methylation

in a specific CpG island of TFAM were the best diagnostic

measures related to diabetes progression (118). Also this study

support the theory that epigenetics and mitoepigenetics are two

processes interconnected.
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