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Spatial dynamics of Maine
lobster landings in a
changing coastal system
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1Ecology and Environmental Sciences, University of Maine, Orono, ME, United States, 2School of
Economics, University of Maine, Orono, ME, United States, 3School of Marine and Atmospheric
Science, Stony Brook University, Stony Brook, NY, United States
Continued warming of oceans has caused global shifts in marine species

distributions. This can result in changes in the spatial distribution of landings

and have distributional impacts on marine resource-dependent communities.

We evaluated the spatial dynamics of American lobster (Homarus americanus)

landings in coastal Maine, which supports one of the most valuable U.S. fisheries.

We coupled a bioclimate envelope model and a generalized additive model to

project spatial dynamics of lobster landings under possible climate scenarios.

This coupled model was then used to forecast future lobster habitat suitability

based on IPCC RCP climate scenarios and predict distributions of fishery landings

from this projected lobster habitat suitability. The historical spatial distribution of

fishery landings shows the highest proportional landings in Maine’s Southern

(southwest) regions. The current distribution of landings shows higher

proportional landings in Downeast (northeast) regions with the highest

proportional landings in Midcoast (middle) regions. Our results suggest that

while the proportion of landings in each zone will remain stable, changes in

habitat suitability in the spring and fall will reduce total landings. Future habitat

suitability is projected to decrease in spring but increase in fall in Downeast areas.

Downeast landings are projected to decrease in the next 30 years, then increase

over the subsequent 80 years, depending on RCP scenarios and abundance

regimes. Midcoast landings are projected to decrease while Southcoast landings

are expected to stay constant. This study develops an approach to link climate

change effects to fishery landings. These findings have long-term implications for

sustainable, localized management of the Maine lobster fishery in a

changing climate.

KEYWORDS
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1 Introduction

Warming oceans have caused global shifts in the distributions of

many marine species as thermal habitats become unfavorable and even

exceed physiological thresholds (Cheung et al., 2016; Schuetz et al.,

2019). Continued warming is expected to significantly impact global

fisheries catch, both spatially and temporally (Cheung et al., 2016).

Changes in fisheries catch due to warming oceans can have widespread

impacts on fisheries and fishing-dependent communities, altering

resource use and income opportunities (Cheung et al., 2016;

Greenan et al., 2019). The threat of a warming ocean to fisheries

calls for an improved understanding of the effects of climate change on

fisheries output for future management and adaptation to

environmental change.

Environmental parameters, such as climate, often can affect

fisheries output and performance by influencing a fish stock’s

abundance, health, and distribution (Cushing, 1982; Lehodey

et al., 2006; NOAA, Fisheries, 2013). Changes in environmental

parameters can alter the quality and distribution of suitable habitats

for a given stock. The state of a fish stock may affect the fleet

dynamics, distribution, and efficiency of fishing effort, which

subsequently alters fishery performance and output (Franklin,

2010). Therefore, it is essential to understand how changes in

environmental conditions affect species distribution. Proxies, such

as changes in habitat quality and distribution of suitable habitat, are

often used to estimate the state and distribution of a given stock

(Brown et al., 2000; Tanaka and Chen, 2016; Rowden et al., 2017).

Researchers frequently use a bioclimate envelope (BE) model, a

predictive spatial model, to forecast the suitability and distribution

of habitat for a species based on influential environmental variables

(Xue et al., 2017; Tanaka et al., 2019). Estimates of habitat suitability

can be used to infer a given stock’s spatial distribution and

abundance (Morris and Ball, 2006; Tanaka et al., 2019). For this

study, we use the American lobster (Homarus americanus) fishery

in the state of Maine, U.S., as a case study for exploring historical

and forecasted connections between environmental variables and

fisheries output defined as fishery landings by pounds.

The American lobster fishery is one of the most valuable fisheries

in the U.S., with more than 80% of U.S. landings occurring in Maine

state waters (Maine Department of Marine Resources (MEDMR),

2020). Around 98% of Gulf of Maine landings come from “near

shore” areas defined as 0-12 miles from the coast (Atlantic States

Marine Fisheries Commission (ASMFC) American Lobster Stock

Assessment Review Panel, 2020). In addition, this fishery is a

significant economic driver and source of cultural identity in

coastal Maine (Acheson, 1988; Donihue, 2018). The Maine lobster

fishery is unique in that despite the small-scale, input-limited nature

of operation, the fishery operates at an incredible scale of around

4,500 active individual licenses throughout the state (Maine

Department of Marine Resources (MEDMR), 2020; Atlantic States

Marine Fisheries Commission (ASMFC) American Lobster Stock

Assessment Review Panel, 2020). This results in a diverse,

individualized structure of the fishery which is reflected in the

spatial distribution of different fishing behaviors, strategies, and

landings (Acheson, 1988; Maine Department of Marine Resources
Frontiers in Marine Science 02
(MEDMR), 2020; Atlantic States Marine Fisheries Commission

(ASMFC) American Lobster Stock Assessment Review Panel, 2020).

The fishery has experienced a dramatic increase in landings

since the late 1980’s, known as the “lobster boom” which correlates

changes in lobster abundance regimes (Atlantic States Marine

Fisheries Commission (ASMFC) American Lobster Stock

Assessment Review Panel, 2020). This increase is often attributed

to rising temperatures, immigration from southern New England,

decreased predation from other species, bait input, and highly

effective management and conservation strategies that protect

reproductive female lobsters (Grabowski et al., 2010; Le Bris et al.,

2018; Mazur et al., 2020).

These increases in landings are reflected in increases in American

lobster abundance in the Gulf of Maine (GoM) and Georges Bank

(GBK) over the past 50 years. The American lobster stock is observed

to have undergone two abundance regime shifts from a low abundance

regime (before 1995) to moderate abundance regime (1996-2008) to

currently a high abundance regime (2009-present) (Atlantic States

Marine Fisheries Commission (ASMFC) American Lobster Stock

Assessment Review Panel, 2020). As exothermic mobile crustaceans,

American lobsters are sensitive to environmental parameters, notably

temperature and salinity, and seek favorable conditions and habitats

(Tanaka andChen, 2016; Atlantic StatesMarine Fisheries Commission

(ASMFC) American Lobster Stock Assessment Review Panel, 2020).

Previous studies suggest a northeast and further from shore migration

of American lobsters, which is reflected in seasonal fishing behaviors

(Boenish andChen, 2017; Rheuban et al., 2017 Kleisner et al., 2017). In

addition, the GoM has been experiencing its most intense warming

period in the past 50 years due to the indirect effects of greenhouse

gasses and resulting oceanographic processes (Pershing et al., 2015;

Jewett andRomanou, 2017). Changes in environmental parameters are

expected to impact the quality and distribution of suitable habitat for

American lobster and fishery landings (Rheuban et al., 2017; Tanaka

et al., 2019; Behan et al., 2021). Understanding the relationship

between current and past environments and current and past habitat

suitability can provide insights into future distributions of suitable

habitats for American lobster. Therefore, evaluating spatio-temporal

dimensions of how environmental parameters affect suitable habitats

for lobsters will improve understanding of the overall spatio-temporal

distribution of lobsters and fishery landings in the GoM.

This study aims to connect spatio-temporal distributions of

climate-driven suitable lobster habitat with the distribution of

landings across lobster management zones. We modified a

bioclimate envelope model for American lobster, initially developed

by Tanaka andChen (2016), to project spatio-temporal distributions of

American lobster habitat using long-term, fine-scale environmental

data. We built a generalized additive model (GAM) to interpolate

fishery landings from projected lobster habitats. We then used

forecasted environmental conditions based on different climate

change scenarios to estimate future distributions of landings for the

Maine lobster fishery. We extend the literature on climate-driven

American lobster habitat and fishery output in two important

dimensions. First, we expand upon early work on the habitat

suitability of American lobsters (Tanaka and Chen, 2016; Behan

et al., 2021) to incorporate a management-specific scale distinct
frontiersin.org
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within the inshore GoM (Rheuban et al., 2017). We also explicitly

connect environmental parameters to fishery output (Xue et al., 2007;

Oppenheim et al., 2019) and compare across historical and forecasted

time scales (Boenish and Chen, 2017). This work highlights the

importance of considering climate influences in evaluating

fishery performance.
2 Methods

2.1 Maine-New Hampshire inshore trawl
survey

The Maine-New Hampshire Inshore Trawl Survey (Figure 1) was

used as a fishery-independent source of habitat and abundance data to

inform the BE model. The survey is a seasonal, semi-annual trawl that

provides catch (abundance) data with the habitat variables of

temperature, salinity, depth, and location (latitude/longitude)

(Sherman et al., 2005). The survey is jointly coordinated by the

Maine Department of Marine Resources (Maine Department of

Marine Resources (MEDMR), 2020) and the New Hampshire Fish

and Game Department (NHFGD) and is split seasonally into a Spring
Frontiers in Marine Science 03
(April-June) and Fall (September-November) survey. The survey

follows a stratified random sampling design along the coast of Maine

and New Hampshire, consisting of four depth strata (5-20, 21-35, 36-

55, and 56+ fathoms) (9.14–36.6, 38.4- 64.0, 65.8-101, and 102+

meters).The survey stays within the “near shore” boundary of 0-12

nautical miles (NM) from shore and encompasses both state waters

(“inshore”) boundary of 0-3 NM from shore and part of federal water

(“offshore”) boundary of 3-200 NM from shore (Sherman et al., 2005;

Atlantic States Marine Fisheries Commission (ASMFC) American

Lobster Stock Assessment Review Panel, 2020). A modified shrimp

trawl with 50.8 millimeters (mm) mesh wings and 12.7 mmmesh cod

end is towed for 20 minutes at 2.2-2.3 knots (4.07-4.25 kilometers per

hour) to cover approximately 1.5 kilometers2 (km2) per tow. The

survey targets 115 stations per season, approximating a sampling

density of 1 station every 40 NM2 (137.2 km2) (Sherman et al., 2005).
2.2 Environmental data

The Finite Volume Community Ocean Model (FVCOM) is an

open source, fine-scale ocean circulation model developed by the

Marine Ecosystem Dynamics Modelling (MEDM) lab at the
FIGURE 1

Regional and depth strata of survey region for the Maine – New Hampshire Inshore Trawl Survey. Adapted from “Maine- New Hampshire Inshore
Groundfish Trawl Survey Procedures and Protocols,” Shows county and zones (A-G) of survey area. Figure created using ArcGIS.
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University of Massachusetts Dartmouth and the Woods Hole

Oceanographic Institution, and is often used to model habitat and

oceanographic data in the Northwest Atlantic (Chen et al., 2005).

We pulled bottom temperature, bottom salinity, and depth using

midday (12:00 pm) of every 4th day for Spring (April-June) and Fall

(September – November) 1978-2018. We pulled different seasonal

data to best match the seasonality of the MENH Inshore Trawl

Survey. The total area pulled covered 128,400 km2 a grid scale of

0.01 decimal degrees2 (1.11 km2) (Li et al., 2017; Behan et al., 2021).

The finite volume unstructured grid of FVCOM has been shown to

accurately represent the environmental variables of Maine’s long

coastline with observed data at this fine scale (Li et al., 2017).

Environmental data from FVCOM was spatially interpolated onto

the fine-scale unstructured FVCOM grid using bivariate spline

interpolation through the “akima” package and the “raster”

package in R (Hijmans and van Etten, 2012; Akima and

Gebhardt, 2016). Further detail on the interpolation process is

described in section 2.4 in Methods.
2.3 IPCC carbon emission scenario data

Data from the Intergovernmental Panel on Climate Change

(IPCC) were used to estimate future bottom temperature and

bottom salinity data for the Representative Concentration

Pathway (RCP) 4.5 and 8.5 carbon emission scenarios. The

different RCP scenarios 4.5 (climate policy) and 8.5 (business-as-

usual) serve as forecasting benchmarks for future temperature and

salinity habitat variables. Forecasted habitat variables are calculated

from changes in averages, called anomalies, from the NOAA

historical baselines period (1956-2005) and are estimated for the

future time periods 2006-2055 and 2050-2099. However, our

FVCOM historical baseline period (1978-2005) does not match

the NOAA historical baseline. We delta-downscaled IPCC

anomalies by interpolating anomalies to the same FVCOM grid

using the same bivariate spline interpolation methods used for the

FVCOM environmental data. Anomalies were then applied to our

FVCOM baseline to forecast bottom temperature and salinity to the

periods 2028-2055 and 2072-2099. We assume depth, latitude, and

longitude do not change over time. Similar delta-downscaling and

interpolation methods can be found in the methods by Behan et al.

(2021). Interpolation methods are further described in the following

section 2.4.
2.4 Bioclimate envelope model

The bioclimate envelope (BE) model for American lobster, first

developed by Tanaka and Chen (2016), estimates suitable habitat

distributions in the GoM from habitat variables and has been used

previously to estimate habitat suitability and infer species

abundance and distribution. Bottom temperature and bottom

salinity have been previously identified as key habitat variables

(Tanaka and Chen, 2016). Depth, latitude, and longitude are used as
Frontiers in Marine Science 04
habitat spatial variables to capture spatial differences of habitat in

the diagonal direction of the Maine coast as well as the differences

between inshore and offshore habitats. Substrate data was

considered, but ultimately not used as the trawl survey is

inherently biased toward softer bottoms, and the scale of the

substrate data was not fine enough for our analysis (Sherman

et al., 2005; Behan et al., 2021). The BE model predicts habitat

suitability for American lobster from survey catches (abundance)

and habitat variables using fisheries-independent survey data and

can be used to infer species abundance and distribution given

habitat. The BE model builds a suitability index for each habitat

variable based on survey catch, latitude, and longitude, and

modelled FVCOM bottom temperature and botton salinity for

the same latitude and longitude of the survey. Modelled FVCOM

environmental variables were spatially interpolated using “akima”

package in R, which allows for bivariate cubic splines of gridded

data (Akima and Gebhardt, 2016). We filled the rest of the FVCOM

grid using raster interpolation through “raster” package in R, which

creates a continuous surface from sampled point values (Hijmans

and van Etten, 2012). IPCC anomalies were delta downscaled using

the same spatial interpolation method and applied to our FVCOM

baseline. Interpolated habitat variables were then used as input into

the BE model to create a suitability index for the interpolated values

of each habitat variable. The suitability indices are then averaged to

obtain an overall habitat suitability index map. The BE modelhas

since been modified and used in multiple studies regarding lobster

habitat suitability in the GoM and surrounding regions to improve

management decisions (Behan et al., 2021; Hodgdon et al., 2021;

Tanaka et al., 2020). This version of the BE model was adapted from

the Behan et al. (2021) model and modified to fit our data structure

and study region and follows similar methodology for data

extraction, model building, and interpolation.

Separate BE models were built using spring (April-June) and fall

(September-November) survey data to capture seasonal variability,

which has previously been shown to be important for bioclimate

envelope models for American lobsters (Hodgdon et al., 2021). This

is important as lobsters migrate seasonally inshore during the

summer and fall to reproduce, and offshore during the winter and

spring (Atlantic States Marine Fisheries Commission (ASMFC)

American Lobster Stock Assessment Review Panel, 2020).

FVCOM and IPCC interpolated data were used by the BE models

to estimate habitat suitability in the inshore GoM for spring and fall.

2.4.1 Suitability index
Suitability indices (SIs) for each of the identified habitat

variables were first developed using the ME-NH inshore trawl

survey data. A combination of variance inflation factors (VIF)

testing and correlation matrices were used to maximize our

dependent variables. Each variable was split into 14 Fisher’s

natural breaks classes (k) following the methods of Behan et al.

(2021). Suitability indices (SI) for each k for each habitat variable

were calculated as such:

SI k,if g   = (Catch k,if g −  Catch i,minf g)=(Catch i,maxf g −  Catch i,minf g)
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where Catch_min and Catch_max are minimum and maximum

catch from the survey for each k of each variable. As there is only one

survey used, unit effort is consistent and thus abundance from the

survey can be used as catch per unit effort (CPUE). This establishes SI’s

ranging from 0 (unsuitable) to 1 (most suitable) for each habitat

variable (Tanaka and Chen, 2016; Behan et al., 2021). Generalized

additive models (GAMs) were used to smooth the relationship between

each k for each variable such that SI’s become a smooth continuous

range from 0-1 for each k of habitat variable. Habitat variables from

FVCOM and the IPCC were interpolated into he BEmodel to create SI

maps of each habitat variable at the same fine scale FVCOM grid.

2.4.2 Habitat suitability index
Resulting SI’s were then averaged using an arithmetic mean

with equal weights to estimate an overall Habitat Suitability Index

(HSI) of the same scale of 0 to 1 (Hodgdon et al., 2021; Tanaka et al.,

2020). Spatially explicit HSI maps were created using the same fine-

scale FVCOM grid (Xue et al., 2017; Behan et al., 2021). Bottom

temperature and bottom salinity from FVCOM were used to

interpolate HSI maps for the inshore Gulf of Maine for historical

(1978–2005) and current (2004–2017) time periods. Forecasted

bottom temperature and bottom salinity from the IPCC were

used to interpolate HSI maps for forecasted (2028-2055; 2072-

2099) time periods. HSI was then spatially divided into the Maine

lobster management zones and averaged using a geometric mean to

estimate HSI per zone, per time period, for fall and spring seasons.
2.5 The Maine lobster fishery

The Maine lobster fishery is an input-controlled, trap-exclusive,

and limited entry and crew fishery. Each license holder is able to fish up

to 800 traps, except for Zone E, which has a maximum limit of 600

traps. There is a maximum crew size of 3 people (including captain).

Entry into the fishery consists of one new license for every ten exit of

licenses, with new licenses including those obtained through

apprentenceship (student license). The majority of fishers land their

catch inshore during the summer and fall seasons when lobsters are

plentiful and close to shore. However, the fishery can operate year

round with some fishers choosing to fish offshore during winter and

spring in deeper waters further from shore for a lower catch, but higher

seasonal price (Atlantic States Marine Fisheries Commission (ASMFC)

American Lobster Stock Assessment Review Panel, 2020). Only about

20% of the fishery owns a federal fishing license which allows one to

fish offshore beyond 3NM from shore (Atlantic States Marine Fisheries

Commission (ASMFC) American Lobster Stock Assessment Review

Panel, 2020). Therefore wemake the assumption that theMaine lobster

fishery is primarily an inshore and summer/fall fishery despite being an

year round fishery with access to offshore fishing grounds.

2.5.1 Fishery landings
We used publicly available annual landings by coastal county

(1964-2019) and lobster management zone (2004-2019) from the

Maine DMR. Landings data is collected by the Maine DMR

annually using a 100% dealer reporting and a 10% harvester

reporting framework at a scale of county, zone, month, and year
Frontiers in Marine Science 05
(Maine Department of Marine Resources (MEDMR), 2020). Before

the year 2004, the data is only available at the scale of county and

year. As the vast majority of landings are caught in the summer and

fall, we assume that the combined annual landings can encompass

both spring and fall seasonal fishery biological processes (Maine

Department of Marine Resources (MEDMR), 2020; Atlantic States

Marine Fisheries Commission (ASMFC) American Lobster Stock

Assessment Review Panel, 2020). Although vessel size, gear

restrictions, fishing effort, and fishing capacity have shifted over

time (ASMFC, 2020), the fundamental fishing method using traps

has stayed consistent during our study period and is likely to persist

into the future (Acheson, 1988; McClenachan et al., 2020). As such,

we assume that fishery landings are comparable across time scales

for both hindcasting and forecasting. Fishing effort follows seasonal

and long-term migrations of lobster distributions (Chen et al., 2005;

Boenish and Chen, 2017; Rheuban et al., 2017). Therefore, we

assume that the fishery behaves as a pursuit fishery, where

distribution of landings reflect the distribution of lobsters in the

GoM. There is a minimum (82.5 milimeter carpace length) and

maximum (127 milimeter carapace length) legal size, but the

majority of lobsters landed are at the minimum legal size. Thus,

we assume the Maine lobster fishery behaves as a recruitment

fishery, where there is a consistent homogeneity of size of catch

(Steneck andWilson, 2001; Chen et al., 2005; Atlantic States Marine

Fisheries Commission (ASMFC) American Lobster Stock

Assessment Review Panel, 2020). The pursuit and recruitment

nature of the fishery allows us to make the important assumption

that fishery landings reflect a consistent level of local fishable

biomass. We determined that a post “lobster boom” period better

reflects the current fishery dynamics of warmer temperatures,

established management practices, high recruitment, low predator

abundance, and higher fishing capacity (Atlantic States Marine

Fisheries Commission (ASMFC) American Lobster Stock

Assessment Review Panel, 2020).
2.5.2 County and zone spatial delineation
There are 8 coastal counties which contribute to the state

commercial fishery. Currently, the fishery is co-managed in 7 (A-G)

lobster management zones in the inshore Gulf of Maine (Figure 2),

which are based on de facto existing social boundaries within the

fishery (Acheson et al., 2000). Zone boundaries encompass both

inshore and offshore regions, but do not exceed the federal Exclusie

Economic ZoneManagement Area 1 (Atlantic States Marine Fisheries

Commission (ASMFC) American Lobster Stock Assessment Review

Panel, 2020). Coastal Maine is often divided into three regions based

on social and physical geography, including Southcoast (southwest

part of the coast, Zones F and G, counties Cumberland and York);

Midcoast (middle part of the coast up to Penobscot Bay, Zones D and

E, counties parts of Knox and Waldo, Lincoln, and Sagadahoc); and

Downeast (northeast part of coast past Penobscot Bay, Zones A, B, and

C, counties, Washington, Hancock, parts of Knox and Waldo). Zone

and county groupings into regions are based on that of the Maine

Lobstermen’s Community Alliance (MLCA, https://bit.ly/3HS8nr0).

Inshore boundaries for counties are not clearly defined, and zone

and county lines do not match evenly (there are 8 counties and 7
frontiersin.org
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lobster management zones). Furthermore, boundaries often overlap at

ports of biological points of interest. Landings and active license data

from the Maine DMR were used to develop analytical weights to

convert county landings to zone landings (Table 1). Averaged

proportional to averaged total yearly landings from 2004 to 2020

were used to determine what percent of county landings made up

respective (nearby) zone landings. Geographical proximity and
Frontiers in Marine Science 06
boundaries of counties and zones determined the direction and scale

of analytical weights. Special attention and weights were given to key

areas of interest, specifically Stonington Port (50% of zone C landings

and licenses, majority producer of total state landings) and Vinalhaven

(25% of zone C landings and licenses, second most producer of total

state landings). Active licenses of counties and zones from the same

data set were used to help correct analytical weights such that realized

zone landings and licenses consist of approximately equal proportions

of bordering county landings and licenses.

Interpolated zone-from-county landings were compared with

realized zone landings using a paired t-test. Analytical weights were

then used to interpolate past zone landings from past county

landings (1978-2003). This is important for conducting

hindcasting analysis of our models as historical county landings

data goes back to 1964, but zone landings data only extends to 2004.
2.6 Landings-HSI model building
and selection

We built a GAM to interpolate lobster fishery landings by zone

from average HSI from the BE models. GAMs are favorable for this
TABLE 1 Analytical weights for interpolating zone landings from
proportions of county landings.

Zone (Landings) County (Landings) Region

A Washington +.1(Hancock) Downeast

B .4(Hancock) Downeast

C .5(Hancock) + Waldo + 0.25(Knox) Downeast

D .75(Knox) +.25(Lincoln) Midcoast

E .75(Lincoln) + Sagadahoc Midcoast

F Cumberland Southcoast

G York Southcoast
FIGURE 2

County and Zone (A-G) management boundaries of the Maine lobster fishery. Includes distance from shore lines (3 NM, 12 NM, and 24 NM), and
federal management areas (near-shore area 1, near shore area 3).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1171269
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim et al. 10.3389/fmars.2023.1171269
analysis as GAMs have predictive capacities of Generalized Linear

Models to forecast and hindcast, but the functions are additive, and

variables are smooth (Guisan et al., 2002). HSIs for each zone were

averaged using an arithmetic mean for each season to obtain a single

HSI value per zone per season for the years 2004-2018. A GAM was

built on probable cause of predicting landings (observed) using

spatially explicit, interpolated HSI, based on our best understanding

of the seasonal and environmental nature of both lobster distributions

and fishery behavior. A description of variables used can be found on

Table 2. Spring and Fall HSI were always included as default variables.

A GAM with all possible variables can be built as:

ln   (Annual   landingst)  

= s(Spring  HSIt) + s(Fall  HSIt) + Region + Zone + Regime   +   ϵ

where ln  is a natural log, sis a spline smoother, and Edenotes an

error term. VIF tests were conducted to each predicting variable to

minimize multicollinearity. The GAM is able to predict landings as

catchability for climate-driven habitat is implicit within HSI

estimates. Making the model spatially explicit to zones allows us

to connect HSI to fishery landings at a fine, management-specific

scale. Due to our lack of seasonal landings data, we build the GAM

to predict annual landings. Furthermore, the majority of landings

are caught in the Summer (July-September) and Fall (October-

December), while Winter (January-March) and Spring (April-June)

seasons have been shown to be important for lobster reproduction

and recruitment (Atlantic States Marine Fisheries Commission

(ASMFC) American Lobster Stock Assessment Review Panel,

2020). In this, we assumed that the combined seasonal variability

of lobster availability and landings is reflected in yearly landings.

Model results were evaluated using AIC, BIC, and Log

Likelihood. Deviance explained and p-values were also considered

for detailed comparisons. Models with the lowest AIC, BIC, and

highest log-likelihood were chosen for further evaluation.

The GAM was used to predict landings using hindcasted

historical HSI, and interpolated landings compared with historical

landings data. Normalized root mean square error (NRMSE) and

scatter index (SI) with observed historical data was used to evaluate

model hindcasting performance. The GAM was then used to

interpolate future landings based on forecasted HSI from the

IPCC RCP 4.5 and 8.5 carbon emission climate scenarios. All

model building and analysis was conducted in the statistical

software R. A concept diagram of the methods for this study

shows how data were analyzed to achieve the final results (Figure 3).
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3 Results

3.1 Suitability indices

There are seasonal differences in suitability for bottom

temperature and bottom salinity between the spring and fall

seasons (Figure 4). Spring optimum temperatures peak at 6.5

degrees Celsius (C), and are least favorable at 4.4 C. Spring

temperatures range from 2.5 to 8.8 C. Fall optimum temperatures

peak at 13 C, and are least favorable at 7.2 C. Fall temperatures

range from 5.9 to 13.8 C. Spring suitable salinity ranges from 30.6 to

33.8 practical salinity units (psu), with a peak at 32.2 psu. Fall

suitable salinity ranges from 31.5 to 34.6 psu, peaking at 32.4 psu.

Spring and fall suitable depths share similar ranges from 14.6 to 201

meters (m). Suitability for optimum spring depth peaks at 47.5 m,

while optimum fall depth plateaus from 34.7 to 45.7 m, and peaks at

65.8 m. The most suitable location for lobster in the inshore GoM in

the spring is near a latitude of 44.15 and longitude of -68.48 degrees.

The most suitable location in the fall is near a latitude of 43.92 and

longitude of -69.45 degrees.
3.2 Habitat suitability indices

There appears to be seasonal differences in changes to HSI for

the spring and fall over time. Currently and historically, the most

suitable habitat for both spring and fall in all abundance regimes is

along the coastal margin. From the low abundance regime to

moderate abundance regime, HSI does not change much and

even falls broadly in the spring and increases slightly in the

Downeast region in the fall. However, from moderate to high

abundance regimes HSI increases substantially throughout the

entire inshore GoM, especially along the coast in Midocast and

Downeast regions in the spring (Figure 5).

There appears to be considerable seasonal differences in

changes to HSI for near future (2028-2055) and far future (2072-

2099) periods based on forecasted environmental parameters. Fall

HSI for both RCP 4.5 and 8.5 scenarios is expected to increase for

the entire study area. HSI is expected to increase more in the far

future (2072-2099), and the most for RCP 8.5. Spring HSI however

shows polarizing changes, with slight increases in HSI in the inshore

Southcoast regions, but greater decreases in HSI for Midcoast,

Downeast, and offshore Southcoast regions (Figures 6, 7).
TABLE 2 Description of variables used in building the Landings-HSI GAM.

Variable Description

Sp Averaged Spring HSI per zone, per year

Fl Averaged Fall HSI per zone, per year

Zone Lobster management zone - A, B, C, D, E, F, or G

EW Grouped zones to regions:
East (“Downeast”) – zones A, B, and C; Mid (“Midcoast) – zones D and E; West (“Southcoast”) – zones F and G.

Regime Moderate abundance regime (years 2004-2008); High abundance regimes (years 2009-2018)
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FIGURE 4

Smoothed suitability indices for spring (blue) and fall (red) bioclimate envelope models. SI’s range from 0 (least suitable) to 1 (most suitable). Habitat
variables for SI’s are shown as follows: (A) Bottom temperature (Celsius); (B) Bottom salinity (psu); (C) Depth (fathoms); (D) Latitude (degrees); and
(E) Longitude (degrees).
FIGURE 3

Concept diagram of methods of study.
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3.3 Interpolated zone-county landings

Interpolated-from-county zone landings using analytical

weights were compared to current county and zone landings from

2004 to 2020. T-test analysis shows no statistical difference between

the interpolated and realized landings (p = 0.135) (Figure 8).
Frontiers in Marine Science 09
3.4 Model building and selections

Models were systematically built using available combinations of

variables, and the best model was selected for further manipulation

based on highest Log Likelihood, and lowest AIC and BIC values

(Table 3). The variables Region and Zone were conflicting based on
FIGURE 6

Change in interpolated habitat suitability index (HSI) from the baseline to the time periods 2028-2055 (left column) and 2072-2099 (right column)
for the seasons spring (top row) and fall (bottom row) for RCO scenario 4.5. HSI values range from 0 (lowest) to 1 (highest). Lines depict Maine
lobster management zones from A (northeast) to G (southwest).
FIGURE 5

Change in interpolated habitat suitability index (HSI) from a low to moderate abundance regime (left column) and from a moderate to high
abundance regime (right column) for the seasons spring (top row) and fall (bottom row). HSI values range from 0 (lowest) to 1 (highest). Lines depict
Maine lobster management zones from A (northeast) to G (southwest).
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VIF testing and thus not included together for model building. The

best model from the initial round of selection was:

ln (Pounds) e   s(Spring  HSI) + s(Fall  HSI) + Zone + Regime

The variableRegionwas used to spatially groupHSI values to associated

regional zones without overfitting themodel (Table 4). After the second

round of model selection, the final model used for analysis is:

ln (Pounds)   e   s(Spring  HSI) + s(Fall  HSI,   by  Region) + Zone + Regime

The selected model performs well with majority statistically

significant parametric coefficients and a deviance explained of 95%.
3.5 Landings-HSI GAM hindcasting

The model was used to predict landings using hindcasted

environmental parameter from FVCOM to low abundance (1978-

1995), moderate abundance (1996-2008), and high abundance
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(2009-2018) periods. Normalized root mean square error

(NRMSE) and scatter index (SI) values were used to assess model

hindcasting performance in order to correct for the high magnitude

of error in RMSE values. The model performs terribly when

hindcasted to low abundance periods. This is expected as this

period exists outside of the periods for which the model is built

(2004-2018). When hindcasted to a moderate abundance regime,

the model performs considerably better, with a NRMSE of 20.5%

and an SI of 44.1%. The model performs best for predicting to a

high abundance regime with a NRMSE of 10.3% and SI of 18.3%.

There appears to be clustering of landings based on zone, which

suggests the model is able to capture spatial differences in landings

along the coast (Figure 9).

When hindcasted to a “post-lobster boom” period (moderate

and high abundance regimes, 1996-2018), the model performs well

with an overall NRMSE of 11.4% and an SI of 28.3%. The model is

able to capture regional differences, with the greatest variability in
FIGURE 8

Total landings by zone over time for realized (left) and interpolated from county weights (middle) landings from 2004 to 2020. (right) One-to-one
plot of realized and interpolated zone landings.
FIGURE 7

Change in interpolated habitat suitability index (HSI) from the baseline to the time periods 2028-2055 (left column) and 2072-2099 (right column)
for the seasons spring (top row) and fall (bottom row) for RCO scenario 8.5. HSI values range from 0 (lowest) to 1 (highest). Lines depict Maine
lobster management zones from A (northeast) to G (southwest).
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Downeast regions at a NRMSE of 15.8% and an SI of 31.2%

(Figure 10). The model does not appear to overpredict or

underestimate landings for all zones. Hindcasting analysis gives

confidence in the model’s ability to predict for landings given

environmental parameters if in the same moderate or high

abundance regimes.
3.6 Landings-HSI GAM forecasting

The model was used to predict landings using forecasted IPCC

environmental parameters for the near future and far future

periods, for both RCP 4.5 and 8.5 scenarios, and for assuming if

lobster abundances stay in a high regime or fall back down to a

moderate regime (Figure 11). It appears that from the previous

period (1996-2008) to current period (2009-2018), landings for all

zones increased, most notably in Zones A, B, C, D, and F. From the

current period (2009-2018) to the near future (2028-2055), landings

for Zones A, B, C, and D are expected to decrease, F and G, stay

relatively similar, and E to increase. For the far future (2072-2099),

landings for Zone D are expected to continue to decrease, but

landings for Zones A, B, and C are expected to rise again to similar

levels of current landings. Landings for Zones E, F, and G are

expected to decrease slightly in the far future. There appears to be

little difference in changes in landings between RCP scenarios until

the far future for Zones A, B, and C, where RCP scenario 8.5 are

expected to show greater increases in landings. All zone landings

will decrease if lobster abundances fall back to a moderate

abundance regime (dashed line). This shift in decreases in

landings is proportionally consistent among all zones, as there is
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no difference between high or moderate abundance regimes to

changes in the percent of total landings. When considering

proportional (percent) landings for the entire coast, landings for

Zone D constantly decrease over time where as landings for Zone C

will increase. Proportional landings for all other zones stay relatively

consistent, which suggests that despite decreases or increases in

total landings, the spatial distribution of landings is less affected.
4 Discussion

The model’s ability to differentiate between a moderate and

high abundance regime allows for an analysis of changes in the

distribution of future lobster landings given different climate and

abundance regime scenarios. Lobster abundances have historically

increased significantly from a low abundance regime to a moderate

abundance regime, dubbed the “lobster boom.” Unfortunately, the

model cannot hindcast reliably to a low abundance regime before

1996. However, seasonal HSI does not change drastically between

low and moderate abundance regimes. This suggests that the lobster

boom and initial increase in lobster abundances may be due to other

factors beyond just climate-driven habitat, such as a conservation

focused management and a decrease in predators (Zhang and Chen,

2007; Zhang et al., 2012; Mazur et al., 2019). The model can,

however, hindcast much more reliably to a moderate (1996-2008)

and high (2009-2018) abundance regime. Furthermore, seasonal

HSI increased drastically more from a moderate to high abundance

regime. This suggests that the most recent shift in lobster

abundances is more influenced by climate-driven habitat. This is

further supported by the collapse of the Atlantic cod fishery in 1993
TABLE 4 AIC, BIC, Log Likelihood, and degrees freedom of secondary GAM models to predict natural log of annual zone landings in pounds.

Model: ln(Pounds) ~ AIC BIC LogLik df

s(Sp) + s(Fl) + Zone + Regime -39.18 -6.509 31.90 12.31

s(Sp, by = EMW) + s(Fl, by = EMW) + Zone + Regime -69.47 -27.98 50.37 15.63

s(Sp, by = EMW) + s(Fl) + Zone + Regime -43.59 -8.110 35.16 13.37

s(Sp) + s(Fl, by = EMW) + Zone + Regime -72.16 -35.36 49.94 13.86
Variable descriptions are the same as for Table 2. (by =) function denotes that (s) smoothing spline varies by group. Best performing model and final model used is highlighted in green.
TABLE 3 AIC, BIC, Log Likelihood, and degrees freedom of initial GAM models were systematically built using all independent variables to predict the
natural log of annual zone landings in pounds.

Model: ln(Pounds) ~ AIC BIC LokLik df

s(Sp) + s(Fl) 136.5 162.5 -58.49 9.774

s(Sp) + s(Fl) + Zone -10.86 19.22 16.76 11.33

s(Sp) + s(Fl) + EMW 140.0 164.5 -60.77 11.15

s(Sp) + s(Fl) + Regime 133.0 162.6 -55.32 11.15

s(Sp) + s(Fl) + Zone + Regime -39.18 -6.509 31.90 12.31

s(Sp) + s(Fl) + EMW + Regime 133.9 166.9 -54.50 12.45
s denotes a smoothing function of the variable. (Sp) is averaged Spring HSI. (Fl) is averaged Fall HSI. Zone is a categorical variable of the 7 lobster management zones (A-G). EMW is a categorical
variable of the three coastal regions (“Southcoast”, “Midcoast”, and “Downeast”). Regime is a categorical variable of the two different abundance regimes present in the model (“Moderate” years
2004-2008 and “High” years 2009-2018). The best performing model is highlighted in yellow.
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which vastly reduced predation (Pershing et al., 2015; Meng et al.,

2016) and the fact that recruitment and conservation focused

management have been long established in the fishery by this

point in time (Atlantic States Marine Fisheries Commission

(ASMFC) American Lobster Stock Assessment Review Panel, 2020).

Despite expected decreases in total landings, lobster landings in

all zones are still likely to be higher than historical levels (Goode

et al., 2019). It is interesting to note the differences in patterns of

changes of proportional landings between regions. Downeast

(Zones A, B, and C) landings are expected to decrease, then

increase again to current levels of landings. Midcoast (Zones D

and E) appear to split in different directions of change, with Zone D

landings decreasing consistently while Zone E landings increases,

then decreases. Southcoast (Zones F and G) landings seem less

affected by changes in climate-driven habitat. It appears that the

initial decrease in landings for the Downeast region in the near

future may be due to the decreases in spring HSI for the same area.

The following increase in landings for the far future in Downeast

zones may be then due to the much higher increase in fall HSI for

the far future. This is further supported by the greater increase in

landings for RCP 8.5 scenarios which also see greater increases in
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HSI for far future Downeast zones. This suggests that seasonal

climate may play a greater role in total lobster landings than

previously thought.

These findings are somewhat inconsistent with previous studies

that suggest a northeast shift of fishing effort and lobster habitat

distributions (Tanaka and Chen, 2016; Boenish and Chen, 2017;

Rheuban et al., 2017). However, these studies do not differentiate

between seasons, zones, or inshore and offshore regions. Similar

works that examine the seasonal habitat suitability of American

lobster for a much larger area including the inshore GoM suggest an

inverse seasonal relationship from this study where spring habitat

suitability increases more and fall habitat suitability does not

(Mazur et al., 2020; Tanaka et al., 2020). However, recent work

with bioclimate models in the GoM shows that including non-

stationarity differences between localized regions, especially

between eastern and western GoM, improved HSI distribution

estimates (Behan et al., 2021; Behan et al., 2022). The fine spatial

scale of the inshore and zone focus of our study may allow our

model to capture details about inshore spatial processes absent from

models with larger study areas and on coarse spatial scales.

Additionally, the inclusion of seasonality may highlight important
FIGURE 10

Observed vs hindcasted plot of landings (pounds) of the Landings-HSI GAM with hindcasted environmental data to post lobster boom period
(Moderate and High abundance regimes 1996-2018) (left). Different colors show groupings of different lobster management zones. Normalized root
mean square error (NRMSE) and Scattter Index (SI) values of different coastal regions matched by corresponding zones (right).
FIGURE 9

Observed vs hindcasted plots of landings (pounds) of the Landings-HSI GAM with hindcasted environmental data to the following different lobster
abundance regimes: (left) Low abundance regime, (middle) Moderate abundance regimes, and (right) High abundance regime. NRMSE shows
normalized root mean square error value. SI shows scatter index value. Different colors show groupings of different lobster management zones.
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trends that are absent on a yearly scale. The addition of offshore

environment data cannot be directly compared to historical near-

shore fishery landings data and is beyond the scope of this study.

These findings are more consistent with recent work that suggests a

decrease in favorable lobster conditions in inshore Downeast

regions (Zones A, B, and C), but an expansion of favorable

conditions more offshore in the same regions (Goode et al., 2019;

Hodgdon et al., 2021).The results of our study highlight the

importance of considering a fine spatial and temporal scale in

studying the impacts of climate changes on fisheries.

There are multiple factors related to climate that may influence

the change in future landings for the inshore GoM area. Lobster

fishery landings are known to be related to juvenile lobster

abundance and lobster larvae settlement in the past (Steneck and

Wilson, 2001; Goode et al., 2019);. Bottom temperature and salinity

have a significant influence on lobster reproduction, larval

settlement, and growth (Incze and Wahle, 1991; Steneck and

Wilson, 2001; Oppenheim et al., 2019). Rising temperatures have

been shown to increase growth and may increase the dispersal of

lobster larvae, but reduce survival (Waller et al., 2016; Quinn et al.,

2022);. Particle modeling of lobster larvae shows that the

distribution of larvae is highly dependent on the Gulf of Maine

Coastal Current (GMCC), and recruitment seeds directly to regions

southwest along the coast (Xue et al., 2007). Assuming the

relationship between lobster landings and larvae settlement stays

true, lobster fishery landings may shift toward deeper and offshore

waters as suitable habitat for larvae shift in a similar direction

(Goode et al., 2019; Oppenheim et al., 2019). This phenomenon is
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already observed in southern New England, where lobster larvae

settlement, distribution, and commercial landings have all shifted

offshore as inshore habitats become too warm (Casey et al., 2022).

Another cause may be that phenology of local lobster migrations are

shifting earlier and lasting longer (Mills et al., 2013; Le Bris et al.,

2018; Staudinger et al., 2019). Because lobster recruitment is highly

seasonal, changes in climate in either spring or fall may affect

reproductive success of lobsters (Oppenheim et al., 2019). There

have been some notable changes in the hydrographic,

biogeochemical, and acidity of the GoM since 1998 including a

decline in phytoplankton primary production (Balch et al., 2022).

This reinforces the difference in landings between current and

previous abundance regimes. Seasonal variability and changes to

currents are inherent within forecasted environmental parameters,

which allows our model to capture some effects of climate change in

a complex multidimensional environmental scale. However, further

change in oceanographic conditions is likely to affect

fishery landings.

These findings have clear implications for the long-term

management of the Maine lobster fishery. As a highly localized

fishery, understanding the distribution and projection of landings

along the coast can inform policies that strengthen existing

infrastructure to optimize fishery productivity. Additionally, these

findings can help inform policies to build economic resilience in

areas with projected decreased landings, which can take forms in

alternative fisheries or sources of income, mobility, exit strategies,

or greater fishery capacity. As the Maine lobster fishery is highly

heterogenous, understanding the differences in behavior and
FIGURE 11

Left: Total interpolated landings from the Landings-HSI model for historical (1978-2005), baseline (2004-2017), and forecasted (2028-2055; 2072-
2099) time periods and RCP 4.5 and 8.5 scenarios. Right: Percent of total interpolated landings from the Landings-HSI model for historical (1978-
2005), baseline (2004-2017), and forecasted (2028-2055; 2072-2099) time periods and RCP 4.5 and 8.5 scenarios.
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response of the fishery to climate change can provide a much

greater insight to the distributional and relative impacts of climate

change to the fishery and dependent coastal communities (Le Bris

et al., 2018; Greenan et al., 2019; McClenachan et al., 2020).

It is important to recognize several limitations in our model.

Firstly, the survey used may not be able to capture the full habitat

range of American lobster as lobsters are known to favor complex,

rocky habitat which is often not properly sampled by trawling, and

thus may have bias toward soft bottom habitat (Lawton and Lavalli,

1995). However, we did not have access to unbiased survey data or

habitat and abundance data over rocky substrate. Additionally, the

substrate data available was on a far coarser scale and would not be

informative to our fine-scale spatial analysis. As such, we do not

include substrate in our model and analysis, but is noted that

substrate can play an important role in lobster habitat. Future

studies should utilize a finer scale substrate dataset, or incorporate

varying suvey data if available. Secondly, despite our fine spatial

scale, our temporal scale is lacking. Although we assume yearly

landings reflect seasonal biological processes, modeling seasonal

landings dynamics may improve our understanding of the effects of

habitat on fishery landings. Additionally, our assumptions and

findings are limited to near-shore areas only and may not reflect

far offshore processes such as in Tanaka et al. (2020) and Mazur

et al. (2020). While the importance of non-staionarity effects and

the near-shore nature of the has been etablshed, this analysis cannot

extend to areas beyond the spatial boundary of this study. As such,

we highlight a need for similar, updated fine scale analysis of

offshore ecological change and offshore fishery landings. Thirdly,

we implicitly assume that the relationship between habitat

suitability and fishery landings, and thus fishery behavior, is

stationary. However, realized fishery behavior (fishing effort,

fishing mortality, bait input) are subject to socio-economic,

political, and climate changes and can have far reaching

community impacts (Martin, 2006). Thus, we highlight the need

for a more in-depth examination of fishery behavior data to fully

understand the socio-economic implications for climate change

effects in the GoM.

This study serves as a case study example for connecting fishery

processes to environmental parameters through the use of a

bioclimate envelope model and fishery landings. This is important

for understanding the direct effects of climate change on fisheries.

We emphasize the fine-scale spatial nature of our study and the

resulting details which are often lost in many ocean habitat or

fishery models. A similar concept can be applied to other fisheries

and other habitats, with consideration for important key variables

in other systems. While most other fishery models use exclusively

fishery independent data, we use this study to highlight a

combination of fishery data and fishery independent survey data

may provide important insights to connecting climate science to

fishery processes. Expanding on models such as this may allow for

the linking of ecological models with fishery behavior data (fishing

effort, input, and strategies), which may serve as a basis for a bio-
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economic model to examine distributional effects of climate change

at both an ecological and human dimension. This can further help

fishery dependent coastal communities in favor of long-term

sustainability through adaptation and resilience strategies to

climate change in the fishery.
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