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Ultrasound (US) is widely used in the clinical diagnosis and treatment of
musculoskeletal diseases. However, the low efficiency and non-uniformity of
artificial recognition hinder the application and popularization of US for this
purpose. Herein, we developed an automatic muscle boundary segmentation
tool for US image recognition and tested its accuracy and clinical applicability. Our
dataset was constructed from a total of 465 US images of the flexor digitorum
superficialis (FDS) from 19 participants (10 men and 9 women, age 27.4 ±
6.3 years). We used the U-net model for US image segmentation. The U-net
output often includes several disconnected regions. Anatomically, the target
muscle usually only has one connected region. Based on this principle, we
designed an algorithm written in C++ to eliminate redundantly connected
regions of outputs. The muscle boundary images generated by the tool were
compared with those obtained by professionals and junior physicians to analyze
their accuracy and clinical applicability. The dataset was divided into five groups
for experimentation, and the average Dice coefficient, recall, and accuracy, as well
as the intersection over union (IoU) of the prediction set in each group were all
about 90%. Furthermore, we propose a new standard to judge the segmentation
results. Under this standard, 99% of the total 150 predicted images by U-net are
excellent, which is very close to the segmentation result obtained by professional
doctors. In this study, we developed an automatic muscle segmentation tool for
US-guided muscle injections. The accuracy of the recognition of the muscle
boundary was similar to that of manual labeling by a specialist sonographer,
providing a reliable auxiliary tool for clinicians to shorten the US learning cycle,
reduce the clinical workload, and improve injection safety.
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1 Introduction

According to theWorld Health Organization, about 1.71 billion people worldwide suffer
from musculoskeletal disorders (Burton and Kendall, 2014). Musculoskeletal disorders
severely limit the mobility and activity of patients, resulting in a reduced quality of life
and ability to participate in social activities. Due to population growth and aging, the demand
for rehabilitation from musculoskeletal diseases is expected to increase in the coming
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decades. As such, more instruments are being applied in clinical
practice to assist in evaluation and treatment. Ultrasound (US),
which uses the principle of reflection and the transmission
phenomenon of ultrasonic waves propagated through the human
body to obtain images with different echoes (Whittaker and Stokes,
2011), could be applied for various diagnosis and treatment
purposes.

US is widely used in various musculoskeletal diseases, such as
dystonia, rotator cuff injury, and periarthritis of the shoulder. Using
US, clinicians can observe the structure and working relationship of
muscles, tendons, ligaments, and other tissues; can identify and
mark specific parts of lesions; and assist drug injections to treat some
diseases, such as dystonia. Injecting the botulinum toxin into
convulsive muscles under the guidance of US has proven to be
an effective treatment to reduce muscle tone (Dressler et al., 2021).
However, in some patients, botulinum toxin injections in clinical
studies have shown low efficacy. The main reasons for this observed
lack of efficacy are inaccurate injection location or inappropriate
dose of the botulinum toxin. The botulinum toxin must be precisely
injected into the target muscle, which is essential to reduce adverse
reactions in adjacent muscles and to achieve the maximum
therapeutic effect at the lowest possible dose (Jinnah et al., 2016;
Walter and Dressler, 2014). Identification of the muscle boundary
plays a very important role in accurate injections. At present, the
identification and marking of muscle boundaries by US is mainly
achieved manually, which requires a lot of manpower, time, and
experience. Muscle boundary recognition through US scans requires
the operator to have rich professional knowledge and clinical
experience. Therefore, such scans are mainly carried out by
professional US doctors at present, which hinders the clinical
application and popularization of US technology. In addition,
there is no uniform standard for operators to mark muscle
boundaries, and the subjective judgment of the operator can have
an impact on the US images obtained. The use of different US
equipment may also impact the images obtained from the manual
marking of muscle boundaries (Cronin et al., 2020; Wijntjes and van
Alfen, 2021).

In recent years, artificial intelligence has evolved and deep
learning has become the leading machine learning tool in various
research fields, especially in general imaging analysis (including
natural and medical image analyses) and computer vision (Chan
et al., 2020). The use of deep learning in US image analysis is also a
growing trend (Liu et al., 2019; Marzola et al., 2021; Shen et al.,
2021). Medical image segmentation is a technology that can label the
boundary and shape of human tissues and organs. Traditional image
segmentation methods are usually based on region segmentation
and boundary segmentation. In 2015, full convolutional networks
(FCNs) performed semantic segmentation in an end-to-end form
(Shelhamer et al., 2017). FCNs can input images of arbitrary sizes,
avoiding the problems of repeated storage and computational
convolution caused by the use of pixel blocks. However, it is
cumbersome to train and does not make full use of global
contextual information, and its segmentation accuracy is
insufficient. U-net is an improved network for FCNs. U-net is
flexible and simple, and can obtain good segmentation from few
sample datasets. It can also make better use of the global contextual
information and the effective integration of low- and high-level
information (Ronneberger et al., 2015). In addition, there are many

other excellent models that can be used for image segmentation,
such as DeepLabv3+, PSPNet, and Mask R-CNN (Chen et al., 2018;
He et al., 2017; Zhao et al., 2016). DeepLabv3+ and CNN have a
strong boundary detection capability, which can extract more
detailed features and obtain better segmentation results.
However, they have more parameters and are more
computationally intensive, thus requiring higher-end equipment,
larger sample data size, and longer training time. At present, U-net
has become a mainstream method of medical image segmentation.
Based on the U-net model, we have developed a tool for automatic
muscle segmentation. This tool automatically identifies and
objectively analyzes muscle boundaries in US images to inform
and monitor the diagnosis and treatment of musculoskeletal
disorders (Figure 1). The purpose of this study was to evaluate
the feasibility of the application of this tool in clinical diagnosis,
treatment, and teaching. We aim to ultimately help clinicians obtain
muscle boundary images using dynamic US, shorten the learning
period for using US, and promote the popularization and
application of US-guided technologies.

2 Materials and methods

2.1 Participants

After receiving a detailed explanation of the purpose and potential
risks of the experiment, all participants provided their written informed
consent. The study protocols have been approved by theMedical Ethics
Committee of Qilu Hospital, Shandong University (approval number:
KLY-2020 (KS)-477). The study was carried out in accordance with
relevant guidelines and regulations. The inclusion criteria were as
follows: 1) participants were aged 20–50 years; 2) participants were
healthy and did not have any cardiovascular or musculoskeletal
diseases. The exclusion criteria were as follows: 1) any history of
forearm surgery, forearm injury, or any pain in the forearm; 2)
history of peripheral nerve injury; 3) history of thyroid or
autoimmune diseases; 4) inability to cooperate with the study
protocol. Nineteen participants enrolled in this study, who were
aged 20–40 (27.4 ± 6.3) years. The participants included 10 men
and 9 women, whose average body mass index (BMI) was 24.9 and
24.1 kg/m2, respectively.

2.2 Experimental procedure

Dynamic US images of the flexor digitorum superficialis (FDS)
were acquired by a physiatrist with 3 years of experience in
musculoskeletal US, using a 4–18MHz linear transducer (EPIQ 7,
Philips, Netherlands). All participants were positioned with the palm
facing upward and their wrist in a neutral position. The transducer
was first placed at the level of the proximal tendon of the FDS. During
the process of the transducer sliding to the wrist, the FDS muscle was
always kept identified in the transverse view and could be clearly
observed by US dynamic imaging. Every video was about 10 s, and
video clips within 200 frames-per-second were recorded.

Sequential images were picked at intervals of three or five frames
from the videos. The resolution of each ultrasonic image was 707 ×
346, and the size of each ultrasonic image was 50 kb–70 kb. The

Frontiers in Physiology frontiersin.org02

Xin et al. 10.3389/fphys.2023.1166061

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1166061


muscular boundaries of the FDS were manually labeled by another
physiatrist with musculoskeletal US expertise and a junior physician
of a rehabilitation department using ITK-SNAP software (Figures
3A, B).

2.3 U-net model

In our study, we used the U-net model proposed by Ronneberger
et al. (2015).

The model contains two parts, an encoder and a decoder
(Badrinarayanan et al., 2017; Noh et al., 2016). The encoder path

downsamples the input image by successive pooling and
convolution operations to extract semantic information, while the
decoder path progressively upsamples and combines high-level
features with low-level features provided by the encoder path.
The encoder consists of the repeated application of two 3 ×
3 convolutions, each followed by a rectified linear unit (ReLU)
and a 2 × 2 max pooling operation with stride 2 for downsampling.
The decoder consists of upsampling of the feature map, followed by
a 2 × 2 convolution (“up-convolution”) that halves the number of
feature channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3 × 3 convolutions,
each followed by a ReLU. The model is named “U-net” because the

FIGURE 1
Flowchart of forearmmuscle boundary detection from ultrasound datasets. (A)Doctors use the ultrasonic detector to scan the upper arm to get the
muscle ultrasonic image. (B) Computers calculate and segment the muscle region through suggested models. (C) Doctors perform muscle injections
according to the obtained muscle region.

FIGURE 2
Architecture of the U-net structure.
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decoder path is symmetric to the encoder path, which results in a
U-shaped architecture. Unlike FCNs, the skip connection approach
is used in U-net, which combines high-level features with low-level
features (Wu et al., 2021).

The details of the model are shown in Figure 2.

2.4 Loss function

The loss function is BCELoss (binary cross-entropy loss). It can
be used to solve the question of the multi-label classification, which
is represented as follows:

Loss � − 1
N

×∑ yn( × ln xn( ) + 1 − yn( ) × ln 1 − xn( ), (1)

where N represents the total number of pixels in an image, yn

represents the true value, and xn represents the predicted value.

2.5 Evaluation metrics

Many criteria are used to measure segmentation results (Cordts
et al., 2016). We selected four common standards in the field of
image segmentation to analyze the results of our experiment.

The Dice coefficient is expressed as follows:

Dice X, Y( ) � 2 X ∩ Y| |
X| | + Y| |. (2)

X is the area that is predicted to be the muscle, and Y is the
targeted muscle area.

The higher the Dice score is, the better the segmentation
performance is.

Precision is represented as follows:

Precision X, Y( ) � X ∩ Y| |
X| | . (3)

X is the area that is predicted to be the muscle, and Y is the
targeted muscle area. A higher value of Precision means that the
predicted muscle area has a greater probability of being the true
targeted muscle area.

Recall is represented as follows:

Recall X, Y( ) � X ∩ Y| |
Y| | . (4)

X is the area that is predicted to be the muscle, and Y is the
targeted muscle area.

Recall represents how much of the targeted muscle area is found
in the prediction.

IoU is expressed as follows:

IoU X, Y( ) � X ∩ Y| |
X ∪ Y| |. (5)

X is the area that is predicted to be the muscle, and Y is the true
muscle area.

The intersection over union (IoU) integrated the precision and
recall, so it is used as a general indicator in many image
segmentation tests. The higher the IoU score is, the better the
segmentation performance is.

2.6 Post-processing

During the experiment, we found that the U-net output often
included several disconnected regions (Figure 3C). However,
anatomically, the target muscle usually only has one connected
region. Based on this principle, we designed an algorithm to
eliminate redundantly connected regions of outputs (Figure 3D). This
algorithm is written in C++, and it is an application of the breadth-first
traversal method of graph analysis. More specifically, this algorithm
traverses all the points in the picture and counts out a total of several
connected components, only retaining the largest connected component.

3 Results

3.1 Division of the dataset

The total number of US images obtained was 465, and the total
number of marked images was also 465. In order to ensure stability,
we conducted five experiments in parallel. In each experiment, all
465 images were divided into three parts, 405 of which were used for
training, 30 of which were used for validation, and 30 of which were
used for testing.

3.2 Experimental parameters

In our experiments, we used the TITAN X GPU (24 Gb) to
accelerate the training procedure. The experiments were
implemented using Python with PyTorch. We used the Adam
optimizer (params, lr = 0.001, betas = (0.9, 0.999), eps = 1e-08, and
weight_decay = 0). The epoch was 160, and the batch size was 32, and
we chose the best model from the validation set as the final model.

3.3 Results

Table 1 and Table 2 detail the statistical characteristics of the
prediction set in five groups.

The results given in the tables show that the five groups of
experiments have little differences and high values, reflecting robust
experimental results.

In order to assess the accuracy of the results more intuitively, we
asked a junior physician of the rehabilitation department to perform
manual segmentation on the same prediction set. The segmentation
results are shown in Table 2.

Comparing the results obtained by the U-net model by manual
segmentation by the junior physician, we found that the average
intersection over union of the prediction set by U-net was 84.68%,
while the average IoU of the prediction set by the junior physician
was only 60.72%. In addition, the average precision, recall, and Dice
coefficient of the prediction set by U-net were about 90% each;
however, the average precision, recall, and Dice coefficient of the
prediction set by the junior physician were only about 70% each.
This demonstrates that the segmentation performance of the junior
physician was inferior to that of U-net, and the ability of computers
to identify targeted muscle areas was significantly higher than that of
junior doctors.

Frontiers in Physiology frontiersin.org04

Xin et al. 10.3389/fphys.2023.1166061

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1166061


3.4 Clinical application

As a concise explanation, the prediction of a model is considered
good if the IoU value is high. On the contrary, the prediction is
considered poor if the IoU value is low.

Initially, we compared the best two predictions given by the
U-net model with the best two predictions by the junior physician.

Figure 4 demonstrates that the best two predictions by U-net
and by the junior physician were both good as their predictions were
very close to the targeted muscle area.

FIGURE 3
Example of outputs before and after post-processing: (A) original ultrasonic image; (B) true labelmarked by an expert sonographer; (C) prediction by
U-net; (D) output after post-processing.

TABLE 1 Average precision, recall, Dice coefficient, and IoU of the predicted set by U-net in five groups. Each item in the table is in the following form: average
value (min value ~ max value).

Precision Recall Dice IoU

Group 1 89.8% (57.5%–98.9%) 91.7% (58.3%–99.6%) 90.2% (69.9%–97.9%) 82.9% (53.7%–95.9%)

Group 2 92.0% (73.1%–98.4%) 92.0% (72.4%–98.6%) 91.8% (78.6%–96.3%) 85.1% (64.8%–93.0%)

Group 3 91.4% (73.1%–98.4%) 92.6% (77.7%–98.4%) 91.9% (84.7%–95.8%) 85.2% (73.5%–91.9%)

Group 4 91.7% (77.2%–98.3%) 92.7% (77.9%–98.3%) 92.0% (84.8%–96.5%) 85.0% (73.7%–93.3%)

Group 5 92.6% (76.9%–96.9%) 91.4% (53.0%–98.4%) 91.7% (66.7%–97.7%) 85.2% (50.1%–95.5%)

Average 91.50% 92.08% 91.52% 84.68%

TABLE 2 Average precision, recall, Dice coefficient, and IoU of the predicted set by the junior physician in five groups. Each item in the table is in the following form:
average value (min value ~ max value).

Precision Recall Dice IoU

Group 1 76.1% (1.1%–98.1%) 70.8% (1.6%–98.6%) 71.5% (1.2%–96.1%) 60.1% (0.6%–92.1%)

Group 2 68.7% (1.0%–99.2%) 71.1% (0.4%–97.1%) 68.0% (1.0%–93.2%) 57.5% (0.5%–88.4%)

Group 3 66.4% (0.2%–99.1%) 75.2% (0.4%–97.3%) 71.1% (0.3%–95.1%) 60.6% (1.0%–91.7%)

Group 4 75.3% (2.5%–98.1%) 77.0% (3.0%–97.5%) 74.2% (2.8%–95.3%) 64.1% (1.4%–91.8%)

Group 5 74.5% (0.5%–98.6%) 74.1% (0.1%–98.1%) 72.0% (0.06%–96.4%) 62% (0.3%–93.4%)

Average 71.80% 73.56% 71.20% 60.72%
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We then focused on comparing the two worst predictions by the
junior physician and the U-net model (Figure 5).

We observed that when the junior physician encounteredUS images
with multiple muscle regions, they had more difficulty recognizing the
boundary between the target muscle and other muscles or non-muscle
tissues. If a muscle injection is performed in these conditions, the
consequences are likely to be out of control.

However, although the predictions of our U-net model do not fit
the edge contours perfectly, the predicted area must have a
significant overlap with the targeted muscle. When faced with
multiple muscle-like regions in US images, our U-net model can
accurately identify the target muscle.

During the muscle injection process, by combining the U-net
prediction with the real US image, doctors can accurately recognize
the target muscle. Therefore, the model is perfectly useful for doctors
in clinics.

In order to verify our results more rigorously, we assessed the
accuracy of the “middle point” prediction. Here, we define an
excellent prediction as one where the “middle point” of the
prediction belongs to the target muscle.

The “middle point” can be defined as follows:

thex coordinate of “middle point” � Xmin +Xmax( )
2

,

they coordinate of “middle point” � Ymin + Ymax( )
2

.

Xmin and Xmax are the x coordinates of the leftmost and
rightmost points predicted to belong to the target muscle.

Ymin and Ymax are the y coordinates of the lowest and
uppermost points predicted to belong to the target muscle.

For the 150 images predicted by the junior physician, 127 can be
regarded as excellent. However, out of the predictions by the U-net
model, 149 can be regarded as excellent. In other words, 18% of the
images confused the junior physician, while the probability of
misjudgment by the U-net model is less than 1%.

4 Discussion

The current intramuscular injection of drugs for the treatment
of musculoskeletal diseases is mainly achieved by direct injections,
electromyography-guided injections, or US-guided injections.
Direct injections greatly depend on the clinician’s knowledge of
anatomy and clinical experience; the risks of the injection are high
and its accuracy is not guaranteed. Electromyography-guided
injections are invasive and could cause pain and discomfort in
patients. US has the advantages of being non-invasive, portable, low
cost, easy to operate, and has no associated radiation. Most
importantly, US-guided injections have the capability for real-
time imaging, allowing for the monitoring of continuous
dynamic images. However, US images have the disadvantages of
low clarity and resolution, and the target tissue may not contrast well

FIGURE 4
Exhibition of good prediction cases: (A) and (B) are the best predictions by U-net; (C) and (D) are the best predictions by the junior physician. The four
images can be explained as follows: red represents the target muscle, green represents the predicted muscle, and yellow represents the intersection of
red and green (i.e., yellow represents the intersection of the target muscle and the predicted muscle).
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with the surrounding tissue (Pillen et al., 2016). Therefore, artificial
recognition in US images is difficult and the learning cycle for US
practitioners is lengthy. Hence, an auxiliary tool is needed to shorten
the US learning cycle for clinicians.

Deep learning has been widely used in various fields of medicine.
Current research related to deep learning has involved the
recognition and segmentation of various anatomical structures,
such as the liver, breast, and thyroid in medical imaging, and the
diagnosis and recognition of pathological changes in tumors (Jiang
et al., 2020; Poudel et al., 2018; Guo et al., 2021; Mishra et al., 2019).
Our research applies the U-net model for medical image
segmentation to assist in the treatment of various musculoskeletal
disorders, and achieve good training results and segmentation
recognition accuracy with few sample datasets.

In this study, we compared the muscle boundary US images
identified by our newly developed automatic muscle segmentation
tool with the manually labeled muscle boundary US images of junior
and senior practitioners, respectively. It was found that the accuracy
of the muscle boundary US images obtained by the automatic
muscle segmentation tool was very similar to those manually
labeled by a specialist sonographer and was significantly higher
than those labeled by a junior practitioner. Thus, we believe that the
accuracy of this automatic muscle segmentation tool can be trusted.
The use of this automatic muscle segmentation tool by clinicians can
save a great deal of time, reduce the clinician’s workload, and
improve injection safety. It also reduces the dependence on the
professional knowledge and experience of the operator, who only

needs to be familiar with the operation of this tool to automatically
identify and mark muscle boundaries. This will facilitate the spread
and application of US-guided technologies in clinical practice. This
tool could also enable continuous identification and labeling in
moving images, reducing the difficulty of manually labeling moving
images and facilitating clinical analysis. Furthermore, this tool will
help in avoiding damage to blood vessels and nerves during
injections. This automatic identification also provides the
possibility of identifying muscles and other tissues, and therefore,
it may be used as a novel diagnostic tool for peripheral nerve
diseases, which is easier to obtain and operate with (Ali et al.,
2016; Ozçakar et al., 2012).

However, the current work contains several limitations. First, in
comparing the images labeled by professional sonographers with
those automatically recognized by the tool, we found that there is
still a lack of fine recognition of muscle boundaries. This may be due
to our small sample size. Future studies must focus on increasing the
number of sample images to achieve better training results and,
therefore, higher accuracy. Second, the sample images we obtained
were from healthy participants and did not include patients with
limb spasms. We should actively apply the tool to patients with
musculoskeletal disorders in the future as well. Third, our current
work has completed the identification of the boundaries of a single
muscle in the forearm, and the identification of the boundaries of
multiple muscles is needed to assist in the combined injection
therapy of multiple muscle groups. Finally, the images were
acquired by one physician using a particular US machine. This

FIGURE 5
Exhibition of poor prediction cases: (A) and (B) are the worst predictions by U-net; (C) and (D) are the worst predictions by the junior physician. The
four images can be explained as follows: red represents the target muscle, green represents the predictedmuscle, and yellow represents the intersection
of red and green (i.e., yellow represents the intersection of the target muscle and the predicted muscle).
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means that the model may overfit the features provided by the
training datasets and may be less effective in the segmentation of
images acquired by other types of US machines. Therefore, we need
to add training datasets from different sources to improve the
practicability of the model (Wu et al., 2021).

5 Conclusion

In our study, we have developed an automatic muscle
segmentation tool for US-guided muscle injections. We have
demonstrated that the accuracy of the recognition of the muscle
boundary of the FDS in an US image by the automatic muscle
segmentation tool was similar to those manually labeled by a
specialist sonographer and was significantly higher than that by a
junior physician. We provide a reliable auxiliary tool for clinicians to
shorten the US learning cycle, reduce clinical workload, and improve
injection safety. In the future, the average living standard of human
beings will rise significantly and the age of the aging population will
arrive. Even though the healthcare system has developed rapidly, it is
still unable to meet the huge demand for medical resources. In order
to improve the efficiency of medical decision-making, the medical
image segmentation technology based on deep learning is bound to
flourish. On the basis of model and algorithm updates and iterations,
we should continue to explore the direction from simple diseases to
complex diseases and from 2D segmentation to 3D segmentation.
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