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Monsoon precipitation and severe flooding is highly variable and often

unpredictable, with a range of flood conditions and impacts across metropolitan

regions or a county. County and storm specific watches or warnings issued by the

National Weather Service (NWS) alert the public to current flood conditions and

risks, but floods are not limited to the area that is under alert and these zones can

be relatively coarse depending on the data these warnings are based on. Research

done by the Arizona Institute for Resilient Environments and Societies (AIRES) has

produced an Application Programming Interface (API) accessible data warehouse

of time series precipitation totals across the state of Arizona which consists

of higher resolution geographically disperse data that helped create improved

characterizations of monsoon precipitation variability. There is an opportunity to

leverage these data to address flood risk particularly where advanced Computer

Science methodologies and Machine Learning techniques may o�er additional

spatial and temporal insight into flood events. This can be especially useful during

rainfall events where precipitation station reporting frequencies are increased

and near real-time totals are accessible via the AIRES API. A Machine-Learning-

ready dataset structured to train ML models facilitates an anticipatory approach to

predicting/characterizing flood risk. This presents an opportunity for new inputs

into management and decision making opportunities, in addition to describing

precipitation and flood patterns after an event. In this paper we will be the first

to make use of the AIRES API by taking the initial step of the Machine Learning

process and assembling the precipitation data into a ML-ready dataset. We then

look closer at the dataset assembled and call attention to characteristics of the

dataset that can be further explored through machine learning processes. Finally,

we will summarize future directions for research and climate services using this

dataset and API.
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1. Introduction

Monsoon season precipitation is responsible for ∼½ of the

annual precipitation total for southern Arizona. Unlike the

gentler winter rains, monsoon precipitation events are frequently

characterized by severe weather and intense precipitation that can

vary widely in spatial coverage.

Additionally, these events are often clustered during runs

of favorable conditions, when moisture is present and favorable

atmospheric circulation persists, resulting in a burst and break

phenomenon for monsoon events across the monsoon seasonal

window, which runs June 15 to Sept 30 (Carleton, 1986). The

intermittent spatial and temporal nature of these storms, in

conjunction with the intensity of storms that do occur, mean that

nuisance flooding is a common occurrence across the monsoon

season, and severe flooding is a persistent if not regular hazard.

Flood risk is amplified in municipal areas where dry washes and

paved roadways serve as the stormwater conveyance system, with

many locales lacking underground storm water systems (Tousi

et al., 2021).

National Weather Service storm alerts and flash flood watches

and warnings alert residents of affected regions to first the

conditions that might lead to flood events, and then, as flood events

unfold, the presence of actual flood conditions. The coverage of

warnings can be coarse and spatially broad, meaning that affected

regions fall within the threat area, but so do many other residents

who might not even see precipitation falling, much less flood

events. This is not a critique of the NWS, as hazard messaging

for such a complex and variable phenomenon as the monsoon is

no small task, and outlines how innovations in data management

and flood risk prediction might provide more granular information

on flood risk. Previous work aggregating monsoon data from

various observational networks (McMahan et al., 2021) helped

generate a dataset that could improve our characterization of

monsoon variability, but there is opportunity to leverage this

dataset to address flood risk as well, particularly where advanced

(ML) techniques may offer some additional spatial and temporal

insight into flood events. This anticipatory approach moves beyond

previous description of precipitation variability after an event

and extends from emergent trends in the sciences to focus on

AI/ML ready datasets (see McKinstry et al., 2021) that can help

researchers better anticipate and predict hazardous conditions. It

also highlights the power and utility of open data frameworks (see

Arribas-Bel et al., 2021) as these analysis-or AI/ML-ready datasets

are used for specific circumstances but made available through

open-source frameworks and APIs.

The University of Arizona’s (UArizona) Arizona Institute for

Resilient Environments and Societies (AIRES) aggregates monsoon

data from observational networks and combines them into the

UArizona Environment monsoon dataset. The dataset is available

through an Application Programming Interface (API) and a

visual platform found at monsoon.environment.arizona.edu. This

platform provides users access to granular data allowing them to

see monsoon precipitation variability (McMahan et al., 2021). This

paper demonstrates the potential to leverage this dataset to address

flood risk, particularly where advanced Machine Learning (ML)

techniques may offer some additional spatial and temporal insight

to flood events.

The AIRES API is hosted in a GitHub organization repository

found at: https://github.com/uaenvironment/monsoon-api-

package. The API data is accessible via a username and key.

Information on requesting access as well as repository usage can be

found in the repository readme.

Collaboration between natural, social, and computer science

perspectives provides the ability to develop more forward-looking

climate services and is a cornerstone of both this project and the

development of the AIRES API. Computer Science methodologies

gave us the tools to aggregate, organize, and apply machine learning

concepts to the data. Input from the natural and social science

community informed the authors which steps to take to make

meaningful contributions to climate technology.

The data in the AIRES API presents the opportunity to

apply Machine Learning methods to precipitation data to predict

flooding. Machine Learning (ML) according to Arthur Samuel

who coined the term is “the field of study that gives computers

the ability to learn without explicitly being programed” (Brown,

2021). Machine Learning is especially useful for large sets of data

and finding correlations in data points where a clear correlation

isn’t apparent.

To create a ML ready dataset, we take the AIRES API data

and combine it with historical weather and flood data. We then

explored the possibility of applying ML techniques which involved

writing code in both Python and R. Python and R are commonly

used for data science and helped gather, organize, and process

our data. The code written in Python makes use of the NumPy,

Pandas, requests, JSON, and datetime packages to pull data and

organize it in a logical manner. The code written in R makes

use of the Tidyverse and its various packages to organize, clean

and graphically represent data in addition to the arrow, lubridate,

gplots, and reticulate libraries to explore possible ML applications

and clean the data. Detailed information on these packages and

their usage can be found in comments in appendices containing

code and the technology overview in the Appendix.

2. Methods and materials

2.1. Historical weather data

When assembling an ML ready dataset our initial step, as

shown in Figure 1 was to consider external data sources to

be combined with the AIRES API data that would contribute

toward the end goal of conducting flood analysis. The

National Oceanic and Atmospheric Administration (NOAA)

has an API that provides access to Climate Data Online

which is an archive of global historic weather data. We

will specifically be gathering daily data for the years 2000–

2020 for example purposes, but we encourage the reader to

fully explore what is offered in this API to apply to their

own analysis. You can use the NOAA API to pull many

different types of weather and climate data from various

weather stations and datasets throughout the world. This

API has multiple databases it provides access to through the

acquisition and use of an access token. The access token prohibits

the user from passing a specific threshold of daily requests

(National Climate Data Center et al., no date).
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FIGURE 1

Flowchart created to show the outline of the steps taken in this manuscript. This manuscript walks through the assembling of a machine learning

ready dataset.

The NOAA API has various endpoints and query parameters

to use depending on the specifics of the data desired. In our

request we specified the parameters: dataset, data type, limit,

station ID, start date, and end date. The data we used is from

the Global Historical Climatology Network which includes over 40

meteorological elements including historical weather data (Menne

et al., 2012). To show the process involved in collecting data from

the NOAA API and aggregating it with the AIRES API data the

data types from this dataset that we decided to include are daily

high temperature, average daily wind speed, and direction of fastest

2-min wind each day. We encourage the reader to choose which

variables they would prefer to include in their personal analysis,

taking into consideration which variables provided in the NOAA

API are likely related to flood prediction. For the limit value, we

chose to set the limit of responses to the maximum 1,000. The

station ID is which weather station the API should collect the

readings from. Because our research is focused on flooding in

Pima County, we chose to select the Tucson International Airport

weather station. We then set the start and end date to collect data

for the years 2000 to 2020 and made the requests 1 year at a time.

The script written to make the requests from the NOAA API

and organize the data returned, is shown in Appendix A and

written in Python using the Pandas, NumPy, JSON, Requests,

and Datetime packages. To determine the most fitting way in

which to write this script and access the data we consulted the

documentation of the API and an example of its use (Kharkar,

2019). This script contains a function that makes the requests and

returns a date and values lists from the request, then creates a

Pandas data frame from the lists returned and writes the data frame

to a CSV. For each of the weather variables to collect data for, the

script runs this function inputting the weather variable’s datatype

ID and makes an API request for each year in the range 2000–2020

and returns those two lists. One list that contains all the days within

the date range the variable wasmeasured, and another that contains

the measurement of the variable on that day. Then it creates a

CSV of the two lists returned where the dates are the first column,

and the measurements are the second. These CSVs were stored to

combine with other data later.

2.2. Flood events

After retrieving the weather data, the next step in the process

was to pin down a list of flood events in Pima County during

the timeframe in which the weather data was summarized. NOAA

supports a Storm Events Database that was accessed to obtain this

information. This database contains data entered by the National

Weather Service (NWS) that shows the different types of storms

and extreme weather events that have occurred (National Climate

Data Center, 1996). The select state or area option was used to

download a CSV of floods and flash floods that occurred in Pima

County throughout the years 2000–2020. The CSV comes with a

generous amount of data regarding the storm events. However, our

desired resulting data frame only contained the days that there was

a flood, and where in Pima County the flood occurred.

To get the data into a desirable format we cleaned the data using

R and functions from the tidyverse which is shown in Appendix B.

Initially, we selected the columns containing the data we needed.

Then we reformatted the column depicting the date that the flood

began to align with the same datetime format of the historical

weather data previously gathered. Next, this clean dataset was

written to a CSV to later combine with weather and the AIRES API

data. One thing to consider about the Storm Events Database data

and the steps taken to clean it is that the location of the floods is

not narrowly defined. For example, a flood anywhere in Tucson is

defined as happening in Tucson.

For further analysis it may be helpful to use the other

information present in the NOAA Storm Events Database,

including the more in-depth flood event description located in

the episode and event narrative columns of the downloaded CSV,

to divide larger areas like Tucson into smaller sections where

the flooding happened. Another opportunity for future research

presents itself in the availability of the storm-based warning

polygons from the weather service. Whether or not this data can

be aggregated with the AIRES API data, and analysis comparing

this data to the stream flow data, which is already included in the

AIRES API, and the NOAA Storm Events Database are questions

we intend to explore answers to in the next step of this process.
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2.3. AIRES API

After retrieving the historical weather and flood occurrence

data we pulled precipitation data from the AIRES API. The AIRES

API contains access to all the ground-based precipitation sensor

readings found within Pima County, Maricopa County, Mohave

County, Rainlog, MesoWest, and the data from the Pima County

Flood Control gages (see McMahan et al., 2021). For our first

example of its use, we collected the daily rainfall totals for all

the sensors from the years 2000–2020 (see script, App C.). The

county data contains some extreme rainfall values due to incorrect

reporting’s and some simple outlier detection tactics have been

employed (values exceeding daily threshold of 133mm), but in the

future we will be looking atmore sophisticatedML outlier detection

approaches (Crimmins et al., 2021). The function written takes a

start and end year as inputs, converts them to datetimes where start

date is January 1st of the start year given, and end date is December

31st the last year given. This function call returns a data frame

of all the daily rainfall totals in Pima County within that given

time period. The script is written in Python and uses the Pandas,

NumPy, and Datetime packages.

The API has multiple functions that allow access to the data,

most of which have parameters for the start and end date of the

request, both of which are inclusive so data is returned on the start

and end date. It was determined that the best way to keep the run

time low while keeping the code organized and understandable was

to request 1 year’s worth of sensor readings at a time. To conduct

this in a way that fulfills the parameters for the functions of the API

we established a time delta value of 1 year and defined the variable

next date as a year from the start date. We then ran a while loop

that requests data from the API for each year using the start and

next date parameters in the API function within the range the user

specified, created a pandas data frame for each year’s worth of data,

and appended this data frame to a list of data frames, iterating the

start and next date values using the specified delta value until the

start date equals the given end date.

Next, the function concatenates all the yearly data frames,

checks for duplicate sensor readings, and creates a list of all the

unique sensor names. For each sensor, the function creates a

pandas data frame of readings, makes the datetime column of

type datetime, sorts the data frame by datetime, finds the rainfall

amounts by calculating the difference in rainfall between each

sensor reading, then sums the rainfall amounts for each day. Then

the function adds each sensor’s data frame to a list of sensor data

frames which it then concatenates and returns as the final data

frame. This data frame was also written to a CSV.

2.4. Combining data sources

After all our data was collected the next step was to combine

the CSVs into a single data frame that could easily be used in ML

models. This data frame was stored as a feather file, a binary format

which takes up less space and may be imported into data frames

in various programming languages. This data was combined in an

R script shown in Appendix D primarily using tidyverse functions.

We assured that both the beginning of the flood location and sensor

name were categorical variables, by converting these columns into

factors. Then we combined the CSVs one at a time with Dplyr pipes

using the full join function and matching the rows on the date

column in each CSV. It is important to note that not all the CSVs

have an entry for every day. After the data frame was created, it was

written to a feather file and stored.

2.5. Focusing on 2020 data

After creating this large data frame, care was taken to

specifically focus on the data from 2020, and use all the sensor

readings instead of finding rainfall totals, to call attention to the

granularity of the dataset. This code is written in an R Markdown

file using the reticulate library so the sensor data from the AIRES

API, which is put into a Pandas data frame after being gathered, can

be immediately cleaned using tidyverse functions (see script, App.

E). This script requests sensor readings from Pima County for the

year 2020, then imports the flood occurrence data from the NOAA

Storm Events Database and filters the flood events so only floods

in the year 2020 are included. Next, the datetimes of the two data

sources are converted so they are in the same format, the location

where the flood began and the sensor name are converted to be

factors, and the flood occurrence data is combined with the sensor

readings and written into a feather file.

3. Results and discussion; exploring
opportunities for machine learning
analysis

After assembling twomachine learning ready datasets using the

AIRES API and NOAA data, we started to consider what features of

the data can be used forMachine Learning analysis and what should

be added to the AIRES API to expand upon the already present

features. This is the very beginning of theMachine Learning process

and is meant to show the reader the potential use of the dataset and

demonstrate opportunities for future research.

3.1. Daily rainfall totals

The first set of data we emphasize here is the flood occurrence

data and the daily total rainfall in each sensor calculated using

the individual sensor readings. Before considering applying a

Machine Learning algorithm, time was taken to visualize this data

to determine what type of model to start with. We created various,

but somewhat crude graphs throughout this process shown in

Figures 2, 3. Figure 2A shows the total amount of rain at each sensor

for each day in 2020 that there was a flood. Figure 2B shows the total

amount of rain at each sensor for each day since 2010 that there

was flooding in Tucson. Figure 3 shows the distribution of sensor

reading values for every day in August 2020 where the color of the

distribution differentiates between days that it flooded and days that

it didn’t flood in Pima County.

Visualizing the data in this manner brought us to consider

whether there was a pooled relationship between all of the daily

precipitation values in the network and flood/no flood days. This

consideration emerged from looking at Figure 2 and noticing peaks
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FIGURE 2

Graphs created to observe sensor readings on days that it flooded. (A) shows the sensor readings on days is flooded in 2020. (B) shows the sensor

readings on days it flooded in Tucson from 2010 to 2020. Note that the sensors are ordered numerically.

FIGURE 3

Graph created to show the distribution of total rainfall values on days that it flooded and didn’t flood in August 2020. A boxplot is made for each day

in August 2020 where the color is corresponding to whether or not it flooded that day and the data used to make the box plot is the total amount of

rainfall recorded by each sensor.
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FIGURE 4

Graphs created to observe wind speed, wind direction, and maximum temperature in the years 2015–2020 from the sensor at the Tucson

International Airport. (A) shows the average wind speed, (B) shows the direction of the fastest 2-min wind, and (C) shows the daily high temperature.

The points that are gray are observations on days when there wasn’t a flood in Pima County and points that are purple are on days when there was a

flood.

that were present on multiple flood days. It was observed that

some sensors usually had high readings on flood days in Tucson

and wanted to analyze this relationship further. When looking

at Figure 3 it was observed that the days it flooded in August

2020 tended to have a distribution with a wider spread of total

rainfall values than the distributions on the days it didn’t flood.

This wider spread of total rainfall values is showing us that on

days there are floods, there are isolated heavy rainfall events.

Looking at the data in this way showed that there may be a pattern

that a machine learning algorithm could determine. To take a

closer look at the isolated heavy rainfall events, determine which

sensors they take place at, and over what periods of time, we

should dig deeper and look at the fine scale resolution of subdaily

rainfall data.

3.2. Weather data

Next, the use of the weather variables was shown. Three plots

were generated, one for average daily wind speed (Panel A), one for

direction of fastest 2-min wind each day (Panel B), and one for daily

high temperature (Panel C) that showed the date vs. the weather

value where the color of the points depends on whether or not it

flooded that day (see Figure 4). This data is from the sensor at the

Tucson International Airport. These values are daily values and it

is hard to see an explicit pattern differentiating the flood from no

flood days.

This led to the consideration as to whether weather variables

would possibly be useful in flood prediction. The NOAA API, as

stated previously, has quite a few different weather variables that

can be accessed quite easily, but by accessing this data through a

separate source than the precipitation data, the user is forced to

complete various steps requiring a certain level of coding abilities to

clean and combine the data into a machine learning ready format.

This brought us to consider if it would be useful to add access

to granular observations of other variables beyond precipitation

through the AIRES API. This wouldmake the experience of looking

at both precipitation values and other weather variables for flood

prediction more user friendly and straightforward. It would also

allow the user to determine how important different weather

variables are in flood prediction possibly employing a random

forest algorithm or something similar to conduct this analysis

(Schonlau and Zou, 2020).
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FIGURE 5

Sensor readings showing the rainfall in inches for a handful of sensors on July 23rd, 2020. This day was chosen because there was a flood at the

Tucson Marana Airport. The change in rainfall throughout the day at each sensor can be seen here.

3.3. Subdaily precipitation observations

The final example of the use of the AIRES API data included

in this manuscript uses individual sensor readings throughout

2020, instead of daily totals. The first thing we did was select the

sensor readings for a day with known flooding at the Marana

Airport which is located 26 miles northwest of the Tucson

Airport. For each sensor we initially subtracted the first reading

value for the day so all the readings started at zero in order to

better see the change in rainfall throughout the day compared

between each sensor. Next, the readings were graphed as a

function of time to see how the precipitation readings changed

throughout the day. Figure 5 shows this graph for a few of

the sensors.

Looking at Figure 5, it is easy to see that on a day where

there was flooding at the Marana Airport there were some sensors

that experienced almost no rainfall, and some that experienced

a somewhat substantial amount of rainfall throughout the day.

The rate of rainfall is also different at each sensor. This is where

subdaily data comes in handy. Unlike the daily rainfall totals shown

previously, this gives us a much better look at what is happening

throughout the day of a flood which makes this data much more

suitable forMachine Learning analysis. For future research we want

to use a ML model see if there is a pattern present that relates

which sensors experience large amounts of rainfall, how quickly

that rainfall happens, and where flooding takes place to see if

this data can help predict flooding. We also intend to continually

improve the functionality of the AIRES API to make sure that this

data is clean and easily accessible to whoever wishes to conduct

their own analysis.

4. Conclusions and opportunities for
future research

The types of insights that emanate from the intersection of data

aggregation and computing technology to address complex weather

and climate questions are shown in the work completed within this

paper. By combining the AIRES API data with various other data

sources and organizing this data into a ML ready dataset we are
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calling upon typical data science processes to prepare to address

flood risk. The progress made in the completion of this paper allows

for the flood prediction process to start with the exploration of ML

analyses that would work on the dataset, as opposed to starting with

the challenging work of determining which data and the format in

which the data should be assembled. This work is novel in the sense

that it is using traditional data science techniques to put complex

environmental data, whose original purpose is not necessarily to

be used for research, in a research ready format. Because this data

set includes sub daily precipitation events, this in turn provides

the opportunity to develop additional spatial and temporal insights

into flood events.

The expansion of the AIRES API and continual improvement

of the quality of the dataset would work to address challenges

we came across in the study. The quality of the dataset could

be improved by making flood occurrence data accessible directly

through the AIRES API, a better handling of extreme values

including automated outlier and anomaly detection, and the

addition of other weather variables to the dataset. Future work

involving the API will include improvements to better attend to the

users’ experience such as implementing a process through which

users can easily request a username and token. Through these

improvements, we can further explore the benefits of subdaily

precipitation data.

The intersection of data aggregation and computing technology

to address complex weather and climate questions also presents

an opportunity for new inputs into decision making applications,

especially related to emergency management or risk management.

The work completed here contributes to data driven decision

making in the event of a flood emergency by increasing the

ease of access to relevant data. Parallel to any novel analyses,

however, are the data management, cloud computing, and data

distribution backbones that facilitate wider use of these data via

web visualization platforms, and increasingly, via API access.

This shift to open data frameworks and the wide distribution

of data via API expands the outcomes of research computing

approaches to weather and climate data—which emphasizes

the development new datasets (read: AI/ML ready) that bring

together diverse observational and/or modeling datasets and

organize them for use in applied research on weather and

climate impacts.

By expanding on the existing AIRES API, we hope to

encourage collaborative relationships that can highlight

opportunities to engage in multi-disciplinary research using

these open data frameworks that extend from the pilot analyses

described in this paper, or that use the datasets developed

in preparation for these analyses. This reflects some nascent

movement toward publishing scientific datasets for use by other

researchers and portends toward movement toward developing

data processing steps as more andmore research teams shift toward

incorporating ML/AI based techniques into research proposals and

academic publications.
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