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Preterm birth will disrupt the pattern and course of organ development, which may
result inmorbidity andmortality of newborn infants. Large animalmodels are crucial
resources for developing novel, credible, and effective treatments for preterm
infants. This review summarizes the classification, definition, and prevalence of
preterm birth, and analyzes the relationship between the predicted animal days and
one human year in the most widely used animal models (mice, rats, rabbits, sheep,
and pigs) for preterm birth studies. After that, the physiological characteristics of
preterm pig models at different gestational ages are described in more detail,
including birth weight, body temperature, brain development, cardiovascular
system development, respiratory, digestive, and immune system development,
kidney development, and blood constituents. Studies on postnatal development
and adaptation of preterm pig models of different gestational ages will help to
determine the physiological basis for survival and development of very preterm,
middle preterm, and late preterm newborns, and will also aid in the study and
accurate optimization of feeding conditions, diet- or drug-related interventions for
preterm neonates. Finally, this review summarizes several accepted pediatric
applications of preterm pig models in nutritional fortification, necrotizing
enterocolitis, neonatal encephalopathy and hypothermia intervention,
mechanical ventilation, and oxygen therapy for preterm infants.
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1 Introduction

The World Health Organization (WHO) recommends that infants born before
37 completed weeks of gestation should be designated “preterm” (Ritchie and McClure,
1979), and 15 million babies are born prematurely each year (Locke and Kanekar, 2022).
However, preterm infants are not the same as low birthweight babies. The 1991 United States
national reference for fetal growth (Alexander et al., 1996) and the International Fetal and
Newborn Growth Consortium for the 21st Century (INTERGROWTH-21) birth weight
standards (Kozuki et al., 2015) are used to define or distinguish several key terms related to
preterm birth (shown in Supplementary Table S1). A preterm newborn who is small for
gestational age (SGA) has a birthweight below the 10th percentile for gestational age at birth
while a preterm infant who is appropriate for gestational age (AGA) has a birthweight on the
10th-89th percentile at birth. Preterm SGA infants are at increased risk of neonatal mortality
and morbidity (Bardin et al., 1997). However, it is crucial to be more careful when concluding
whether there is a significant difference in the comprehensive neonatal morbidity between SGA
preterm infants and AGA preterm infants due to the limitations of the research sample
(Giapros et al., 2012; Marrs et al., 2015). In addition to birth weight, an essential measure for
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assessing the development of AGA preterm infants is the standard
deviation score (SDS) of body length at birth and head circumference
within the corrected age (CA) (Funkquist et al., 2010). Preterm infants
born large for gestational age (LGA) are usually defined as > 90th
percentile at birth. No obvious difference between LGA and AGA
newborns in the relative risk of death and morbidity, meaning that
LGA infants did not have a higher risk of morbidity and mortality
than AGA infants (Ozawa et al., 2021). Sims et al. (Sims et al., 1992)
also found that neither SGA nor AGA affected the risk of newborns
developing disorders of the central nervous system. SGA preterm
infants exhibited lower total iron reserves (Mukhopadhyay et al.,
2012) than term AGA infants, but their amplitude-integrated
electroencephalography (aEEG) patterns were more developed and
durable than those of AGA preterm infants. These findings might be
interpreted as a success for intrauterine compensation mechanisms
(Benavente-Fernandez et al., 2017). SGA greatly increased the
mortality rate of late preterm infants (born between 34 0/7 weeks
through 36 6/7 weeks of gestation) (Sharma et al., 2021) and early
term (37–38 weeks of gestation) (Pulver et al., 2009). These studies
show that male preterm infants had a greater postnatal mortality rate
than female preterm newborns and that even after full-term delivery,
there may be gender-specific disparities in the survivability of
neonates (Challis et al., 2013; Klein and Flanagan, 2016). Male
preterm infants who were very preterm (<32 weeks gestation)
(Barfield, 2018) and had very low birth weights (<1500 g) (Patel
and Bhatia, 2017) had a considerably greater incidence of respiratory
distress syndrome, bronchopulmonary dysplasia, severe
intraventricular hemorrhage, and necrotizing enterocolitis (NEC)
than did the female (Su et al., 2022; Su et al., 2022). While studies
have investigated potential links between maternal ethnicity and
neonatal morbidity, mortality, or treatment (Qureshi et al., 2013;
Neggers, 2015; Askie et al., 2018), it is more likely that quality-of-life
elements like housing conditions, sanitary conditions, or medical care
will explain variations. Whatever the case, it is undeniable that
preterm birth is the leading cause of death for children under the
age of 5 years worldwide and that prematurity is associated with an
increased occurrence of adult diseases, including retinopathy of
prematurity (Hartnett and Penn, 2012), cardiovascular disease
(Bavineni et al., 2019), risk of heart failure (Carr et al., 2017;
Lewandowski et al., 2021), chronic lung disease (El Mazloum et al.,
2014), and neurodevelopmental impairment (Blencowe et al., 2013), is
undisputed. Preterm birth rates worldwide are on the rise, and
according to WHO data from 2014, about 10% of babies are
delivered prematurely globally (Blencowe et al., 2012;
Chawanpaiboon et al., 2019). Preterm birth disrupts the
development of fetal organs, and preterm newborns, particularly
those born extremely preterm (<28 weeks gestation), often exhibit
significant susceptibility to postpartum growth inhibition and
infections.

2 Animal models for preterm birth

2.1 Literature retrieval

Finding appropriate animal models or human tissue models to
mimic the physiological and pathological phenotypes of premature
babies (Sangild, 2006; Pasca et al., 2019), as well as discovering and

developing the cellular and molecular processes of preterm labor
and birth (Gomez-Lopez et al., 2022), as well as determining the
most effective therapeutic interventions for preterm infants (Scafidi
et al., 2014; Gopalakrishna et al., 2019; Usuda et al., 2020; Sheller-
Miller et al., 2021), remain major challenges for scientists to date.
Eighteen animal species were referenced in the 1,010 reviewed
articles (Nielsen et al., 2016) after Nielsen et al. investigated and
analyzed the MEDLINE-indexed literature on animal models for the
study of preterm birth processes from 1966 to January 2012. Among
them, more than 100 literature used rats, sheep, mice, and pigs as
preterm animal models, respectively, and as many as 76 literature
used rabbits as animal models for preterm birth. In this study, an
approximate count of the literature on these popular preterm animal
models for the previous 10 years (up to 13 June 2023) was made
using the literature search algorithm of the National Center for
Biotechnology Information (NCBI) PubMed database. It was found
that there were 452, 196, 132, 46, and 34 studies using mice, rats,
sheep, pigs, and rabbits as preterm animal models, respectively. The
retrieved reports of Review and Systematic Review were excluded
from this data set.

The sheep model served as the foundation for substantial
advances in perinatal human medicine and contributed
significantly to our understanding of both healthy and abnormal
fetal development (Morrison et al., 2018). The investigation of
preterm birth routes and their genetic regulation, as well as novel
discoveries about human cervical biology, have all been made
possible by the mouse model (Murray et al., 2010; Mahendroo,
2012). Additionally, preterm mice models are frequently used to
investigate how preterm birth affects NEC and the development of
the brain or lungs (Spencer et al., 2021). The following reasons are
the primary justifications for utilizing pig models in research on
human preterm birth: First, in terms of anatomy, immune system
function, brain growth patterns, spatial learning, and dietary
requirements, newborn pigs and human neonates are very similar
(Radlowski et al., 2014; Mudd and Dilger, 2017; Pabst, 2020);
Second, a significant production goal sought after by pig farmers
is a large litter size (Ward et al., 2020). However, fertility is easily
restricted due to the sow’s limited uterine capacity, and some
newborn pigs may be born underweight or at risk of preterm
birth (Ward et al., 2020; Heras-Molina et al., 2021). Shorter
gestations might result in significant preterm birth symptoms. It
was discovered that gastrointestinal (GIT) motility and regulation,
intestinal permeability and integrity, and inflammatory response
were similarly immature in 88%–95% of preterm pigs during
gestation and in 70%–90% of newborn neonates during gestation
(Sangild, 2006). Ninety percent of newborn pigs with preterm
delivery also have respiratory dysfunction (Caminita et al., 2015).
Some neurodevelopmental deficits (delayed arousal, potential poor
coordination of exploration and learning) endure even thoughmany
of the immature physical traits of preterm pigs adapt and disappear
with age (Andersen et al., 2016). Therefore, preterm pig models are
appropriate for research on the prenatal impacts of preterm birth,
and newborn GIT maturation, as well as methods to improve
preterm infants’ nutritional absorption and growth.

Animal models are essential research tools to study the
occurrence and development of preterm birth and to evaluate
potential interventions or treatments. Researchers should at least
have a consensus on the selection of animal models, that is, there is
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not a “single ideal animal model” that can account for all aspects of
labor, placental dysfunction, preterm birth, fetal growth disorders,
etc. in humans. Therefore, it is important to comprehend the
benefits, drawbacks, and distinctive features of various animal
models of preterm birth. Even though we recognize the
importance of utilizing animal models to study preterm birth in
humans, we must realize that, as of yet, using these models to
understand how humans are born has not substantially revealed the
mechanisms that can be employed to avoid preterm birth (Bezold
et al., 2013). After all, the regulation and mediating of human birth
differ greatly from that of animal birth (Croy et al., 2009; Mitchell
and Taggart, 2009). Pigs differ significantly from humans in terms of
gestation length, number of offspring per gestation, placenta type,
internal structure, and intervascular barrier characteristics. For
instance, during conception, human uterine epithelial cells are
lost, which results in an endometrial decidual response (Carter,

2021). However, pigs have epithelial placentas, which means that
endometrial stromal cells did not defoliate since epithelial cells
remained on the surface of the uterine cavity (Croy et al., 2009).
These physiological differences lead to mechanisms that regulate
delivery in pigs that may be different from those in humans, and
these variations in physiological and environmental factors may
limit the usefulness of pig models for simulating the timing of
human delivery and preterm birth, as well as the degree to which
studies using animal models can provide meaningful information
about the physiological mechanisms of human pregnancy.

2.2 Animal days vs. one human year

When using animals as experimental models, researchers
commonly find solutions to fundamental questions such as how

FIGURE 1
Determine howmany animal days are equivalent to one human year based on the animal model’s life cycle, weaning period, and sexual maturity. (A)
The life cycle, weaning period, sexual period, and life expectancy of humans, mice, rats, and pigs are presented based on the known literature. (B) The
conversion of animal days to one human year based on the different growth and development stages of each animal species. P180 means the postnatal
day 180.
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an animal’s age compares to a human’s and at what age an animal is
considered preterm. Therefore, establishing the relationship
between the human life cycle and animal models is thus
necessary (shown in Figure 1). Mice may give birth in
18–21 days (or 451–493 h) (Murray et al., 2010), reach sexual
maturity in 25–33 days (Kruczek and Gruca, 1990), and live for
878–1,200 days (Schultz et al., 2020). Rats have a gestation period of
19–22 days (Grases-Pinto et al., 2019), a sexual maturity age of
around 33–40 days (Quinn, 2005; Yano et al., 2020), and a life span
of 2.5–3 years. Pigs have a gestation period of 114–117 days
(Vanderhaeghe et al., 2011), sexual maturity period lasts for
5–6 months (Jayachandran et al., 2004) (the sexual maturity span
of the Göttingen minipig is 3.7–6.5 months (Peter et al., 2016)), and
they may live up to 27 years (Hoffman and Valencak, 2020). In
contrast, humans have a gestation period of 37–44 weeks (Gill and
Boyle, 2017; Lawson, 2021), sexual maturity (puberty) lasts for
around 11.5 years, and they can live for 80 years (Sengupta,
2012). A human year is equal to 13.7 rat days, 15 mouse days,
and 121.7 pig days when comparing the ages of human and animal
models based on their life cycles (Quinn, 2005; Sengupta, 2013). A
human year is also equal to 42.4 rat (or mouse) days, and
42.6–56.8 pig days when comparing the ages based on their
weaning periods. A human year is equal to 2.9–3.5 rat days,
2.2–2.9 mouse days, and 13–15.7 pig days, depending on sexual
maturity.

3 Physiological characteristics of
preterm pig models at different
gestational ages

Pig breeds have minimal influence on variations in gestational
days and developmental patterns and full-term pigs are typically
delivered vaginally between 114 and 117 days after conception.
Studying or summarizing the onto-developmental processes and
characteristics of preterm pig models may contribute to
understanding the occurrence of pregnancy and preterm birth in
humans, as well as research on preventive and treatment strategies.
The prenatal development of fetal pigs has been the subject of
extensive investigation over the past 20 years by Sangild et al. (1991);
Sangild et al. (1994); Sangild et al. (1995); Sangild et al. (2013). The
authors have discussed the endogenous digestive enzymes in fetal
pigs at various gestational ages as well as the patterns of ontogenetic
development of the adrenal glands, stomach, pancreas, and small
intestine. Pig’s organ development is not linear and even the same
organ’s functions may exhibit distinct developmental trajectories at
birth and weaning. Pigs born prematurely had a case fatality rate that
was negatively related to gestational age. Preterm pig models and
preterm infants are quite similar in terms of body size, organ
development, and many clinical traits, especially in the GIT
maturation, which is more equivalent to human newborns
(Sangild, 2006). As a result, research on organ adaptation in
preterm pigs is needed to better understand the physiological
mechanisms underlying preterm infant survival as well as the
appropriate diet and feeding regime during the vulnerable
neonatal period (Sangild et al., 2013).

Besides, sex also had an impact on the death rate and postnatal
growth rate of preterm newborn pigs. Within a short period

following infection, the growth rate of preterm males was lower
than that of females and their mortality rate was higher than that of
preterm females (Baek et al., 2021).

3.1 Body temperature

Pigs’ primary hair follicles development begins at 40–41 days of
gestational age and lasts until 73 days of gestational age. However,
secondary hair follicles disappear at birth. Pig weight gain and hair
follicle length development at closely related (Meyer and Görgen,
1986). Due to their extremely poor thermoregulation and lack of
hair, preterm pigs born at 91–100 days gestation have a difficult time
maintaining normothermia with the aid of external heat sources. At
104–106 days of gestation, they have a hair coat but have poor
thermoregulation, and need external heat sources to maintain a
consistent body temperature. Pigs that are close to term at
113–114 days gestation are similar to full-term pigs in that they
have well-developed skin and hair as well as sufficient
thermoregulation to maintain a constant body temperature with
minimal intervention (Eiby et al., 2013). Hypothermia is one of the
most upsetting conditions for human newborns and has been linked
to the emergence of NEC. Preterm and full-term hypothermic pigs
showed considerably lower heart rates and cardiac output, and
rewarming did not restore these values to return to normal
(Powell et al., 1999). Hypothermia stress and hypoxia damage
were used in the development of a novel NEC pig model (Cohen
et al., 1991).

3.2 Birth weight

The breed or strain has an impact on the birth weights of both
preterm and full-term pigs. The largest newborn pigs were Large
white/Landrace and had an average birth weight of 697 ± 193 g (g) at
day 91 of gestation, 1,095 ± 225 g at day 104 of gestation, and 1,331 ±
368 g at day 113 of gestation (Eiby et al., 2013). Preterm Yorkshire/
Landrace pigs are born weighing 580 ± 150 g at 108d of gestation
(Adjerid et al., 2021), whereas full-term pigs are born weighing
1,400 ± 160 g at day 115 of gestation. Averaging only 507 ± 27 g for
preterm pigs born at 104 days gestation and 694 ± 56 g for term pigs
even at 4 days after birth, miniature pigs had lower birth weights (Xie
et al., 2022). It’s noteworthy that preterm infant pig models gained
weight at a rate that was almost three times higher than that of full-
term infant pigs. Birth weight, however, is not a reliable predictor of
these alterations since the ability to swallow varies between preterm
and full-term newborns (Adjerid et al., 2021). The difficulty to eat
seems to be the main cause of the failure to thrive of extremely low-
birth-weight preterm infants (Cutland et al., 2017).

3.3 Brain development

The brain-liver weight ratio can be used to roughly identify
newborn piglets with naturally occurring asymmetric intrauterine
growth restriction, offering convenient conditions for the
investigation of intrauterine-impaired neonates’ pathological
motivation (Eiby et al., 2013). The average ratio of brain to liver
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weight was 1.20 ± 0.29 when the preterm pigs were at 91–98 days of
gestation and increased to 1.15 ± 0.26 at 104–106 days of gestation,
while the brain to the liver weight of the near-term pigs (at days
113–114 of gestation) was 0.72 ± 0.21 (Eiby et al., 2013). Preterm
birth alters the brain’s development in utero and may result in
delayed postpartum neurological maturation. In comparison to full-
term pigs, preterm pigs at day 106 of gestation had increased
cerebral hydration, higher blood-cerebrospinal fluid permeability,
higher plasma ratios of albumin and raffinose in cerebrospinal fluid
(CSF), lower CSF glucose levels, and less white matter myelination
(Brunse et al., 2018; Holme Nielsen et al., 2018). Preterm pigs’
neuromuscular function developed quickly after birth, and by the
time they were 11 days old, the total weight of their brains and the
weights of each of its areas were almost identical to those of term
pigs (Holme Nielsen et al., 2018). But in preterm pigs, NEC raises the
risk of brain damage and cognitive impairment. Piglets born
prematurely with severe NEC lesions lost vertebral neurons in
the hippocampus, had higher albumin-to-plasma and raffinose
ratios in CSF, fewer CSF leukocytes, and higher levels of brain
hydration, but neither brain myelination nor microglial density was
affected (Brunse et al., 2018).

3.4 Respiratory system

Preterm pigs at 91–98 days of gestation experienced respiratory
distress right away and can only partially breathe on their own at
100 days of gestation; they still require additional oxygen to survive.
In comparison to near-term pigs (at day 113 of gestation), preterm
pigs (<100 days gestation) had considerably higher mean arterial
pressure (mmHg) and the fraction of inspired oxygen (FiO2), and
maintenance glucocorticoid therapy dramatically increased the
survival rate (Eiby et al., 2013). Preterm pigs born at
103–106 days gestation can breathe on their own and do not
require ventilation. The near-term pigs (at 113–114 days of
gestation) can breathe on their own in an environment with 21%
oxygen (Eiby et al., 2013; Caminita et al., 2015). At 9 days after birth,
preterm pigs’ alveolarization was significantly lower than that of
their term counterparts (Xie et al., 2022), and they also responded to
hypoxic stress less forcefully than term pigs (Eiby et al., 2014).

All mammalian newborns must be able to breathe and swallow
simultaneously (German et al., 1996), however the timing of this
coordination differs between full-term and preterm infants (Mayerl
et al., 2019; Catchpole et al., 2020). According to a preterm pig study,
preterm newborns have poor swallowing-breathing coordination
(Mayerl et al., 2019). Preterm pigs’ developmental behavior is highly
plastic, and by postnatal day 17, their swallowing rate (~2 swallows/
s) was comparable to that of full-term pigs. However, their
respiratory rate during eating was lower than that of full-term
pigs (Mayerl et al., 2019), and they ingested less milk each time
(Mayerl et al., 2020). These findings demonstrate that full-term and
preterm pig models have different feeding behaviors.

3.5 Cardiovascular system

Around 30% of newborns who are born extremely preterm
(<30 weeks of gestation) have insufficient systemic blood flow,

which can result in morbidity and even death. Cardiovascular
health in preterm pigs was much worse than in full-term pigs.
They had significantly lower baselines for cardiac output, cerebral
blood flow, and myocardial contractility than full-term pigs (Eiby
et al., 2016). Preterm pigs (at 97 days of gestation) had lower cardiac
output and mean arterial pressure (MAPs) than full-term pigs (at
115 days of gestation) (Eiby et al., 2016), and when blood volume
was removed, these parameters further decreased, along with
cerebral blood flow and oxygen delivery to the brain (Eiby et al.,
2018). Preterm pigs between 91 and 98 days of gestation showed low
levels of β1-adrenoceptor mRNA expression in the heart, although
term pigs’ mRNA expressions of the cardiac renin-angiotensin
system (RAS) and II-AT1R were comparable. At 100 days of
gestation, preterm pigs exhibit unstable blood pressure, a low
MAP, and a low and highly variable arterial base excess (ABE).
Compared to full-term newborns, the CSF-plasma albumin ratio
and the raffinose ratio of preterm newborns increased by 71% and
25%, respectively. Serum glucose and CSF glucose both decreased
significantly. Piglets with severe NEC lesions had higher plasma
levels of C-reactive protein and interleukin-6 as well as fewer blood
thrombocytes (Kim et al., 2014; Kim et al., 2015; Brunse et al., 2018;
Eiby et al., 2018).

3.6 Immune system

Pig gestation can be divided into three biological stages. The fetal
pig’s innate immune system starts to form in response to certain
immunoglobulins about day 70 days of gestation, and the naïve
adaptive immune system of newborn pigs is immature yet capable of
responding to some pathogens (Butler et al., 2009). Pigs, sheep,
horses, and cattle are under the Group III category of mammals,
whereas humans and rabbits go under the Group I category, and
rodents and carnivores fall under the Group II category (Butler et al.,
2006; Butler et al., 2009) depending on how immunity is transferred
from the mother to the fetus. During the latter stages of pregnancy
and the first day postpartum, immunoglobulin (IgG) is preferentially
transported from maternal blood to lacteal secretions, where it is
absorbed by the newborn pigs and confers passive immunity (Butler
et al., 2006). As a result, colostrum from the mother is the only
source of IgG for newborn pigs. The newborn preterm pigs (at
106 days of gestation) displayed a delayed development of systemic
immunity during the first few postnatal weeks compared to near-
term and term pigs (Nguyen et al., 2016b). For instance, preterm
pigs born at 106 days of gestation showed considerable growth
restriction, yet these pigs did not have immune system
developmental defects (Baek et al., 2019). Although the weight of
the adrenal glands in preterm pigs at 113–114 days of gestation
increased, their total leucocyte counts and lymphocyte counts at
delivery remained below those of full-term pigs (Baek et al., 2019).
Preterm pigs born after short-term prenatal exposure to the Gram-
negative endotoxin (lipopolysaccharide, LPS) have higher intestinal
endotoxin, neutrophil/macrophage density, and shorter villi. The
piglets do, however, show physiological adaptability to preterm birth
after a few days (Pan et al., 2020b). Additionally, the histological
pattern of the thymus in preterm pigs did not considerably change
(Lansdown, 1977). Preterm pigs may have sterile inflammatory
responses in the absence of microbial stimulus, leading to a
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significant increase in colonic levels of IL-12/23 p40 and IFN-γ
(Splichalova et al., 2018). Additionally, preterm birth raises a
newborn pig’s risk of developing Staphylococcus epidermidis
bacteremia, and both age and diet may affect systemic immune
development and gut inflammation in preterm pigs in the first few
days of life (Baek et al., 2020).

3.7 Digestive system

Immature esophageal motility is one of the crucial aspects of
esophageal development in preterm infants. Preterm pigs at
105 days of gestation had trouble initiating sucking compared to
full-term pigs, and their oesophageal motility per minute (#EM/
min) and propagating peristaltic wave per minute (#Prop/min) were
significantly lower than those of their healthy term counterparts.
There was, however, no observable trend over time. Term pigs
greatly enhanced the velocity of prop and double synchronous
propagating waves per minute (#DSP/min). The NEC severity
grade in these healthy preterm pigs was equivalent to that in
term pigs (Rasch et al., 2010).

Preterm birth alters the enzyme activity involved in nutrition
digestion as well as the intestinal architecture of newborn pigs.
Preterm pigs are born with low intestinal weight, shorter villi, and
crypts (Aunsholt et al., 2015; Pan et al., 2020a), lower levels of
sucrase, maltase, and dipeptidyl peptidase IV enzymes, and much
lower levels of hexose absorption capacity than their term
counterparts (Aunsholt et al., 2015). They also have reduced
levels of brush border enzyme activity (lactase, sucrase, and
maltase) (Buddington et al., 2012). Preterm newborn pigs at
102–104 days of gestation lacked completely developed tight
junction complexes in the colon and had lower lamina propria
cell counts and villous heights than full-term pigs (Splichalova et al.,
2018). Pigs born preterm at 104–106 days of gestation also had
higher paracellular permeability to ions and lower chloride secretion
in response to the secretagogue, theophylline (Sangild et al., 1997).
Preterm pigs, however, acquire modest amounts of maternal IgG by
placental transfer before to birth (Butler et al., 2009), comparable to
full-term pigs. This physiological function is shared by both term
and preterm newborn pigs. At 2 weeks old, piglets’ enterocytes have
an apical canalicular system that produces enormous vacuoles in the
ileum that transmit maternal active immunoglobulins from the
intestinal lumen through the intestinal epithelium (Skrzypek
et al., 2007). Preterm pigs born at 106 days of gestation have
equivalent intestinal permeability and glucose absorption
capacities to full-term pigs (at 118 days of gestation) (Pan et al.,
2020a).

3.8 Renal development

Preterm newborns are at risk of renal insufficiency, whereas full-
term neonates do not yet have mature nephrons and full function.
Compared to the arteries of full-term and 4-day-old preterm pigs,
the arteries of neonatal preterm pigs (within 24 h) showed greater
muscle tone and lower active wall tone (Soni et al., 2015). The
development of the heart, kidneys, and renin-angiotensin system
(RAS) is essential for maintaining blood pressure. Even though the

kidneys of female full-term pigs expressed the genes for (pro)renin
receptor, renin, angiotensinogen, angiotensin-converting enzyme
(ACE), ACE2, angiotensin type 1 receptor (AT1R), and
angiotensin type 2 receptor (AT2R), their renal angiotensinogen
mRNA levels were lower than those of male term pigs and preterm
female pigs. Angiotensin II-AT1R expression in the kidneys of
preterm pigs was comparable to that of full-term pigs. However,
the expression level of AT2R mRNA in the kidneys of preterm pigs
that were exposed to maternally administered glucocorticoid (GC)
intramuscularly was higher than those of full-term pigs (Kim et al.,
2015).

To measure the passivity of renal blood volume to spontaneous
changes in arterial blood pressure, the renovascular reactivity index
(RVx) was devised. RVx is designed as a near-infrared spectroscopy
(NIRS)-based measure that can continuously monitor the moving
correlation of changes in blood volume and blood pressure in the
kidney. The percentage reduction in baseline flow at the RVx
threshold quartile is considered the gold standard for measuring
renal vascular passivity. The RVx measurement provided a superior
option for the creation of clinically viable end-organs monitoring
systems to assess renal perfusion of preterm neonates during shock
because it was more accurate than renal laser-Doppler
measurements in detecting the reduced ability of renal blood
flow (Rhee et al., 2012).

3.9 Blood constituents

Pigs who are born prematurely are the animal models
that exhibit the typical clinical symptoms of preterm newborns
(such as respiratory abnormalities, hypothermia, metabolic
problems, and increased risk of infection) that develop NEC
on their own after ingesting infant formula after birth
(Nguyen et al., 2016a). In comparison to full-term newborns,
the expression of leukocytes and their innate immune receptors
(CD14, TLR2, TLR4, and MD-2) in the cord blood of preterm
infants was considerably lower (Tissieres et al., 2012). Therefore,
measuring blood indices and NEC characteristics in preterm pigs
may be used to monitor infections, assess feeding practices, and
determine when the innate immune system develops and
matures. Preterm pigs with NEC exhibited lower neutrophil
and lymphocyte counts than preterm pigs without NEC (Pan
et al., 2022), while full-term newborn pigs had greater
concentrations of total blood leukocytes (2.2-fold), neutrophils
(7.1-fold), erythrocytes (1.5-fold), and hemoglobin (1.4-fold)
(Nguyen et al., 2016a). Fewer neutrophils and a high
proportion of progenitor cells, which made up roughly 20%–

30% of total leukocytes, were present in newborn preterm pigs.
Analysis of blood gene expression may be a viable strategy to help
find novel early indicators of NEC, according to a recent study
that indicated that whole blood gene expression in preterm pigs
may be influenced before clinical symptoms of NEC become
severe (Pan et al., 2022).

In comparison to term newborn pigs, neonatal preterm pigs
showed lower values for blood pH, pO2, glucose, lactate, hematocrit
(HCT), cortisol, and plasma insulin-like growth factor-I (IGF-I),
and a similar plasma GLP-1 level (Andersen et al., 2016; Naberhuis
et al., 2019). Growth hormone and insulin-like growth factors (IGF-I
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and -II) promote the growth of human fetuses and infants.
Erythropoietin (EPO), growth hormone, and IGFs are all
expressed early in fetal development (Halvorsen and Bechensteen,
2002). It was discovered that adding exogenous long arginine (LR3)
IGF-I, an analog of IGF-I, increased the growth rate of newborn pigs
(Dunshea et al., 2002). Oxygen transport to human tissues is
significantly influenced by erythrocyte longevity, and IGF-I and
EPO work together synergistically to influence erythrocyte
formation (Halvorsen and Bechensteen, 2002). Due to its similar
viscosity to human blood, sheep blood has been examined for fetal
circulating red blood cell (RBC) lifespan (Brace et al., 2000; Ecker
et al., 2021). Pig blood is also used to model blood circulation since,
in high-flow situations, it closely resembles human blood (Weng
et al., 1996). Therefore, preterm pig models can be used to measure
indirect indicators like circulating RBC volume or HCT, to
determine whether delayed umbilical cord clamping results in
RBC transfer from placenta to newborn and the potential
positive or negative effects of this treatment. (Strauss et al.,
2003). The relationship between HCT and circulating RBC
volume in newborns with low birth weight may also be studied
using a preterm pig model to measure the infants’ capacity for
systemic oxygen supply and calculate their potential need for
transfusions of RBCs (Mock et al., 2001). The feasibility of
extracorporeal membrane oxygenation (ECMO) to support
circulatory function in newborns can also be studied using the
preterm pig models (Trittenwein et al., 1999; Trittenwein et al.,
2001). As a result, nursing research on preterm newborns or
infants with low birth weight will benefit from comparison and
analysis of the key differences in blood composition, blood
biochemistry, and other physiological indexes between preterm
pigs and full-term pigs.

4 Research applications for preterm pig
models

Several physiological, morphological, and metabolic traits are
similar between newborn pigs and newborn humans (Darragh and
Moughan, 1995; Puiman and Stoll, 2008). Preterm pigs’ immature
intestines have a strong ability for metabolic immunological
reprogramming, which allows them to quickly adapt to postnatal
life (Pan et al., 2020a). To choose the best food supply during the
crucial newborn period, studies on physiological adaptation in
preterm pigs are helpful (Sangild et al., 2013; Baek et al., 2019;
Ahnfeldt et al., 2020). Therefore, preterm pigs are a good model to
research the effects of preterm feeding tolerance, GIT maturation,
microbial colonization, immunological activation, and growth
(Obelitz-Ryom et al., 2018; Kappel et al., 2020). Using preterm
pig models, the researchers found that pasteurization improved the
digestion of formula milk powder and decreased bacterial adhesion
in the mucosa of the proximal small intestine of piglets (Navis et al.,
2020). The researchers demonstrated the significant impact of
environmental influences on early life development using preterm
pig models. Even though preterm pigs had a high gastrointestinal
tolerance to milk that was rich in oligosaccharides, intestinal
maturation, and systemic immunity were not enhanced (Obelitz-
Ryom et al., 2018). Using preterm pig models, the researchers also
found that oligosaccharide-enriched whey with sialyllactose can

stimulate brain development and improve spatial cognition in
neonates (Obelitz-Ryom et al., 2019).

4.1 Use in nutrient fortification and NEC
protection

Breast milk is the ideal first diet for infants, especially for
preterm babies. However, nutrient fortification of human milk is
usually necessary to maintain the proper growth and organ
development of preterm newborns when breast milk supply is
limited. Preterm birth is associated with a higher risk of digestive
immaturity-related problems, such as nutritional indigestion and
malabsorption. It has been established that enteral nutrition given
soon after birth alters the structure and function of the small
intestine and that lipid digestion plays a significant role in
accelerating enterocyte turnover frequency and intestinal
maturation in preterm pigs (Zaworski et al., 2022). This finding
suggests that a preterm infant’s appropriate intestinal growth
depends on the selection of a nutritional assistance support
strategy. Bovine colostrum (BC) was superior to Formula-based
fortifiers (FFs) in preventing intestinal dysfunction, NEC, and
systemic infection in preterm pigs (at 105–106 days of gestation)
(Sun et al., 2019). In particular, neonatal and diet-sensitive preterm
pigs were more susceptible to NEC, sepsis, and intestinal
dysfunction as a result of FFs (Sun et al., 2018). Compared to
formula, BC can promote the physical growth and intestinal
development of preterm pigs (Rasmussen et al., 2016). However,
the fortified formula for preterm infants performs no less admirably
than fortified human milk fortification in terms of enhancing short-
term weight gain in low-birth-weight preterm infants. Infant
formula for preterm newborns may be a preferable choice for
fortification if you want to keep expenses down and prevent feed
intolerance (Chinnappan et al., 2021).

NEC is the most common gastrointestinal problem in preterm
neonates. It involves the breakdown of the gut barrier disruption and
bacterial invasion of the mucosa, and approximately 30% of affected
infants die (Fitzgibbons et al., 2009). Because preterm pigs
reproduce important aspects of human NEC and also
demonstrate intestinal hypoxia comparable to that before human
newborn NEC (Sangild et al., 2006; Sodhi et al., 2008; Gay et al.,
2011), preterm pig models have been used to study and evaluate the
effects of arginine supplements and other factors in reducing the
prevalence of NEC (Sangild et al., 2006; Sodhi et al., 2008; Gay et al.,
2011; Robinson et al., 2018). The production of citrulline, a
precursor to arginine synthesis, and systemic production of
citrulline and arginine fluxes in piglets were found to be reduced
by NEC, and the reduction occurred before NEC in preterm pig
models. These findings imply that decreased intestinal production of
citrulline during preterm birth may be a risk factor for NEC
(Robinson et al., 2018). The preterm pigs are also used to
identify microorganisms that are associated with NEC (Azcarate-
Peril et al., 2011) or to validate any potential NEC biomarkers
(Kappel et al., 2021; Pan et al., 2022). Cow’ and sow’s colostrum
(Bjornvad et al., 2008) and milk formula with osteopontin (OPN)
added (Moller et al., 2011) have been shown in preterm pigs’ studies
to improve gastrointestinal function and protect against NEC. There
has been discussion on the ideal moment to start fortification studies
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in preterm babies, such as whether the first enteral feeding or when
the infant’s daily milk intake exceeds 100 ml/kg of body weight
(Thanigainathan and Abiramalatha, 2020). The European Milk
Bank Association (EMBA) also recommends “tailored
fortification” to maximize nutritional intake, while “standard
fortification” is the most often used protocol in neonatal
intensive care units (Arslanoglu et al., 2019). The use of very
preterm and early preterm pig models in the study of various
nutritional fortification products for preterm newborns should be
highlighted, and their effects on improving the intestinal barrier and
preventing NEC in pigs should be assessed. Due to their similar
immature gastrointestinal movements compared to preterm
neonates (Chen et al., 2021), preterm pig models have been used
in research on the laparoscopic diagnosis of NEC (Knudsen et al.,
2020). This model may sensitively and precisely predict the lesion
scores of NEC, which is a crucial reference value for the diagnosis of
newborn NEC and the choice of the best window for surgical
intervention. Intravenous antibiotics (AB) are commonly given to
newborn preterm infants to treat systemic infections, not to avoid
preterm birth (Mercer and Lewis, 1997). Long-term intravenous AB
exposure, however, increases the risk of antibiotic resistance in the
gut microbiota (Zhang et al., 2013), NEC, or even death (Cotten
et al., 2009). Enteral AB treatment in formula-fed newborn preterm
pigs has improved gut health and prevented the onset of NEC (Birck
et al., 2016). Brunse et al. (2021) found that enteral neomycin and
amoxicillin-clavulanate treatment followed by rectal fecal
microbiota transplantation (FMT) failed to protect against NEC.
Donors, doses, durations, and delivery techniques for FMT might
influence the outcomes of NEC.

4.2 Use in neonatal encephalopathy (NE)

Preterm birth is at risk due to chorioamnionitis (CA), which is
also associated with cognitive decline and delayed
neurodevelopment. Prenatal exposure to endotoxins like LPS for
a short period resulted in proteome alterations in the CSF fluid and
brain of preterm pigs (at 103 days of gestation), but most of these
changes disappeared within a few days (Muk et al., 2022). Prenatal
exposure to an intra-amniotic dose of LPS had a long-lasting impact
on preterm pigs’ renal function, as evidenced by elevated levels of
renal injury indicators (leucine-rich alpha-2 glycoprotein-1, kidney
injury molecule-1, neutrophil gelatinase-associated lipocalin,
hypoxia-inducible factor 1-alpha, and caspase 3) in renal tissue
as well as increased expression of proteins associated with innate
immune activation and adaptive immunity (Muk et al., 2020).
Hypoxic-ischemic encephalopathy (HIE) is a recognizable and
well-defined clinical syndrome in full-term infants caused by
severe or prolonged hypoxic-ischemic episodes before or before
birth. Hypoxic-ischemic injury (HII), its clinical course,
surveillance, and outcome in preterm infants, however, remain
difficult to define, mostly due to the possibility that clinical signs
in younger preterm infants may be obscured by physiological
immaturity (Gopagondanahalli et al., 2016). Therapeutic
hypothermia (TH) is the gold standard treatment for full-term
newborns with neonatal encephalopathy (NE), which involves
lowering body temperature to 33°C–34°C. The benefits of TH for
neonatal survival and neurodevelopment outweigh any short-term

negative effects in full-term and late preterm infants with HIE since
it can reduce death (Jacobs et al., 2013). A newborn is often wrapped
for 72 h during TH to cool the entire body, but this prevents the baby
and parents from having physical touch throughout the procedure
and results in subcutaneous fat necrosis in full-term babies
(Chakkarapani, 2016). Dingley et al. (Dingley et al., 2018)
successfully used the neonatal esophageal heat exchanger (NEHE)
device to lower the rectal temperature of newborn full-term pigs
from 38.5°C to 35°C, indicating that esophageal cooling technology
may become yet another way to quickly achieve therapeutic
hypothermia and become a potential clinical scheme for the
treatment of NE.

The risks of hypoglycemia, respiratory distress syndrome,
dehydration, and circulatory instability are increased in preterm
pigs that undergo enterectomy (Aunsholt et al., 2015).
Hypoglycemia is associated with increased reactive oxygen and
nitrogen species, decreased cell maturation, and brain apoptosis,
all of which have the potential to affect preterm infants’ brain
development (Wayenberg and Pardou, 2008). Intraventricular
hemorrhage (IVH) is a common complication of preterm birth.
It has been correlated with the prognosis of periventricular
leukomalacia (PVL), cerebral palsy, and developmental delay
(Tarby and Volpe, 1982). However, the etiology and evolution of
IVH are still unclear, and no effective treatment has been developed
to reduce the damage of IVH (Ballabh, 2010; 2014; Dingley et al.,
2018). Using newborn pig models, Tang et al. (2016) described the
link between electrical impedance tomography (EIT) for monitoring
periventricular damage and blood pressure fluctuations, which may
be suitable for quantitative monitoring of neonatal IVH. The use of
preterm pig models to advance the maturity of the continuous EIT
technology may also be explored in the future, although it is
currently uncertain how to ensure that the preterm pig models
can withstand the injury caused by IVH modeling surgery.

4.3 Use in mechanical ventilation and
oxygen therapy

Birth gestational age is a key marker of health; the younger the
gestational age, the greater the risk of morbidity and mortality.
Because newborns’ lungs have immature lung development and are
more susceptible to mechanical ventilation and oxygen therapy
(Clark et al., 2000), alternate de novo synthesis of several growth
factors (GFs) in the lung (Warburton et al., 2000) is essential for the
damage repair response and remodeling in the early postnatal
period. The results of model experiments in preterm pigs
(85–89 percent of gestation) demonstrated that airway pressure
release ventilation (APRV) improved alveolar recruitment and
enhanced functional residual capacity in preterm piglet
development and maintenance, and the survival rate was
significantly higher than that of the open mask ventilation
control group. Poor ventilation strategy selection can result in
lung injury (Arrindell et al., 2015). However, ventilator-related
lung damage is prevalent in these preterm newborn infants
because their lungs are still developing when they are born very
early (less than 24 weeks gestation). The study demonstrated that
mechanical ventilation, such as APRV, can enhance newborn pigs’
oxygenation and compliance and lessen their risk of lung damage
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(Kollisch-Singule et al., 2017). These results imply that neonatal
APRV clinical application is essential. Regarding ventilator-induced
lung damage, although the technology is still in its infancy,
researchers have attempted to implant oxygenators into preterm
pig models to explore the impact of artificial placenta technology on
the hemodynamics and brain oxygenation of newborn pigs (Darby
et al., 2021).

In a study of preterm pigs, it was discovered that mechanical
ventilation during the early postnatal period interferes with the
expression of lung growth factors, including platelet-derived
growth factor-B (PDGF-B), IGF-I, keratinocyte growth factor
(KGF), hepatocyte growth factor (HGF), vascular endothelial
growth factor (VEGF), and transforming growth factor-beta 1
(TGF-β1) (Liu et al., 2008). Early treatment with inhaled nitric
oxide (iNO) alone or in combination with surfactant improved
oxygenation and mechanical ventilation efficiency in preterm pigs.
This treatment approach may be an effective alternative for the
management of severe hypoxemic respiratory failure in neonates
(Yang et al., 2006; Qian et al., 2008).

5 Conclusion

This review explains preterm birth, analyzes the relationship
between the days of animal models and one human year, and
describes in detail the physiological characteristics of the growth
and development of preterm pigs at different gestational ages. The
establishment of more accurate experimental pig models can
contribute to a better understanding of the growth of preterm
neonates, the occurrence and development of neonatal disorders,
as well as the prevention and treatment of diseases, ultimately
leading to an increase in the survival and health status of
newborns. Future study is still required to determine the precise
early intervention or treatment for gestational age that can best
benefit newborns’ short- and long-term development.
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