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Introduction: The lower limb exoskeleton rehabilitation robot should perform gait
planning based on the patient’s motor intention and training status and provide
multimodal and robust control schemes in the control strategy to enhance patient
participation.

Methods: This paper proposes an adaptive particle swarm optimization
admittance control algorithm (APSOAC), which adaptively optimizes the
weights and learning factors of the PSO algorithm to avoid the problem of
particle swarm falling into local optimal points. The proposed improved
adaptive particle swarm algorithm adjusts the stiffness and damping
parameters of the admittance control online to reduce the interaction force
between the patient and the robot and adaptively plans the patient’s desired
gait profile. In addition, this study proposes a dual RBF neural network adaptive
sliding mode controller (DRNNASMC) to track the gait profile, compensate for
frictional forces and external perturbations generated in the human-robot
interaction using the RBF network, calculate the required moments for each
joint motor based on the lower limb exoskeleton dynamics model, and perform
stability analysis based on the Lyapunov theory.

Results and discussion: Finally, the efficiency of the APSOAC and DRNNASMC
algorithms is demonstrated by active and passive walking experiments with three
healthy subjects, respectively.
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1 Introduction

In recent years, the number of stroke patients has been increasing. More precisely, the
statistics show that more than 4 million new stroke patients are diagnosed each year in
Europe, the United States, and China (Zhang et al., 2017; Paraskevas, 2020). At the same
time, the problem of motor dysfunction in patients due to stroke has significantly increased,
while approximately 65% of these patients require rehabilitation (Miao et al., 2023).
However, the traditional manual rehabilitation has many problems, such as strained
medical staff and insufficient manpower to ensure consistency of repetitive training.
Moreover, it can cause greater financial stress to patients (Gittler and Davis, 2018). The
Lower Extremity Exoskeletal Rehabilitation Robot (LEERR) can drive the patient’s legs to
perform repetitive rehabilitation exercises through active and passive training, in order to
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reshape its motor nerves and restore its independent walking ability
(Xing and Lv, 2019; Bae et al., 2020). The above studies have
important research implications for understanding the
rehabilitation needs of stroke patients, improving traditional
rehabilitation methods, and exploring the application of lower
extremity exoskeletal rehabilitation robotics. These studies are
expected to provide more effective and sustainable rehabilitation
programs for stroke patients and improve their quality of life and
rehabilitation outcomes.

One of the most critical issues of LEERR is the accurate
identification of the human body’s motion intention, and the
human-robot collaboration based on less human-robot
interaction force for active rehabilitation (Chen et al., 2022).
Force sensors, Inertial Measurement Unit (IMU), and
Electromyography (EMG) sensors are usually used to capture the
human motion intention (Meng et al., 2020). Xie et al. used EMG
information combined with admittance control to perform active
control of an upper limb exoskeleton robot for several tasks such as
grasping and rehabilitation training (Xie et al., 2021). Huang et al.
used force sensors as the basis for human-robot interaction, and
generated motion reference trajectories using a conductive adaptive
fuzzy algorithm, which provides a theoretical basis for the realization
of human active rehabilitation movements (Huang et al., 2022). The
IMU can measure the foot trajectory, and it is used to identify
different terrain levels and thus decide on different movement
patterns (Gao et al., 2020). Zhuang et al. used impedance control
to capture the human motion intention through myoelectric signals
and track it through PD control, in order to obtain satisfactory knee
joint flexibility control results (Zhuang et al., 2020). In this study, the
interactive force of the subject’s thigh and calf was measured by a
two-dimensional force sensor to identify the user’s motion
intention.

Admittance control (Chen et al., 2021) and impedance
control (Soliman and Ugurlu, 2021) are more widely used in
lower limb exoskeletons, due to the fact that they allow the motor
to always move in the direction where the human-robot
interaction force becomes smaller, ensuring flexibility between
the human and the robot (Losey and O’Malley, 2017). In active
patient rehabilitation training, the coupling and interaction
between the human and the robot change at any time, and
therefore the controller should be able to adjust the
appropriate parameters according to these changes (Cousin
et al., 2021; Wang et al., 2021; Guo et al., 2022). After the
desired trajectory of the human body is planned in the outer
loop of the control system using impedance/admittance control,
the trajectory should be efficiently tracked by the inner loop
controller to make the human-robot interaction force reach the
user’s expectation (Rahmani and Rahman, 2020; Lee et al., 2021).
With the development of artificial intelligence and computer
technology, more researchers combined artificial intelligence
techniques with traditional control techniques, and then
controlled nonlinear systems. For instance, Babak Esmaeili
et al. proposed an adaptive iterative learning integral terminal
sliding mode controller. The obtained simulation results
demonstrated that the latter overcomes the problem of
perturbations and performed effective trajectory tracking
(Esmaeili et al., 2022). There are many system variables in the
exoskeleton control system that cannot be measured, and thus

they should be approximated and compensated (Yang et al.,
2021). Razzaghian designed a finite-time fractional-order non-
singular fast terminal sliding mode control, and used a fuzzy
neural network algorithm to approximate external perturbations,
which ensures the exoskeleton control finite-time convergence
and robustness (Razzaghian, 2022). Control system uncertainty
and external perturbations are the main causes of control system
instability. Several algorithms such as neural networks (Yang and
Gao, 2019), machine learning (Sun et al., 2022), adaptive control
(Wu et al., 2018; Sun et al., 2021), sliding mode control (Kong
et al., 2019), and intelligent swarms, are mainly used to solve
these problems (Soleimani Amiri et al., 2020; Guo et al., 2022;
Zhang and Zhang, 2022).

Inspired by the study on lower limb exoskeletons, the main
contributions of this paper are summarized as follows: This paper
proposes an improved adaptive particle swarm optimization
admittance control algorithm and a dual RBF neural network
adaptive sliding mode controller for passive control of the lower
limb exoskeleton robot. The proposed methods aim to achieve
flexible control and accurate tracking of nonlinear and bounded
perturbed systems during active and passive walking training, while
reducing human-robot interaction force and energy consumption.
The stability of the proposed controllers is verified using the
Lyapunov theory.

2 LEERR system design

In this section, the system design process of LEERR is detailed,
and three subsystems are designed: the mechanical structure of
LEERR, the hardware control system, and the multi-source sensor
information system. The structure of LEERR has seven degrees of
freedom, where the hip and knee joints of both legs are active drive
joints, the ankle joint is a passive degree of freedom, and the
exoskeleton is mounted on the slide of the bracket to adjust the
robot height. The LEERR hardware control system consists of robot
controller, drive, and host computer units. The multi-source sensor
information system provides the real-time force, current, and angle
signals to the exoskeleton control system.

2.1 LEERR structure

The LEERR human-robot coupling model is shown in Figure 1.
The structure of the lower limb exoskeleton robot includes the upper
orthotic shell, mobile rail, thigh bar, calf bar, hip motor, knee motor,
ankle joint, support shoe, straps, and four-wheeled mobile platform
support. The four wheels of the mobile stand are non-powered, and
its forward motion relies on the step of the lower limb exoskeleton to
drive. The human body is connected to the waist, thighs, calves, and
soles of the exoskeleton by straps. The lower limb exoskeleton is
fixed on the slide rail of the mobile bracket so that the exoskeleton
can float up and down with the body’s center of gravity to make the
patient more comfortable during walking. The length of the thighs
and calves of the exoskeleton and the width of the waist can be
adjusted using pins. It is suitable for people having heights in the
range of 155–195 cm and weights less than or equal to 110 kg.
Table 1 shows the mechanical specifications of the exoskeleton,
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illustrating the rated torque, speed, and rotation angle range of the
hip and knee motors.

2.2 LEERR hardware control system

It can be seen from Figure 2 that the sensor system of the
lower limb exoskeleton robot contains four interactive force
sensors, currents of four joint motors and encoders, that are
passed to the direct memory (DMA) of the Stm32 controller
through the AD and CAN buses, respectively. Four 2D force
sensors are installed at the locations indicated by the red lines in
Figure 2, with a range of 0–30 kg and a voltage output range of
0–10 V, which can directly detect the interactive force signals
applied to the exoskeleton in the sagittal plane by the thigh and
calf. Each joint motor is equipped with a 19-bit absolute encoder
having an accuracy of 0.0007°. The Stm32 communicates with
Labview on a PC through a WIFI module to perform multi-
source sensor information acquisition, and each data curve is
displayed in real-time in the interface. In addition, Labview calls
the Matlab program to perform signal filtering and calculation of
the control algorithm. The training modes of the exoskeleton

such as passive training, active training, sitting, and standing
modes can be set through the upper computer. The walking speed
can also be set in the passive walking mode, which is divided into
slow, medium, and fast.

2.3 Dynamics model

The 2-degree-of-freedom lower limb exoskeleton dynamics
model can be described as:

τ + τhri � M θ( )€θ + C θ( ) _θ + G θ( ) + τf + τd (1)
where θ is the joint motion angle, _θ represents the angular velocity, €θ
denotes the angular acceleration of the motion, and τ represents the
input torque of the joint, τhri is the introduced human-robot interaction
force vector, τf is the friction force vector, and τd represents the external
disturbance vector. Moreover,M(θ) represents the inertia matrix, C(θ)
is the centrifugal force and the Coriolis force matrix, and G(θ) denotes
the gravity matrix, as shown in Eq. 1.

3 Control solutions

3.1 Admittance control

The active rehabilitation training can enhance the motivation of
patients to train, which requires a flexible interaction between
humans and robots. Admittance control can use the force sensor
information to identify predefined kinetic responses. The desired
gait position of the human body can be assisted and followed by
motors to achieve flexibility. In the admittance model, the kinetic
relationship between the desired position of the human body and the
human-robot interaction force can be expressed as:

FIGURE 1
LEERR structure and installation position of the equipment.

TABLE 1 Mechanical motion properties of the lower limb exoskeleton.

Column 1 Hip joint Knee joint

Rated torque 65 Nm 45 Nm

Rotational Speed 20 rpm 25 rpm

Range of motion FE: −10°–25° FE:0°–65°

Note: FE, Flexion/Extension.
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fext � Md
€θ − €θd( ) + Bd

_θ − _θd( ) + Kd θ − θd( ) (2)

where, Md, Bd and Kd are respectively the inertia, damping, and
stiffness matrices, θ is the joint motion angle matrix of the human
body, θd is the desired angle matrix of the robot motion, and fext is
the human-robot interaction force matrix measured by the force
sensor. Note that in this study, the effect of the inertia matrix is
ignored due to the small acceleration, such that Md = 0. The
calculation of the desired human gait is performed by collecting
the information from the Human-Robot Interaction (HRI) force
sensor and the exoskeleton joint angle. It is further derived from Eq.
2 as:

_θd � _θ − B−1
d fext − Kd θ − θd( )( ) (3)

3.2 Improved adaptive particle swarm

In the walking process, the human gait trajectory has nonlinear
characteristics and the speed is constantly changing. Therefore, the fixed
parameters of the admittance control cannot adapt to the complex
walking process. The conduction parameters, K and B, should be
adapted to the walking characteristics of different people and
different walking environments. By designing a suitable adaptation
function, the online adjustment of the admittance parameters can allow
the patients to efficiently perform rehabilitation training with minimal
energy consumption and more accurate gait intention tracking. APSO
is a population algorithm that simultaneously adapts tomultiple targets.
Compared with the traditional particle swarm optimization (PSO)
algorithm, APSO can adaptively adjust the inertia weights and
learning factors which allows the particle population to enhance the
global and local search abilities, thus enhancing the adaptability to
multi-peaked problems. The use of nonlinear dynamic inertia weights
allows them to decrease with the increase of the number of iterations,

and to increase with the increase of the distance from the global optimal
point, which enhances the global and local search ability of the particles.
In the early stage of the algorithm, the learning factor c1 of the particle
itself is large. It relies on the particle itself to maximize the global search.
In the later stage of the algorithm, the value of c2 is larger, and it relies
more on the group search to converge to the global optimum. The steps
of theAPSOAC algorithm are shown in Figure 3. Thefitness function of
APSO is the performance evaluation function of human-robot
interaction, which is expressed as:

J � ∫+∞

0
θ − θd( )TQ θ − θd( ) + fTextRf ext( )dt (4)

where Q and R are the positive diagonal weight matrices of the
trajectory tracking error and the human-robot interaction force,
respectively. Following Eq. 10, the generated gait trajectory is
considered as the optimal trajectory of the robot under the
action of external forces.

The particle displacement and velocity are updated as follows:

xi,j t + 1( ) � xi,j t( ) + vi,j t + 1( ), j � 1, . . . , n (5)
vi,j t + 1( ) � ω × vi,j t( ) + c1r1 pi,j − xi,j t( )[ ] + c2r2 pg,j − xi,j t( )[ ]

(6)
The weights and learning factors are then updated using Eqs 7–9.

ω � ωmin − ωmax − ωmin( ) × f − fmin( )
favg − fmin

, f≤favg

ωmax, f>favg

⎧⎪⎪⎨⎪⎪⎩ (7)

c1 � 2e−j/N (8)
c2 � 2/e( )*ej/N (9)

where N is the number of particles in the population, ωmax and ωmin

are the maximum and minimum values of the inertia weights,
respectively, f denote the real-time objective function values of

FIGURE 2
Exoskeleton hardware control platform.
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the particles, favg and fmin represents the average and minimum
objective values of all the current particles, respectively, is the
number of current iterations, c1 and c2 denote the learning
factors of the particles. The judgment statement of the flowchart
compares the adaptation value of each particle with its best position.
If they are the same, the current value is used as the best position of

the particle. All the current pbest and gbest are then updated.When the
algorithm reaches its stopping condition, it stops the search and
outputs the admittance control parameters K and B for both hips. If
the stopping condition is not satisfied, it returns to step 3. The
simulation curves of the fitness functions of APSO and PSO are
shown in Figure 4, which demonstrates the variation of the fitness
with the increase in the number of iterations. It can be seen that the
performance of the improved APSO outperforms the traditional
PSO algorithm. The improved APSO algorithm converges faster and
is able to jump out of the local optimal solution continuously during
the iterative process and reaches the optimal solution, thus achieving
the optimal human-computer interaction effect.

3.3 RBF neural network adaptive sliding
mode control

When rehabilitation training is performed on the ground, the
control system faces many challenges, such as frictional forces,
interaction forces between the ground and the exoskeleton footbed,
and uncertainty of external perturbations. The radial basis function
neural networks have high approximation performance for any
nonlinear system as well as high resistance to noise. Therefore,
radial basis functions are used to approximate the frictional forces
and perturbations in the exoskeleton human-robot system. RBF neural
networks are fused with sliding mode control, and RBF neural network
adaptive sliding mode control is proposed to track the gait profile

FIGURE 3
Flowchart of the APSOAC algorithm.

FIGURE 4
The fitness function of two optimization algorithms.
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planned by adaptive particle swarm admittance control (APSOAC). In
general, the RBF neural network can be represented by:

hj � exp
θ − cj
 2

2b2j
⎛⎝ ⎞⎠ (10)

τf θ( ) � W* Thf θ( ) + εf (11)
τd θ( ) � V* Thd θ( ) + εd (12)

where θ is the input of the neural network, h is the output of the
Gaussian basis function,W* andV* are respectively the ideal weights of
τf and τd, εf and εd are the approximation errors of the network, j
represents the jth node of the network hidden layer, c is the coordinate
vector of the centroid of the neuron Gaussian basis function in the
hidden layer, and b is the width of the neuronGaussian basis function in
the hidden layer. Taking τf as an example, the weights of the RBF
network are obtained using the gradient descent method. In order to
prevent overfitting, we also adopt the dropout regularization technique
to enhance the model’s generalization ability. The error of the network
approximation is evaluated using an error indicator.

E θ( ) � 1
2

τhri θ( ) −Wj′
x − cj
 2

2b2j
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦2 (13)

Tominimize the error indicator function, the weights of the network
are adjusted using the gradient descent method.

ΔWj t( ) � −η τhri θ( ) − τ̂hri θ( )[ ]hj (14)
τ̂f θ( ) � M Ŵ

T
hf θ( )( ) (15)

τ̂d θ( ) � M V̂
* T

hd θ( )( ) (16)

where Ŵ and V̂ are the estimated weights. ~W � Ŵ −W*,
~V � V̂ − V*. The ideal angle θd, error e = θd − θ, and sliding
mode function are expressed as:

s � ce + _e, c> 0 (17)
where c represents the gain parameter of the sliding mode controller.
The design control law is given by:

τ + τhri � M −ce + €θd − η sgn s( )( ) + C θ, _θ( ) _θ + G θ( ) + τ̂f + τ̂d

(18)
where η is the slope parameter of the sliding surface. The Lyapunov
function is chosen as:

L � 1
2
s2 + 1

2γ1
~W

T ~W + 1
2γ2

~V
T ~V (19)

γ1 and γ2 are commonly referred to as regularization parameters.

_L � s _s + 1
γ
~W

T _̂W + 1
γ2

~V
T _̂V

� s c _e +M−1 τ + τhri − C θ( ) _θ − G θ( ) − τf − τd[ ] − €θd{ }
+1
γ
~W

T _̂W + 1
γ2

~V
T _̂V

� ~W
T

shf θ( ) + 1
γ1

_̂W[ ] + ~V
T

shd θ( ) + 1
γ2

_̂V[ ]
+ s −εf − ηsgn s( ) − εd[ ] (20)

The adaptive law is considered as:

_̂W � −γ1shd θ( ) (21)
_̂V � −γ2Shd θ( ) (22)

Therefore:

_L � s −εf − η sgn s( ) − εd[ ] (23)

The approximation errors εf and εd of the RBF network are very small
real numbers. Take η greater than or equal to the absolute value of tne
sumof εf and εd. Then _L≤ 0.When _L ≡ 0, s≡ 0, according to the LaSalle
invariant set principle, and when t→∞, s→ 0. The dual RBF adaptive
slidingmode control is shown in Figure 5. The slidingmode control acts
on the inertia matrix of the exoskeleton dynamics, and the two radial
basis functions are used to fit the friction and external disturbances in
the exoskeleton dynamicsmodel. The encoder in the exoskeletonmotor
is used to measure the control system error and the rate of error change
as the input of the RBF network. εf and εd are the outputs of the two RBF
functions. The adaptive law is designed to keep the control system
stable, which can compensate for the approximation error of the RBF
neural network in order to improve the system performance. Finally,
the proof is carried out by the Lyapunov stability theory.

4 Experiment

4.1 Introduction

Three healthy subjects (two males and one female, age 27 ± 3 years)
were first trained in active and passive walking rehabilitation. Note that
this study was approved by the Ethics Committee of the School of
Mechatronics of Beijing University of Technology, and all the procedures
were carried out according to the standards of theDeclaration ofHelsinki.
The experiment was divided into two main parts: active walking and
passive walking. To evaluate the trajectory tracking the effect of
DRNNASMC, the passive walking experiment consists of four parts:
sitting and standing, slow walking, medium speed walking, and fast
walking. The activewalking experiment consists in evaluating the softness
of APSOAC’s control and the performance of human-robot interaction.

4.2 Active walking experiment

In the active walking experiment, the motion trends at the hip
and knee joints of both legs were sensed by four force sensors. A
subject was asked to walk twice using the same step frequency and
stride length according to two control schemes: APSOAC and
admittance control (AC). The walking training effect of the two
control schemes was then judged by comparing the profiles of HRI
force and joint motor current in the two experiments. Due to the
periodic nature of the HRI force signal and the noise effect, the root
mean square (RMS) value was used to quantify the HRI force and
motor-assisted force (expressed as current) (Zhuang et al., 2020):

RMS �

�����������
1
T
∑T
i�1

y i( )( )2√√
(24)

The orange and blue lines in Figure 6 show the human-exoskeleton
interaction forces for the APSOAC and AC control schemes,

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Gao et al. 10.3389/fbioe.2023.1223831

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1223831


respectively. The human-robot interaction force curve for the
APSOAC algorithm varies between −15 N and 10 N. It is then in
the tolerable interaction force range. The blue line indicates the
interaction force curve of the AC algorithm, which varies
between −60 N and 20 N. The interaction force fluctuates more,
the human body is subjected to high resistance, and the human-
robot interaction is unstable. Based on the values presented in the
root mean square values of the hip and knee joint interaction forces,
it can be observed that the effective interaction force on the thigh
and calf are relatively small. The τhri,hip and τhri,knee of APSOAC are

8.42 N and 8.28 N, which are lower than the 20.10 N and 13.83 N of
AC, respectively. This indicates that the APSOAC scheme results in
a smaller human-robot interaction force, with less variability in the
force, ultimately leading to better human-robot interaction
performance.

The current loops of the hip and knee motors were used as a
reference for the motor-assisted force. The root-mean-square values
of the motor currents are shown in Figure 7. Under the same walking
conditions, the auxiliary force of AC is significantly larger than that
of APSOAC. The variation interval of the current of APSOAC is [-2

FIGURE 5
RBF dual adaptive sliding mode control system for lower limb exoskeleton robot.

FIGURE 6
Human-robot interaction forces in the hip and knee joints.
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A, 3 A] with a more stable current variation, while the AC control
scheme requires to overcome the larger inertia brought by the gait
phase change, such as the area around 5, 10, and 15 s, due to the fixed
parameters. Based on the values presented in the root mean square
values of currents in hip and knee motors, it can be observed that the
auxiliary currents of the motor to the human hip and knee joints in
the APSOAC scheme are respectively 1.3 A and 1.51 A. They are
44.83% and 53.55% of the auxiliary currents of the AC control
scheme. This also illustrates that the conventional admittance
control with fixed parameters cannot adapt to the complex gait
variations.

Figure 8 shows the difference between the two control schemes
in terms of single-step energy consumption, that is, the electrical
energy consumed by the subjects for each step. The average electrical
energy consumed by the AC algorithm for the hip and knee joints in
a single-step walk was respectively 119.571 and 158.744 J, while that

consumed by the APSOAC algorithm was respectively 55.547 and
81.6802 J. The results indicate that, compared with the conventional
admittance algorithm, the APSOAC algorithm can save 53.5% and
48.5% of energy for the hip and knee joints when walking,
respectively. It can also save 50.7% of electrical energy on
average. The electrical energy saving also indicates that the
human body’s physical energy is saved accordingly, and the
training is smoother and more efficient.

4.3 Passive walking experiment

Passive walking experiments were conducted to evaluate the
trajectory control effects of the exoskeleton robot in sitting,
standing, and walking at different speeds by quantitative
analysis. The root-mean-square values of the position tracking
error were analyzed by completing a given gait training
trajectory. The sitting and standing experiments are equivalent
to step trajectory following, where the exoskeleton is adjusted to
sitting mode before the subject puts on the exoskeleton. The human
body then puts on the exoskeleton and sets it to standing mode, so
that the subject changes from sitting to standing and the walking
training can be performed. The steep curve of seated standing is
used to analyze the error between the actual motion and the target
trajectory, so as to study the influence of the robot’s following
motion on a single target position. In the slow, medium, and fast
walking training, the subjects wear exoskeletons and follow the gait
curves at different preset gait speeds, in order to analyze the
trajectory tracking effects of the DRNNASMC and conventional
PID algorithms at different gait speeds.

4.3.1 Sitting and standing tracking experiments
In Figure 9, the curve segment from 3 to 8 s is the process of the

exoskeleton changing from standing to sitting, while the curve
segment from 15 to 20 s is the process of changing from sitting
to standing. At 8 and 20 s, when the motor reaches the target angle,
the PID controller does not stop the rotation immediately, but
overshoots. However, the curve of the DRNNASMC controller
coincides with the reference trajectory while having less errors.

FIGURE 7
Current in the hip and knee joints.

FIGURE 8
Energy consumed in the hip and knee joints for the two control
schemes.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Gao et al. 10.3389/fbioe.2023.1223831

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1223831


The root-mean-square values of the trajectory tracking errors of
DRNNASMC and PID are shown in Figure 10. The root-mean-square
errors of the PID algorithm on the hip and knee joints are respectively
1.833° and 1.918°, and those of the DRNNASMC algorithm are 0.452°

and 0.711°, respectively. The results show that the tracking errors of
the DRNNASMC algorithm are significantly smaller than those of the
PID algorithm, which indicates that the control scheme has a
significant effect on the tracking error.

4.3.2 Passive walking trajectory tracking
experiments with different step speeds

Figure 11 shows the tracking performance of the hip and knee
joints for both control schemes over two half-cycles. By qualitatively
analyzing the tracking curves, it can be deduced that the tracking
error of the PID control curve is increasing with the increase of the
gait training speed, and the error mainly appears in the gait change
phase (at the crest and trough of the figure). The DRNNASMC
control curve is less affected by the speed increase, and the tracking
accuracy is higher.

The RMSE values of the hip and knee tracking data from the two
control schemes were then quantified (Figure 12). The root means
square error results show that the control scheme significantly
affects the gait trajectory tracking efficiency. When the walking
speed increased, the tracking error of the PID controller increased,
with a larger tracking bias. The tracking error of the DRNNASMC
controller increased from low to medium speed. However, there was
no significant error difference from medium to high speed. In
addition, the average error of DRNNASMC over the hip and
knee joints was 56% smaller than that of the PID controller in
each speed level from low to high speed (25% and 45%, respectively).

4.3.3 Active walking trajectory tracking experiment
Gait curves were generated using APSOAC, and trajectory

tracking was performed using the DRNNASMC controller, as
shown in Figure 13. It can be seen that compared with the gait
curves during passive training, the gait tracking for active training
was better and the curves were smoother due to less human-robot
interaction forces. It can be observed from the histogram that the
RMSE values for hip and knee tracking errors are 0.88° and 0.86°,
respectively. These results are significantly lower than the gait-
following errors for passive training. This further demonstrates
that APSOAC accurately identifies the human motion intention,
and it is able to move in the direction where the human-robot
interaction force is reduced, making the active walking more supple,
thus achieving a good tracking effect.

5 Discussion

It can be seen from the experimental results of active walking
training (Figure 6) that the human-robot interaction force for the hip
and knee using the proposed APSOAC algorithm is respectively 58.1%
and 40.1% smaller than that of the AC algorithm. It can be observed
from the current curves of each joint (Figure 7) that the experimental
results are similar to the human-robot interaction force curve
(Figure 6), which indicates that the motor provides less auxiliary
force than that of the AC controller when the same target position
is reached during humanwalking with APSOAC control. In addition, it

FIGURE 9
Tracking curves of two control schemes in sitting and standing modes.

FIGURE 10
Root mean square error of two control schemes in sitting and
standing modes.
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can be deduced from the single-step energy consumption in Figure 9
that the active training using the APSOAC algorithm saves an average
of 50.7% of electrical energy, compared with the admittance control.
The experimental results in Figure 6 and Supplementary Figure
S8 show that when the human leg steps forward, the APSOAC
controller can accurately identify its motion trend in real-time. In
addition, the adaptive particle swarm allows the admittance controller
to derive the desired motion trajectory of the human body, by updating
the optimal K and B in real-time. While the adaptive particle swarm
algorithm offers several advantages over traditional AC algorithms, it

may still be susceptible to local optima. Future research will focus on
studying and improving this limitation. The DRNNASMC controller
can then make the motor continuously move in the direction of the
human-robot interaction force reduction. Thus, the human body’s
desired position is achieved by the DRNNASMC controller.

It can be seen from Figures 12, 14 that the accuracy of active
walking on gait curve tracking is higher than that of passive walking.
This is due to the fact that the human leg does not exert force when
passively walking, they rely on the joint motor for driving, and the
motor resistance is larger. In active walking, the human leg is active

FIGURE 11
Walking gait curves at three walking speeds. (A)Hip and knee joint slowwalking curve. (B)Hip and knee joint walking curve atmedium speed. (C)Hip
and knee joint fast walking curve.
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and the exoskeleton follows its movement. Therefore, the human-
robot interaction force is small. The dual RBF network based on the
dynamics model quickly compensates the torque required by the

motor. Thus, the error of gait curve tracking for the hip and knee
joints is small, and the RMSE values are 0.88° and 0.86°, respectively.
The latter values are 31.2% and 33% lower than the tracking error in
passive slow walking. The results show that the APSOAC algorithm
provides accurate human motion intent and performs supple control
in active walking training. In the passive walking experiment, the error
of the DRNNASMC controller increases with the speed increase,
fluctuating within 2.9, with an error fluctuation range 46.5% smaller
than that of the PID controller. This also demonstrates the efficiency
of the proposed DRNNASMC algorithm and its relative insensitivity
to external perturbations.

6 Conclusion

The proposed paper introduces a lower limb exoskeleton robot that
utilizes an adaptive particle swarm-optimized conductance control
algorithm to achieve gait trajectory generation. This algorithm
enhances the human-robot interaction, making it more flexible, and
enables the planning of desired human body gaits. By incorporating the
adaptive particle swarm algorithm, the gait planning becomes
adaptable. Additionally, a dual RBF neural network adaptive sliding
mode controller is employed to compensate for external perturbations
and friction. This controller ensures accurate tracking of the gait

FIGURE 12
Root mean square error for two control schemes in slow, medium, and fast travel modes.

FIGURE 13
DRNNASMC algorithm tracking curve.

FIGURE 14
Root mean square error of the two control schemes in active
walking mode.
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planning curve by the lower limb exoskeleton. Finally, experimental
demonstrations validate the aforementioned studies. Overall, these
studies offer a more effective and sustainable rehabilitation research
program for stroke patients’ rehabilitation.
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