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In this work, the issue of event-triggered-based asymptotic tracking adaptive
control of stochastic nonlinear systems in pure-feedback form with strong
interconnections is considered. First, a new decentralized control scheme is
developed by introducing the new types of Nussbaum functions, which
enables the output of each subsystem to asymptotically track the desired
reference signal. Second, the nonaffine structures and the unknown control
gains existing in the nonlinear systems are a part of the considered system
model, which makes it more complicated to design the decentralized
controllers. Therefore, the complexity caused by the nonaffine structures is
faciliated by mean value theorem and the unknown control gains are handled
by a novel Nussbaum function in our proposed design scheme. Meanwhile, the
unknown nonlinearities of the system are approximated by using intelligent
control technology. Furthermore, an event-triggered method is introduced in
the design process to save communication resources effectively. It is shown that
all signals of the closed-loop systems are bounded in probability and the tracking
errors asymptotically converge to zero in probability. Finally, the simulation results
illustrate the effectivity of the presented scheme.
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1 Introduction

Stochastic external disturbances exist in many branches of science and industry such as
unmanned air vehicles, intelligent home and distributed networks [1,2]. Seeing that
stochastic nonlinear systems can model a mass of artificial or physical industrial
platforms with stochastic external disturbances, it is necessary and beneficial to study
them for the vast majority of researchers [3–5]. Recently, stability control of stochastic
nonlinear systems with strict feedback or nonstrict feedback form has been the hot topic
discussed by many researchers. Nevertheless, most of actual models do not satisfy strict-
feedback and nonstrict-feedback form [6–9]. Therefore, numerous researchers have devoted
themselves to the study of adaptive controller design for stochastic nonlinear systems in
pure-feedback form such as mechanical and electrical systems, biochemical medical systems,
and dynamic model systems in pendulum control. More researches on stochastic nonlinear
systems with nonaffine structures have been explored, which were considered as complex
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and challenging themes such as state constraint, adaptive control,
and output-feedback control. In [8], the finite-time tracking control
problem was addressed for stochastic pure-feedback nonlinear
systems by introducing the barrier Lyapunov functions, the mean
value theorem, and the adaptive neural networks.

Furthermore, the interconnected systems composed of several
subsystems are called large-scale systems. The large-scale systems
have been extensively investigated because of their countless
applications in power systems, mobile satellite communication
systems, and multiagent systems. However, different from the
existing literature [10,11], the interconnection terms of strongly
interconnected nonlinear systems contain all the state variables of
the other subsystems. There is no doubt that the design of the
centralized controller of large-scale systems is difficult due to the
existence of physical communication limitations among
subsystems. Therefore, the decentralized control scheme was
proposed in order to achieve the desired control goal of large-
scale systems. For uncertain interconnected systems with dynamic
interactions [10], presented a new decentralized adaptive
backstepping-based control algorithm to deal with discontinuity
caused by state-triggering. In [11], the decentralized event-triggered
fault-tolerant control (FTC) scheme was proposed for the
interconnected nonlinear systems with unknown strong coupling
and actuator failures. Different from the centralized control,
decentralized control not only mitigates computation burden,
but also strengthens robustness of systems. Simultaneously, since
event-triggered control (ETC) strategy can effectively reduce
resources waste of unnecessary communication, it has become
an attractive research orientation. The ETC strategy is that the
control signal does not change in real time, but is restricted by the
trigger condition. It only changes at the moment of trigger and
remains stable within the trigger interval. So far, many meaningful

results on ETC strategy have been obtained [12–14]. For asymptotic
tracking of uncertain nonlinear systems [13], a novel adaptive
event-triggered control framework was proposed to reduce the
communication burden. Furthermore, the adaptive event-
triggered tracking control problem was considered by relaxing
the feasibility condition of the intermediate virtual controller for
a class of stochastic nonlinear systems [14]. Although the ETC
strategy has been employed to diversified nonlinear systems in
aformentioned results, the ETC mechanism based on relative
threshold for stochasitc interconnected pure-feedback nonlinear
systems are yet to be investigated.

Moreover, the issue of adaptive control for nonlinear systems
with stochastic disturbances has attracted extensive attention from
innumerable scholars [15,16]. On the one hand, neural networks
(NNs), which is identified as a powerful tool to approximate
unknown nonlinearities, has been extensively used in the
adaptive control. On the other hand, how to deal with the
control gain of stochastic nonlinear systems is also a concern. As
we all know, compared with the bounded and stable characteristics
of stochastic nonlinear systems, how to realize asymptotic tracking
control has more practical significance and research value.
Therefore, a new type of Nussbaum function is applied to the
adaptive controller design, which makes the nonlinear systems
realize asymptotic tracking and eliminates the influence of the
unknown control gains [17]. So far, although remarkable results
have been obtained in the research of stochastic nonlinear systems
by using Nussbaum function, there exist few results about how to
construct event-triggered-based adaptive controllers for stochastic
systems with nonaffine structures and strong interconnection terms,
which motivates us for this study.

In this paper, an event-triggered based adaptive decentralized
asymptotic tracking control scheme is proposed for stochastic

FIGURE 1
The trajectories of y1 and yd1.
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nonlinear systems with nonaffine structures and strong
interconnection terms. The main contributions of this work are
three-fold: 1) One thing that needs to be stressed is that it is very
complicated to design decentralized controllers for interconnected
systems, especially for the interconnected systems with both stochastic
terms and nonaffine structures. Thus, a new decentralized control
scheme is first developed by introducing the new type of Nussbaum
functions, which realizes the asymptotic tracking control in
probability for stochastic interconnected pure-feedback systems. 2)
Meanwhile, how to save the system-limited transmutation resource
for nonlinear systems, especially for uncertain stochastic
interconnected pure-feedback systems is also a crucial issue.
Therefore, the ETC strategy based on relative threshold is
developed and only an adaptive law needs to be designed for each
n-order subsystem, which greatly conserves the communication
resources. 3) The interconnected terms in the nonlinear systems
considered are associated with all state variables, which makes the
traditional decentralized control method unavailable. Hence, to solve
the problem, a decentralized control scheme using variable separation
technique is presented.

2 System description and preliminaries

Consider a stochastic nonlinear system:

dx � fu x( )dt + hs x( )dω,∀x ∈ Rn, (1)

where ω is standard Wiener process; x ∈ Rn is the system state, fu: Rn

→ Rn and hs: Rn → Rn×r are locally Lipschitz functions. Next, some
necessary definitions are introduced into this paper.

Definition 1 [18]: Combining with the differential Eq. 1, for any
given V(x) ∈ C2, define the differential operator L as follows:

LV � ∂V

∂x
fu + 1

2
Tr hsT

∂2V

∂x2
hs{ }. (2)

Definition 2 [18]: If the equality limc→∞ sup0#t#∞
P |x(t)|> c{ } � 0 holds, system 1) remains bounded in
probability. Then, system 1) is identified as asymptotically stable
in probability, if it satisfies that equality and P |x(t)| � 0{ } � 1.

The stochastic interconnected pure-feedback nonlinear systems
are described as:

dxi,j � fi,j �xi,j, xi,j+1( )dt + hi,j X( )dt + gT
i,j X( )dωi,

dxi,ni � fi,ni �xi,ni, ui( )dt + hi,ni X( )dt + gT
i,ni

X( )dωi,
yi � xi,1,

⎧⎪⎨⎪⎩ (3)

where X � [xT
1 , x

T
2 , . . . , x

T
N] represents interconnected terms of the

nonlinear systems with xi � �xi,ni � [xi,1, xi,2, . . . , xi,ni]T ∈
Rni (i � 1, 2, . . . , N) being state vector of the ith subsystem, ui
and yi are the input and output of the ith subsystem,
respectively. fi,j(·) are smooth unknown functions. hi,j(·) and
gi,j(·) represent smooth interconnected terms. Let
Φi,j(�xi,j, �vi,j) � ∂fi,j(�xi,j ,xi,j+1)

∂xi,j+1 , Φi,ni(�xi,ni, �vi,ni) � ∂fi,ni(�xi,ni ,ui)
∂ui

.
According to the properties of the mean value theorem [19],

there must exist x0i,j+1 � 0 and u0i � 0. There are point �vi,j between
x0
i,j+1 and xi,j+1 and �vi,ni between u0i and ui such that system 3) can be

rewritten as:

dxi,j � fi,j �xi,j, 0( ) +Φi,j �xi,j, �vi,j( )xi,j+1 + hi,j X( )( )dt + gT
i,j X( )dωi,

dxi,ni � fi,ni �xi,ni , 0( ) +Φi,ni �xi,ni , �vi,ni( )ui + hi,ni X( )( )dt + gT
i,ni

X( )dωi,
yi � xi,1,

⎧⎪⎨⎪⎩
(4)

FIGURE 2
The trajectories of y2 and yd2.
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where Φi,j and Φi,ni are unknown gain functions.
The control objective of this paper is to design decentralized

adaptive controllers for system 3) so that the tracking errors
between system outputs and reference signals asymptotically
converge to zero in probability and all the signals are
semiglobally uniformly ultimately bounded in probability. To
realize the desired control objective, some lemmas and
assumptions are showed below.

Assumption 1: The functionsΦi,j (i = 1, . . . , N, j = 1, . . . , ni) are
bounded; there exist positive constants ςm and ςM such that
0< ςm#|Φi,j(�xi,j, xi,j+1)| #ςM < +∞. Moreover, all the signs of
Φi,j(�xi,j, xi,j+1) are getatable for overall design procedure. Without
loss of generality, it is assumed Φi,j(�xi,j, xi,j+1)Pςm > 0.

Assumption 2: The desired reference trajectories are represented
as ydi(t), where their cth derivative for c = 1, . . . , ni is assumed to be
continuous and bounded.

Assumption 3 [20]: There are strict increasing smooth functions
ψi,j(·) satisfying |hi,j(X)|#ψi,j(‖X‖) with ψi,j(0) � 0 for the
unknown nonlinear interconnected terms hi,j(X).

Remark 1: If arP0, for r = 1, . . . , ni, ψi,j(∑ni
r�1

ar)#∑ni
r�1

ψi,j(niar)
can be employed due to the strict increasing property of ψi,j(·).
Particularly, smooth functions λi,j(s) are introduced such that
ψi,j(s) � sλi,j(s), which has

ψi,j ∑ni
r�1

ar⎛⎝ ⎞⎠#∑ni
r�1

niarλi,j niar( ). (5)

Assumption 4 [21]: There are strict increasing smooth functions
υi,j(·) satisfying ‖gi,j(X)‖#υi,j(‖X‖) with υi,j(0) � 0 for the
unknown interconnected terms gi,j(X).

Remark 2: Apparently, there exist smooth functions ηi,j(·), we have

υi,j ∑ni
r�1

br⎛⎝ ⎞⎠#∑ni
r�1

nbrηi,j nbr( ), (6)

where brP0.
Lemma 1 [22]: The Nussbaum function is given as ℵms(φi,j) �

2eφ
2
i,jφi,j if LW(t)# − bW(t) −∑ni

j�1
ςi,jℵms (φi,j(t)) _φi,j(t) +∑ni

j�1
_φi,j

(t) + η, where b is a positive constant, η is a bounded variable,
and ςi,j is an unknown but bounded positive constant. Moreover, φi,j
and W(t) must be bounded in probability.

Lemma 2 [23]: For the form of the dynamic system
_ξ(t) � −xξ(t) + yϑ(t), if ϑ(t) is positive function, x and y are
positive constants, and the initial value ξ(t0) is non-negative, then
the solution ξ(t)P0 can be obtained for ∀tPt0.

Lemma 3 [24]: For any (x*, y*), one obtains

x*y*#
εpc

pc
x*| |pc + 1

qcεqc
y*
∣∣∣∣ ∣∣∣∣qc , (7)

where ε > 0, pc > 1, qc > 1, and (pc − 1)(qc − 1) � 1.
Lemma 4 [25]: For any ϖ ∈ R and ε > 0, one has

0# ϖ| | − ϖ tanh
ϖ
ε

( )#δε, δ � 0.2785. (8)

In this work, the radial basis function neural networks
(RBFNNs) will be employed to estimate the unknown nonlinear
functions f(Z) such that

f Z( ) � WTS Z( ) + δ Z( ), (9)

FIGURE 3
The trajectories of y3 and yd3.
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where Z ∈ Rq denotes input vector of the RBFNNs and q represents
the dimension of the RBFNNs input. The estimation error is
represented as δ(Z) with |δ(Z)|#�δ, where �δ is a positive
constant. W � [ω1, . . . ,ωl]T ∈ Rl denotes weight vector with l > 1
being the node number of RBFNNs. The basis vector of RBFNNs is
denoted as S(Z) � [s1(Z), . . . , sl(Z)]T. Besides, the basis functions
si(Z) are selected as

si Z( ) � exp − Z − μi( )T Z − μi( )
�λ2

( ), i � 1, 2, . . . , l, (10)

where μi � [μi1, μi2, . . . , μiq] is the center of the receptive field and�λ
is the width of the Gaussian function. The ideal weight vector W is
defined as

W: � argmin
W∈Rl

sup f Z( ) −WTS Z( )∣∣∣∣ ∣∣∣∣{ }. (11)

Lemma 5 [26]: Consider a class of Gaussian function as basis
function. Let ρ: � 1

2mini≠j‖ui − uj‖, the upper bound of S(Z) is

represented as ‖S(Z)‖#∑∞
k�0

3q(k + 2)q−1e−
2ρ2k2

η2 : � s, where s is a

limited constant.
In this section, the controllers design procedure based on the

backstepping will be presented. The RBFNNs will be used to
estimate the unknown nonlinearities. In addition, the virtual
control signals and the adaptive laws are designed as follows:

αi,j � ℵms φi,j( )�αi,j,
�αi,j � −ki,jzi,j − 1

2a2i,j
z3i,jθ̂iS

T
i,j Zi,j( )Si,j Zi,j( ),

_̂
θi � ∑ni

j�1

γi
2a2i,j

z6i,jS
T
i,j Zi,j( )Si,j Zi,j( ) − σ iθ̂i,

(12)

where ki,j, ai,j, γi, and σi are positive design parameters and Zi,j �
[�xT

i,j, θ̂i, �y
(j)
di ] with �y(j)

di � [ydi, y
(1)
di , . . . , y

(j)
di ](j � 2, . . . , ni). In

addition, θ̂i is the estimation of θi with θi = max{‖Wi,j‖2; i = 1, 2,
. . . , N, j = 1, 2, . . . , ni}. Particularly, the error variables zi,j satisfy the
following variables transformation:

zi,j � xi,j − αi,j−1. (13)

Lemma 6 [27]: According to the variables transformation zi,j =
xi,j − αi,j−1, the strong interconnected term result can be obtained

‖X‖#∑N
i�1

∑ni
j�1

χi,j zi,j, θ̂i( )|zi,j| + d*, (14)

where d* being the sum of upper bound of ydi,
χi,j(zi,j, θ̂i) � (ki,j + 1) + (1/2ai,j2)zi,j2s2θ̂i, χi,ni � 1, for i = 1, 2,
. . . , N, j = 1, 2, . . . , ni. In addition, to simplify the formula,
χm,l(zm,l, θ̂m) will be denoted as χm,l.

3 Main result

For the sake of convenience, the state vector �xi,j and the time
variable t will be omitted. Moreover, Si,j (Zi,j) will be denoted as Si,j.

Step i, 1: Based on zi,1 = xi,1 − ydi, zi,2 = xi,2 − αi,1, the derivative of
zi,1 is given by

dzi,1 � fi,1 +Φi,1xi,2 + hi,1 X( ) − _ydi( )dt + gT
i,1 X( )dωi. (15)

The Lyapunov function candidate Vi,1 is selected as

Vi,1 � 1
4
z4i,1 +

1
2γi

~θ
2

i , (16)

FIGURE 4
The trajectories of θ̂1, θ̂2 and θ̂3.
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where γi > 0 is a positive constant and ~θi � θi − θ̂i.
Differentiating Vi,1 yields

LVi,1 � z3i,1 fi,1 +Φi,1zi,2 +Φi,1αi,1 + hi,1 X( ) − _ydi( )
+ 3
2
z2i,1g

T
i,1 X( )gi,1 X( ) − 1

γi
~θi
_̂
θi. (17)

By applying Assumption 3, 5), 7) and 14), we have

z3i,1hi,1 X( )#|z3i,1|ψi,1 ‖X‖( )#3
4
Mz4i,1 + ∑N

m�1
∑nm
l�1

z4m,l
�ψ4
i,1 + |z3i,1|ψi,1 M + 1( )d*( ),

(18)

where M � ∑N
m�1

nm and �ψ4
i,1 � 1

4(M + 1)4χ4m,lλ
4
i,1

((M + 1) |zm,l|χm,l). Let Ki,1 = ψi,1 ((M + 1)d*).

Then, Lemma 4 is employed to Ki,1 yields

|z3i,1|Ki,1 − z3i,1Ki,1 tanh
z3i,1Ki,1

εi,1
( )#0.2785εi,1. (19)

By using Assumption 4 and (6)–(14), we can obtain

3
2
z2i,1g

T
i,1 X( )gi,1 X( )#3

2
z2i,1υ

2
i,1 ∑N

m�1
∑nm
l�1

χm,l|zm,l| + d*⎛⎝ ⎞⎠
#

9
8

M + 1( )2z4i,1υ4i,1 M + 1( )d*( )l−2i,1,1 +
9
8

M + 1( )2Mz4i,1

+ ∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,1 +

1
2
l2i,1,1,

(20)
where li,1,1 is a positive constant and �υ4i,1 �
1
2(M + 1)4χ4m,l η

4
i,1((M + 1)χm,l|zm,l|).

Submitting (18)–(20) into (17), we get

LVi,1 #z3i,1 fi,1 +Φi,1zi,2 +Φi,1αi,1 − _ydi( ) + 3
4
Mz4i,1 + ∑N

m�1
∑nm
l�1

z4m,l
�ψ4
i,1 + 0.2785εi,1

+ 9
8

M + 1( )2Mz4i,1 + z3i,1Ki,1 tanh
z3i,1Ki,1

εi,1
( ) + 9

8
M + 1( )2z4i,1υ4i,1 M + 1( )d*( )l−2i,1,1

+ 1
2
l2i,1,1 −

1
γi
~θi
_̂
θi + ∑N

m�1
∑nm
l�1

z4m,l�υ
4
i,1.

(21)
Step i, j: Define zi,j = xi,j − αi,j−1 (2#j#ni − 1), one can get the

derivative of zi,j

dzi,j � fi,j +Φi,jxi,j+1 + hi,j X( ) − Lαi,j−1( )dt + gi,j X( ) −∑j−1
k�1

∂αi,j−1
∂xi,k

X( )⎛⎝ ⎞⎠T

dωi ,

(22)
Lαi,j−1 � ∑j−1

k�1

∂αi,j−1
∂xi,k

fi,k +Φi,kxi,k+1 + hi,k X( )( ) +∑j−1
k�0

∂αi,j−1
∂y k( )

di

y k+1( )
di

+ 1
2

∑j−1
p,q�1

∂2αi,j−1
∂xi,p∂xi,q

gT
i,p X( )gi,q X( ) + ∂αi,j−1

∂θ̂i

_̂
θi.

(23)
Next, the Lyapunov function Vi,j is designed as Vi,j � 1

4z
4
i,j, we

further have

LVi,j � z3i,j fi,j +Φi,jxi,j+1 + hi,j X( ) −∑j−1
k�1

∂αi,j−1
∂xi,k

fi,k +Φi,kxi,k+1 + hi,k X( )( )⎛⎝

−∂αi,j−1
∂θ̂i

_̂
θi −∑j−1

k�0

∂αi,j−1
∂y k( )

di

y k+1( )
di − 1

2
∑j−1
p,q�1

∂2αi,j−1
∂xi,p∂xi,q

gT
i,p X( )gi,q X( )⎞⎠

+ 3
2
z2i,j‖gi,j X( )‖ −∑j−1

k�1

∂αi,j−1
∂xi,k

gi,k X( )‖2.

(24)

FIGURE 5
The trajectories of z11, z21 and z31.
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By applying Assumptions 3, 4 and (5)–(14), one has

−z3i,j∑j−1
k�1

∂αi,j−1
∂xi,k

hi,k X( )#3
4
Mz4i,j∑j−1

k�1

∂αi,j−1
∂xi,k

( )4
3

+∑j−1
k�1

∑N
m�1

∑nm
l�1

z4m,l
�ψ4
i,k

+ |z3i,j|∑j−1
k�1

|∂αi,j−1
∂xi,k

|ψi,k M+1( )d*( ), z3i,jhi,j X( )#3
4
Mz4i,j

+∑N
m�1

∑nm
l�1

z4m,l
�ψ4
i,j + |z3i,j|ψi,j M+1( )d*( ),

− 1
2
z3i,j ∑j−1

p,q�1

∂2αi,j−1
∂xi,p∂xi,q

gT
i,p X( )gi,q X( )

#
1
8

M+1( )2Mz6i,j∑j−1
p�1

∑j−1
q�1

∂2αi,j−1
∂xi,p∂xi,q

( )2

+ j−1( )∑j−1
q�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,q

+ 1
2

M+1( )|z3i,j|∑j−1
p�1

∑j−1
q�1

| ∂
2αi,j−1

∂xi,p∂xi,q
|υ2i,q M+1( )d*( ),

(25)

where for k = 1, 2, . . . , j, �ψ4
i,k � 1

4(M + 1)4χ4m,l λ
4
i,k

((M + 1)|zm,l|χm,l). �υ4i,q � 1
2(M + 1)4χ4m,lη

4
i,q ((M + 1)|zm,l|χm,l),

q � 1, 2, . . . j − 1. Let Ki,j � ∑j−1
k�1

|∂αi,j−1∂xi,k
|ψi,k((M + 1)d*) +

ψi,j((M + 1)d*) + 1
2 (M + 1) ∑j−1

p�1
∑j−1
q�1

| ∂2αi,j−1
∂xi,p∂xi,q

|υ2i,q((M + 1)d*).

By using Lemma 4, one obtains

|z3i,j|Ki,j − z3i,jKi,j tanh
z3i,jKi,j

εi,j
( )#0.2785εi,j. (26)

Next, we further obtain

3
2
z2i,j‖gi,j X( ) −∑j−1

k�1

∂αi,j−1
∂xi,k

gi,k X( )‖2#9
8
z4i,j M + 1( )2j2υ4i,j M + 1( )d*( )l−2i,j,j

+ 9
8
z4i,jj

2 M + 1( )2× M + ∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,j

+ 9
8
z4i,j M + 1( )2j2 ∑j−1

k�1

∂αi,j−1
∂xi,k

( )2

× υ4i,k M + 1( )d*( )l−2i,j,k +
1
2
∑j
k�1

l2i,j,k

+ 9
8
z4i,j M + 1( )2j2M × ∑j−1

k�1

∂αi,j−1
∂xi,k

( )2

+∑j−1
k�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,k,

(27)

where for k = 1, 2, . . . , j, li,j,k are positive constants, �υ4i,k �
1
2(M + 1)4 χm,l

4η4i,k ((M + 1)χm,l|zm,l|).
It follows from (Eqs 22–27) that

LVi,j #z3i,j fi,j + Φi,jxi,j+1 −∑j−1
k�1

∂αi,j−1
∂xi,k

fi,k +Φi,kxi,k+1( ) − ∂αi,j−1
∂θ̂i

_̂
θi⎛⎝

−∑j−1
k�0

∂αi,j−1
∂y k( )

di

y k+1( )
di + 3

4
Mzi,j ∑j−1

k�1

∂αi,j−1
∂xi,k

( )4
3

+ 3
4
Mzi,j + 1

8
M + 1( )2

× Mz3i,j ∑j−1
p�1

∑j−1
q�1

∂2αi,j−1
∂xi,p∂xi,q

( )2

+Ki,j tanh
z3i,jKi,j

εi,j
( ) + 9

8
zi,jj

2 M + 1( )2M

+ 9
8
zi,jj

2 M + 1( )2υ4i,j M + 1( )d*( )l−2i,j,j +
9
8
zi,jj

2 M + 1( )2 ∑j−1
k�1

∂αi,j−1
∂xi,k

( )2

× υ4i,k M + 1( )d*( )l−2i,j,k +
9
8
zi,jj

2 M + 1( )2M∑j−1
k�1

∂αi,j−1
∂xi,k

( )2⎞⎠ +∑j
k�1

∑N
m�1

∑nm
l�1

z4m,l
�ψ4
i,k

+ j − 1( )∑j−1
q�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,q + 0.2785εi,j + 1

2
∑j
k�1

l2i,j,k +∑j
k�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,k .

(28)

FIGURE 6
The trajectories of control inputs u1, u2 and u3.
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Step i, n: Based on zi,ni � xi,ni − αi,ni−1, the derivative of zi,ni is
given by

dzi,ni � fi,ni + Φi,niui + hi,ni X( ) − Lαi,ni−1( )dt + gi,ni X( ) − ∑ni−1
k�1

∂αi,ni−1
∂xi,k

gi,k X( )⎛⎝ ⎞⎠T

dωi ,

(29)

Lαi,ni−1 � ∑ni−1
k�1

∂αi,ni−1
∂xi,k

fi,k + Φi,kxi,k+1 + hi,k X( )( ) + ∂αi,ni−1
∂θ̂i

_̂
θi + ∑ni−1

k�0

∂αi,ni−1
∂y k( )

di

y k+1( )
di

+1
2

∑ni−1
p,q�1

∂2αi,ni−1
∂xi,p∂xi,q

gT
i,p X( )gi,q X( ).

(30)

FIGURE 7
Triggering event subsystem1.

FIGURE 8
Triggering event subsystem2.
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Next, consider a Lyapunov function as Vi,ni � 1
4z

4
i,ni
, the

following result holds

LVi,ni � z3i,ni fi,ni +Φi,niui + hi,ni X( ) − ∑ni−1
k�1

∂αi,ni−1
∂xi,k

fi,k +Φi,kxi,k+1 + hi,k X( )( )⎛⎝

−∂αi,ni−1
∂θ̂i

_̂
θi − ∑ni−1

k�0

∂αi,ni−1
∂y k( )

di

y k+1( )
di − 1

2
∑ni−1
p,q�1

∂2αi,ni−1
∂xi,p∂xi,q

gT
i,p X( )gi,q X( )⎞⎠

+ 3
2
z2i,ni ‖gi,ni X( ) − ∑ni−1

k�1

∂αi,ni−1
∂xi,k

gi,k X( )‖2.

(31)

Repeating the same derivations as (25) and (27) yields

LVi,ni#z3i,ni fi,ni +Φi,niui −∑ni−1
k�1

∂αi,ni−1
∂xi,k

fi,k +Φi,kxi,k+1( )− ∂αi,ni−1
∂θ̂i

_̂
θi⎛⎝

−∑ni−1
k�0

∂αi,ni−1
∂y k( )

di

y k+1( )
di + 3

4
Mzi,ni ∑ni−1

k�1

∂αi,ni−1
∂xi,k

( )4
3

+ 3
4
Mzi,ni

+ 1
8

M+ 1( )2Mz3i,ni ∑ni−1
p�1

∑ni−1
q�1

∂2αi,ni−1
∂xi,p∂xi,q

( )2

+ 9
8
zi,nini

2 M+ 1( )2M

+Ki,ni tanh
z3i,niKini

εi,ni
( )+ 9

8
zi,nini

2 M+ 1( )2υ4i,ni M+ 1( )d*( )l−2i,ni ,ni

+ 9
8
zi,nini

2 M+ 1( )2 ∑ni−1
k�1

∂αi,ni−1
∂xi,k

( )2

υ4i,k M+ 1( )d*( )l−2i,ni ,k

+9
8
zi,nini

2 M+ 1( )2M∑ni−1
k�1

∂αi,ni−1
∂xi,k

( )2⎞⎠+∑ni
k�1

∑N
m�1

∑nm
l�1

z4m,l
�ψ4
i,k + 0.2785εi,ni

+ 1
2
∑ni
k�1

l2i,ni ,k + ni − 1( )∑ni−1
q�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,q +∑ni

k�1
∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,k,

(32)

where for k = 1, 2, . . . ni, li,ni,k are positive constants.
Combining with the whole design procedures from Step 1 to

Step ni, choose Lyapunov function for the ith subsystem as

Vi � ∑ni
j�1

Vi,j � 1
4
∑ni
j�1

z4i,j +
1
2γi

~θ
2

i . (33)

Thus, the Lyapunov function of the nonlinear systems is
designed as

V � ∑N
i�1

∑ni
j�1

Vi,j � ∑N
i�1

1
4
z4i,1 +

1
4
∑ni
j�2

z4i,j +
1
2γi

~θ
2

i
⎛⎝ ⎞⎠. (34)

Next, utilizing (21) (28), and (32), one obtains

LV #∑N
i�1

z3i,1 Φi,1zi,2 +Φi,1αi,1 + Θi,1( ) +∑N
i�1

∑ni−1
j�2

z3i,j Φi,jzi,j+1 +Φi,jαi,j + Θi,j( )
+∑N

i�1
z3i,ni Φi,niui + Θi,ni( ) +∑N

i�1
∑ni
j�1

∑j
k�1

∑N
m�1

∑nm
l�1

z4m,l
�ψ4
i,k

+∑N
i�1

∑ni
j�1

∑j
k�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,k +∑N

i�1
∑ni
j�1

j − 1( )∑j−1
q�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,q

+∑N
i�1

∑ni
j�1

0.2785εi,j + 1
2
∑N
i�1

∑ni
j�1

∑j
k�1

l2i,j,k −∑N
i�1

∑ni
j�2

z3i,j
∂αi,j−1
∂θ̂i

_̂
θi −∑N

i�1

1
γi
~θi
_̂
θi ,

(35)
where

Θi,1 � fi,1 − _ydi +
3
4
Mzi,1 + Ki,1 tanh

z3i,1Ki,1

εi,1
( ) + 9

8
M + 1( )2Mzi,1

+ 9
8

M + 1( )2zi,1υ4i,1 M + 1( )d*( )l−2i,1,1,
(36)

Θi,j � fi,j −∑j−1
k�1

∂αi,j−1
∂xi,k

fi,k + Φi,kxi,k+1( ) −∑j−1
k�0

∂αi,j−1
∂y k( )

di

y k+1( )
di

+ 3
4
Mzi,j ∑j−1

k�1

∂αi,j−1
∂xi,k

( )4
3

+ 3
4
Mzi,j + 1

8
M + 1( )2Mz3i,j ∑j−1

p�1
∑j−1
q�1

∂2αi,j−1
∂xi,p∂xi,q

( )2

+ 9
8
zi,jj

2 M + 1( )2υ4i,j M + 1( )d*( )l−2i,j,j +
9
8
zi,jj

2 M + 1( )2M

+ 9
8
zi,jj

2 M + 1( )2 ∑j−1
k�1

∂αi,j−1
∂xi,k

( )2

υ4i,k M + 1( )d*( )l−2i,j,k +Ki,j tanh
z3i,jKi,j

εi,j
( )

+ 9
8
zi,jj

2 M + 1( )2M∑j−1
k�1

∂αi,j−1
∂xi,k

( )2

, j � 2, 3, . . . , ni − 1,

(37)

Θi,ni � fi,ni −∑j−1
k�1

∂αi,ni−1
∂xi,k

fi,k + Φi,kxi,k+1( ) + 3
4
Mzi,ni ∑ni−1

k�1

∂αi,ni−1
∂xi,k

( )4
3

−∑j−1
k�0

∂αi,ni−1
∂y k( )

di

y k+1( )
di + 3

4
Mzi,ni +

1
8

M + 1( )2Mz3i,ni ∑ni−1
p�1

∑ni−1
q�1

∂2αi,ni−1
∂xi,p∂xi,q

( )2

+Ki,ni tanh
z3i,niKi,ni

εi,ni
( ) + 9

8
zi,nini

2 M + 1( )2υ4i,ni M + 1( )d*( )l−2i,ni ,ni

+ 9
8
zi,nini

2 M + 1( )2M + 9
8
zi,nini

2 M + 1( )2 ∑ni−1
k�1

∂αi,ni−1
∂xi,k

( )2

υ4i,k M + 1( )d*( )l−2i,ni ,k

+ 9
8
zi,nini

2 M + 1( )2M ∑ni−1
k�1

∂αi,ni−1
∂xi,k

( )2

.

(38)
By rearranging sequence for above terms, we have

∑N
i�1

∑ni
j�1

∑j
k�1

∑N
m�1

∑nm
l�1

z4m,l
�ψ4
i,k � ∑N

i�1
∑ni
j�1

z4i,j ∑N
m�1

∑nm
l�1

∑l
k�1

�ψ4
m,k, (39)

∑N
i�1

∑ni
j�1

∑j
k�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,k � ∑N

i�1
∑ni
j�1

z4i,j ∑N
m�1

∑nm
l�1

∑l
k�1

�υ4m,k, (40)

∑N
i�1

∑ni
j�1

j − 1( )∑j−1
q�1

∑N
m�1

∑nm
l�1

z4m,l�υ
4
i,q � ∑N

i�1
∑ni
j�1

z4i,j ∑N
m�1

∑nm
l�2

l − 1( )∑l−1
q�1

�υ4m,q.

(41)
By utilizing the adaptive laws (12), above rearranging sequence, and

Lemma 5, the second-to-last term in (Eq. 35) is further handled, one has

−∑N
i�1

∑ni
j�2

z3i,j
∂αi,j−1
∂θ̂i

_̂
θi #∑N

i�1
∑ni
j�2

z3i,j
∂αi,j−1
∂θ̂i

σ iθ̂i −∑N
i�1

∑ni
j�2

z3i,j
∂αi,j−1
∂θ̂i

∑j−1
k�1

γi
2a2i,k

× z6i,kS
T
i,kSi,k +∑N

i�1
∑ni
j�2

γi
2a2i,j

s2z6i,j ∑j
k�2

|z3i,k
∂αi,k−1
∂θ̂i

|⎛⎝ ⎞⎠.

(42)

Next, for j = 1, 2, . . . , ni − 1, based on Assumption 1 and Lemma
3, we can obtain

z3i,jΦi,jzi,j+1#
3
4
ςMz

4
i,j +

1
4
ςMz

4
i,j+1. (43)

Then, from (Eqs 39–43), Eq. 35 can be rewritten as
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LV #∑N
i�1

z3i,1 Φi,1αi,1 + �fi,1( ) +∑N
i�1

∑ni−1
j�2

z3i,j Φi,jαi,j + �fi,j( ) +∑N
i�1

z3i,ni Φi,niui + �fi,ni
( )

−∑N
i�1

∑ni
j�1

3
4
z4i,j +

1
2
∑N
i�1

∑ni
j�1

∑j
k�1

l2i,j,k +∑N
i�1

∑ni
j�1

0.2785εi,j −∑N
i�1

1
γi
~θi
_̂
θi ,

(44)
where

�fi,1 �
3
4
zi,1 + 3

4
ςMzi,1 +Θi,1 +zi,1 ∑N

m�1
∑nm
l�1

∑l
k�1

�ψ4
m,k zi,1, θ̂i( )

+zi,1 ∑N
m�1

∑nm
l�2

l−1( )∑l−1
q�1

�υ4m,q zi,1, θ̂i( )
+zi,1 ∑N

m�1
∑nm
l�1

∑l
k�1

�υ4m,k zi,1, θ̂i( ), (45)

�fi,j �
3
4
zi,j + 3

4
ςMzi,j + 1

4
ςMzi,j +Θi,j +zi,j ∑N

m�1
∑nm
l�1

∑l
k�1

�ψ4
m,k zi,j, θ̂i( )

+zi,j ∑N
m�1

∑nm
l�2

l−1( )∑l−1
q�1

�υ4m,q zi,j, θ̂i( )+zi,j ∑N
m�1

∑nm
l�1

∑l
k�1

�υ4m,k zi,j, θ̂i( )+ ∂αi,j−1
∂θ̂i

σ iθ̂i

− ∂αi,j−1
∂θ̂i

∑j−1
k�1

γi
2a2i,k

z6i,kS
T
i,kSi,k +

γi
2a2i,j

s2z3i,j ∑j
k�2

|z3i,k
∂αi,k−1
∂θ̂i

|⎛⎝ ⎞⎠,

(46)
�fi,ni

� 3
4
zi,ni +

1
4
ςMzi,ni +Θi,ni + zi,ni ∑N

m�1
∑nm
l�1

∑l
k�1

�ψ4
m,k zi,ni , θ̂i( )

+ zi,ni ∑N
m�1

∑nm
l�2

l − 1( )∑l−1
q�1

�υ4m,q zi,ni , θ̂i( ) + zi,ni ∑N
m�1

∑nm
l�1

∑l
k�1

�υ4m,k zi,j, θ̂i( )
+ ∂αi,ni−1

∂θ̂i
σ iθ̂i − ∂αi,ni−1

∂θ̂i
∑ni−1
k�1

γi
2a2i,k

z6i,kS
T
i,kSi,k +

γi
2a2i,ni

s2z3i,ni ∑ni
k�2

|z3i,k
∂αi,k−1
∂θ̂i

|⎛⎝ ⎞⎠.

(47)

The approximation ability of RBFNNs is applied to �fi,j, we have

�fi,j Zi,j( ) � WT
i,jSi,j Zi,j( ) + δi,j Zi,j( ). (48)

where Zi,j � [�xT
i,j, θ̂i, ydi, �y

(j)
di ].

In addition, we can obtain below inequalities by using Young’s
inequality

z3i,j
�fi,j Zi,j( )# 1

2a2i,j
z6i,jθiS

T
i,jSi,j +

1
2
a2i,j +

3
4
z4i,j +

1
4
�δ
4
i,j, (49)

where θi � max{ ‖Wi,j‖2; i � 1, 2, . . . , N, j � 1, 2, . . . , ni}.
Based on above overall backstepping design procedures, we

construct the virtual controllers for ith subsystems as

αi,1 � ℵms φi,1( )�αi,1,
�αi,1 � −ki,1zi,1 − 1

2a2i,1
z3i,1θ̂iS

T
i,1Si,1,

_φi,1 � −Pi,1z3i,1�αi,1,φi,1 0( )P0,

(50)

αi,j � ℵms φi,j( )�αi,j,
�αi,j � −ki,jzi,j − 1

2a2i,j
z3i,jθ̂iS

T
i,jSi,j,

_φi,j � −Pi,jz3i,j�αi,j,φi,j 0( )P0,

(51)

αi,ni � ℵms φi,ni
( )�αi,ni,

�αi,ni � −ki,nizi,ni −
1

2a2i,ni
z3i,ni θ̂iS

T
i,ni
Si,ni ,

_φi,ni
� −Pi,niz

3
i,ni
�αi,ni,φi,ni

0( )P0,

(52)

FIGURE 9
Triggering event subsystem3.
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wi t( ) � − 1 + β( ) αi,ni tanh
z3i,niαi,ni

ϕ
( ) + �mi tanh

z3i,ni �mi

ϕ
( )( ),

ui � wi tk( )∀t ∈ tk, tk+1[ ),
tk+1 � inf t ∈ R||e t( )|Pβ|ui t( )| +mi.{ },

(53)
where ei(t) = wi(t) − ui(t) denote errors. ki,j, Pi,j, 0 < β < 1, ϕ, mi > 0,
and �mi > mi

1−β are all positive parameters. In addition, κi,1t) and κi,2t)
are time-varying parameters satisfying |κi,1t)|#1 and |κi,2t)|#1.

Thus, the controllers can be chosen as

ui t( ) � wi t( ) − κi,2 t( )mi

1 + κi,1 t( )β . (54)

Then, by substituting Eqs 50–54 into Eq. 44, one has

LV #∑N
i�1

z3i,1 Φi,1αi,1 − �αi,1 − ki,1zi,1 + 1
2a2i,1

z3i,1
~θiS

T
i,1Si,1( ) +∑N

i�1
∑ni−1
j�2

z3i,j Φi,jαi,j − �αi,j(
− ki,jzi,j + 1

2a2i,j
z3i,j

~θiS
T
i,jSi,j) +∑N

i�1
z3i,ni Φi,niui −Φi,niαi,ni +Φi,niαi,ni − �ui − ki,nizi,ni(

+ 1
2a2i,ni

z3i,ni
~θiS

T
i,ni
Si,ni) +∑N

i�1
∑ni
j�1

1
2
∑j
k�1

l2i,j,k + 0.2785εi,j + 1
2
a2i,j +

1
4
�δ
4
i,j

⎛⎝ ⎞⎠ −∑N
i�1

1
γi
~θi
_̂
θi ,

(55)
where

∑N
i�1

z3i,niΦi,niui − z3i,niΦi,niαi,ni # −∑N
i�1

Φi,ni |z3i,niαi,ni | −∑N
i�1

Φi,ni |z3i,ni �mi| +∑N
i�1

0.557Φi,niεi,ni

+∑N
i�1

z3i,niΦi,nimi,1

1 − β
−∑N

i�1
z3i,niΦi,niαi,ni#∑N

i�1
0.557ςMεi,ni .

(56)

Next, substituting the designed controllers and Eq. 56 into Eq. 55, we
have

LV#∑N
i�1

∑ni
j�1

−ki,jz4i,j( ) −∑N
i�1

∑ni
j�1

1
Pi,j

Φi,jℵ _φi,j +∑N
i�1

∑ni
j�1

1
Pi,j

_φi,j +H

+∑N
i�1

σ i
γi
~θiθ̂i,

(57)

where H�∑N
i�1

0.557ςMεi,ni +∑N
i�1

∑ni
j�1

(1
2 ∑j
k�1

l2i,j,k +0.2785εi,j + 1
2a

2
i,j +1

4
�δ
4
i,j).

Furthermore, according to the inequality ~θiθ̂i# − 1
2
~θ
2
i + 1

2θ
2
i , the

below result holds

LV# −∑N
i�1

∑ni
j�1

ki,jz
4
i,j +

σ i
2γi

~θ
2

i
⎛⎝ ⎞⎠ −∑N

i�1
∑ni
j�1

1
Pi,j

Φi,jℵ _φi,j

+∑N
i�1

∑ni
j�1

1
Pi,j

_φi,j + �H, (58)

where �H � H +∑N
i�1

σ i
2γi
θ2i .

Theorem 1: Consider the stochastic interconnected nonlinear
systems in pure-feedback form (Eq. 3), the adaptive laws (Eq. 13),
the virtual controllers (Eqs 53, 54), and the actual control inputs (Eq.
55) based on Assumptions Eq. 1-4 are obtained. Above design
procedures ensure that the signals of closed-loop remain
semiglobally uniformly bounded in probability and zi,1 is

asymptotically converge to zero in probability. In addition, the
tracking error zi,j converge to compact set ΩZ, which is defined as

ΩZ � zi,j|∑N
i�1

∑ni
j�1

E |zi,j|4[ ]#4E V 0( )[ ] + 4
D

c
( ) + 4

b

P
( )⎧⎨⎩ ⎫⎬⎭ , (59)

where c = min{4ki,j, σi, i = 1, 2, . . . , N, j = 1, 2, . . . , ni},

b � sup |∑N
i�1

∑ni
j�1

1
Pi,j

Φi,jℵms(φi,j) _φi,j −∑N
i�1

∑ni
j�1

1
Pi,j

_φi,j|
⎧⎪⎨⎪⎩ ,

i � 1, 2, . . . , N, j � 1, 2, . . . , ni},

P � inf {Pi,j, fori � 1, 2, . . . ,N, j � 1, 2, . . . , ni}, and D�∑N
i�1

σi
2γi
θ2i +

∑N
i�1

0.557ςM εi,ni +∑N
i�1

∑ni
j�1

(12 ∑j
k�1

l2i,j,k +0.2785εi,j + 1
2a

2
i,j + 1

4ε
4
i,j) .

Proof: Based on above design parameters c, b, P andD Eq. 58 is
rewritten as follows:

LV# − cV +D − ∑N
i�1

∑ni
j�1

1
Pi,j

Φi,jℵms φi,j( ) _φi,j −∑N
i�1

∑ni
j�1

1
Pi,j

_φi,j
⎛⎝ ⎞⎠

(60)
holds for ∀tP0. According to (12) and Lemma 2, θ̂i(t)P0 for tP0,
when θ̂i(0)P0 for i = 1, 2, . . . ,N. Hence, 1

2a2i,j
z6i,jθ̂iS

T
i,jSi,jP0 for i = 1,

2, . . . , N, j = 1, 2, . . . , ni. Furthermore, _φi,j must be non-negative so
that φi,j andℵms(φi,j) are non-negative with φi,j(0)P0. Then, Eq. 60
is transformed into

LV# − cV +D +∑N
i�1

∑ni
j�1

1
Pi,j

_φi,j −
1
Pi,j

Φ i,jℵms φi,j( ) _φi,j( ), (61)

where Φ i,j is defined as Φ i,j � infΦi,j(�xi,j, xi,j+1), and it is an
unknown constant. Then, we take the integration of Eq. 61

E V t( )[ ]#E V 0( )[ ] + D

c
( ) + b

P
( ). (62)

Furthermore, one obtains

E ∑N
i�1

∑ni
j�1

z4i,j
⎡⎢⎢⎣ ⎤⎥⎥⎦#4E V 0( )[ ] + 4

D

c
( ) + 4

b

P
( ), (63)

such that zi,j remain bounded for i = 1, 2, . . . , N, j = 1, 2, . . . , ni. Based
on Eq. 63, we can conclude that zi,j eventually converge to compact set
ΩZ. Moreover, from Eqs 50, 51 and 1

2a2i,j
z6i,jθ̂iS

T
i,jSi,jP0, it yields that

_φi,jPki,jPi,jz
4
i,j. (64)

Hence, taking the integration of Eq. 64, we have

E ∫t

0
ki,jPi,jz

4
i,j v( )dv[ ]#E φi,j t( ) − φi,j 0( )[ ]< +∞ . (65)

As a result, ki,jPi,jz4i,j(t) is integrable in probability over [0, tM].
Then, employing stochastic Barbalat’s theorem [28,29], we can see
that E[ lim

t→∞ |zi,j|] → 0, j � 1, 2, . . . , ni. Then, one has

P lim
t→∞

zi,1
∣∣∣∣ ∣∣∣∣ � 0{ } � 1. (66)

The proof is finished.
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Finally, for relative threshold ETC strategy, the Zeno
phenomenon is a problem that must not be ignored. Therefore,
there is a �tZ > 0 such that tk+1 − tk > �tZ for ∀k. According to the
definition of ei(t) = wi(t) − ui(t), we have

d

dt
|ei t( )| � sign ei t( )( ) _ei t( )#| _wi t( )|. (67)

We can know that wi(t) is bounded due to the existence of
bounded variable signals. Consequently, it can be realized that
wi(t) are smooth functions, thus _wi(t) are bounded. There must
be a positive constant �b such that _wi(t)#�b. According to ei(t) = 0,

lim
t→tk+1

ei(t) � β|ui(t)| +mi, the lower bound of �tZ is β|ui(t)|+mi
�b

. As a

result, we can always make sure that �tZ is not zero. The Zeno
phenomenon would not be presented in our design process.

Remark 3: The previous analysis shows that the stability of the
researched systems depends on the design parameters ki,j, ai,j, γi, εi,j
and σi (i = 1, 2, . . . , N; j = 1, 2, . . . , ni). By adjusting parameters εi,j,
ai,j, σi, γi to make the term D in Eq. 63 relatively small, and adjusting
parameters ki,j, σi to make the term c in Eq. 63 relatively large. Then
the proposed control strategy can ensure the stability of the closed-
loop system.

4 Simulation example

At this section, the simulation results of the stochastic
interconnected pure-feedback systems including three subsystems
show effectiveness of the control scheme

dx1,1 � 1 + sin x1,1( )2( )x1,2 + sin x1,1( )x2,1x2,2( )dt + 0.001 sin x2
2,2( )/ 1 + x2

2,2( )( )dω1 ,

dx1,2 � 2 + cos x1,1x2
1,2( )( )u1 + cos x1,2( )2 + x2

2,2( )/ 1 + exp −x2
2,2( )( )( )( )dt

+ 0.001 cos x2
2,2( )/ 1 + x2

2,2( )( )dω1 ,
y1 � x1,1 ,
dx2,1 � 0.05 1 + x2,1( )x2,2( ) + 2cos x1,1x1,2( )x2,2( )( )dt + 0.001 0.5x2

2,2x
2
1,1( )dω2 ,

dx2,2 � 2 + exp −x2,1x2,2( )( )u2 + cos x2,1( )x1,1( ) + 0.001x2
2,1 sin x1,1( )dω2 ,

y2 � x2,1 ,
dx3,1 � 0.5 sin x3,1( ) + 1( )*x3,2 + 2 cos x1,1x1,2( )( )x3,2( )dt + 0.001 0.5x2

3,2x
2
1,1( )dω3 ,

dx3,2 � 2 + exp −x3,1x3,2( )( )u3 + cos x3,1( )x1,1( ) + 0.001x2
3,1 sin x1,1( )dω3 ,

y3 � x3,1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(68)

In simulation, the design parameters are defined as follows: γ1 =
1, γ2 = 1, γ3 = 1, σ1 = 0.1, σ2 = 0.01, σ3 = 0.1, a1,1 = 0.01, a1,2 = 0.01,
a2,1 = 2, a2,2 = 1, a3,1 = 0.1, a3,2 = 0.5, P1,1 = 0.01, P1,2 = 0.01, P2,1 =
0.001, P2,2 = 0.001, P3,1 = 1, P3,2 = 1, k1,1 = 7, k1,2 = 12, k2,1 = 6, k2,2 =
8, k3,1 = 5, k3,2 = 1, β = 0.1, ϕ = 0.5, �m1,1 � 4, �m2,1 � 4, �m3,1 � 4,m1,1 =
0.2, m2,1 = 0.9, and m3,1 = 0.5. Initial values are given as
[x1,1(0), x1,2(0), x2,1(0), x2,2(0), x3,1(0), x
3,2(0)]T � [0, 0, 0, 0, 0, 0]T, [θ̂1, θ̂2, θ̂3]T � [0, 0, 0]T, and [φ1,1,φ1,2,
φ2,1,φ2,2,φ3,1,φ3,2]T � [1, 1, 0.5, 0.5, 0, 0]T The desired signals are
chosen as yd1 = sin(t), yd2 = cos(t), and yd3 = cos(t).

The simulation results are presented in Figures 1–9 by using the
Matlab routine. Figures 1–3 show output signals y1, y2, y3 and
desired signals yd1, yd2, yd3 respectively. As shown in Figures 1–3, the
results demonstrate favourable tracking performances. Figure 4
shows the curves of adaptive laws θ̂1, θ̂2, and θ̂3. The tracking
errors are presented in Figure 5 and converge to zero in probability.

Figure 6 illustrates that control inputs u1, u2, and u3 are bounded.
Finally, the profiles of event-triggered times are provided in
Figures 7–9.

5 Conclusion

This paper has proposed the event-triggered-based
asymptotic tracking control scheme for a class of uncertain
stochastic interconnected nonlinear systems in pure-feedback
form. The effect caused by the unknown control gains and the
nonaffine structures have been eliminated by using the new types
of Nussbaum functions and the mean value theorem,
respectively. Then, the decentralized controllers have been
constructed to achieve desired tracking performance.
Furthermore, it has been proved that the proposed controllers
guarantee that all signals remain bounded in probability. The
simulation example illustrates the effectivity of the proposed
scheme. In future, we intend to extend the proposed scheme
to multi-agent stochastic nonlinear systems with malicious
attacks.
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