Check List the journal of biodiversity data

NOTES ON GEOGRAPHIC DISTRIBUTION

 $\bigtriangledown$ 

Check List 19 (4): 509–520 https://doi.org/10.15560/19.4.509



# Extending the geographical distribution of Side-striped Jackal, *Lupulella adusta* (Sundevall, 1847) (Carnivora, Canidae), in South Africa

LOURENS H. SWANEPOEL<sup>1\*</sup>, J. PHILIP B. FAURE<sup>2</sup>, LAUREN FODEN<sup>2</sup>, KEVIN W. EMSLIE<sup>1</sup>

1 Department of Biology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa • LHS: lourens.swanepoel@univen.ac.za https://orcid.org/0000-0002-9955-8076 • KWE: kevin.emslie@gmail.com https://orcid.org/0000-0002-5988-0458

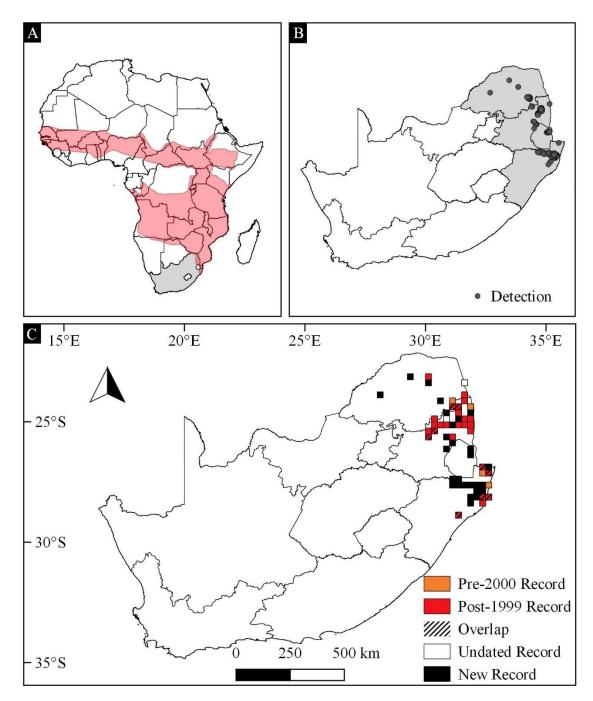
2 Panthera, New York, NY, USA • JPBF: philip.faure@yahoo.com https://orcid.org/0000-0001-5183-5487 • LF: lfoden@panthera.org
b https://orcid.org/0009-0000-4014-4357

\* Corresponding author

**Abstract.** Side-striped Jackal, *Lupulella adusta* (Sundevall, 1847), occurs in a vast area within sub-Saharan Africa. In South Africa, the current geographical distribution is limited to eastern coastal regions. Recent sightings from north-central areas of the country suggest a wider geographical distribution. Here we report on 5,130 confirmed, repeated detections of Side-striped Jackal. Of these, 3,625 captures were from 471 new locations not previously recorded in the scientific literature, thereby expanding their current geographical distribution. These new records were captured in 33 vegetation types, including the forest and grassland biomes where they are not commonly detected.

Keywords. Camera trap; Canis adustus; range extension; species distribution

Academic editor: Terrence C. Demos Received 12 February 2023, accepted 25 June 2023, published 13 July 2023


Swanepoel LH, Faure JPB, Foden L, Emslie KW (2023) Extending the geographical distribution of Side-striped Jackal, Lupulella adusta (Sundevall, 1847) (Carnivora, Canidae), in South Africa. Check List 19 (4): 509–520. https://doi.org/10.15560/19.4.509

# Introduction

Side-striped Jackal, Lupulella adusta (Sundevall, 1847) (previously Canis adustus; Krofel et al. 2022), is a medium-sized canid which occupies a vast range in sub-Saharan Africa, from The Gambia and Senegal through the Sahelian regions of west Africa to the horn in the east and southwards into southern Africa (Loveridge and Macdonald 2013). Its occurrence is limited to the eastern parts of southern Africa, with it being absent and generally replaced by Black-backed Jackal, Lupulella mesomelas (Schreber, 1775) (previously Canis mesome*las*; Krofel et al. 2022), in the more arid western regions (Fig. 1) (Skinner and Chimimba 2005; Loveridge and Macdonald 2013). In this article, we use the genus name Lupulella Hilzheimer, 1906 instead of Canis Linnaeus, 1758 for both L. adusta and L. mesomelas, since recent studies have suggested they be placed in a distinct genus,

i.e., Lupulella (Zrzavý and Řičánková 2004; Lindblad-Toh et al. 2005; Dinets 2015, Viranta et al. 2017; Krofel et al. 2022). The most southernly occurrence of Sidestriped Jackal on the continent is in north-eastern Kwa-Zulu-Natal, South Africa (Rowe-Rowe 1992) (Fig. 1 A). In South Africa, it is also distributed throughout parts of Mpumalanga and Limpopo provinces. Records are also available from parts of Swaziland but none from Lesotho (Camacho et al. 2016). The current area of occurrence (AOO) and extent of occurrence (EOO) for this species across its range are estimated at 16,950 km<sup>2</sup> and 111,335 km<sup>2</sup>, respectively (Camacho et al. 2016). Within its range, Side-striped Jackal occupies a variety of habitats. These include wet woodlands and woodland mosaics in central and west Africa (Coe and Skinner 1993; Skinner and Chimimba 2005). It is commonly observed in disused farmland, marshes, and montane habitats up to 2,700 m a.s.l. (Yalden et al. 1996; Estes

 $\square$ 



**Figure 1.** Geographic range of Side-striped Jackal, *Lupulella adusta* (Sundevall, 1847). **A.** The species' range (red) within Africa, grey represents South Africa. **B.** Detections in new quarter degree grid cell areas. Grey polygons represent Swaziland, and the Limpopo, Mpumalanga, and KwaZulu-Natal provinces in South Africa. **C.** Historic, recent, undated, and new distribution records of the species in South Africa and Swaziland.

2012; Kingdon 2015) and favours densely wooded areas over open savanna grasslands (Skinner and Chimimba 2005). This species is also often found in the vicinity of rural residences and occasionally urban areas (Skinner and Chimimba 2005). The species is classified as Least Concern by both the IUCN (Hoffmann 2014) and the Red List assessment in South Africa, Swaziland, and Lesotho (Camacho et al. 2016). In this study, we report on new distribution records for South Africa and Swaziland, and we suggest a possible range extension for the species into habitat types and areas not previously recorded in the literature.

### Methods

Camera trapping is a non-invasive research technique and we did not require any permits to do this study. Data for this study was taken from two sources. First, we used occurrence data from 59 camera trap surveys conducted at 22 nature reserves from a long-term, largescale Leopard, *Panthera pardus* (Linnaeus, 1758), population monitoring project (Rogan et al. 2019) (Appendix Table A1). In addition, occurrence data from one site came from opportunistic camera-trap sampling by JPBF responding to wildlife conflict calls in Limpopo, South Africa (Appendix Table A1). Second, a visual sighting and DSLR camera photograph was received from M. Petford on a farm in the Soutpansberg Mountains, Limpopo, South Africa. Data from the Leopard monitoring project spanned from May 2013 to July 2021 and covered areas within the KwaZulu-Natal, Mpumalanga, and Limpopo provinces of South Africa, and one reserve in Swaziland. The opportunistic camera trap data was collected during July 2018, and the direct observation took place in June 2016. Occurrence data from the leopard monitoring project and the opportunistic camera trap sampling were predominantly within the savanna biome, whereas the human observation was made in the forest biome. See Table 1 for details on capture rates in different biomes and vegetation types.

Leopard monitoring surveys deployed an array of 41 (mean; range: 27–64) camera traps in a systematic grid. Nearest camera trap stations were placed on average 1.1 km apart (range: 0.3-8.2 km), ~40 cm off the ground on metal stakes or trees, and generally on vehicle roads or animal paths. Trap deployment and placement for the Leopard monitoring surveys covered on average 165.6 km<sup>2</sup> (range: 66.7-321.2 km<sup>2</sup>), and were designed to maximize detection of Leopard with two cameras placed at each station, on opposite sides of the trail/road to photograph both flanks of a leopard. Survey duration varied between sites (40-84 days) and averaged 4,057 camera trap days (range: 1,740-7,157). For the opportunistic camera trap data, a single camera trap was placed at six locations, ~40 cm off the ground, and spaced between 0.3 and 0.5 km from each other. Station locations were based on carnivore sightings reported by resident

farmers. No bait or lures were used during any of these surveys, and camera traps were programmed to continuously capture images if movement was detected.

#### Results

Data on Side-striped Jackals were collected over 239,335 camera trap days (21 May 2013-11 July 2021) from 21 reserves and two privately owned farms in South Africa, and one nature reserve in Swaziland. The majority of Side-striped Jackal detections were in the savanna biome (88.7% of independent captures; here, independent captures refer to images of Side-striped Jackal taken at the same camera trap, on the same day, but >30 minutes apart), followed by forest (3.3%), azonal vegetation (3.1%), Indian Ocean coastal belt (3%), grassland (1.8%), and near freshwater lake areas (0.1%) (Fig. 2). The human observation was captured in Northern Mistbelt Forest vegetation type (Mucina and Rutherford 2006) in the Soutpansberg Mountains, Limpopo, South Africa. Elevation at capture locations ranged between 7 and 1,430 m a.s.l.

**New records.** A total of 5,130 images (3,751 independent captures) of Side-striped Jackals were recorded. Of these, 3,265 captures (2,342 independent captures, representing 471 distinct geographic locations) were recorded in 27 new quarter-degree grid cells not documented in the *Red List of Mammals of South Africa, Swaziland and Lesotho* (Camacho et al. 2016). Whereas 455 captures were recorded in seven recent (post-1999) distribution quarter-degree grid cells, 60 in two historic

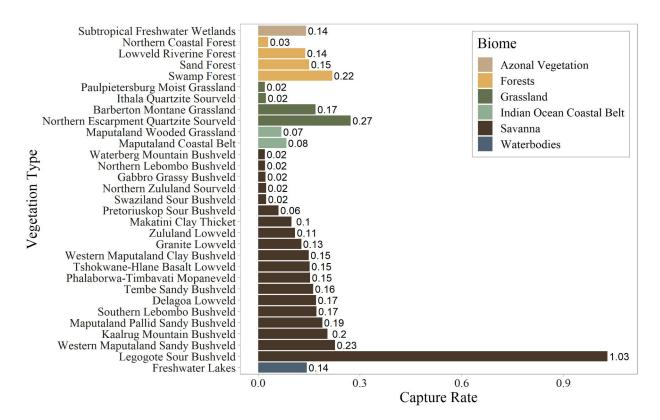
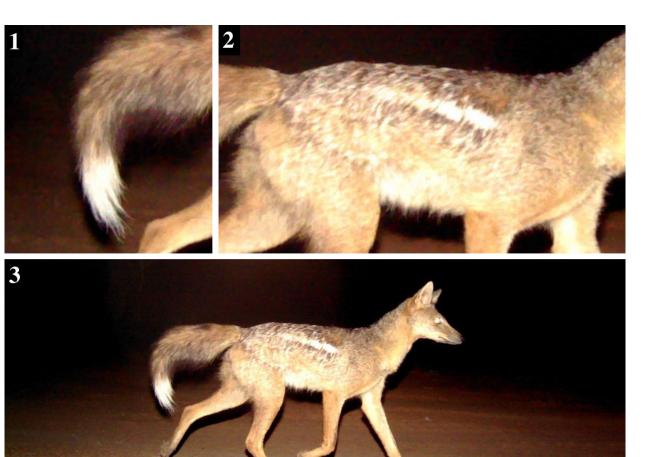



Figure 2. Side-striped Jackal, Lupulella adusta (Sundevall, 1847), capture rate within each vegetation type (capture rate taken as the sum of the number of independent captures divided by the number of trap days for each station).

| Biome                     | Vegetation type                        | Capture rate | % of captures |
|---------------------------|----------------------------------------|--------------|---------------|
| Savanna                   | Legogote Sour Bushveld                 | 1.029        | 4.00          |
| Grassland                 | Northern Escarpment Quartzite Sourveld | 0.273        | 0.69          |
| Savanna                   | Western Maputaland Sandy Bushveld      | 0.226        | 1.36          |
| Forests                   | Swamp Forest                           | 0.218        | 1.15          |
| Savanna                   | Kaalrug Mountain Bushveld              | 0.204        | 1.01          |
| Savanna                   | Maputaland Pallid Sandy Bushveld       | 0.189        | 2.03          |
| Savanna                   | Southern Lebombo Bushveld              | 0.172        | 4.24          |
| Savanna                   | Delagoa Lowveld                        | 0.170        | 0.40          |
| Grassland                 | Barberton Montane Grassland            | 0.169        | 1.01          |
| Savanna                   | Tembe Sandy Bushveld                   | 0.162        | 8.93          |
| Savanna                   | Phalaborwa-Timbavati Mopaneveld        | 0.153        | 3.31          |
| Savanna                   | Tshokwane-Hlane Basalt Lowveld         | 0.151        | 2.85          |
| Forests                   | Sand Forest                            | 0.150        | 0.99          |
| Savanna                   | Western Maputaland Clay Bushveld       | 0.149        | 13.25         |
| Waterbodies               | Freshwater Lakes                       | 0.143        | 0.13          |
| Azonal Vegetation         | Subtropical Freshwater Wetlands        | 0.141        | 3.09          |
| Forests                   | Lowveld Riverine Forest                | 0.139        | 0.77          |
| Savanna                   | Granite Lowveld                        | 0.127        | 38.55         |
| Savanna                   | Zululand Lowveld                       | 0.109        | 3.09          |
| Savanna                   | Makatini Clay Thicket                  | 0.098        | 4.32          |
| Indian Ocean Coastal Belt | Maputaland Coastal Belt                | 0.083        | 2.43          |
| Indian Ocean Coastal Belt | Maputaland Wooded Grassland            | 0.068        | 0.61          |
| Savanna                   | Pretoriuskop Sour Bushveld             | 0.060        | 0.83          |
| Forests                   | Northern Coastal Forest                | 0.029        | 0.35          |
| Savanna                   | Swaziland Sour Bushveld                | 0.024        | 0.11          |
| Savanna                   | Northern Zululand Sourveld             | 0.023        | 0.13          |
| Grassland                 | Ithala Quartzite Sourveld              | 0.022        | 0.05          |
| Savanna                   | Gabbro Grassy Bushveld                 | 0.021        | 0.05          |
| Savanna                   | Northern Lebombo Bushveld              | 0.020        | 0.05          |
| Grassland                 | Paulpietersburg Moist Grassland        | 0.020        | 0.03          |
| Savanna                   | Waterberg Mountain Bushveld            | 0.020        | 0.03          |
| Forests                   | Northern Mistbelt Forest               | *            | 0.03          |
| Savanna                   | Makhado Sweet Bushveld                 | +            | 0.13          |

**Table 1.** Capture rate (sum of independent captures divided by number of trap days at the camera trap station(s) where the detection(s) came from) per vegetation type from all Side-striped Jackal, *Lupulella adusta* (Sundevall, 1847), detections within each biome in South Africa and Swaziland, May 2013–July 2021.

\* No trap effort available, one image was captured in this vegetation type using a handheld camera.


† No trap effort available for this site. Five captures came from this vegetation type.

(pre-2000) distribution quarter-degree grid cells, and 1,350 in five quarter-degree grid cells that had both recent and historic occurrence data (Fig. 1, Appendix Table A2). Detailed information on these records is presented in the supplementary material.

**Identification.** We identified the Side-striped Jackal by several characteristics, which included; 1) a long, white-tipped tail; 2) a definite white or buff-coloured stripe on its side running from shoulder to hip with a black margin below it; and 3) a tan to buff-grey pelage with darker colouration on the back and cream-coloured undersides and throat (Fig. 3) (Skinner and Chimimba 2005; Kingdon 2015).

### Discussion

In this paper, we expanded the current range of Sidestriped Jackal in South Africa by adding 27 new quarter-degree grid cells where the species was not detected before. One of these new quarter-degree grid cells was recorded on Lapalala Game Reserve in 2016, >180 km south-south-west from the nearest previous records in Camacho et al. (2016). However, only one individual was captured at this site, even though subsequent camera trap surveys were conducted in 2017, 2018, 2020, 2021, and 2022. Therefore, we cannot confirm whether a breeding population is present at this site. Nonetheless, our findings support suggestions



**Figure 3.** Side-striped Jackal, *Lupulella adusta* (Sundevall, 1847), camera trap photograph showing the species' identifying features. **1.** A long, white-tipped tail. **2.** White or buff-coloured stripe on its side running from shoulder to hip with a black margin below it. **3.** Full-body image showing the tan to buff-grey pelage with darker colouration on the back and cream-coloured undersides and throat.

of a westward range extension for Side-striped Jackal in the last two decades (Camacho et al. 2016). Although these new locations suggest a range extension, the species might well have gone undetected during historic surveys due to its secretive nature, or it might have been misidentified as Black-backed Jackal.

The majority of our detections were from bushveld habitat types (savanna biome), which concurs with previous research on Side-striped Jackal (Skinner and Chimimba 2005). These habitat types are characterised by an herbaceous layer usually dominated by grass species with a discontinuous (sometimes open) woody component (Mucina and Rutherford 2006). Side-striped Jackal is reported to avoid open savanna grassland and prefers areas with more thickly wooded vegetation (Skinner and Chimimba 2005). However, Side-striped Jackals appear to be highly adaptable to different habitat types (Macdonald et al. 2004). For example, in the Highveld of Zimbabwe, they have been noted to preferentially utilize grassland habitats, whereas in Hwange (approximately 500 km north-east of the Highveld), they use grasslands less than expected and occupy woodland and ecotone areas more frequently (even though resources were higher in the grassland areas)

(Loveridge and Macdonald 2002). As such, the use of grasslands concurs with some of our observations where we recorded detections in four vegetation types in the grassland biome (Northern Escarpment Quartzite Sourveld, Barberton Montane Grassland, Ithala Quartzite Sourveld, and Paulpietersburg Moist Grassland), and one from the Indian Ocean Coastal Belt (Maputaland Wooded Grassland) (Mucina and Rutherford 2006). It should be noted that Ithala Quartzite Sourveld is considered an ecotonal area between grassland and savanna where the dominant grassland gives way to woodland (Mucina and Rutherford 2006), thus containing more wooded areas. The extension of Sidestriped Jackal into the grassland biome might suggest their use of potential niche openings due to the persecution of Black-backed Jackal in these areas (Minnie et al. 2015; Nattrass et al. 2019). Black-backed Jackal, despite being smaller than Side-striped Jackal, aggressively displaces the latter where they co-occur (Loveridge and Macdonald 2002; Macdonald et al. 2004). Persecution of Black-backed Jackals (and other predators) may therefore be releasing Side-striped Jackals from suppression and competitive exclusion. Furthermore, Side-striped Jackal is an opportunistic omnivore with a broad dietary niche (Atkinson et al. 2002), and it could therefore successfully exploit grassland small mammal communities (Loveridge and Macdonald 2002) in the absence of Black-backed Jackal.

We document one record of Side-striped Jackal in the Northern Mistbelt Forest vegetation type in the Soutpansberg Mountains (Mucina and Rutherford 2006). This confirms the previous presence of Sidestriped Jackal in the Mistbelt Forest (Camacho et al. 2016). Even though it appears that the species does not occur in forested parts of South Africa (Skinned and Chimimba 2005), Kingdon (2015) reported the species utilizing the equatorial forest belt. This concurs with some of our observations where we detected the species in other forest biome vegetation types (including, Lowveld Riverine Forest, Northern Coastal Forest, Sand Forest, and Swamp Forest (Mucina and Rutherford 2006), suggesting that the use of forest by the species is more common than previously thought. The presence of the species in the forested parts of South Africa can suggest exploitation of a niche deprived of Black-backed Jackals, or corridor utilization since forest patches often connect mountainous habitat types.

While we suggest the westward range extension of the species, which might be attributed to vacant Blackbacked Jackal niches (Loveridge and Macdonald 2002) due to persecution (Nattrass et al. 2020), we provide an alternative equally plausible hypothesis. Ongoing bush encroachment throughout South Africa's savannas is increasing the wooded biomass in areas that were previously classified as more open savanna habitat types (O'Connor et al. 2014). Such newly wooded areas may create unfavourable habitat for Black-backed Jackal and possibly provide a competitive edge to Side-striped Jackal.

## Acknowledgements

We thank Manie Eloff and his family for their hospitality, Melissa Petford for the photo of Side-striped Jackal in the Soutpansberg Mountains, and Panthera Wild Cat Conservation for historical camera trap data. We thank Emmanuel Do Linh San, Stoyan Stoyanov and Terrence Demos for their review of the manuscript, which greatly improved the article.

# Authors' Contributions

Conceptualization: LHS, JPBF. Data curation: JPBF, LF. Formal analysis: JPBF. Funding acquisition: LHS. Investigation: LHS, JPBF. Methodology: LHS, JPBF. Resources: LHS, JPBF. Supervision: LHS. Visualization: JPBF. Writing – original draft: LHS, JPBF. Writing – review and editing: LHS, JPBF, LF, KWE.

#### Supplementary File

Side-striped Jackal, *Lupulella adusta*, occurrence records from South Africa and Swaziland, May 2013–July 2021 (Excel spreadsheet).

# References

- Atkinson RPD, Macdonald DW, Kamizola R (2002) Dietary opportunism in Side-striped Jackals Canis adustus Sundevall. Journal of Zoology 257 (1): 129–139. https:// doi.org/10.1017/S0952836902000729
- Camacho G, Page-Nicholson S, Child MF, Do Linh San E (2016) A conservation assessment of *Canis adustus*. In: Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT (Eds.) The Red List of mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, Johannesburg, South Africa, 1–5 pp.
- **Coe MJ, Skinner JD** (1993) Connections, disjunctions and endemism in the eastern and southern African mammal faunas. Transactions of the Royal Society of South Africa 48 (2): 233–255. https://doi.org/10.1080/0035919 9309520273
- Dinets V (2015) The *Canis* tangle: a systematics overview and taxonomic recommendations. Vavilov Journal of Genetics and Breeding 19 (3):286–291. https://doi.org/ 10.18699/vj15.036
- Estes RD (2012) The behavior guide to African mammals: including hoofed mammals, carnivores, primates. University of California Press, Berkeley and Los Angeles, USA, 408–409.
- Fuller TK, Biknevicius AR, Kat PW, van Valkenburgh B, Wayne RK (1989) The ecology of three sympatric jackal species in the Rift Valley of Kenya. African Journal of Ecology 27 (4): 313–323. https://doi. org/10.1111/j.1365-2028.1989.tb01025.x
- Hoffmann M (2014) *Canis adustus*. The IUCN Red List of Threatened Species 2014: e.T3753A46254734. https://doi. org/10.2305/iucn.uk.2014-1.rlts.t3753a46254734.en
- Kingdon, J (2015) The Kingdon field guide to African mammals. Bloomsbury Publishing, London, UK, 367–368.
- Krofel M, Hatlauf J, Bogdanowicz W, Campbell LAD, Godinho R, et al. (2022) Towards resolving taxonomic uncertainties in wolf, dog and jackal lineages of Africa, Eurasia and Australasia. Journal of Zoology 316 (3): 155– 168. https://doi.org/10.1111/jzo.12946
- Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438 (7069): 803–819. https://doi.org/10.1038/ nature04338
- Loveridge AJ, Macdonald DW (2002) Habitat ecology of two sympatric species of jackals in Zimbabwe. Journal of Mammalogy 83 (2): 599–607. https://doi. org/10.1644/1545-1542(2002)083<0599:heotss>2.0.co;2
- Loveridge AJ, Macdonald DW (2013) *Canis adustus* Side-Striped Jackal. In: Kingdon J, Hoffmann M (Eds.) The mammals of Africa. V. Carnivores, pangolins, equids and rhinoceroses. Bloomsbury, London, UK, 704 pp.
- Macdonald DW, Loveridge AJ, Atkinson RP (2004) A comparative study of side-striped jackals in Zimbabwe: the influence of habitat and congeners. In: Macdonald DW, Sillero-Zubiri C (Eds.) Biology and conservation of wild canids. Oxford University Press, Oxford, UK, 255–270.

- Minnie L, Gaylard A, Kerley GI (2016) Compensatory lifehistory responses of a mesopredator may undermine carnivore management efforts. Journal of Applied Ecology 53 (2): 379–387. https://doi.org/10.1111/1365-2664.12581
- Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Johannesburg, South Africa, 807 pp.
- Nattrass N, Drouilly M, O'Riain MJ (2020) Learning from science and history about Black-backed Jackals *Canis mesomelas* and their conflict with sheep farmers in South Africa. Mammal Review 50 (1): 101–111. https://doi.org/ 10.1111/mam.12179
- **O'Connor TG, Puttick JR, Hoffman MT** (2014) Bush encroachment in southern Africa: changes and causes. African Journal of Range & Forage Science 31 (2): 67–88. https://doi.org/10.2989/10220119.2014.939996
- Rogan MS, Balme GA, Distiller G, Pitman RT, Broadfield J, Mann GKH, Whittington-Jones GM, Thomas LH, O'Riain MJ (2019) The influence of movement on the occupancy—density relationship at small spatial scales. Ecosphere 10 (8): e02807. https://doi.org/10.1002/ ecs2.2807

- **Rowe-Rowe DT** (1992) The carnivores of Natal. Natal Parks Board, Pietermaritzburg, South Africa, 28 pp.
- South African National Biodiversity Institute (2012) Vegetation map of South Africa, Lesotho and Swaziland [vector geospatial dataset] 2012. Biodiversity GIS. http://bgis. sanbi.org/SpatialDataset/Detail/18. Accessed on: 2023-01-21.
- Skinner JD, Chimimba CT (2005) The mammals of the Southern African Subregion. 3rd edition. Cambridge University Press, Cambridge, UK, 814 pp.
- Viranta S, Atickem A, Werdelin L, Stenseth NC (2017) Rediscovering a forgotten canid species. BMC Zoology 2 (6): 1–9. https://doi.org/10.1186/s40850-017-0015-0
- Yalden DW, Largen MJ, Kock D, Hillman JC (1996) Catalogue of the mammals of Ethiopia and Eritrea. Revised checklist, zoogeography and conservation. Tropical Zoology 9 (1): 73–164. https://doi.org/10.1080/03946975.199 6.10539304
- Zrzavý J, Řičánková V (2004) Phylogeny of recent Canidae (Mammalia, Carnivora): relative reliability and utility of morphological and molecular datasets. Zoologica Scripta 33 (4): 311–333. https://doi.org/10.1111/j.0300-3256.2004.00152.x

# Appendix



Figure A1. Images of Side-striped Jackals, *Lupulella adusta* (Sundevall, 1847), captured within each of the new quarter-degree grid cells. A. E028S23CC, 2016-12-07 01:37. B. E029S23AB, 2016-06-27 14:03. C. E030S23AC, 2018-07-22 03:02. D. E030S24BA, 2017-09-08 05:41. E. E030S24DB, 2016-10-02 18:29. F. E030S25DB, 2016-07-25 02:22. G. E030S26BB, 2016-04-26 03:46. H. E031S24CD, 2018-05-23 18:46. I. E031S24DB, 2018-10-14 03:07. [Continued next page.]

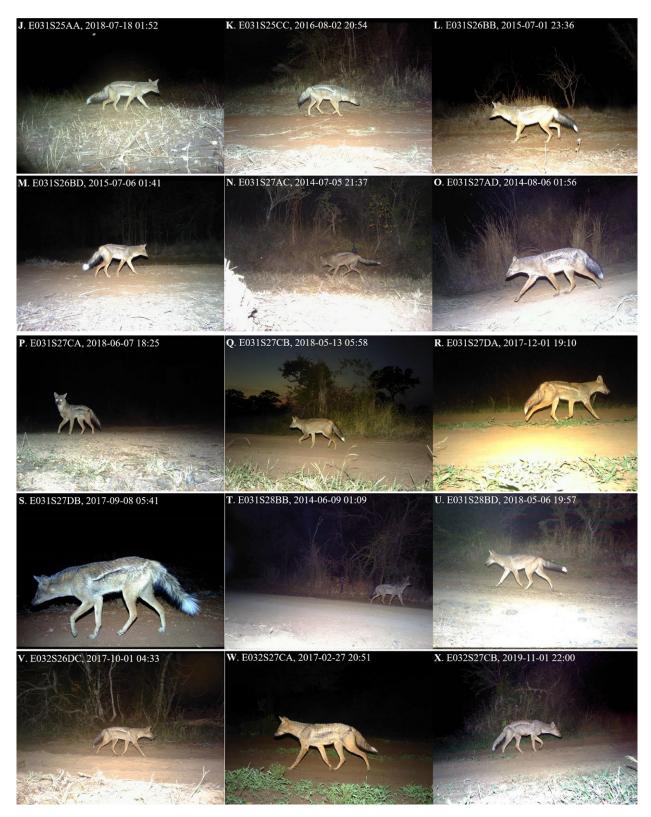



Figure A1 [Continued]. J. E031S25AA, 2018-07-18 01:52. K. E031S25CC, 2016-08-02 20:54. L. E031S26BB, 2015-07-01 23:36. M. E031S26BD, 2015-07-06 01:41. N. E031S27AC, 2014-07-05 21:37. O. E031S27AD, 2014-08-06 01:56. P. E031S27CA, 2018-06-07 18:25. Q. E031S27CB, 2018-05-13 05:58. R. E031S27DA, 2017-12-01 19:10. S. E031S27DB, 05:41. T. E031S28BB, 2014-06-09 01:09. U. E031S28BD, 2018-05-06 19:57. V. E032S26DC, 2017-10-01 04:33. W. E032S27CA, 2017-02-27 20:51. X. E032S27CB, 2019-11-01 22:00. [Continued next page.]



Figure A1 [Continued]. Y. E032S27CC, 2020-12-02 23:44. Z. E032S27CD, 2017-12-20 00:17. AA. E032S28AA, 2015-05-11 00:34.

**Table A1.** Summary of camera trap surveys conducted in South Africa and Swaziland, May 2013–July 2021. All reserves are in South Africa, except for Hlane Royal NR in Swaziland. Nature Reserve = NR, Game Reserve = GR, National Park = NP.

| Reserve name             | Start date | End date   | Trap days (mean<br>by station) | Longitude | Latitude  | No. of cam-  |      | Area<br>(km²) |
|--------------------------|------------|------------|--------------------------------|-----------|-----------|--------------|------|---------------|
|                          | (YYYY-     | mm-dd)     |                                |           | (mean)    | era stations |      |               |
| Barbeton NR              | 2016-07-12 | 2016-08-25 | 2472 (29.43)                   | 31.0807   | -025.6939 | 33 (65)      | 895  | 193.67        |
| Blyde River Canyon NR    | 2016-09-13 | 2016-10-27 | 3316 (41.97)                   | 30.8410   | -024.6489 | 31 (65)      | 1159 | 265.93        |
| Hlane Royal NP           | 2015-06-26 | 2015-08-09 | 4790 (44.77)                   | 31.8784   | -026.2673 | 41 (84)      | 1490 | 191.52        |
| Hluhluwe GR              | 2014-04-30 | 2014-06-14 | 2040 (44.35)                   | 31.9463   | -028.2158 | 46 (46)      | 1286 | 283.16        |
| Hluhluwe GR              | 2015-05-01 | 2015-06-14 | 2047 (44.35)                   | 31.9464   | -028.2158 | 46 (46)      | 1286 | 283.17        |
| Hluhluwe GR              | 2018-03-27 | 2018-05-24 | 2219 (44.50)                   | 31.9490   | -028.2161 | 46 (46)      | 1182 | 286.03        |
| lsimangaliso NP          | 2014-10-22 | 2014-12-05 | 6041 (48.24)                   | 32.4909   | -028.2104 | 40 (102)     | 737  | 134.98        |
| lsimangaliso NP          | 2015-09-25 | 2015-11-08 | 4880 (44.77)                   | 32.4915   | -028.2139 | 41 (84)      | 825  | 133.51        |
| lsimangaliso NP          | 2016-09-16 | 2016-10-30 | 5131 (44.23)                   | 32.4912   | -028.2145 | 41 (94)      | 733  | 132.90        |
| lsimangaliso NP          | 2017-09-18 | 2017-11-10 | 3896 (39.76)                   | 32.4903   | -028.2135 | 41 (98)      | 734  | 132.48        |
| lsimangaliso NP          | 2018-06-14 | 2018-07-24 | 3936 (37.13)                   | 32.4877   | -028.2179 | 41 (106)     | 797  | 132.38        |
| lsimangaliso NP          | 2019-06-11 | 2019-08-07 | 4058 (46.64)                   | 32.4880   | -028.2191 | 41 (87)      | 797  | 132.07        |
| lsimangaliso NP          | 2020-05-26 | 2020-07-15 | 3354 (36.46)                   | 32.4885   | -028.2180 | 41 (92)      | 8    | 131.34        |
| lsimangaliso NP          | 2021-05-20 | 2021-07-11 | 2712 (28.85)                   | 32.4897   | -028.2149 | 40 (94)      | 798  | 131.93        |
| Ithala GR                | 2013-08-27 | 2013-10-10 | 4529 (42.73)                   | 31.2922   | -027.5130 | 36 (83)      | 322  | 198.42        |
| Ithala GR                | 2014-06-29 | 2014-08-12 | 3637 (42.79)                   | 31.2903   | -027.5114 | 31 (67)      | 1549 | 209.00        |
| Ithala GR                | 2017-07-24 | 2017-09-15 | 2882 (43.01)                   | 31.2975   | -027.5127 | 30 (67)      | 1530 | 176.19        |
| KwaZulu Private GR       | 2015-11-03 | 2015-12-16 | 6812 (42.58)                   | 31.6279   | -027.6183 | 62 (127)     | 911  | 254.75        |
| KwaZulu Private GR       | 2017-10-20 | 2017-12-10 | 3428 (42.85)                   | 31.6247   | -027.6217 | 36 (80)      | 1257 | 134.93        |
| Lapalala GR              | 2016-10-29 | 2016-12-20 | 4028 (50.35)                   | 28.2971   | -023.8362 | 40 (80)      | 1536 | 290.54        |
| Makalali GR              | 2014-02-02 | 2014-04-01 | 7058 (54.29)                   | 30.6611   | -024.1309 | 50 (103)     | 1169 | 186.42        |
| Makalali GR              | 2015-09-07 | 2015-11-30 | 5867 (59.87)                   | 30.6611   | -024.1331 | 40 (82)      | 1530 | 169.22        |
| Makalali GR              | 2016-09-03 | 2016-10-25 | 5251 (50.01)                   | 30.6593   | -024.1323 | 40 (85)      | 1533 | 169.17        |
| Makalali GR              | 2017-08-28 | 2017-10-31 | 4304 (53.14)                   | 30.6611   | -024.1319 | 40 (81)      | 1523 | 169.26        |
| Makalali GR              | 2020-09-05 | 2020-10-24 | 3771 (43.34)                   | 30.6620   | -024.1311 | 40 (87)      | 1523 | 169.26        |
| Mala Mala GR             | 2018-07-31 | 2018-09-27 | 3784 (39.01)                   | 31.5396   | -024.8209 | 46 (97)      | 681  | 133.30        |
| Manyoni Private GR       | 2015-07-29 | 2015-09-11 | 4617 (44.83)                   | 32.0260   | -027.7404 | 40 (84)      | 1089 | 162.33        |
| Manyoni Private GR       | 2017-02-15 | 2017-04-09 | 3683 (41.85)                   | 32.0220   | -027.7374 | 39 (86)      | 1039 | 151.80        |
| Manyoni Private GR       | 2020-11-23 | 2021-01-10 | 2959 (32.52)                   | 32.0246   | -027.7339 | 40 (91)      | 1045 | 152.92        |
| Mostertsgeluk Farm       | 2018-07-11 | 2018-08-15 | *                              | 30.0142   | -023.4336 | 6 (6)        | 300  | *             |
| Nwanetsi, Kruger NP      | 2018-08-27 | 2018-10-18 | 3965 (45.06)                   | 31.9592   | -024.3908 | 43 (88)      | 1308 | 206.13        |
| Soutpansberg<br>Mountain | 2016-06-27 | NA         | *                              | 29.4357   | -023.0307 | 1 (1)        | NA   | NA            |
| Phinda GR                | 2014-07-01 | 2014-08-14 | 5660 (44.22)                   | 32.3350   | -027.7942 | 42 (92)      | 936  | 168.24        |
| Phinda GR                | 2016-06-24 | 2016-08-19 | 5223 (54.41)                   | 32.3359   | -027.7912 | 42 (85)      | 929  | 168.17        |
| Phinda GR                | 2017-11-30 | 2018-01-18 | 3678 (39.55)                   | 32.3343   | -027.7930 | 42 (93)      | 929  | 168.30        |
| Phinda GR                | 2019-10-03 | 2019-12-16 | 3925 (38.86)                   | 32.3359   | -027.7958 | 42 (101)     | 944  | 165.90        |
|                          |            |            |                                |           |           |              |      |               |

| Reserve name               | Start date   | End date   | Trap days (mean | Longitude    | Latitude  | No. of cam-  | Min. distance between | Area   |
|----------------------------|--------------|------------|-----------------|--------------|-----------|--------------|-----------------------|--------|
|                            | (YYYY-mm-dd) |            | by station)     | WGS84 (mean) |           | era stations | nearest cameras (m)   | (km²)  |
| Pretoriuskop, Kruger<br>NP | 2018-06-25   | 2018-08-16 | 3866 (42.96)    | 31.2544      | -025.1193 | 45 (90)      | 1247                  | 170.46 |
| Sabie Sand                 | 2018-03-26   | 2018-06-14 | 4607 (47.49)    | 31.5443      | -024.9262 | 45 (97)      | 945                   | 106.09 |
| Singita GR                 | 2017-06-14   | 2017-07-29 | 3096 (39.19)    | 31.4346      | -024.7931 | 37 (79)      | 299                   | 66.55  |
| Singita GR                 | 2018-10-08   | 2018-12-03 | 3955 (40.77)    | 31.4062      | -024.7918 | 45 (97)      | 1168                  | 127.72 |
| Lower Sabie, Kruger<br>NP  | 2018-03-26   | 2018-06-14 | 7157 (51.49)    | 31.7538      | -025.0360 | 64 (139)     | 1069                  | 321.24 |
| Somkhanda GR               | 2013-05-21   | 2013-07-04 | 4931 (44.42)    | 31.8826      | -027.5438 | 37 (73)      | 1388                  | 154.73 |
| Somkhanda GR               | 2014-02-14   | 2014-03-30 | 4599 (40.70)    | 31.8880      | -027.5508 | 39 (95)      | 1388                  | 182.76 |
| Somkhanda GR               | 2015-01-30   | 2015-03-15 | 5247 (43.36)    | 31.8948      | -027.5516 | 40 (100)     | 1380                  | 183.07 |
| Songimvelo GR              | 2016-03-08   | 2016-04-21 | 3009 (42.38)    | 30.9637      | -025.9970 | 27 (60)      | 718                   | 85.28  |
| Tembe Elephant Park        | 2017-09-13   | 2017-10-26 | 2639 (38.25)    | 32.4686      | -026.9662 | 32 (69)      | 1304                  | 141.61 |
| Tembe Elephant Park        | 2018-09-23   | 2018-11-15 | 3068 (42.61)    | 32.4676      | -026.9706 | 32 (72)      | 1263                  | 141.53 |
| Timbavati Private NR       | 2013-10-29   | 2013-12-27 | 5062 (47.31)    | 31.2979      | -024.3731 | 40 (85)      | 1056                  | 155.36 |
| Timbavati Private NR       | 2014-10-16   | 2014-12-23 | 5534 (53.73)    | 31.2972      | -024.3705 | 40 (82)      | 1070                  | 155.87 |
| Timbavati Private NR       | 2015-10-01   | 2015-12-04 | 5365 (58.32)    | 31.2976      | -024.3722 | 40 (76)      | 1086                  | 155.95 |
| Timbavati Private NR       | 2016-09-02   | 2016-10-21 | 3822 (48.38)    | 31.2961      | -024.3719 | 40 (79)      | 1089                  | 155.95 |
| Timbavati Private NR       | 2017-08-26   | 2017-10-19 | 3918 (45.56)    | 31.2964      | -024.3711 | 40 (86)      | 1093                  | 155.96 |
| Timbavati Private NR       | 2018-10-22   | 2018-12-07 | 3566 (40.07)    | 31.2952      | -024.3707 | 40 (89)      | 1093                  | 155.96 |
| uMkhuze GR                 | 2013-06-12   | 2013-07-26 | 5243 (44.43)    | 32.2440      | -027.6404 | 41 (92)      | 667                   | 127.16 |
| uMkhuze GR                 | 2014-03-29   | 2014-05-12 | 1740 (43.50)    | 32.2412      | -027.6431 | 40 (40)      | 10                    | 126.95 |
| uMkhuze GR                 | 2015-06-02   | 2015-07-16 | 4542 (44.10)    | 32.2435      | -027.6429 | 40 (86)      | 1136                  | 121.92 |
| uMkhuze GR                 | 2016-05-27   | 2016-07-10 | 4820 (44.63)    | 32.2454      | -027.6422 | 40 (86)      | 1143                  | 122.37 |
| uMkhuze GR                 | 2017-05-26   | 2017-07-20 | 2004 (50.10)    | 32.2449      | -027.6424 | 40 (40)      | 1151                  | 122.25 |
| uMkhuze GR                 | 2018-07-31   | 2018-09-19 | 3596 (39.52)    | 32.2462      | -027.6430 | 40 (91)      | 1155                  | 122.08 |
| uMkhuze GR                 | 2019-08-11   | 2019-10-04 | 2087 (52.18)    | 32.2448      | -027.6424 | 40 (40)      | 1166                  | 122.34 |
| uMkhuze GR                 | 2020-07-24   | 2020-09-13 | 1909 (47.73)    | 32.2441      | -027.6414 | 40 (40)      | 10                    | 117.85 |

\* No data available to calculate estimate.

**Table A2.** Number of independent captures of Side-striped Jackals, *Lupulella adusta* (Sundevall, 1847), for each year in all surveyed reserves in South Africa and Swaziland, May 2013–July 2021. Number of camera trap stations which captured Side-striped Jackal and the quarter-degree grid cell (QDGC) within which detections were made are also indicated. All reserves are in South Africa, except for Hlane Royal NR in Swaziland. Nature Reserve = NR, Game Reserve = GR, National Park = NP.

| Reserve name          | Year | QDGC      | Number of camera stations | Number of captures |
|-----------------------|------|-----------|---------------------------|--------------------|
| Barbeton NR           | 2016 | E031S25CC | 5                         | 21                 |
| Barbeton NR           | 2016 | E031S25CA | 13                        | 125                |
| Barbeton NR           | 2016 | E030S25DB | 5                         | 127                |
| Blyde River Canyon NR | 2016 | E030S24DB | 3                         | 26                 |
| Isimangaliso NP       | 2014 | E032S28AD | 3                         | 3                  |
| Isimangaliso NP       | 2014 | E032S28AB | 3                         | 6                  |
| Isimangaliso NP       | 2015 | E032S28BA | 2                         | 2                  |
| Isimangaliso NP       | 2015 | E032S28AB | 2                         | 4                  |
| Isimangaliso NP       | 2015 | E032S28AD | 3                         | 4                  |
| Isimangaliso NP       | 2016 | E032S28BA | 2                         | 7                  |
| Isimangaliso NP       | 2016 | E032S28AB | 2                         | 10                 |
| Isimangaliso NP       | 2017 | E032S28AB | 3                         | 5                  |
| Isimangaliso NP       | 2017 | E032S28AD | 5                         | 8                  |
| Isimangaliso NP       | 2017 | E032S28BA | 3                         | 8                  |
| Isimangaliso NP       | 2018 | E032S28AD | 2                         | 3                  |
| Isimangaliso NP       | 2018 | E032S28BA | 7                         | 9                  |
|                       |      |           |                           |                    |

#### Swanepoel et al. | Lupulella adusta range extension

| eserve name           | Year         | QDGC                   | Number of camera stations | Number of captures |
|-----------------------|--------------|------------------------|---------------------------|--------------------|
| imangaliso NP         | 2018         | E032S28AB              | 3                         | 23                 |
| mangaliso NP          | 2019         | E032S28AD              | 2                         | 2                  |
| mangaliso NP          | 2019         | E032S28BA              | 3                         | 28                 |
| mangaliso NP          | 2019         | E032S28AB              | 4                         | 38                 |
| mangaliso NP          | 2020         | E032S28AB              | 4                         | 13                 |
| mangaliso NP          | 2020         | E032S28AD              | 4                         | 15                 |
| mangaliso NP          | 2020         | E032S28BA              | 7                         | 19                 |
| mangaliso NP          | 2021         | E032S28AB              | 4                         | 14                 |
| mangaliso NP          | 2021         | E032S28BA              | 4                         | 22                 |
| ane Royal NP          | 2015         | E031S26BB              | 8                         | 42                 |
| ane Royal NP          | 2015         | E031S26BD              | 13                        | 62                 |
| uhluwe GR             | 2014         | E031S28BB              | 1                         | 2                  |
| uhluwe GR             | 2015         | E032S28AA              | 1                         | - 1                |
| uhluwe GR             | 2015         | E031S27DD              | 1                         | 2                  |
| uhluwe GR             | 2015         | E03132700              | 2                         | 5                  |
| uhluwe GR             | 2013         | E032327CC              | 1                         | 2                  |
| nala GR               | 2018         | E0313286D<br>E031S27CA | 1                         | 1                  |
| iala GR               | 2013         | E031527CA<br>E031S27AC | 1                         | 1                  |
| iala GR               | 2014<br>2014 | E031S27AC<br>E031S27AD | 2                         | 2                  |
|                       |              |                        |                           |                    |
| iala GR               | 2014         | E031S27CB              | 3                         | 3                  |
| ala GR                | 2017         | E031S27CB              | 1                         | 1                  |
| vaZulu Private GR     | 2015         | E031S27DA              | 6                         | 7                  |
| vaZulu Private GR     | 2017         | E031S27DA              | 1                         | 4                  |
| palala GR             | 2016         | E028S23CC              | 1                         | 1                  |
| akalali GR            | 2014         | E030S24BA              | 11                        | 20                 |
| akalali GR            | 2015         | E030S24BA              | 17                        | 60                 |
| akalali GR            | 2016         | E030S24BA              | 11                        | 28                 |
| akalali GR            | 2017         | E030S24BA              | 18                        | 67                 |
| akalali GR            | 2020         | E030S24BA              | 23                        | 92                 |
| ala Mala GR           | 2018         | E031S24CD              | 29                        | 126                |
| ala Mala GR           | 2018         | E031S24DC              | 34                        | 128                |
| anyoni Private GR     | 2017         | E031S27DB              | 1                         | 6                  |
| anyoni Private GR     | 2020         | E031S27DB              | 2                         | 6                  |
| anyoni Private GR     | 2020         | E032S27CC              | 6                         | 24                 |
| anyoni Private GR     | 2021         | E032S27CA              | 1                         | 3                  |
| anyoni Private GR     | 2021         | E032S27CC              | 2                         | 3                  |
| ostertsgeluk Farm     | 2018         | E030S23AC              | 3                         | 5                  |
| vanetsi, Kruger NP    | 2018         | E032S24CA              | 2                         | 2                  |
| vanetsi, Kruger NP    | 2018         | E031S24DB              | 1                         | 2                  |
| vanetsi, Kruger NP    | 2018         | E031S24BD              | 4                         | 45                 |
| utpansberg Mountains  | 2016         | E029S23AB              | 1                         | 1                  |
| inda GR               | 2014         | E032S27CC              | 1                         | 1                  |
| inda GR               | 2014         | E032S27CD              | 25                        | 242                |
| inda GR               | 2016         | E032S27CD              | 19                        | 112                |
| ninda GR              | 2017         | E032S27CD              | 12                        | 49                 |
| iinda GR              | 2018         | E032S27CD              | 5                         | 10                 |
| ninda GR              | 2019         | E032S27CD              | 11                        | 75                 |
| etoriuskop, Kruger NP | 2018         | E031S25AA              | 8                         | 15                 |
| etoriuskop, Kruger NP | 2018         | E031S25AB              | 7                         | 18                 |

| Reserve name         | Year | QDGC      | Number of camera stations | Number of captures |
|----------------------|------|-----------|---------------------------|--------------------|
| Singita GR           | 2017 | E031S24CB | 6                         | 31                 |
| Singita GR           | 2017 | E031S24CD | 25                        | 159                |
| Singita GR           | 2018 | E031S24CB | 3                         | 10                 |
| Sabi Sand GR         | 2018 | E031S25BA | 3                         | 3                  |
| Somkhanda GR         | 2013 | E031S27DB | 2                         | 2                  |
| Somkhanda GR         | 2014 | E031S27DB | 4                         | 6                  |
| Somkhanda GR         | 2015 | E031S27DB | 2                         | 3                  |
| Songimvelo GR        | 2016 | E030S26BB | 1                         | 1                  |
| Tembe Elephant Park  | 2017 | E032S26CD | 2                         | 2                  |
| Tembe Elephant Park  | 2017 | E032S26DC | 2                         | 2                  |
| Tembe Elephant Park  | 2018 | E032S27AB | 1                         | 1                  |
| Timbavati Private GR | 2013 | E031S24AC | 2                         | 17                 |
| Timbavati Private GR | 2013 | E031S24AD | 24                        | 174                |
| Timbavati Private GR | 2014 | E031S24AC | 6                         | 34                 |
| Timbavati Private GR | 2014 | E031S24AD | 24                        | 205                |
| Timbavati Private GR | 2015 | E031S24AC | 3                         | 7                  |
| Timbavati Private GR | 2015 | E031S24AD | 23                        | 84                 |
| Timbavati Private GR | 2016 | E031S24AC | 1                         | 2                  |
| Timbavati Private GR | 2016 | E031S24AD | 14                        | 75                 |
| Timbavati Private GR | 2017 | E031S24AC | 2                         | 2                  |
| Timbavati Private GR | 2017 | E031S24AD | 19                        | 192                |
| Timbavati Private GR | 2018 | E031S24AC | 1                         | 1                  |
| Timbavati Private GR | 2018 | E031S24AD | 3                         | 6                  |
| uMkhuze GR           | 2013 | E032S27CB | 1                         | 1                  |
| uMkhuze GR           | 2013 | E032S27CA | 4                         | 16                 |
| uMkhuze GR           | 2014 | E032S27CA | 9                         | 16                 |
| uMkhuze GR           | 2014 | E032S27CB | 16                        | 62                 |
| uMkhuze GR           | 2015 | E032S27CB | 9                         | 23                 |
| uMkhuze GR           | 2015 | E032S27CA | 11                        | 31                 |
| uMkhuze GR           | 2016 | E032S27CA | 7                         | 42                 |
| uMkhuze GR           | 2016 | E032S27CB | 22                        | 101                |
| uMkhuze GR           | 2017 | E032S27CA | 11                        | 126                |
| uMkhuze GR           | 2017 | E032S27CB | 25                        | 133                |
| uMkhuze GR           | 2018 | E032S27CB | 21                        | 53                 |
| uMkhuze GR           | 2018 | E032S27CA | 11                        | 74                 |
| uMkhuze GR           | 2019 | E032S27CA | 9                         | 54                 |
| uMkhuze GR           | 2019 | E032S27CB | 19                        | 109                |
| uMkhuze GR           | 2020 | E032S27CB | 4                         | 18                 |
| uMkhuze GR           | 2020 | E032S27CA | 7                         | 55                 |