
Software, Architecture,
and Participatory Design

Stephen Rank
Faculty of Applied Computing Sciences

University of Lincoln

srank@lincoln.ac.uk

Carl O’Coill
School of Architecture
University of Lincoln

cocoill@lincoln.ac.uk

Cornelia Boldyreff
Faculty of Applied Computing Sciences

University of Lincoln

cboldyreff@lincoln.ac.uk

Mark Doughty
Faculty of Applied Computing Sciences

University of Lincoln

mdoughty@lincoln.ac.uk

ABSTRACT
Much work in software architecture has been inspired by
work in physical architecture, in particular Alexander’s work
on ‘design patterns’. By contrast, Alexander’s work is little-
used in town planning and architecture. In this paper, we
examine some of the reasons that this is so, describe some
parallels and differences between the fields of physical and
software architecture, and identify areas in which future col-
laboration may be fruitful. The notion of ‘participatory de-
sign’ is important in software engineering and in urban re-
generation, but the participatory mechanisms in each field
are quite different.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.10 [Software]:
Software Engineering—Design; D.2.11 [Software]: Software
Engineering—Software Architectures; K.4.2 [Computing Mi-

lieux]: Computers and Society—Social Issues

General Terms
Design, Human Factors

Keywords
Software architecture, participatory design, physical archi-
tecture

1. INTRODUCTION
Researchers at Lincoln University’s Faculty of Applied

Computing Sciences and the Lincoln School of Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WISER’04, November 5, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-988-8/04/0011 ...$5.00.

have been engaged in a two-level application of participa-
tory design; software engineers are working with architects
to design collaborative systems that architects can apply in
participatory design exercises with their user communities.
The first such system involved the use of computer game
software to help residents in Hull, UK, to visualise and in-
teract with a design proposal for a ‘Home Zone’ in their
neighbourhood [29]. In this paper, we examine some of the
ways in which architecture and software engineering are re-
lated, and describe important differences between the fields
that are often ignored.

2. PARALLELS AND DIFFERENCES
In principle, software is technically easier to evolve than

buildings; software is not constrained by physical laws in
the same way that physical artefacts are. However, software
evolution is a very hard problem, as physical constraints
are far from the only forces acting on a software project;
business and social forces are more important in software
engineering. Faced with the problems of evolving software,
software engineers continue to look outside their field for in-
spiration. Software components, like buildings, are situated
within and have a direct effect upon an environment; the
notion of co-evolution of the software with its environment
has been explored [21, 20]. Evolution of buildings is, by
its nature, an activity that requires many disciplines: archi-
tecture, civil/structural engineering, construction, etc; soft-
ware evolution is similarly interdisciplinary, requiring not
only software engineering skills, but also business knowl-
edge, social informatics and human factors and other skills.

The area of overlap between architecture and software en-
gineering most frequently referred to by software engineers
is concerned with theory, to be precise, the writings of the
architect Christopher Alexander [1, 2]. Alexander’s work
in ‘design patterns’ has inspired considerable interest in the
software engineering community. Design patterns provide
a succinct means of documenting stereotypical design solu-
tions and are particularly relevant in solving design prob-
lems that arise repeatedly. In software engineering, the field
of design patterns is large with a rapidly expanding commu-
nity [17, 12, 3]. In contrast, Alexander’s ideas have not been

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

accepted with anything like the same degree of enthusiasm
by his architectural peers; his work is little-read in UK or
US architecture schools today. Why has Alexander found
favour outside his own profession rather than within? This
question brings to light some key differences between the
goals of software engineers and building architects.

For the architect, artistic creativity and invention are core
attributes of the design process. Originality in building
form, fabric and programme is seen as highly praiseworthy.
Think of the convoluted, curvaceous forms of Frank Gehry’s
Guggenheim Museum in Bilbao, or the ‘gherkin shaped’ new
Swiss Re building in the City of London by Norman Foster
and Partners. In contrast, Alexander’s design patterns en-
courage the reproduction of established architectural forms
and spatial arrangements found repeatedly in vernacular ar-
chitecture, a supposedly ‘timeless way of building’. Conse-
quently, his writings and buildings are thought of badly by
many architects. As William Saunders, editor of the Har-
vard Design Magazine points out:

[Alexander] has little ‘cultural capital’, par-
ticularly in architecture schools in which new-
ness, art, and complexity are valued, and belief
in timeless and universal human needs is consid-
ered näıve [32].

Conversely in the software patterns community, the reuse
of ideas in software design is an explicit goal. The aesthetic
qualities of the design of a piece of software are never (di-
rectly) perceived by the end-user, while the opposite is true
of the design of a building or urban area. Software archi-
tects and designers aim to produce software that functions
correctly, is easy and cheap to create and modify. Ensuring
usability and determining softwares appearance are not nor-
mally considered part of the software architect’s role, while
these are important aspects of a building architect’s job.

Some might argue that the architectural profession has
been too quick to dismiss Alexander’s ideas, that there are
valuable lessons to be learned from vernacular building tra-
ditions and that ceaseless innovation is not appropriate in all
circumstances. However, Alexander’s work has been criti-
cised on a more fundamental level. His pattern language
seems to offer a basis for a social analysis of the built envi-
ronment, yet he provides no coherent theoretical foundation
for his interpretation of built form.

Alexander began his research at a time when structural-
ism was most prevalent in academia and, on a superficial
level at least, his quest to uncover deep-seated, timeless
truths underlying society’s relationship with architecture is
comparable to the semiotic analyses of the English architec-
tural academic Geoffrey Broadbent [10] or the architectural
anthropology of Amos Rapoport [30]. As such, his work
exhibits many of the same shortcomings that contemporary
post-structuralist and post-modern authors have highlighted
in relation to structuralist theory in general. The concern
with supposedly timeless patterns betrays a view of society
as static or unchanging rather than dynamic. It also offers
very little scope for conflict, the possibility that users might
disagree with each other or the author over what consti-
tutes an acceptable design pattern. This failure to theorise
conflict is further reflected in Alexander’s näıvety regarding
the political and economic constraints to implementing the
recommendations he makes.

While Alexander’s work has attracted several criticisms
at a theoretical level from physical architects, there is lit-
tle (if any) software engineering literature which takes this
viewpoint. In fact, there is little (though non-zero) criticism
of the design pattern movement in general. Contemporary
research is concerned with expanding the range of software
design patterns to more abstract software architecture and
more concrete implementation patterns.

3. PARTICIPATION
Participatory design is another area where there are some

parallels between architecture and software engineering. It
is a growing practice that has been adopted by practitioners
in both fields [33, 36, 31, 37]. In both cases, it is particularly
relevant in projects with a large public user base. In software
engineering, web development is one such area, particularly
web-based collaborative environments and publicly-funded
web applications. In architecture, community buildings and
area-based urban regeneration initiatives are the main are-
nas of participatory design practice. Participatory design
practitioners aim to ensure that the community who will in-
habit a new building or neighbourhood improvement scheme
are properly represented during the design process. This is
done in various ways, using tools and techniques that en-
able non-architects to become directly involved in decision
making about architectural problems. In the past most of
the techniques used were manual, such as drawings, physi-
cal models, or interactive displays, and were used in ‘face-to-
face’ situations such as workshops and exhibitions. However,
recently, academics and practitioners have begun to explore
applications of digital media to participatory design, looking
at interactive websites and geographic information systems
(GIS) in particular [19, 4]. The application of virtual reality
and computer game technology to design collaboration in ar-
chitecture and urban design is an interesting and relatively
new development [16, 23, 29].

There has been a long tradition of encouraging end-user-
participation in the design of software systems, particularly
within the Computer-Supported Cooperative Work (CSCW)
community [8, 9, 6, 7]. This dates from the early partici-
pation of Scandinavian workers in the design of computer
systems introduced into their work places. With the possi-
bility of more universal human computer interaction, usabil-
ity studies have become a common practice within computer
system design [25], especially in the design of web-based sys-
tems [26]. This focus on the needs of the potential end-users
rather than customers [27] marks a radical change from ear-
lier system development where the commissioning customers
were often the end users, or their direct representatives.

The theory and practice of participatory design is also
well established in the architectural profession, dating back
to the 1960s and 70s when pioneers like John Turner, Lucien
Kroll, Rod Hackney and Ralph Erskine first began to extol
the benefits of user involvement in the design process [37].
After a period of decline in the late 1980s and early 90s, the
field has been given new impetus by changes in UK urban
policy endorsing the notion of community involvement in the
physical renewal of cities. Many architectural practices have
capitalised upon this new trend and are now offering a range
of community consultation services to public and voluntary
sector clients alongside more standard architectural services.
In addition, there is a growing body of literature examining
tools and techniques that can be used to promote public

participation in architecture, urban design and planning [18,
24, 38, 36, 31, 14]

In software engineering, there are some comparable ideas
and these are receiving increasing recognition. The most re-
cent edition of Sommerville’s Software Engineering includes
a new chapter on the socio-technical systems which empha-
sises the fact that software is often part of a much larger
system involving many engineering disciplines as well as hu-
man, social and organisational factors [34]. Within the agile
software development community, software development is
considered as a co-operative game of invention and com-
munication involving developers and customers where work
products of the team should be measured for their suffi-
ciency with respect to communicating with the target group
of users [13]. The most widely-known agile software de-
velopment method, XP, explicitly advocates having a cus-
tomer always on the developers’ site [5]. Nielsen recom-
mends that usability studies are carried out with represen-
tative users [25].

One important barrier to non-specialists’ participation in
either field is the language and conventions that define the
professions. In architecture, non-professionals often find
paper-based plans and technical drawings difficult to under-
stand. Virtual reality can be used to help participants visu-
alise design proposals in three dimensions, either in the form
of video-based animations of digital models or interactive
3-D models based on computer game technology [29]. How-
ever, buildings have an obvious representation (their physi-
cal form), whereas no such visualisation exists for software,
which is ‘inherently unvisualizable’ [11]. Languages such as
UML have been used to communicate with non-specialist
users, but these are of limited value to non-technical users.

Professional attitudes can also act as a barrier to user par-
ticipation. ‘High’ architecture is often seen as a closed pro-
fessional community, not interested in input from outsiders.
While all architectural activity is necessarily a product of
inter-professional collaboration and teamwork, the field is
rigidly hierarchical, underpinned by a system of peer eval-
uation which gives the impression that the most significant
buildings are designed by individual geniuses or ‘star archi-
tects’ [35]. Participatory Design is opposed to this mode
of thinking. Consequently, it is often viewed with suspicion
by architects, represented as an adulteration of the design
process and of lower-status than more ‘artistic’ architectural
endeavours.

Correspondingly, in software engineering, open source soft-
ware engineering is often criticised for its lack of rigour and
mature processes. It too has the potential to be more demo-
cratic, involving more stakeholders in its design, develop-
ment, and evolution. Currently, however, users are often re-
stricted to the highly technically literate, and there is little
involvement of non-programming users in many open-source
projects. There are a small number of exceptions, but there
is currently no clear way that an open-source project can
easily take advantage of the expertise of non-technical users.
Most open-source software projects (indeed, most software
projects of whatever kind) are unsuccessful, and there are
still no silver bullets guaranteeing success.

Attempts to involve stakeholders in design (of software
and of the built environment) give rise to conflicts. In archi-
tecture, participatory design practitioners have developed
techniques to make conflicting user needs visible to partici-
pants, to encourage dialogue and to build consensus between

users. In software, conflicts are often resolved in shorter or-
der, though there is increasing recognition that consensus
amongst stakeholders is not automatic, and must be strived
for, particularly at early stages in the lifecycle. Using tools
to support detection and management of inconsistencies is
becoming more common, along with the acceptance that
inconsistency is a reality in any large software system [22,
28], and it has been recognised that “an important part
of the requirements engineering task is facilitating collab-
orative work, consensus building and negotiation between
stakeholders” [15]. There is potential here for software en-
gineers to learn from architects with experience in partici-
patory design.

4. CONCLUSIONS
There are many parallels between the fields of physical

architecture and software architecture, though there is not
a simple 1:1 correspondence between them. This paper has
identified some areas for collaboration, and some differences,
between the two fields. Table 1 summarises the main simi-
larities and differences between work in the two fields.

Collaboration between architecture and computer science
in Lincoln is being taken forward with work in the design of
collaborative environments to support participatory design
in urban regeneration. We aim to develop software simula-
tors which will enable non-experts to gain an understanding
of proposed architectural designs for urban areas which are
being regenerated. These simulators will use 3-D visualisa-
tions of urban areas to present users with proposed designs.
The simulators will be embedded within collaborative en-
vironment allowing potential users to communicate directly
with the architects involved in the design, thus facilitating
their further participation in the design process.

5. REFERENCES
[1] C. Alexander. Notes on the Synthesis of Form.

Harvard University Press, 1972.

[2] C. Alexander, S. Ishikawa, M. Silverstein,
M. Jacobson, I. Fiksdahl-King, and S. Angel. A

Pattern Language: Towns–Buildings–Construction.
Open University Press, 1977.

[3] L. Bass, P. Clements, and R. Kazman. Software

Architecture in Practice. S.E.I. Series in Software
Engineering. Addison-Wesley, 1998.

[4] M. Batty. Models in planning: Technological
imperatives and changing roles. Journal of Applied

Earth Observation and Geoinformation, 3(3):252–266,
2001.

[5] K. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley Professional, 1999.

[6] J. Blomberg, J. Giacomi, A. Mosher, and
P. Swenton-Wall. Ethnographic field methods and
their relation to design. In Schuler and Namioka [33],
pages 123–154.

[7] J. Blomberg, F. Kensing, and E. Dykstra-Erickson,
editors. PDC’96: Proceedings of the Participatory

Design Conference. Palo Alto, CA: Computer
Professionals for Social Responsibility, 1996.

[8] S. Bødker, J. Greenbaum, and M. Kyng. Setting the
stage for design as action. In J. Greenbaum and
M. Kyng, editors, Design at Work: Cooperative

Software Architects Physical Architects
Concerned with structure Concerned with appearance
Aim to reuse Aim to be original
Patterns considered valuable Patterns not always considered helpful
End result invisible to users End result’s appearance very important
Cost important Cost important
End-user input important End-user input important

Table 1: Comparisons: Software and Physical Architecture

Design of Computer Systems. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1991.

[9] S. Bødker, K. Grønbæk, and M. Kyng. Cooperative
design: Techniques and experiences from the
Scandinavian scene. In Schuler and Namioka [33],
pages 157–175.

[10] G. Broadbent, editor. Signs, Symbols and

Architecture. David Fulton Publishers, 1980.

[11] F. P. Brooks. No silver bullet: Essence and accidents
of software engineering. IEEE Computer, 20(4):10–19,
Apr. 1987.

[12] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software

Architecture: A System of Patterns. Wiley, 1996.

[13] A. Cockburn. Agile Software Development. Addison
Wesley, 2001.

[14] D. Driskell. Creating Better Cities with Children and

Youth: A Manual for Participation. Earthscan,
London, 2002.

[15] A. Finkelstein. Requirements engineering: a review
and research agenda. In 1st Asian-Pacific Software

Engineering Conference, 1994.

[16] T. Fukuda, R. Nagahama, A. Kaga, and T. Sasada.
Collaborative support system for city plans or
community designs based on VR/CG technology.
International Journal of Architectural Computing,
1(4):461–469, 2003.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[18] T. Gibson. The real planning for real. Town and

Country Planning, pages 187–189, July 1995.

[19] R. Kingston, S. Carver, A. Evans, and I. Turton.
Web-based public participation geographical
information sustems: An aid to local environmental
decision-making. Computers, Environment and Urban

Systems, 24:109–125, 2000.

[20] M. M. Lehman. Feedback in the software process.
Position Paper at the SEA Workshop: Research

Directions in Software Engineering, Imperial College,
London, Apr.14–15 1997.

[21] M. M. Lehman and L. A. Belady. Program Evolution:

Processes of Software Change. Number 27 in APIC
Studies in Data Processing. Academic Press, 1985.

[22] W. Liu, S. M. Easterbrook, and J. Mylopoulos.
Rule-based detection of inconsistency in UML models.
In Proceedings of the Workshop on Consistency

Problems in UML-Based Software Development, Fifth
International Conference on the Unified Modeling
Language, Dresden, 2002.

[23] C. Lou, A. Kaga, and T. Sasada. Environmental

design with huge landscape in real-time simulation
system. Automation in Construction, 12(5):481–485,
2003.

[24] New Economics Foundation. Participation Works: 21

Techniques of Community Participation for the 21st

Century. New Economics Foundation, London, 1998.

[25] J. Nielsen. Usability Engineering. Academic Press,
1994.

[26] J. Nielsen. Designing Web Usability: The Practice of

Simplicity. New Riders, 2000.

[27] D. A. Norman. The Invisible Computer. MIT Press,
1999.

[28] B. Nuseibeh, S. Easterbrook, and A. Russo. Making
inconsistency respectable in software development.
Journal of Systems and Software, 58(2):171–180,
September 2001.

[29] C. O’Coill and M. Doughty. Computer game
technology as a tool for participatory design. In
Proceedings of the eCAADe 2004 22nd conference:

Architecture in the Network Society, Copenhagen,
Denmark, September 2004.

[30] A. Rapoport. The Meaning of the Built Environment:

A Nonverbal Communication Approach. Sage
Publications, London, 1992.

[31] H. Sannof. Community Participation Methods in

Design and Planning. John Wiley, London, 2000.

[32] W. Saunders. Pattern language. Harvard Design

Magazine, 16, 2002. Winter/Spring.

[33] D. Schuler and A. Namioka, editors. Participatory

Design: Principles and Practices. Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1993.

[34] I. Sommerville. Software Engineering, chapter 2:
Socio-technical systems, pages 20–42. Pearson
Education, Harlow, UK, seventh edition, 2004.

[35] G. Stevens. The Favoured Circle: The Social

Foundations of Architectural Distinction. MIT Press,
Cambridge, Massachusetts, 1998.

[36] The Architecture Foundation. Creative spaces: a

toolkit for participatory urban designers. The
Architecture Foundation, London, 2000.

[37] G. Towers. Building Democracy: Community

Architecture in the Inner Cities. UCL Press, London,
1995.

[38] N. Wates. The Community Planning Handbook.
Earthscan, 2000.

