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Abstract— The pursue of the new increasingly intelligent, 

and heavier state estimation algorithms requires a significant 

amount of data and computing power, which may challenge 

their deployment in current BMS solutions. To address that 

issue, this paper proposes a cloud-based Digital Twin Platform 

to extend computing power and data storage capacity. This tool 

aims to contain the integration of models to analyse thermo-

electric and ageing aspects of a LIB, based on experimental 

operation data by comparative analysis. Based on well-known 

cell-level modelling techniques, a module-level modelling 

approach is proposed and an experimental validation platform 

is suggested. 
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I. INTRODUCTION 

In the path towards the reduction of carbon emissions, 
electric vehicles and renewable energy systems are key 
technologies. Both are typically based on Lithium-ion 
batteries (LIB), in virtue of making the most of the energy of 
each application [1]. However, battery cost is still high and 
their lifetime is finite, as this technology degrades over time 
and cycling, thus suffering a drop in performance. Accurate 
monitoring and control of LIBs is important to avoid problems 
related to safety, reliability, durability and cost of LIBs [2]. 
Nevertheless, the estimation and prediction of LIB 
performance in real operating conditions is still a challenge, 
due to the highly non-linear and coupled phenomena taking 
place on battery behaviour [3]. 

Since battery internal states are hardly measurable, and 
often based on offline invasive methods, it is necessary to 
develop methods oriented to estimate such instantaneous 
internal states. State of Charge (SoC), State of Power (SoP) 
and State of Health (SoH) are some of the typical key X states 
(SoX) that are tracked in the battery BMS. Additionally, 
ageing models are developed for the estimation of the 
Remaining Useful Lifetime (RUL).  

The information provided by these states allows the design 
of operational strategies, the diagnosis of error conditions, 
thermal management, or optimal control of loads to prolong 
battery lifetime. However, the models employed to estimate 
these states typically imply a large amount of training data and 
most advanced algorithms require a computational power that 
typical industrial BMS lack [4]. 

With batteries becoming increasingly connected due to the 
use of Internet of Things (IoT) technologies, there is the 
possibility of collecting real operation data once the batteries 
are deployed. In addition, with the availability of that large 
amounts of data plus cloud-based models, the Digital Twin 

(DT) concept has emerged [5]. In a battery DT, there is a close 
interaction between the physical entity, its virtual counterpart, 
and the aggregation of in-field data over their entire lifetime. 
Creating a battery DT environment in which the models, data 
and Machine Learning (ML) tools are integrated, makes 
possible to have a cloud BMS (cBMS) with an enhanced 
intelligence. This enables the application of key 
communication and networking technologies such as 
virtualisation, service-oriented architecture, real-time 
monitoring and opens up the potential of longer LIBs lifetime, 
increased reliability and enhanced safety. 

With the final purpose of developing a battery DT, this 
work begins introducing the principles of operation of the 
cBMS (Section 1). Continuing with the description of the 
different battery models considered for the design of the 
cloud-based simulation platform (Section 2). The target cloud 
platform and the preliminary validation plan of the DT 
Platform Models are then presented (Section 3) and finally, 
the main conclusions and future work are highlighted. 

II. BATTERY IN THE CLOUD 

The different algorithms that monitor and control the LIBs 
are usually implemented in the BMS. State of the art BMS 
technologies are typically based on two main elements: i) a 
BMS-slave containing an Analog Front-End (AFE) which is 
responsible for monitoring the LIBs;  and ii) a BMS-master 
which contains more advanced safety and diagnostic functions 
that require more computational power [6]. Some of the most 
important functions of the BMS are the estimation of the SoC 
and SoH. These states provide essential information about the 
energy available on the LIB and can be used for the design of 
operating strategies or maintenance and thereby increase the 
lifetime of the battery. 

Among the different estimation algorithms [7]–[10], open-
loop SoC algorithms (e.g. Coulomb counting or the Open 
Circuit Voltage method) require small computational power 
and are easy to implement in LIB onboard BMSs. However, 
the more accurate and robust estimation algorithms (e.g. based 
on Kalman Filters or ML) require higher computational power 
and can be challenging to implement them in onboard BMSs. 
In addition, these advanced algorithms are often based on 
historical data and therefore also require a significantly large 
database. Compared to SoC estimation, SoH estimation of 
LIBs is a more complex exercise due to multiple and non-
linear degradation mechanisms typically taking place on LIBs 
[11], [12]. 

To overcome these challenges, the required performance 
of the BMS can be increased by implementing it together with 
cloud computing and IoT-based technology. Data from LIBs 
can be measured and transmitted to the cloud with IoT 
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devices, then filtered and stored in a single database on the 
cloud platform (and later described in Fig. 3 and Fig. 4). This 
database can then be used to create the DT of the LIB.  

  Two of the main advantages of implementing the cBMS 
of the LIBs in the Cloud environment are, as mentioned above, 
the increase of computing power and the exponential increase 
in the capacity to store the data of the entire battery life. With 
this computational capacity, continuous monitoring is 
possible with the different state estimation algorithms. In 
addition, it allows predictions of LIB life prognosis by using 
new and more complex methods for RUL prediction [13], 
[14]. On the other hand, by being able to track historical LIB 
data from multiple energy storage systems deployed in 
different applications, anomalies in LIB operation can be 
detected. By predicting and detecting faults, the safety and 
reliability of the entire LIB system can be improved. That 
historical data can also be used to analyse different operating 
scenarios and thus improve and optimise the design of the 
battery system. 

The battery DT can estimate and predict the different SoX 
of the LIBs thanks to the data obtained from the sensors and 
the advanced algorithms in the Cloud. However, in order to 
increase the reliability and safety of the system, some minimal 
functionalities are usually implemented in parallel in the 
onboard BMS. At the same time, a more advanced version of 
the algorithm runs in the Cloud providing a higher estimation 
accuracy. 

III. PROPOSED CELL-LEVEL BATTERY MODELS 

Concerning issues of performance and lifetime prediction 
of LIBs, models of different nature are often used. These 
typically describe the voltage response to a current load, the 
thermal performance and the evolution of capacity/resistance 
over the lifetime of the cells. There are currently a diversity of 
approaches in each type of models, and in the way they are 
integrated. 

A. Electric Model  

Batteries are typically modelled according to different 
physical phenomena [3], being Equivalent Circuit Models 
(ECM) one of the most common methods for battery electrical 
modelling. ECM uses electrical elements such as resistors and 
capacitors, as well as an Open Circuit Voltage (OCV) versus 
SoC profiles to replicate the voltage response of a battery. 
These are lighter than electrochemical models and depending 
on the specific battery chemistry and modelling accuracy 
desired, a different number of RC blocks can be used. Also 
hysteresis and constant phase elements are usually added. 

Their level of complexity usually depends on the number 
of resistance-capacitor (RC) pairs they have. In this work, an 
ECM with an RC phase is chosen, which also considers the 
battery hysteresis. It has been chosen for its balance between 
accuracy and complexity versus computational cost. Fig. 1 
describes the ECM to be implemented in the Digital Twin 
Simulation Platform (DTSP). 

 

Fig. 1. Digital Twin Electric Equivalent Circuit Model. 

The different parameters of the model are influenced by 
the temperature, the SoC and the SoH of the LIB. These 
parameters are obtained by different laboratory test such as 
Electrochemical Impedance Spectroscopy (EIS) or OCV vs 
SoC Test. Then, they are described by a lookup table and the 
model updates the value of the parameters at each step time.  

The resistance in series (��) represents the energy that is 
dissipated by the internal resistance of the cell in the heat form. 
This element is usually a function of the SoC and is always 
dependent on the cell internal temperature. 

������ � ��	��� (1) 

The current flow through the R1 is used to calculate the 
diffusion current of the cell. Then, the diffusion state (	�
���) 

is estimated by (2). 

	�
�� � 1� � 
�� � �∆������ 	�
���
� �1 � 
�� � �∆������� 	��� 

(2) 

where, ∆� is the time interval between the current � and the 
previous �  values, ��  and  ��  are the resistor and capacitor 
values in the ECM RC phase, 	�
��� is the diffusion current 

through the ��  resistor at time �  and 	���  is the current 
through the cell at time �. 

The element labelled as "Hyst" in Fig. 1 represents the 
non-linear hysteresis of the cell. The hysteresis in the cell is 
described by the hysteresis state ℎ��� , which only changes as 
the cell SoC does. The hysteresis voltage is modelled by (3). 

ℎ�� � 1� � 
�� �� �����	����∆�� �� ℎ��� 
� �1 � 
�� �� �����	����∆�� �� !"#$	���% 

(3) 

where, , ���� is cell coulombic efficiency, 	��� is the current 
through the cell at time �, � is a positive constant that refines 
the decay rate, ∆� is the time interval between the current � 
and the previous �  (� � 1), �  is the current cell capacity, ℎ���  is the hysteresis voltage and !"#�	����  forces the 
equation to be stable for both charging and discharging and 
represents the instantaneous drop of the hysteresis voltage. 

The output equation of the model takes into account all the 
phenomena described above. The equation is defined in (4). 

���� � &�'��� � ℎ��� � ��	�
��� � ��	��� (4) 

For the estimation of the SoC of the LIB a SPKF based 
estimator was implemented according to the approach 
implemented by Dr. Gregory L. Plett [15]. It has a prediction 
sub step and a correction sub step that correct predictions to 
produce a state estimate together with their confidence limits 
in each measurement interval. More detailed information can 
be found in [15], [16].  

B. Thermal Model 

Thermal models are used to describe the thermal gradient 
of LIBs. These can be classified into two main groups, 
namely: i) Numerical Distributed Models using 
Computational Fluid Dynamics (CFD) methods and ii) 
Analytical Lumped Models. The former are generally used in 



the battery design phase, while lumped models are lighter, 
being simplifications of heat distribution based on equivalent 
circuits.  

The chosen and developed thermal lumped model is 
described in Fig. 2. The electrical circuit is an analogue to the 
heat generation, storage and transfer. It contains a series of 
data obtained in laboratory tests (e.g. Open Circuit 
Potentiometry (OCP)) stored in a lookup table. These 
parameters are adjusted at each time step for the estimation of 
the temperature at different points of the battery.  

 

Fig. 2. Digital Twin Thermal Lumped Model. 

The model is implemented in three dimensions. First, the 

heat generated by each cell (�( ) and the accumulated heat (�)) 
are calculated. In addition, the heat transferred to the cell 
surface by conduction ( �*+,- ) is calculated in all three 

dimensions. This heat transferred to the cell surface is then 
dissipated by convection (�*.,-) and radiation (�/+,-), also in 

all three dimensions. This heat power is calculated with the 
resistance corresponding to each of the cell geometries. The 
equations describing each of the thermal phenomena are 
described as: 

01223 � 0456 � 0*76+  (5) 

0*76+,8 � 0*76.,8 � 0/9+,8 (6) 

where, 09**:  is the heat accumulated between the current � 
and the previous � (� � 1), 0456  is the heat generated by the 

current flowing through the cell, 0*76+  is the heat transferred 
by conduction from the centre to the surfaces of the cell and 0*76.  and 0/9+  is this conductive heat dissipation via 
convection and radiation. The index 	 represents each of the 
three dimensions through which the heat is transferred. 

The thermodynamic energy balance for Li-ion batteries 
has been discussed in detail by Bernardi et al [17]. In this 
work, a simplified form of the heat generation equation 
presented by Nieto et al. [18] is used. It considers both the 
irreversible heat generated as Joule losses and the reversible 
heat generated by the cell. 

0456 � ;�' � <9.4� � ;= ><9.4
>=  

� ;? ∙ �� � ; ∙ = ∙ AB� 

(7) 

where, ; is the current through the cell in Amperes; ' is the 
terminal voltage of the cell in Volts; <9.4 is the average &�' 
in Volts; = is the temperature of the cell in degrees Celsius 

(℃) and ><9.4 >=C  is the Entropic Heat Coefficient (AB�) in �'DE�!/℃�. The AB� must be measured in the laboratory as 
well as the Internal Resistance (��). 

C. Ageing Model 

Finally, battery ageing models are used to make RUL 
predictions. There are physics-based ageing models, data-
driven approaches and semi-empirical models [13]. With the 
advance of technologies such as the IoT or Big Data (BD) and 
cloud-based computing, data-driven models are emerging  as 
a promising candidate for RUL prediction [13].  

In a recent review of data-driven aging models employed 
for lithium-ion battery ageing prediction, the Gaussian 
Process (GP) method was identified as the most promising 
candidate [4]. In fact, beyond their ability to make relatively 
robust probabilistic predictions, these models have the 
advantage of being non-parametric. Therefore, their 
complexity depends on the volume of contained training data. 
However, creating such a large training database is time- and 
cost-intensive. For this reason, it has been sought a model 
capable of learning based on the operating data once the 
battery is deployed,  i.e. the GP.  

The decrease of the SoH of the cells is progressive whether 
the cell is in operation (cycling ageing) or by the passage of 
time (calendar ageing). For this reason, it is relevant to model 
both modes of operation of the cells. The implemented GP-
based ageing model was composed of both a calendar- and 
cycle-ageing components. Further details on the implemented 
models can be found in [19], [20]. 

IV. PROPOSED CLOUD PLATFORM AND EXPECTED 

PRELIMINARY VALIDATION RESULTS 

A. Cell level Model Integration 

The models previously presented are integrated in order to 
develop a DTSP based on cloud computing. This platform is 
destined to be the digital replica of the LIB, where different 
battery states can be estimated (SoX) to later enable a variety 
of Digital Services and, thereby, optimise battery operation 
through its entire lifecycle. In a first stage, different 
characterisation tests at Beginning of Life (BoL) will be 
carried out, in a second stage the battery will be degraded with 
a static profile. Periodically, Check-Ups (CU) will be 
performed in order to get the different model parameters at 
each SoH. The cycling tests will be used to parametrise both 
the electrical and the thermal model, and in turn, the CUs will 
serve to validate the ageing model. In addition, dynamic 
laboratory tests will be used to mimic real battery operating 
conditions in order to validate the electric and thermal models.  

Each model’s parameters at each activation time step are 
chosen according to the feedback from other models as shown 
in Fig. 3. The battery models will use the current data 
measured by the sensors together with the historical data 
stored in the cloud. Furthermore, additional data obtained in 
other applications will be aggregated, which can later be used 
for re-training the models in the DT. Thereby, the DT platform 
being developed not only integrates the data gathered on a 
single battery but will also allow integrating and learning from 
the operation of multiple batteries on a fleet. 



The implementation of these models at cell level is 
widespread in the literature. For example, the electrical model 
can be found in the work of Dr. Plett [16] in which a Sigma 
Point Kalman Filter (SPKF) is used to estimate the SoC of the 
cell. On the other hand, Nieto et al. [18] developed a Lumped 
thermal model. Also, the GF degradation model is used by 
Lucu et al. in [21]. In addition, studies have been carried out 
in which two or all three types of models have been integrated 
for the simulation of LIBs. Looking at some examples of the 
Electro-Thermal Aging Models, Shen et al. [22] developed a 
model to estimate the SoC of the cell, the internal cell 
temperature and the battery lifetime. The impact of various 
factors such as C-rate of charge and discharge, temperature, 
maximum discharge current and DoD, cycle time and their 
effects on the loss of battery cell capacity were investigated 
and studied. The model provided a battery terminal voltage, 
estimated SOC, temperature and capacity fading 
simultaneously through the evaluation of the input current. 
Mohajer et al. [23] proposed a model for the optimisation of 
the fast charge profile and a model-based design of an 
intelligent charge controller. On the other hand, Mesbahi et al. 
[24] designed a simple and sufficiently representative model 
of the physical phenomena occurring in a battery cell. They 
based the model on an equivalent circuit model coupled to a 
thermal circuit and a semi-empirical aging equation with an 
acceptable relative error of less than 1%, 4% and 2%, 
respectively. 

All these developments, as well as the vast majority of 
those found in the literature, are designed and validated at cell 
level. Nevertheless, the actual outcome of a DTSP lies on its 
capability to model the LIB performance at the module level. 
The literature describing methods to extrapolate module level 
performance are scarce and most estimate the module states 
without considering the individual state of the cells. Such an 
approach may be valid under very specific conditions but can 
still lead to a significant inaccuracy when estimating and 
predicting the electric and thermal performance of certain 
module constructions. Aiming at overcoming such limitations, 

the following section describes the proposed module level 
modelling approach. 

B. Proposed Module Level Modelling Approach 

A module is a package or array of cells in series or parallel 
connection, but due to unbalances, cell-to-cell variations and 
inhomogeneous operating conditions its final useful energy 
rarely is simply the sum of that of the individual cells. 
Therefore, a module-level extrapolation should be made to 
consider these variations caused by the cell-to-cell 
inhomogeneity or operating characteristics of the complete 
module [25].  

Among the main sources of inhomogeneities at module-
level battery performance, the following can be highlighted: i) 
cell-to-cell manufacturing variability, typically leading to 
heterogeneous capacity and internal resistance values;  ii) 
inhomogeneous temperature distribution inside the module 
during operation or as a consequence of heterogeneous battery 
ageing; and iii) unbalanced battery operation, as a 
consequence of local current gradients or uneven battery 
consumption of the associated electronics (typically the 
BMS). For these reasons, the SoX of each cell needs to be 
accordingly estimated and then the equivalent response of all 
cells should be estimated.  

First, it must be considered that not all models have the 
same dynamics, so they are not all necessarily executed at the 
same time. For example, the dynamics of the electric model is 
faster than those of the thermal model. Therefore, the 
electrical model will be implemented at each time step while 
the thermal model updates its estimates in a longer period of 
time. The same applies to the SoH estimator and the ageing 
model, as the degradation of the cells is considerably slower. 
Thus, electrical and thermal dynamics could be defined as fast 
dynamics and ageing as slow dynamics in a LIB. 

Starting from an equilibrium condition with the cells at a 
defined SoH, there is no temperature gradient throughout the 
module. The BMS is responsible for measuring some of the 

 
Fig. 3. Elements of a Digital Twin Battery 



variables such as the voltage at the terminals of each cell or 
the temperature at specific points of the module and these are 
used as inputs for the DTSP models. Below, the method for 
estimating the SoX of each cell composing a LIB module is 
presented: 

The thermal model is implemented in a first step at module 
level, considering all the cells, as the heat transferred between 
them needs to be considered at every moment. To estimate the 
temperature distribution within the module, the common 
points of the thermal equivalent circuits of the cells are joined 
according to the module topology and a meshed circuit is 
created. This implies that the operations to calculate the 
energy balance are multiplied by the number of cells. With this 
information, the equivalent temperature of all surfaces and 
core temperature of each cell are obtained. These are used to 
decide the equivalent temperature of each cell, which are 
referred as =- . In addition, the model compares the estimates 
with the information obtained by the BMS from the 
thermocouples measurements. The module-level thermal 
model uses the updated information of the voltage and SoC 
(information estimated by the electrical model) and the SoH 
of each cell (generated by the SoH estimator). 

The equivalent cell temperatures are used as input for the 
cell-level electric models. These temperatures are used to 
obtain the parameters of the electrical model together with the 
SoH and the operating current. The cell-level electrical model 
consists of an ECM and a SPKF, and it is implemented for 
each cell and co-simulated. Thus resulting in voltages and SoC 
calculations for all the cells in the module, which are referred 
as '-  and GD�- . In cases in which temperature distributions 
and cell-to-cell electric parameter variations are low, the co-
simulation of the electric model can be simplified into single 
or few cells simulation (considering averaged parameters) 
thus also reducing the computational burden at a reduced 
accuracy loss. Once the results from the electric models co-
simulation are obtained, results are extrapolated to the module 
level by taking into account some previously defined criteria 
for the estimation of the Equivalent Module Voltage (EMV). 
This EMV is then used to estimate the equivalent SoC of the 
complete module (linked to the module series-parallel cell 
configuration). 

At certain intervals (e.g. at defined Ah-throughput 
intervals or after specific periods of time), the SoH estimator 
has to be implemented, which updates the SoH information of 
each cell for the electrical model and the thermal model. This 
estimator uses the operating data of each cell to make the 
corresponding SOH estimations for each of the cells 
composing the module. In addition, periodically the GP model 
will also be executed with the purpose of obtaining new 
battery ageing predictions. This model collects the operation 
information from the LIB and then is trained together with the 
historical data from the database. As a result, the model 
predicts the ageing trend corresponding to each of the cells in 
the module, thus allowing to identify any potential cell-to-cell 
variations on their ageing behaviour. 

Once the state of the cells is known, the module level 
characteristics are estimated. At this point, the estimates made 
by the three models (with variations and unbalances) and the 
topology will be considered to calculate the equivalent V, I 
and T of the module. Furthermore, the DTSP will provide a 
clearer representation of the temperature distribution at a great 
amount of points within the module, which is not typically 
affordable as LIB modules usually have a reduced number of 

temperature sensors. In addition, this platform enables more 
accurate estimation of the SoC of each of the cells in the 
module. This, along with the temperature distribution can lead 
to more accurate SoH and RUL estimates. 

C. Proposed Validation Platform 

To implement this methodology, the proposed hardware is 
presented in Fig. 4. 

 
Fig. 4. Schematic diagram of the proposed DTSP validation platform. 

The purpose is to build a battery prototype to validate the 
monitoring functionalities of the BMS in the cloud. The 
prototype will consists of 15 Lithium Iron Phosphate (LFP) 
cells of 3.2 V and 280 Ah connected in series. It is intended to 
parameterise and apply load profiles for its validation. A 
Digatron BNT 50-100-16(12) BDBT ME cycler with 50 V 
and 100 A test circuits will be used for this purpose, and the 
ambient temperature is controlled with a climatic chamber 
from the manufacturer CTS. The voltage and temperature of 
the twelve cells are measured and transmitted to the cloud.  

This module is connected to a BMS developed by Ikerlan 
which takes care of functions such as measuring voltages and 
temperatures or the implementation of simpler algorithms. 
This BMS exchanges information with a Raspberry Pi 4 which 
is responsible for uploading all the necessary data to the cloud 
where the DTSP (with the LIB models) and the database are 
located. For the design of the models at the module level, it is 
intended to compare the results obtained by taking the module 
as a single unit and by implementing the models obtained at 
the cell level in each of the cells that constitute the module.  

The electrical and thermal models which are equivalent 
circuits are models with a small complexity. The thermal 
Lumped model together with the ECM with the SPKF could 
be implemented locally in the battery BMS without major 
problems at the cell level. In case of considering the module 
as a single unit, no problems are foreseen for the 
implementation of these models either. However, as it is 
intended to implement the electrical model simultaneously to 
each cell, the BMS could have problems performing the on-
board operations. In addition, the iterations to calculate the 
heat balance of the Lumped model will also need considerable 
computing power to work in real time. Nonetheless, this issue 
would not necessarily be a problem considering cloud 
computing systems. 

The degradation model is non-parametric, which means 
that the size of this model increases when the training data 



increases. This means that the larger this database is, the more 
computational power is required to implement the model. 
Furthermore, this is directly related to the memory storage 
capacity that the model will require to store all this historical 
cell data. These power and memory requirements may be 
critical from the perspective of implementing the model on the 
local battery system hardware. However, it would also not be 
a problem with cloud computing technology. Furthermore, 
one of the advantages of the DT is the connectivity so that it 
is also possible to save information from other batteries and 
complete the knowledge of the model. All of the above applies 
to the model at the cell level as well as at the module level. 

V. CONCLUSIONS AND FUTURE WORK 

Current LIB models most widely available in the literature 
typically target cell-level performance evaluation and 
simulation. Nevertheless, cell-to-cell variability and 
inhomogeneous operating conditions at the module level may 
actually imply significant performance and ageing deviations 
among the cells constituting a specific LIB module. This paper 
presents a DTSP framework consisting of electrical, thermal 
and ageing models of the LIB targeting their ultimate 
validation with experimental data obtained for realistic 
operating conditions. Starting from well-known cell level 
modelling techniques, a module level modelling approach is 
proposed. Additionally, the conceived validation platform was 
also presented, aiming to prove the performance of the models 
to be implemented. The strong coupling between the three 
models included is expected to ultimately impact on the 
reliability of the RUL predictions to be obtained.  Thereby, the 
presented DTSP framework is expected to constitute a 
thorough yet computationally efficient module-level 
modelling approach, covering both the model architecture and 
the proposed validation platform.  

The implementation process of the module-level models 
here described is still ongoing. Results from the modelling 
approach and the validation results will be disseminated 
elsewhere in upcoming publications.  
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