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On the intrinsic reaction rate of polyethylene pyrolysis and its interplay 
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A B S T R A C T   

An attempt to determine the the intrinsic kinetic of polyolefins pyrolysis is presented. For this, pyrolysis ex-
periments of polyethylene were performed in a screen heater reactor, where the effects of mass and heat transfer 
on the pyrolysis process are minimized. First-order mass loss rate constants obtained at 500 ◦C were circa 0.5 and 
1.3 s− 1 for HDPE and LDPE, respectively, which are significantly higher than the majority of the values reported 
in the literature. At 450 ◦C, the mass loss rate of HDPE was lower, circa 10− 2 s− 1. Additionally, we have observed 
that the interplay between mass transfer and the depolymerization reactions can be used to steer the product 
distribution. For instance, in a 50 g scale batch reactor, the product obtained at 420 ◦C (only oil) is much lighter 
than at 500 ◦C (mixture of oil and wax), which can be attributed to the much lower evaporation rate of larger 
cracking products at 420 ◦C as a result of which these fragments crack further in the reacting liquid phase.   

1. Introduction 

Pyrolysis is a technology advocated to play a role in chemical recy-
cling of plastic waste [1–5]. A detailed understanding of the pyrolysis 
process at in the of intrinsic reaction rates and their interplay with mass 
and heat transfer is instrumental for designing pyrolysis technology. 
Feasible productivities in kg per reactor volume per time, as well as the 
yield and composition of the products of pyrolysis technologies are 
related to intrinsic reaction and transfer rates. In this short communi-
cation we focus on measuring the intrinsic reaction rate by minimizing 
mass and heat transfer limitations. For this we have used an in-house 
developed screen-heater reactor which has proven its worth for 
biomass and lignin pyrolysis in the last decades [6–11]. In addition, a 
selection of experimental results are presented to show the interplay 
between mass transfer and chemical reactions. 

To our knowledge, very little information on the intrinsic reaction 
rate of plastic pyrolysis is currently available due to heat and mass 
transfer limitations caused by the experimental equipment used, such as 
thermogravimetric analysis (TGA) and batch packed beds [12–17]. The 
obtained kinetic parameters are then often referred to as “apparent” pre- 
exponential factor and activation energy [18]. 

Pyle and Zaror introduced a method to analyse whether the pyrolysis 
rate is controlled by heat transfer or chemical kinetics [19]. Mettler et al. 
[20] visualized this in a graph, as shown in Fig. 1. The method makes use 

of the Biot (Bi = hLC
λ ) and Pyrolysis numbers (Py1 = λ

kρCpLC
2&Py2 =

h
kρCpLC

), where the Biot number relates the external heat transfer rate 
through convection to the intraparticle heat transfer rate via conduction, 
and the Pyrolysis number relates the internal or external heat transfer 
rate to the reaction rate [19,21]. It is important to note that for the re-
action rate the mass loss rate of the pyrolyzing sample is considered, 
because this is what is experimentally measured. The reaction rate does 
not have to be equal to the mass loss rate; the two are related by the 
transport rate of molecules away from the reaction zone on/in the py-
rolyzing sample. This will be discussed in more detail later. 

Bi > 1 is undesirable when attempting to measure intrinsic kinetics 
due to the presence of a temperature gradient inside the reacting particle 
(sample). For a very high pyrolysis number (Py > 10), heat transfer to 
and in the particleis considerably quicker than the reaction rate. 
Therefore, both Bi ≪ 1 and Py > 10 are the requirements needed to be in 
a so-called kinetically-limited isothermal regime, where the process is 
essentially free of heat transfer limitations [20,22,23]. We estimated 
Biot and Pyrolysis numbers of polyolefins pyrolysis in the screen-heater 
reactor at different characteristic lengths (1–150 μm) and the results are 
also plotted in Fig. 1. The overall heat transfer coefficient used for the 
calculation was obtained from the literature [8], and the kinetic con-
stant (k) value of 0.5 s− 1 was based on the measured mass loss rate of 
HDPE (see Results and Discussion). It can be seen from the graph that at 

* Corresponding author. 
E-mail addresses: m.p.ruizramiro@utwente.nl (M.P. Ruiz), d.m.zairin@utwente.nl (D.M. Zairin), s.r.a.kersten@utwente.nl (S.R.A. Kersten).  

Contents lists available at ScienceDirect 

Chemical Engineering Journal 

journal homepage: www.elsevier.com/locate/cej 

https://doi.org/10.1016/j.cej.2023.143886 
Received 14 February 2023; Received in revised form 10 May 2023; Accepted 30 May 2023   

mailto:m.p.ruizramiro@utwente.nl
mailto:d.m.zairin@utwente.nl
mailto:s.r.a.kersten@utwente.nl
www.sciencedirect.com/science/journal/13858947
https://www.elsevier.com/locate/cej
https://doi.org/10.1016/j.cej.2023.143886
https://doi.org/10.1016/j.cej.2023.143886
https://doi.org/10.1016/j.cej.2023.143886
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cej.2023.143886&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Chemical Engineering Journal 469 (2023) 143886

2

the used characteristic length of 25 μm [8], which is the half thickness of 
the sample, the reaction is kinetically limited and isothermal at 500 ◦C. 
This regime is not possible to achieve in TGA and packed beds, see Fig. 1. 

Mass transfer is, next to heat transfer, also important in the pyrolysis 
process. When pyrolyzing polyofefins the feedstock undergoes cracking 
reactions and the products of these reactions will have to leave the re-
action zone (particle or a liquid pool), before they are collected in the 
condenser system. Leaving the reaction zone can be via evaporation, 
sublimation, or ejection of earosols. For brevity we will use evaporation 
as the general term to denote all these phenomena. If the evaporation 
rate is low, like in a TGA [12–15], the measured mass loss rate is not 
representative for the reaction rate. At 500 ◦C, the evaporation rate in 
the screen-heater is >10 s− 1 for molecules up to 1000 Da 

(Supplementary Information, Fig. S2), to be compared to 1 s− 1 for the 
reaction rate, as a result of which the measured mass loss rate is a better 
estimate of the reaction rate. 

In this context, to illustrate the interplay of chemical reactions and 
mass transfer, we present experimental data on the effects of the py-
rolysis temperature, pressure, and the molecular weight of the feed-
stock, using a screen heater reactor, to reduce mass and heat transfer 
limitations. 

2. Materials and methods 

In this present study, virgin high-density polyethylene (HDPE) with 
an average initial molecular weight of 74 kDa and two different low- 

Fig. 1. Pyrolysis reaction and heat transfer regime map. Plotted values are estimated Bi and Py of HDPE pyrolysis in a screen heater reactor (SHR) with different 
characteristic lengths. The map is adapted from [20]. 
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Fig. 2. Screen-heater reactor used in the pyrolysis experiments of polyolefins.  

Fig. 3. Mass loss with time in the pyrolysis experiments of polyethylene under 
different conditions. Legend: A) HDPE (450 ◦C, 5 mbar); B) HDPE (505 ◦C, 5 
mbar); C) LDPE1 (505 ◦C, 5 mbar); D) LDPE1 (505 ◦C, 1 bar); E) LDPE2 (505 ◦C, 
5 mbar). The lines are first order mass loss regression lines. 
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density polyethylene (LDPE1 and LDPE2) with an average initial 

molecular weight of 186 kDa and 4 kDa, respectively, were used. A 
detailed description of the screen heater reactor has been previously 
described elsewhere [6,7,10]. The set-up is illustrated in Fig. 2. Here we 
describe shortly the general principles of the reactor. 50 mg of solid 
sample (with particle size between 250 and 600 μm) is rapidly heated by 
screens with a rate of up to 5000 ◦C/s. The sample is placed in a chamber 
with walls cooled by liquid nitrogen. Due to the cooling with liquid 
nitrogen the environment outside the screen is ca. − 180 ◦C and as a 
consequence, reaction products that leave the reacting sample will 
quench chemically (do not futher react). The chamber is filled with ni-
trogen and can be depressurized down to 5 mbar. Evaporated products 
condense on the walls of the cooled chamber. Condensed and solid 
yields are measured by measuring differences in weigth of the screens, 
vessel and clamps before and after reaction. It is worth mentioning that 
the solid product is the product that has not evaporated during the re-
action. Gas yield is determined by difference and gas samples analyzed 
in GC-FID. The condensed product is collected by washing with tetra-
hydrofuran (THF) and analyzed by Gel-Permeation Chromatography 
(GPC). The temperature profile of a typical experiment is shown in the 
Suplementary Information. 

To discard any potential catalytic effect of the metallic screens, we 
performed experiments using screens with different mesh sizes, which 
could allow us to see any effect of changing the contact area between the 
metal screens and the plastic sample. Details on the experiments and 
procedure followed can be found in the Supplementary Information 
(Table S1). The results under the same operation conditions were similar 
for both screens, thus indicating a negligible effect of the screens used. 
This result coincides with Hoekstra et al. who performed biomass py-
rolysis using gold-sputtered screens in the same set-up [7]. Similar 
product yield, gas composition, and molecular weight distribution were 
obtained from the experiments using both gold-sputtered screens and 
stainless steel screens, removing the possibility of catalytic activity by 
the metallic screens [7]. 

Two additional pyrolysis experiments of LDPE (186 kDa) were run in 
a 50 g-scale batch reactor at two different temperatures, 420 and 500 ◦C. 
Details on this set-up are described in a previous work from our group 
[24]. 

3. Results and discussion 

The measured mass loss in the screen heater is plotted in Fig. 3. Mass 
loss data are fitted to a first order isothermal model to obtain a first order 
mass loss rate constant. Reported rate constants are listed in Table 1. The 
mass loss rate LDPE of 186 kDa (LDPE_1) at 5 mbar and 505 ◦C is ~1.3 
s− 1, which is much faster than measured rates in TGA (see Table 1). 
Hence, indeed in the screen-heater mass transfer limitations are low and 
the measured mass loss rate approaches closer the intrinsic reaction rate. 
Strickly speaking this is then the reaction rate towards molecules that 
can easily evaporate. To the best of our knowledge, only Westerhout 
et al. [25] reported a rate constant close to ours, 0.3 s− 1, but they dis-
garded their own measurement. They also used a screen-heater and 
ascribed, but did not prove, the high rate to catalytic activity of the 
screens. We have shown that this is not the case for our system (see 
Experimental section). 

By changing the pressure inside the chamber the evaporation rate of 
reaction products can be steered. Pyrolysing LDPE_1 (186 kDa) at 1 bar 
instead of 5 mbar resulted in a slightly lower mass loss rate (k ~ 0.9 s− 1), 
see Fig. 3. The chemical reactions inside the pyrolyzing sample are not 
affected by the pressure. Here also the interplay between reactions and 
mass transfer plays a role. That is, at 1 bar larger molecules evaporate 
less fast as a result of which that stay longer in the hot reaction front 
cracking further to smaller molecules that evaporate faster. This was 
confirmed by the differences in molecular weight distribution of the 
condensed product obtained at two different pressures, 5 mbar and 1 bar 
(Fig. 4). The product from pyrolysis at 1 bar is lighter and richer in 
components of the naphtha range than the product obtained at 5 mbar. 

Table 1 
Comparison of rate constant (s− 1) obtained from different works.  

Source Material T (◦C) koverall (s− 1) 

This Work HDPE 505 0.50 
HDPE 450 0.02 
LDPE1 505 1.31 
LDPE2 505 1.88 
LDPE1 (1 bar) 505 0.86 

Jiang et al. [26] HDPE 500 0.018 
LDPE 500 0.008 

Li et al. [16] HDPE 500 0.005 
Zhang et al. [27] PP 370 0.003 
Ding et al. [28] HDPE 420 0.002 
Al-Salem et al. [29] HDPE 500 0.004 
Schubert et al. [30] LDPE 450 <10− 3 

Till et al. [31] RPW 455 0.002 
Elordi et al. [32] HDPE 500 0.022 
Westerhout et al. [25] LDPE 500 0.36 

PP 500 0.34  

Fig. 4. Molecular weight distribution of the condensed product and the C6 +
gases in the pyrolysis experiments of LDPE1_186kDa performed at 505 ◦C, 
heating rate of 5000 ◦C/s, and two different pressures, 5 mbar and 1 bar. 

Fig. 5. Picture of the condensed products obtained in the pyrolysis experiments 
of LDPE1_186kDa performed in a 50 g-scale batch reactor at 1 bar and two 
different temperatures, 500 ◦C (left) and 420 ◦C (right). 
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Temperature is another parameter that influences the kinetics in 
pyrolysis. Experiments run at different temperatures (Supplementary 
Information, Fig. S4) show a major change in polymer conversion, from 
10% to almost 80%, when increasing the temperature by 25 ◦C, from 
450 to 475 ◦C. These results correspond to a first order mass loss rate 
constant of 0.06 and 0.7 s− 1, respectively. 

The initial molecular weight of the polymer also has an effect on the 
mass loss rate measured. The mass loss rate of LDPE_2 of 4 kDa is, at 
holding times below 2 s, higher than the rate of LDPE_1 of 186 kDa 
(Fig. 3). This can be explained by the fact that a fraction of the low 
molecular weight LDPE can evaporate without the need for cracking 
reactions. 

When comparing the type of polyolefins, the mass loss rate of HDPE 
is lower than the one of LDPE (Fig. 3). This agrees with literature find-
ings as LDPE is expected to degrade quicker than HDPE due to the higher 
branching degree and less crystallinity [33,34]. 

Based on the results presented, it is possible to conclude that the 
interplay between transport (evaporation) and cracking reactions plays 
a major role in the product distribution of pyrolysis. To further confirm 
our hypothesis, we ran experiments in a grams-scale batch reactor with 
LDPE (186 kDa) at two different temperatures, 420 and 500 ◦C. At 
420 ◦C and after 4 h of reaction, 9 % of solid residue remained, which 
corresponds to a mass loss rate constant of 10− 4 s− 1. It was also observed 
that the condensed product obtained at 420 ◦C was much lighter (no 
waxes but liquid oil) than the one obtained at 500 ◦C (rich in waxes), see 
Figs. 5 and 6. Thus, at lower temperatures, evaporation is less fast and 
the cracking reactions can proceed in the liquid phase to a larger extent, 
leading to lighter products. 

4. Conclusions 

Measuring the intrinsic kinetics of polyethylene pyrolysis is only 
possible in experimental set-ups such as the screen heater, where mass 
and heat-transfer limitations are limited. Using that set-up, we have 
observed a mass loss rate of polyethylene pyrolysis at 500 ◦C of circa 1 
s− 1, which is much higher than previously reported (10− 3 – 10− 2 s− 1). 
Those reported low rates are a result of the mass and heat transfer 

limitations. However, such high rates of 1 s− 1 imply that in practical 
process the productivity in kg per unit of volume per unit of time is 
limited by heat addition, as 1 s− 1 corresponds to ca. 1 GW per m3 

reacting liquid (considering a heat of reaction of 1.5 MJ/kg). 
The activation energy is high because at lower temperature, 450 ◦C, 

the mass loss kinetic constant drops to circa 10− 2 s− 1. 
We have also shown that the interplay of mass transfer and the 

depolymerization reactions can be used to steer the product distribution. 
Lower temperature and higher pressure lead to vapours leaving the 
reacting particle/liquid (initial) with lower molecular weight. When 
targeting naphtha range feed to be (co-)fed to a steam cracker, this is 
preferred. 
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Fig. 6. Molecular weight distribution of the condensed product in the pyrolysis experiments of LDPE1_186kDa performed in a 50 g-scale batch reactor at 1 bar and 
two different temperatures, 420 and 500 ◦C. 
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