Velume §, number §

INFORMATION PROCESSING LETTERS

November 1976

ENCLOSURES: AN ACCESS CONTROL MECHANISM WITH APPLICATIONS IN
PARALLEL PROGRAMMING AND OTHER. AREAS OF SYSTEM FROGRAMMING

K. DELCOUR
Philips-Electrologica B.V., Apeldoorn, The Netherlands

and
A.J. W. DUIJVESTEIN

Technologicel University Tweate, Enschede, The Netherlands

Received 25 March 1976

System programming languages, access control, parallcl programming, synchronisation standards, monitor, protectea regions,
module hierarchies, stepwise refinement, hierarchichal authorisation, software production management, chief programmer

team,

*

: a
1. Introduction U

After more than six years of experience with sys-
tem programming languages in use for the design and
impiementation of compilers, operating systems, data
base languages, utilities at Philips Electrogica, Nether-
lands, several extensions to the language SPL [1] have
been proposed. At the Technological University,
Twente, Netherlands, several prcgramming tools, like
macro systems, PL1, ALGOL 68 have been investiga-
ted for compiler construction. About four years ago
the system programming language TAAL [2,3] was de-
fined and implemented.

Although a considerable reduction of errors has
been obtained compared with the use of assembly
languages, there is still a number of fault sources that
could be reduced by further improvements. A classifi-
cation of errors in an industrial software production
activity was reported by Klunder [4]. The ex, erience
with SPL showed two important error sources. The
first category are wrong interfaces among which the
uncontrolled use of global variables is the most serious
one. The second main source seems to originate from
the pointer variable. To cope with the control of global
variables the concept of enclosures was proposed as an
extension of SPL [5]. It is described in section 2.

Parallel to these improvements a need came up fc:

providing facilities in both SPL and TAAL for describ-
ing synchronisation problems in parallel programming
as arising in operating systems. Since there existed a

lot of experience with the well known synchronisation
primitives introduced by Dijkstra [6], we have tried to
formulate a set of standard solutions in resource alloca-
tion problems making use of P and V operations. This

is discussed in section 3. Furthermore due to the ex-
perience in the project Timesharing Operating System
for a PDP 11/45 (TOS 45) of the informatics group of
the Technological University Twente [7,8] we gained
experience with Concurren: Pascal as a description tool.
The use of the monitor concept appearcd to be a useful
tool in TOS 45, especially the version described by Hoare
[9]. However, it is our opinion that it is stiil too risky to
introduce the monitor, in particular the synchronisation
of the monitor, which is still under discussion, in lan-
guages like SPL and TAAL, in view of the rather heavy
expected costs involved with implementation. The in-
ternal variables of a monitor may only be accessed by
its monitor procedures. This protection aspect of moni-
tors is provided by enciosures in a similar way. An ex-
ample is given in section 4.

The addition of cnclosures anpears to be a rather easy
change of the compile:. Moreover, as will be pointed
out in section §, it is possiblc to build a monitor, assum-
ing the availability of the er ~'osure mechanism and of

(25

plu f,s,mmws

wn.‘phom and their operations.
. . We expect that a certain freedom in fiic 2 \g stan-
M solutions in parallel programming will be neces-
ey, We also expect that the enclosures and the clas-

lmmny more cases where access control is necessary.
' This is discussed in section 6, The real significance of
_ ncoexs control in a language is in its use by a manage--

" ment system to control the programming, for instance -

" a8 described in (10] This is briefly discussed ini sec-
. teon 7.
" We will use TAAL 25 a - ~sciiption !mguage

2 Endomm

Encloez.res !*'W been descr'bed 28 an SPuextansmn e

[S} they can be added to any language with an ALGOL

like block structure. In a blec' structured: larguage t the -

creation of a varigbie on blocX entrance implies the . ac-
cegsibility of that variable, Thz basic idea of enclosures
is o separately control the creation and the accessibil-
it Below is shown how this feature could be added to
TAAL. First the following example is given:
~ begin
enc F1

open

int statuz vanablemitlﬁ), ' ; L
~ globz! proc ENTRY thlue int i) begm end;.

*ene

-

The “er:losure heading” enc E1, the “enclosure
brackets” cpeu and close, and the “global marker”
givlal cre added language elements,

%hen tae block is entered, space is allocated for the
vatiables declared in it and their values may be initial-
ised by init (expresswn} These actions are not influ-

:ced by the added language elements, that can be re-.
moved from the program without changing the space
allocation and initialisatior:

'~

126

INFORMATION PROCESSING LETTERS

synchronisation primitives are of sucl, a primitive -
ure that these standard solutions can be implemen- -
withd\mdeﬂces.nemdes enclosurescanbeused = T R ST ‘

An enclosure must lie completely within a block; a
~ block is either a procedure body or begin declaraiions
.endor begin +++-end, For the variables or other
entities declared within the “erclosure bady” the fol-

November-1976

-begin

int status variable init (0);

proc ENTRY (value int i) begin ..., end;

lowing three areas are defined:

1) inside the enclosuse body (whxch is also mside a block)

they are accessible.
2) outside the Slock all ¢eclarations are unknown the
- variables do not exist.

3) inside the block but « :* ide the enclosure body the
variables éxist. In this area, however, the variables or
othier declamd en*tmes of the enclosure can only be
- made accessible if they are declared as global. '
Inthe give;i example, aceesses to int status variable

* and proc ENTRY are allowed within the enclosures body.
‘Within the block and outside the enclosure body “remote

access” can be obtained to proc ENTRY by a parailel

block or enclosure that specifies enclosure E1 in its “en-

vironment modifier”. An environment-modifier is a list
of one or more enclosure identifiers betweeu paranthe-

 ses, inserted! in the heading of an enclosure or block, as

follows:

enc (El)Ez open‘...close - .o

Q:pmc(El)Pl (valuemt)be@n.

e Enclosures, and bloclm that are procedure bodtes have

- already a headin

‘ment momf‘e‘ A further addition to the language en-
fables to ggve other biocks a heading as well:

(o

that can accmnodate such an environ-

block bl begm ceaoend,

s0 that also such blocks can have an environnwn. modi-

- fier;

block (El) Bl beginend.

{Another func'non of ﬁie’enciosure or the block with:a

heading is that it can be a “module™ for separate com-
pilation. During compilation, information derived from

Volume 5, number § INFORMATION PROCESSING LETTERS November 1976

declarations in previously compiled moduies is re-
trieved from a special file by the compiler.

This method of nested modularisation and hierarchi-

cal development of programs is briefly discussed in sec-
tion 7.)

Within the body, the globals ot the enclosures speci-
fied in the environment modifier given in the heading
can be “remotely accessed” by “qualified identifiers”,
for instance

ELENTRY

By this rule, identifiers of global declarations, that are
only unique within their enclosure, are made unique
within the embracing block or enclosure.

The example can now be extended to show remote
access,

begin
enc E1
open
int status variable init (0);
global proc ENTRY (value int i) begin end;

close;
block (E1) Bl
begin

*

ELENTRY (1);

- end
end

Like within a block, the identifiers that are known
within an enclosure are the identifiers declared inside
it — with or without global — and further any other
identifiers of its “environment”. If the normal rules
for block structured ianguages are followed, the en-
vironment of a block or enclosure consists of all iden-
tifiers known within its lexically immediately embrac-
ing block or enclosure, Now, if “box™ stands for “en-
“closure or. block with a heading”, then a bex can modi-

fy this “lexical environment”. In the given example the
lexical environment of block Bl is the set of identifiers

declared in the outer block consisting of the identifiers
Eland Bl. By the environment modifier this set is ex-

tended with th: qu-lified identifiers of all global declar-
ations of c.iclusure L 1. By other forms of i!ie environ-
ment modifier, using the symbol none, the lexical en-
vironment can be suppressed or replaced, instead of ex-
tended. 1f only none is written an empty environment
is the result. If none but is written in front of an explicit
list, then the environment consists of the identifiers made
accessible by that list; all other identifiers of the lexical
environmerit are made unknown inside the box,

For instance, if in the given example the heading of
B1 is replaced by

block (none) Bi

then within the body of Bl only its local declarations
are known. If t1c beading is replaced by

block (none but E1) Bl

then also the identifiers E1 and E1.ENTRY are knowan
inside the body, but any extra declarations that would
be inserted in the outer block, for instance between the
first begin and enc E1, would then be inaccessible by
the body of Bl.

A box that is imrnediately surrounded by an enclo-
sure can be declared global. In the given example this
is shown by global proc ENTRY. Procedure identifiers
can thus be remotely accessed. This is useful for remote
activation of procedures. All box identifiers that are de-
clared global may be remotely accessed by environment
modifiers. In that case, a special rule for remote access
is valid, namely that if a known box contains boxes de-
clared global then these boxes are also known.

This special rule is introduced to avoid writing extra
boxes that are not useful for protection and would only
make the program more complex.

begin

enc E1
open

global enc E2
open

global proc P (value int k) begin end;

close

127

Volume §, number 5

In this example the enclosure E1.E2 may be refered
to directly in the environment modifier of B2. If the
general rule for remote access were followed then an
extra box, say B1, would be necessary around B2 to
make E1’s global enc E2 known to B2, as follows:

block (E1) Bl
begin
block (E1.E2) B2

begin

E1.E2.P(100);

end
end

L X XY

In an environment modifier it is allowed to refer to
the identifier of an embracing box. This adds a set of
qualified identifiers to the environment namely of all
delarations — with or without global — written im-
=% diately inside the referenced box.)

Bhiek Al
begin int 1;
block (A1) A2
begin int I;

el

INFORMATION PROCESSING LETTERS

Navember 1976

In this example, the reference to I within A2 denotes
the local I of A2 whereus Al.l stands for the I declared
irarnediately inside Al.

According to the definitions given so far, the identi-
fiers added by the environment ‘niodifier are prefixed
by their box identifiers These prefixcs encure that all
identifiers added to the environment of a cer.ain box
are unique. In some programming 1."thods, however,
naming conventions might be followed m & oroup of
boxes, that imply already the uniqueness of identifi-rs
added to the environment of a certain box. The pre-
fixes are not needed in that box in this case; they woula
only be cumbersome. By giving the symbol implicit af-
ter box identifiers refered to in an environment modi-
fier, those box identifiers can be omitted as prefixes
in the body of the box to which the environment modi-
fier belongs. For instance, the block B2 in a previous
example could be rewritten as foliows:

block (E1. E2 implicit) B2
begin

P(100);

eud

Because implicit is written after E1. E2 in the head.
ing of B2, the prefix E1.E2 is suppressed within the
body of B2 for the globals of enclosure E2, so that
P(100) must be written instcud of E1.E2.P(100).

If a list of more than one box identifier — with or
without implicit — is written in the environment modi-
fier, each of them adds a set of identifiers to the en-
vironment, References from the body are resolved as
if each set of identifiers v-eie declared in a separate
box inserted around the body and within the !exically
surrounding box, the order of nesting from outside to
in-ide being given by the order of the list from left to
righi. Consider the following program:

Volume §, numboer 5

block B begin

enc E1 open close;

.
.
.

enc E2 open..... close;

.
.

enc (E1 implicit, E2 implicit) F
open

sene

close;

end

Say a reference x occurs in the body of F, then this
x identifies a declaratios: of x, if any, within that body.
If no x is declared in F, then the reference is to a decla-
ration of x with global, if any, within enclosure E2. If
that does also not exist, the reference is resolved by an
x declared with global within enclosure E1 and if no
such declaration exists, the binding is dene with a decla-
ration of x in the outer block B.

3, Standardisation in parallel programming

Especially in areas where !arger programs are corz
structed it is a necessity to restrict oneself to standard
solutions of which the correctness can be verified. Par-
ticularly in parallel programming there is a need for
such solutions.

We make a distinction between mutex semaphores
and private semaphores. We shall therefore introduce
two new types. The first is mutex semaphore x init
(integer value) and the second is semaphore x init (in-
teger value). Although the initial value of a mutex
semaphore is always 1 and that of the other (private)
semaphore (used for blocking purposes) is always 0,
we use the init facility of TAAL where variables can
be initialised upon declaration with init (expression cf
suitable type). On boti. the mutex semaphore and the
other semaphore we define two standard operations
namely P(x) and V(x) with the well known effect [6].
A critical section is surrounded by a pair P (mutex sema-
phore) and V (mutex semaphore). We prefer that the

INFORMATION PRUCESSING LETTERS

November 1976

compiler checks the pairing of P and V operations with
respect to mu‘- x < raaphores

Ratier than progiamming the criticai section in the
following way

P(mutex);

if access to resource not allowed

then update status variable for waiting on resource; V {mutex);
P(private semaphore)

else update status variable for using resource; V (mutex)

fi

where a proper check on P(mutex), V(mutex) is diffi-
cult we adopt the following solution.

P(muiex);

if access to resource not allowed

then update status variable for waiting on resource;

else update status variable for usiug resource; V(private sema-
phore)

fi;

V(mutex);

P(private semaphore);

There is, however, more that should be checked. We
would like to be sure that updating the status variables
is only done inside a critical section and not at arbitrary
places in the program. This requirement will be discus-
sed later,

When a number of purallel processes compete for a
set of common rescurces we adopt the following known
technique.

parbegin

e

processi: do
ENTRY;
use resource;
EXIT;
other work
od;

parend -

In the program section ENTRY, the status variatles
are investigated and it is determined whether the re-
source can be given ic process i. This program section
has the following structure.

129

Velum: S, number §

P(mutex); ¢ ENTRY of process i ¢
f resource may be used by process ()
then update status variable for resource in use by
process ({); V(private semaphore (1)) .
¢ise update status variable for resource being
waited for by process {9 :

ENTRT:

]

ables of the other processes in oré®r to stari waiting

proci:sses,
The structure of the program section EXIT is as fol-
lows: :

EXIT: P(mutex) . ¢ EXIT process i ¢
update status variable for rcsousce not in use by
process (f);

while there are waiting processes that may now use
the resource one of them being process ()
Jo update status variable for resource in use by pri-
cess (f); V(private semaphor X))
od;
V(mutex);

Rather than to write the full zext of ENTRY and
EXIT in each of the processes we prefer to call pro-
cedures ENTRY and EXIT. Thes- procedure calls may
be considered as services of a secretary. An activity of
the secretary is to be considered as an extension of the

process that is making use of the semces of the secre-

tary. It is therefore not a sepaxate process. 'Ihe status

variables mast be accessible by different secretary pro-

ceiures antd their values shauld be retained for new
procedure calls. Furthermore it would be nice if the
siatus variables could be ‘accessed from the secretary

procedurcs only. Wg can achieve this thh the enclo- - |

sure mechanism.

4. Use of enclosures in parallel programming
We will now give the structure of a set of parallel

processes competing for a resource usmg the enclosure
mechanism, :

130

INFORMATION PROCESSING LETTERS

November 1976

begin

enc secretary
open
type status variable init (...);

.
.
.

mutex semaphu. m unit (1);
semaphore prisem (n) init (0); ¢ » has been declare’.
outside this block ¢
globat proc ENTRY (value inti)
begin
P(mutex);
if resource may be used by process (i)
then updaie statas variable for resource in
use by process {i); V(private semaphore ()
else update status variable for resource being
waited for by process ()
fi;
V{(mutex);
P(private semaphore ());

end;
global pro¢ EX1y {value int i)
begm mu,
P(mutex);
update status variable for resource not in use
by process ();
while there are waiting processes that may
now use the resource one of them being
process ()
do update status variable for resource in use
by process (); V(private semaphorc (3)
od;
V{mutex);
end
close; .
parbegin

black (secretary) process i
begin
do
secretary. ENTRY (i);
use resource;
secretary. EXIT (i);
remainder of process

parend
end

5. Imp! emeviation of the monitor of Hoarc

The monitor provides two essential facilities. First

Volume §, number 5

there are data only accessibie by a set of monitor pro-
cedures, The monitor procedures are taking care of
the communication with the outside world. It is the
only possibility to enter the monitor. Secondly a very
specific synchronisation is provided. Hoare [9] has
shown that his monitor synchronisation can be imple-
mented by semaphores. We show that enclosures are
sufficient to implement the data protection cf the
monitor.

To implement the synchronisation of his monitor
Hoare [9] introduces a mutex semaphore (say m) ini-
tialised with value 1 that takes care of the mutual ex-
clusion of the monitor. For each ¢_n lition: cond he
introduces a semaphore condsem initialised with value
0. Next he introduces a semaphore urgent, initially with
value 0 and finally a variable urgentcount with initial
value 0. Each exit from the monitor procedure is as fol-
lows:

if urgentcoun: > 0 then VY (urgent) else V (m) fi
The operatior: cond. wait is implemented by

condcount plus 1;

if urgentcount > 0 then V (urgent); V (m) fi:
P (condsem);

condcount minus 1;

Finally the operation cond.signal is implemented by

urgentcount plus 1;
if condcount > 0 then V (condsem); P (urgent) fi;
urgentcount minus 1;

We introduce an enclosure (with name monitor) in
which all status variables, semaphores and monitor
procedures are de:lared. Only the monitor procedures
are declared with global. The implementation of a
monitor with enclosures is then as follows:

begin
enc monitor
open
type status variable init (...);

mutex semaphore m init (1};
semaphore condsem init (0);
int condcount init (0);

.
.
»
*

semaphore urgent init (0);
int urgent count (0);
global proc monitorprocedure begin end;

.

INFORMATION PROCESSING LETTERS

November 1976

close;

parbegin

block (monitor) process i
begin
do

.

monitor, monitorprocedure;

od;
end;

.

parend

6. Significance of enclosures

The “secretary”, that was described in section 4 as

a possible way of handling process synchronisation, is

an example of a situation that cccurs frequently in pro-

gramming, where the foilowing requirements have to be
met simultaneously: '

1. delimiting the area in the program where references
to a group of declarations may occur,

2. allowing 1eferences to « selected subset (consisting
of more thait one element!) of that group from out-
side that area.

One meets this situation for instance, if one tries to des-

cribe, in a common block structured language, the in-

structions of a programmable machine, by a set of pro-
cedures declared in a block around the actual “pro-
gram”, The proceduses implementing the instructions
have to access common internai state variables or in-
ternal procedvires of the programmable machine. There-
fore, in the description these internal machine entities
must be global to the instruction procedures, but then
they are also accessible from the “program”, which is
not the case in the real machine that one is trying to
describe.

programmable machine:
begin

int internal state:

proc internal proc begin ... end;
int accumulator;

.
»

131

Volume $, number §

L]
.
.

int MEMORY (8191);
proc LOAD (int op) begin ... end
proc ADD (int op) begin ... end;

.

LOAD (MEMORY (100));
ADD (MEMORY (101));

.
.
.

erwd
end

‘fhe array MEMORY, and the procedures LOAD and
ADD belong to the “hardware-software interface™ of
the described machine. It is supposed that “internal

#ate™ and “inter~- proc”, which de not belong to

the hardware-sof. ware interface, have (o be accessed
- froen a number of “instruction-procedures”, for in-

stance LOAD and ADD. If,in the described machine,
- the “sccumulator” is never an explicit operand of an
géciction, it should, as such, also be inaccessible from
pum” . The same is true for the “instruction poin-
which is not shown in the example. The simple
- _device needed in this situation, is a pair of brackets,

- ey opeasrea and closearea, around all declarations of
the blo® “‘programmable machine”, and a way’ of mark-
- ingthe ‘wations that are accessible from ouiside
 those Brackets, For this purpose the symbol global
ill be used, !5 this stage, the symbols openareaand
es ere used rather than open and close, to avoid
jon with tha full enclosure-concept, of which the
are slightly different. The justification of these
fces is discussed in the sequel.

; ‘mmme machine:
 opengrea int internal state:
; proc interial proc begin .., . end;

{ni sccumulator; »
int MEMORY (3191);

al proc LOAD (int op) begin. .. end;
gobal proc ADD (int op) begin ... end;

.
%
L

INFORMATION PROCESSING LETTERS

November 1978

closearea;
program: begin '
LOAD (memnry (100)};

ADD (memory (101));

end
end

The semantics of openarea, closearea and global deals
only with the accessibility of names declared in a cer-
tain area of a program text. We would not want the

- dynamic creation 2nd the life-time of variables etc., to

be influenced by this device. The implementation of
such a device as an added feature to an existing block-
structured language is a rather simple task. The com-
piler has to accept some additional symbols that are
interpreted only during the resolution of names but

that have no effect on the object program. When tack-

ling a large system programming task, often a first sub-
division is made into partial development tasks, each

- consisting of providing a set of procedures on some
. common subject matter. It is likely that the develop-

ment of such a set of procedures wili give rise to the

‘definition of common auxiliary entities that are used

by that set of procedures only. These auxilary entities

inay be variables or procedures. In such a situation, the
language feature introduced above can be applied. The
program part resulting froin the partial development

task is bracketed betweon openarea and closearea, Cnly

the set of procedures that had to be provided originally
are marked global, so that only théy can be referenced
by the rest of the program, Trying to find analogy with
the given example one can see that such a program part
is a virtual “programmable machine” containing its
auxiliary entities as “internal machine entities” and a
specific set of procedures as “instructions™ to be used
by the rest of the program.

For a very complicated system program, it is useful

~ to siart out by carefully designing a structure of the

program. For instance, an Operating System may be
structured as a hierarchy of virtual machines. The des-
cription of a programmable machine in the example

- was used to illustrate a first useful addition to block
~ structured languages. If one tries to generalise this ex-

ample to a hierarchy of machines, it appears that some-
thing more is needed.

Volume §, number 5

One can think of extending the given example to
the description of a microprogrammed computer. An
extra outer block is added that contains procedures re-
presenting the micro instructions, which are used by
the procedures of the middle block. The latter pro-
cedures represent, as before, the programmer instruc-
tions used in the inner block, the *“program™.

The extended description is given below. Identifiers
have, however, been changed to more general ones, so
that the example can also stand for a program struc-
tured as a hierarchy of virtual machines. There are three
machines: “bortom machine” in 1ae outer block, “mid-
dle machine™ in the moddle block, and “top machine”
in the inner block. Openarea, closearea and global are
applicd in a similar way as in the previous example.
bottom machine:
begin

openaren

in.t internal variable of bottom;

.
.

global proc instruction 1 of bottom begin end;

see

closearen;
n:iddle machine:

begin
openarea
int internal variable of moddle;

ase

global proc instruction 1 of middle begin.... end;

i

- 0see

instruction 1 of bottom;

)
cees B oeen
-~

2
:
g

top machine:

begin
int internal variable 1 top;
instruction 1 of midd'e;

-
.
.
.

end;
end

INFORMATION PROCESSING LETTERS

November 1976

When this ¢ ar:de is ¢ dusidered as a description or’

a microprogrammed computer, the “instructions of
bottom” are micro instructions. It is supposed that they
are used in the “middle machine”, describing the micro-
program, but from the “top machine”, describing a pro-
gram on the computer, they should be inaccessible, as
in reality. In the example, however, every declaration
that has been made global in the bottom machine, is
accessible throughout that block, including all inner
blocks. So the description is not adequate. A similar
situation can occur in a system program structured as

a hierarchy of virtual machines. In an Operating System,
for instance, a virtual machine may provide an abstrac-
ticn from some specific features of the computer on
which that virtual machine is implemented, so that its
users need not know those features and can be program-
meg independent of them. It would even be dangerous
if those specific features of the computer could still be
accessed by the users of that virtual machine directly.
So the restriction that must be imposed on the hier-
archy in the example to make it a realistic exercise is
that the top machine may only use the middle mach-
ine, the middle machine may only use the bottom
machine and the bottom machine may not use either

of the other two.

The enclosure concept as defined in section 2 en-
ables to impose such a restriction. It enables to specify
such a relation among the virtual machines, that only
the necessary references are allowed. Part of the use of
a nested program structure may be replaced by this ex-
plicit reference relation. However, a certain amount of
nesting levels may still be useful, especially in very large
programs, to represent different levels of authorisation
in a management system as discussed in section 7.

The basic difference with the brackets cpenarea and
closearea is, that the surrounded area — the “enclosure”
— now bears a name, so that the enclosure itseif can be
treated as a declaration. This makes it possible, firstly,
to mark enclosures as global, which is important for
nested enclosures, and secondly, to specify an enclosure
in an “environmer.t modifier” in the heading of a “box”.
Boxes were defined in section 2 as enclosures or blocks
with a heading. The latter can be constructed with the
symhbi block. Thev may also be procedure-declarations.
An enclosure ideniifier may be mentioned in the environ-
ment modifier of a box that lies outside the enclosure but
within the scope of its identifier. This causes the global
declarations of the enclosure to be accessible inside the

133

feme §, sumber S

“bem by identiflers qualified with the enclosure identi-

B, h using the s;ymbol implicit in the environment

fifler, the qualification of the names can be sup-

ed, and by using none or none but, names known
Je the box can be made inaccessible inside it.

on b this last feature that can be used to adapt the

enample s:ch that it represents precisely the required

188 possibilities among the three virtual machines.

. Fisst dhie example is rewritten with the same nested

T structure as before. The two areas surrounded by the

opesases; closearea brackeis aie replaced by anclosures

on the body of the middle bluck had access to the
als declared in the outer block. With enclosures

8 access has to be granted explicitly in the heading.
Similarty the globals of MIDDLE must explicitly be
made sccessible by the inner block. Now, by writing
vhis as none but MIPDLE, the globals of the outer
ﬂ&k are made faaccessible by the inner block.

Mbﬂtom machine

" enc BOTTOM
!ﬂt internal variable of bottom;

clase;
block (BOTTOM) middle machine

begin
 enc MIDDLE;

open
mt mtemal vanable of midd!e, :

»
o

: giobd‘ proc ivnstructé'onvl of middle

BOTAOM,rv',tmctmn 1 of bottom;

end;
close:
" _block (none but MIDDLE) top machine

- intinte:nal variable of top;

134

INFORMATION PROCESSING LETTERS

) the namer BOTTOM and MIDDLE. In the criginai

globd yroc instruction 1 of bottom beginend;

November 1976

MIDDLE. instruction 1 of middle;

end
~ end
end

In the original version, the nested block structure served
to prevent “bottom up” references. Now that the refer-
ence relation among the boxes can be made explicit, the
nested blocks ae no longer needed in the example. With-
out them the following version can be written.

begin
enc BOTTOM
open
int internal variable of bottom;

globat proc instruction 1 of bottom beginend;
close; ;
enc (BOTTOM implicit) MIDDLE

open
int intemmal variable of middle;

global proc instruction 1 of middle
begin

instruction 1 of bottom;

end;
Q'm ’
enc (MIDDLE unplicit) TOP
open ~
_ int internal variable of top;

instr:ction 1 of middle;

close;

“end

Apparently the exampls looks simpler now. The sym-
bol none but is no longer necessary in the environment

' modifier of the box TOP, because in this version its

“lexical environment” is empty.
The symbol implicit has been used to simplify the

Volume S number

ber § INFORMATION PROCESSIN

references to the “instructions” of the different ma-
chines. This simplification is possible, because in this
example the identifiers of the instructions are supposed
to be unique in the outer block and therefore do not
need to be qualified by the enclosure-identifiers. Note
that the (1l enclosure fezture still affects only the reso-
lution of names by the compiler and therefore its im-
plementation is of the samne level of simplicity as for
the provisionary version with openarea and closearea

Aiesncead anvliae in nn
GISCUSSCG Cariier in %-"ds section.

7. Hierarchical'authorisation

One could bring up the objection that the program-
mer, who has the task to write the refinement of a box
that is a procedure body, a block or an enclosure body,
can stil! change the environment. The further idea be-
hind enclosures is the existence of a management sys-
tem. Let us assume that we work with chief program-

mer teams [10]. The chicf programmer has other rights

than the programmers of liis team. He is responsible for
designing the structure of the system; that is to say th.
skeleton of the system consisting of the data structures
and program structures that are relevant for the top
level of the system. There may be a number of boxes
that are still undefined. In that case only box headings
are given. It is the task of the programmers of the team
to take care of filling in (refinemnent) the open bodies
of the boxes. If we want a protection on changes of

the structure designed by the chief programmer, we

use a method that is called hierarchical authorisation.
The structure or skeleton designed by the chief program-
mer is precompiled and stored on a file. The refinement
result of the programmer is added to the precompiled
skeleton. If the programmer tries to change the skeleton
the compiler will not accept this. The programmer is
only allowed to refine boxes of which anly a header is

specified. Obv.cusly the access rights will be checked
again op this .2+ -7 Moicover it is possible to check the
use of parameters for example input parameters, out-
put parameters, value parameters, reference by valve
parameters etc. One can generalise to more than one
authorisation level by introducing additional compile
runs and storing the result. Compi]ation runs may be

muadamda d s mme ookt Lol PRORPUPIRSIRPUES | § 2% S S

protected by a protection key if necessary. With the

aid of this mechanism one can better control the de-
emfg activity than without,

References

[1]} SPL-3 Reference Manual. Internal publication, Philips
Electrologica.

{2] H. van Berne, J. Schaap-Kruseman, A programming
language for $oftware description, First meeting of IFIP
WG 2.4 Machine Oriented Higher-Level Languages, La -
Grande Mottc, France (May 7-9, 1974), MOL bulletin
issue no 4 to appear,

{31 TAAL, a programming language for software description,
1972. Documentation file, System Programming Group
Technological University Twente. ALG.VGP302.

{4] 1. Klunder, Experiences with SPL. Machine Oriented
High Level Languages, Trondheim 1974, (Norih-Hollzad
Publishing Company).

{51 K. Deicour, Enclosures as SPL-extension, Internal publi-
cation, Philips Electrologica.

{61 E.W. Dijkstra, Cooperating Sequential Processes, In Program-
ming Languages (Ed. F. Gemnuys) (Academic Press, New
York, 1968).

{71 W.A. Vervoort, Concurrent Pascal and the Design of Opera-
ting Systems (Dutch), Informatie 17 (1975) 675~-683.

An English version is available on request,

{8] W.A. Vervoort. Concurreni Pascal and the Design of a
Timesharing Operating System, Proc, 1975. DECUS Europe
Symp., The Hague,

[9} C.A.R, Hoare, An Operating System Structuring Concept,
C.A.CM. 17 (1974) 549-557.

{10] E.T. Baker, Chief programmer team management of pro-
duction programming, IBM Systems J, no, 1, (1972) 56-73.

135

