
ATION PRWESSING LETTERS November 1976

,

1. hark&am b

After more than six years of experience with sys-

providing facilities in both SPL and TAAL for describ-
ing synchronisatiort problems in parallel pro~r~rn~n~
as arising in operating systems. Since there existed a
lot of experience with the well known synchro~isation
primitives introduced by Dijkstra 163, we have tried toI
formulate a set of standard solutions in resource al&a-
tion problems making use of P and V operations. This
is discussed in section 3. Fur~ermore due to the ex-
perience in the project Timesharing Operating System
for a PM” 1 S/45 (TCIS 45) of the informatics group of
tie Technological University Twente [7,8] we gained
~x~~$n~ with Concurreti; Pascal as a deception tool.
The use of the monitor concept appeared to be a useful
too1 in TOS 45, especially the version described by Waare
[9]. However, it is our opinion that it is still too ris@ to
~r~troduce the monitor, in particular the synchron~sation
of t.he monitor, which ii still under discussion, in lan-

like WI, and TAAL, In view of the rather heavy
ed costs involved with implcmentatlon. Tha in-
ariable$ of it n~oni~or may only be accessed by

‘T”tais protection aspect of m0ni-
d.tsures in a similar way. An ex-

VW “er&mre heading” em EL) the ‘“enclosUre
brdcets” cqmt and s?ose, and the “global marker”

b;itf r;re added language elements,
the bltock L entered, space is ~~~at~d for the

variabjeq &dared in it and their values mw be initia&

126

begin

int status m&ilk init (0);

prw ENh”RY <value int i) begin l . l . end;

fier ;

Mack(EI)Bl begin....end.

(An@~er function &f the enclosure or the block with a
~eadi~ig &I &at it can IN a ~~rnodu~e~~ for separate com-
pilathn. During compilation, information derived from

Vdume 5, number 5 INFORMATION PRBCESSING LETTERS November 1976

d~~arations in previo~ly compiled mod&es is rtt-

trieved from a special file by the compiler,
‘ihis method of nested modularisatiOn and hierarehi-

cd development of programs is briefly discussed in sec-
tion 7.)

Within the body, the globals oi the enclosures speci-
fied in the en~ro~~t modifier given in the heading (

can be “remotely accessed” by “qualtfied identifiers”‘,
for instance

El *ENTRY

By this rule, identifiers of global declarations, that are
only unique within th& enclosure, are made unique
within the embracing block or erqlosure.

The example can now be extended to show remote
8CCesS.

brrszn
euc El

int status variable init #I);

Qobal proc ENTRY (value int i) begin . . . , end;
.
l .

b l

Ctose;
bibock (El) Bl

besin
.
l *

bN*w (I);
l

: .
CIMI

end

Uke wh.hh a block, the identifiers that arre known
within an enclosure are the identifiers declared inside
it - with or without jobat - and further any other
identifiers of its “environment”. If the normal rules
for block structured P.*guaps are followed, the en-
v&omnent of a block or enclosure consists of all iden-
tifiers known within its lexhlly immediately embrac-
ing block or enclosure. Now, if “box” start& for “en-
closure or block with a heading’*, then a box WI modi-
fy this “lexical environment”. fn the given example the
lexical environment of Mock Bf is the set of identifiers
declared in the Outer block consisting Of the identifiers
Ef. and BL l3y the environment modifier this set is ex-

tended with I~,c qMified tdcntifkrs of all global &clap
ations of e.iclohm L 1. By other forms of :iie environ-
ment modifier, using the symbol none, the tericd en-

vironment cssft be suppressed or replaced, instead of ex-
terlded. If only none is written an anipty environment
is thp: result. If none but is written in front of an explicit
list, then the environment consists of the identifiers made
accessrble by that list; all other identifiers of the lexical
environmen? are made unknown inside the box,

For instance, if in the given example the he&ding of
Bl is replaced by

block (none) Bl f

then within the body of Bl only its local declarations
are known. If t& heading is replaced by

block (nane but El) Bf

then also the identifiers El and El *ENTRY are known
inside the body, but any extra declarations that would
he inserted In the outer block, for instance between the
first begin and enc El, would then be inaccessible k’
the body of B1.

A box that is immediately surrounded by an enclo-
SW can be declared global. In the givers example fhjs
is shown by &ba! pmc ENTRY. Procedure identi%rs
can thus be remotely accessed. This is useful for remote
activation of procedures. All box identifiers that are de-
clared glabal may ?X remotely accessed by environment
modifiers. in that case, a special rule for remote access
is valid, nalmely that if a known box contains bloxcs de-
clared global then these boxes are also known.

This special rule is introduced to avoid writ:“png extra
boxes that are not useful for protection and would only
make the Iprogram more c%Dmplex.

be@
enc El

open
. .
:

gtobai enc E2

Qpen

.
l .

g&al proc P (value int k) 15egin.. . C end;

. . . .
elme

t eerie the enclosure ELE2 may be refered
I to directly fn the envirlonment modifier of B2. If the

ral rule for remote access were followed then an
box, say Bi, would be necessary around Bt to
El’s global eRc E? knows to B2, as foBows:

l .
l B

01 ironment modifier it is allowed to refer to
hm embcbg box. This adds a set of

to the ~~r~~eRt namefy of all
or t ghBbaI - written ,im*
re d box,

In this cxampie, the refhnce to I within A2 denotes
the foca! I of A2 whereas Gl ,I stands for the I declared
immediately inside A 1.

According to the defmiticcns given so far, the identi-
fier s added by the en~ronmeRt * ~~~~~~~ are prefured
by their box identifiers These prefixes ~RPEWIP that all
id~~ti~ers added to theenvironment oi a cet ain box

are unique. in some programming hr+%hcrds, however,
naming conventions might be followed R& ;; ;WP of
boxes, that imply already the uni~uene~ of identifi .rs
added to the environment of a certain box. The pre-
Ties are not needed in that box in this case; they wouicl
only 6e curn~~orne~ By giving the symbol sprint af-
ter box identifiers refered to in an environment modi*
fier, those box identifiers can be omitted as prefixes
in the body of the box to ~~~~h the eR~roRment modi-
fier belongs. For instance, the block B2 in a previous
example could be rewritten as fohows:

.

‘ilock (El. E2 implicit) B2
begitl

end
l

l

.

.

Because implicit is written after El. E2 in the head-
ing of 82, the prefix El .E2 is suppressed within the
body of B2 for the globa& of enclosure E2, so that
P(lO0) must be written instc2.d of El.E2.P(lOO).

If a list of more than ojte box ideRti~er - with or
without implicit - is written in the environment modi-
fier, each of them adds a set of fdentiflers to the en-
~ronment* References from the body are resolved as
if each set of identifiers V.XM declared in a separate
box ~serted around the body and coin the !~~c~y
surrounding box* the order of nesting from outside to
inide being givera by the order of the list from left to
rigi-& ~on~der the fo~o~ng progr~:

Volume 5, numi>er 5 ~Nr;OR~A~ION Pk~~SS~N~ LETTERS November 1976

block B

enc Et open close;
l . .

enc’ E2 open. . . . * close;
l .
l

ene’ (Et irn~~~it, E2 impIi~it) F

open
(I
l

l

cldse;
l . *

erui

Say a reference x occurs in the body of F, then this
x identifies a declaratior~ of x, if any, within that body.
If no x is declared in F’, then the reference is to a decla-
ration of x with &&al, if any, within enclosure E2. If
that does also not exist, the reference is resolved by an
x declared with global within enclosure El and if no
such deviation exists, !.he binding is done with a decla-
ration of x in the outer ldock B.

3. Wmdaniisation in parallel programming

Especially in areas where larger programs are cc&
strutted it is a necessity to restrict oneself to standard
solutions of w&h the ~~rrec~ess can be verified. Par-
tic~~~y in parallef pr~~~rn~~ there is a need for
such solutions.

We make a diitinctioa between mutex semaphores
and private semaphores. We shall therefore introduce
two new types. The first is mutex semap~~ore x init
(integer value) and the second is semaphwe x init (in-
teger value). Although the initiaJ value of a mutex
semaphore is always I and that of the tither privates
~maphor~ (used for bucking pu~os~s~ is zdways 0,
we lige the init facility of TAAL where v~~riables can
be initialised upon de&ration with init (expression cf
suitable type). On bo% the mutex semaphore and the
other semaphore we deiine two stan operations
namely P(x) and V(x) with the well yn effect [6].
A critical section is surr 3un
phore) and V (m

P(mu tex);
if access to resource not allowed
then update status variable for waiting on resource; V (mutex);

PQprivate semaphore)
eke update status variable for using resource; V (mutt;x)
fi

hue a praper check on P(mutex), V(mutex) is diffi=
cult we adopt the following solution.

Pfmu iex);
if access to resource not allowed
then update status variable for waiting on resource;
else update status variable for u&kg resource; V@rivate sema-

phore)
fi;
V(mu tex);
P(privi! te semaphore);

There is, however, more that should be checked. We
wou!d like to be sure Sat updating the status variables
is only done: inside a critical section and not at arbitrary
places in the program. This requirement will be discus-
sed later.

When a number of parallel processes compete for a
set of common rescurces W? aZ0pt the following known
technique.

parbegin
l *

process i: tt::

ENTRY;
use resource ;
EXIT;
other work

od;
. .
l

l

parend

November 1.976

Y: Pmut~~; #. ENTRY of process i #
0 re@ource may be used by process (9
$ba update status variable for resource in use by

lpfoc~u (9; Wprhfate semaphore (0)
update status variable for resource being
waited for by pto%ss,@

n;
V(mute%);
P@rfvatc s8mnpR

I

tk progrm wction T the status variable of
that rdeases the rce &+ updated. Fur-

BIWC EXIT has the duty ect the Satus vari-
to start waiting

e tkcture of the program se&m EXKT is as fof-

EXIT: pcmutcx): . 4 EXIT process t Q
update status variable for resource not in use by
PIQocds @I;
wWe there are waiting processes that may now use

the resoufc42 one of ~~rn.~~~‘~~~ 07
Ja update statu# varkble fos rli?.source in use by p&b

cess QJ; V@riWe semaphor.3 0)
od;
V(mutex);

Rather than to wrk the fuill text 4 ENTRY and
EXfT in each of the processes we prefer to call pro-
ctiuret ENTRY and EXT. Thee prcxedure calls inay

considered as services of a secretary. An activity of
bee rrrecretarpf is to be considered as an extension of the

drat ts ~~ngu~ of tk sMvkx?s Of the secre-
tary. It is tlM?rk?fore not a seJx%rat@ proCes% The status
vaMSes m48st k zcessMe by diKerent tire* pro-
cedures a@ the& v&es aced be re&dned for new
~~~~ AS. Fur~e~ore it woultd be nice if the 
Z&HU.S varihks could be’accessed from the secretary 
procedures only. We can a&be this with the en&- 
~~~~. 

We wift now give the structure of a set of parallel
competing for a resource using the enclosure

begin

V(mutex);
P(privale ~rn~pho~ (i));

end;
global proc E%A (value int 0

begin intj;
P(mutex);
update status variabie for resource not in use

by process (C&
white there are waiting processes that may

now use; the resource one of them being
process 0)

do update status variable for resource in t)%
by process (i); V(privaae semaphore 01)

od;
V(mutex);

end
&Me;

parbegin
. , * *

b&k &cretary) Process f
beI@

do
se~xatary. ENTRY (1);
use resource;
secretary. FZXT (9;
~rn~nder of process

od
emd;

l

:

pare nk

end

5, Imp! emwtition of the monitor of Hoara

enc secretary
open

type status v&able init 6.);
. . . .

mu tex semapk3ze ns unit (I);
mmaphore prisem (n) hit (0); (d n has been declareA

outside this bMc Q
global proc ENTRY (vatuce int f)

begin
P(mutex);
if resource may be used by process (0
then updape status variable for resource in

use by process (i); \‘(private semaphore (9
elm update status variabIe for resource being

waited for by process (9
fi;

.

The monitor provides tws essential facilities* r”iirst

Volume 5, number 5 INE’ORMATION PROCESSlNG LETTERS November 1976

there are data only accessiblie by a set of monitor pro-
cedures, The monitor procedures are taking care of
the communication with the outside world. It is the
only possibiity to enter the monitor. Secondly a very
specific synchronisation is provided. Hoare [9] has
shown that his monitor synchronisation can be imple-
mented by semaphores. We show that enclosures are
sufficient to implement the data protection ef the
monitor.

To implement the synchronisation of his monitor
Hoare [9] introduces a mutex se;naphore (say m) ini-
tialised with value 1 that takes care of rhe mutr;al ex-
clusion of the monitor. For each c.111 lition: cone he
introduces a semaphore condsem irritialised with value
0. Next he introduces a semaphore urgent, initially with
value 0 and finally a variable urgentcount with initial
value 0. Each exit from the monitor procedure is as fol-
lows: .

if urgent~oun~ > 0 then “1 (urgent) else V (m) fi

Ihe operation cond.wait is implemented by

condcount plus 1;
if ur~ntcou~t > 0 then V (ur~nt); V (ml fi:
P (co&em);
condcount minus f. ;

Finally the operation cond.signal is implemented by

urgentcount plus I;
if condcount > 0 then V (condsem); P (urgent~ fi;
urgentcount minus 1;

We introduce an enclosure (with name monitor) in
which all status variables, semaphores and monitor
procedures are deAared. Only the monitor procedures
are declared with global. The implementation of a
monitor with enclosures is then as follow:

enc monitor

status variable init (...I;

mutex semaphore m init (1 j;
semaphore c~nds~rn init (0);
int condcount init (Ok

. .
l

sekaphore urgent init (0);
int urgent count (0);
global proc monitorprocedure begin , I .

*.. end;

l

*

close; *
patbegin

. . *

block ;monitor) process i
begin

do . .
l .
monitor.monitorprocedure;
. .
l

od;’
end:

l . .

parend

end

6, Significance of enclosures

The “secretary”, that was described in section 4 as
a possible way of handling process synchronisation, is
an example of a situation that occurs frequent& in pro-
gramming, where the following requirements have to be
met simu~t~eously :
1. delimiting the area in the program where references

to a group of declarations may occur.
2. allowing references to A selected subset (consisting

of more thau ofle element!) of that group from out-
side that area.

One meets this situation for instance, if one tries to des-
cribe, in a common blwk structured language, the in-
structions of a programmable machine, by a set of pro-
cedures declared in a block around! the actual “pro-
gram”. The procedures implementing the instructions
have to access common internal state variables 01 in-
ternal procedures of the programmable machine. There-
fore, in the description these internal machine entities
must be glob$ to the instructimr procedures, but then
they are also accessible from the “program”“, which is
not the case in the real machine that one is trying to
describe.

begin
int internal state:
proc internal proc be:& . . *. end;
int ~cc~rn~~t~r;

. . .
l

131

3, number 5 INFORMAlt0N PROCESSING LETTERS Nuvember 1976

.
l

.

EMORY (819th ’
LOAD (iat op) be+ . . . end;

pw A&D (Lnt op) begin . . . end;
.
:

AD (MEMORY Mb);
ADD (MEMORY (10)));

* . . .

ORY, and the procedures LOAD and

supposed that “internal

described machine,
explicit operand of an
aIs0 be ~ac~~ible from
r the “instruction goin*
example. The simple

of

&is purpM!? the symbol global
stage, the symbols qenarea and

rather &an open and &se, to avoid

b@n....end:

l

.

.

*

closearea;
program: begin

LOAD fmemwy (100));
ADD (memory (loi));

.
l

l

enh

end

The semantics of openares, clo- and &&al deals
only with the accessibiI&y of names declared in a cer-
tain area of a program text. We would not want the
dyna~~ creation a.nd the iifeatime of variables etc., to
be influenced by this device. The implementation of
such a device as an added feature to an existing block-
s~~~~d Iliac is a rather simpie task, ‘I% corn-
piler has to accept some .ad~~~~ symbols that are
interpreted &y duting the resolution of names but
that have no effect on ‘the object program. When tack-
ring a large WEtern pro~~~g task, of&n a first sub-
~~~~~ is made into paMal de~l~ment tasks, each 
consisting of providing a set of procedures on some 
common subject matter. It is likely that the develop 
ment of such a set of pr~edu~s wiIl give rise to the 
d~~ni~on 0): common auxiIiary entities that are used 
by that set of procedures only. These auxilary entities 
may be variables or procedures. In such a situation&e 
language feature intr~uced above can be appIied. ‘I%e 
pro~am part results from the partial deveIopment 
task is bracketed between openarea and closearea. Only 
the set of procedures *at had to be provided originally 
are marked gIoImI, so that onIy they can be referen~d 
by thp rest of the program, Trying to find analogy with 
the given example one can see that such a program part 
is a virtual “programmable machine” containing its 
au~lia~ entities as ‘interns mac~ne entices” and a 
specific set of ~r~edures as ‘~nst~c~ons’~ to be used 
by the rest of the program. 

For a very complicated system program, it is useful 
to start out by rarely desirer a st~ctu~ of the 
broad’ For instance, an operate System may be 
str~tured as a hierarchy of virtual machines. The des- 
cription of a programmable machine in the example 
was used to ~~t~~e a first usefui addition to block 
~;t~Gtured 1~~~~. If one tries to genera&e this ex- 
ample to a hierarchy of machines, it appears that some- 
rthjng more is needed. 



Volume 5, number 5 INt:ORMATION PROCESSING LETTERS November 1976 

One can think of extending the given example to 
the description of a microprogrammed computer. An 
extra outer block is added that contains procedures re- 
presenting the micro instructions, which are used by 
the procedures of the middle bIock. The latter pro- 
cedures represent, as before, the programmer instruc- 
tions used in the inner block, the “program”. 

‘i%e extended description is given below. Identifiers 
have, however, been changed to more general ones, so 
that the example can also stand for a program struc- 
tured as a hierarchy of virtual machines. There are three 
machines: “Sot tom machine’* in the outer block, “mid- 
&e machine” in the rn~d~e bIock, and “‘top machine” 
in the inner block. Openarea, closearea and global are 

applied in a simiiar way as in the previous example. 

bottom mxhine: 

int ~~~~~ variabfe of bottom; . . 

g&M pkc instruction 1 of’ bottom begin.. . . end; 
. . 

CIA; 
r$ddle machine: 

w#n 
open- 

int internal wiable of mod&e; 

. 

g&l prac instruction 1 of middle begin.. . . end; 

instruction 1 of bottom; 

top machine: 

int internal variable i 1’ top; 
instruction 1 of midd ‘e; 

eid; 
end 

WWR thrs i ‘-~~t4c is t ~i~s~dered as a description of 
a micl’oprogrammed computer, the “instructions of 
bottom” are micro instructions. It is suppos,:d &at hey 
are used in the “middle machine”, describ jng the micro- 
program, but from the “top m~h~e”, depriving a pro- 
gram on the computer, they should be inaccessible, as 
in reality. In the example, however, every 4ecfaration 
that has been made global in the bottom machine, is 
accessible ~rou~out that block, inclu~ng $1 inner 
blocks. So the description is not adequate. J? similar 
situation can clccur in a systl:m profgam structured 2s 

a hierarch!f of virtual machines. ‘tn an GperAting System, 
for instance, a virtual machine may provide an abstrac- 
tion from some specific features of the computer on 
which that virtual machine is implemented, so that its 
users need not know those features and can be program- 
med inde~ndent of them, It would even be dangerous 
if those specific features of the computer could still be 
accessed by the users of that virtual machine directly. 
So the restriction that must be imposed on the hier- 
archy in the example to make it a realistic exercise is 
that the top machine may only use the middle mach- 
ine, the middle machine may on& use the bottom 
machine and the bottom machine may not use either 
of the other two. 

The enclosufe concept as defined in section 2 en- 
ables to impose such a restriction, tt enables to specify 
such a relation among the virtual machines, that only 
the necessary references are allowed. Part of the use of 
a nested program structure may be replaced by this ex- 
plicit reference relation. However, a certain amount of 
nesting levels may still be useful, especially in very large 
programs5 to represent different levels of au~orisation 
in a management system as discussed in set tion 7. 

The basic difference with the brackets openarea and 
closearea is, that the surrounded area - the “enclosure” 
- now bears a name, so &at the enclosure itseif can be 
treated a:i a declaration. This makee it possible, first&, 
to mark enclosures as global, which is important for 
nested enclosures, md secondly, to specify an enclosure 
in an “environment molder” in the heading of a “box”, 
Boxes were defined in section 2 as enclosures or blocks 
with a heading. The latter can be constructed with the 
symbol biwk. They may also be pr~edure-dec~arations~ 
&t enclosure iden~~er may be mentioned in the environ= 
mcnt modifier of a box that lies outside the enclosure but 
wrtin the scope of its identifier, This causes the global 
dechgrations of the enclosure to be accessible inside the 

133 



lrNFORMATION PROCESSING LETTERS November 1976 

n qualified w&6 the emiclosure identi- 
implicit in the environment 

. * . 

n of the names can be sup MIDDLE.instruction 1 of middle; 
. 

wing none or none but, names known 
. 
. 

can be made inaccessi& inside it. 
featore &a$ can is used to adapt the 

it repre~ntsprecisely the required 
among the’ three virtual machines. 

rewritt&n with the same nested 
The two areas surroundec! by the 
bra&=-*= --* -~4~&-k~* &~~~res AS- PIG &Si+uu’Y YJ 

lb4 and MIDDLE. In the original 
tiddle block had access to the 

d in tiesouter block. With enclosures 
to be granted explicitly in the heading. 

of MIDDLE must explicitly be 
by the inner block. Now, by writing 
MIQDLE, the globals of the quter 

k zdc U&ssible by the inner block. ’ 

In the original tlersion, the nested block structure served 
to prevent ‘%OI tom up” references. Now that the refer- 
ence: relation arlong the boxes can be made explicit, the 
nested blocks aie no longer needed in the example. With- 
out them the following version can be written. 

end 
end 

end 

LQt ia@na! variable of bottom; 
. . * 

&ha! pro6 instruction 1 of bottom begin . . ..end. 
. 
l 

, 

beein 
enc BOTTOM 

own 
int internal variable of bottom; 
. 
l 

ibal proc instruction 1 of bottom begin . . . . end; 
. . . 

cbsie; 
ene (BOTTOM implicit) MIDDLE 

open 
int inten& variable of middle; 
. . . . 

,global proc instruction 1 of middle 

besin , 

clase; 
bbek (BOTTOM) middie machimte 

/ _ eat IulD~L~ 
‘” w I 

int intemai variable if middle; 
. + . _ I - 

gkbd pnrc titruction 1 of middle 

N ‘6 / 

. 
l ‘ 

&Tir3Mi~stIuction 1 of bottom; 
. . . . 

end; 
. * . 

- ,- cbeg:, 
b+k (now but MIDDLE) top machine 

w 
: irIii:lOhxti v&bk of top; 

. . . . 

. . 

kstruction 1 of bottom; 
. . . 

&I; 
. . \ . 

closel 
enc (MIDDLE implicit) TOP 

open 
Snt internal variable of top; 
. . . 

hkction 1 of middle; 
. 

clos$; 
end 

Apparently the example looks simpler now. The sym- 
bol none but is no longer necessary in the environment 
modifier of the box TOP, because in this version its 
“lexical environmenf” is empty. 

The symbol implicit has been used to simpli@ the 



Volume 5, numbex 5 INFORMATlON PROCESSING LETTERS November 19T6 

references to the “instructions” of the different ma- specified. Q!~,ousfy the inccess rights will be checked 
chines. This simplification is possible, because in this again OR thrs *‘IT ” ’ Moirwver it is possible to check the 
example the identifiers ol‘ the instructions a:e supposed use of parameters for example input parameters, out- 

to be unique in the outer block and ~erefore do not put parameters~ value parameters, reference by value 
XX! to be quailed by the en~~~ure~iden~~e~, Note parameters etc. One can genera&e to more *&an one 
that the &\l enclosure feaiture still affects only the reso- authorisation level by introducing additional compile 
ludon of names by the compiler and therefore its im- runs and storing the result. Compilation runs may be 
p~e~nt~~on is of the same level of s~p~city as for protected by a protection key if necessary. With the 
the pro~~on~ version with openarea and closearea aid of this mechanism one can better control the de- 
discussed earlier in this section. sign activiIj than without, I 

3. Refetences 

One could bring up the objection that the program- 
mer, PO has the task to write the re~nement of a box 
that is a procedure body, a block or an enclosure body, 
can stili change the environment. The further idea be- 
hind enclosures is the existence of a management sys- 
tem. Lt us assume that *MS work with chief program- 
mer teams [IO]. The chic+ programmer has other rights 
than the programmers of i!is team. He is responsible for 
desipjning the structure of she system; that is to say ths 
skeleton of the system ~~~~~g of the data statures 
and program structures that are relevant for the top 
level of the system. There may be a number of boxes 
that are still undefined. In that case only box headin 

. ft is the task of the prodded of the te 

f 11 SPL3 Reference Manuai. Internal publication, Phiiips 
Electrologica 

121 H. van Berne, f. SchaapKruseman, A programming 
language for @oftware description. First meeting of IPXP 
WC1 2.4 Machine Oriented Hi&et-Level Languages, La 
Grande Mot@, France (May 7-9,1974), MOL bulletin 
issue no 4 to appear. 

f3] TAAL, a programming language for software description, 
1972. Documentation file, System Programming Group 
Technological University Twente. ALGVGP302, 

(41 J, Klunder, Experiences with SPL Machine Oriented 
High Level Lands, Trondhe~ 1974. (N~~~~-~~o~~d 
Publishing Company)~ 

(5 1 K, Detcour, Enclosures as SPL-extension, Internal pubii- 
cation, Philips Electrologica. 

to take care of filling in (refmement) the open bodies 
of the boxes. Xf we want a protection on changes of 
the structure designed by the chief programmer, we 
use a method that is called ~e~rc~c~ au~o~~~. 
The structure or skeleton designed by the chief program- 
mer is precompilad and stored on a Ale. The refmement 
result of the programmer is added to the precompiled 
skeleton, If the pr~~~rner tries to ch~ge the skeleton 
the compiler will not accept this. The programmer is 
only allowed to refine boxes of which only a header is 

f61 E.W, Dijkstta, Cooperating Sequential Processes. In Programs 
ming Languages (Ed. F, Genuys) (Academic Press, New 
York, 1968). 

(71 W.A. Vervoort, Concurrent Pascal and the Design of Opera- 
ting Systems (Dutch), l(r\formatie 17 (1975) 675-683, 
An Engti version is availa%e on request. 

[ 81 W.-A. Vervoort. ConcurrenC Pascal and the Design of a 
Timesharing Operating System. Proc. 1975, DECKS Europe 
Symp., The Hague. 

19) C.A.R Hoare. An Operating System Structuring Concept, 
C.A.C.M. 17 (1974) 549-597. 

[ 101 F.T. Baker. Chief programmer team managempnt of pro- 
duction programming, IBM Systems f. no. 1, (1972) 56-73. 


