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Formal hnguages 

1. Introduction 

In refs. 15,121 theorems of the following kind 
have been shown: for every language L, if L, = 
{w#wlw~~)isin91,thenL1 andLareinY2, 
where !$ is a class of “nondeterministic” languages 
and 3, c 9, is the corresponding class of “deter- 
ministic” languages, for instance 9t = ETOL and 
9, = EDTOL (for these two ciasses of Liidenmayer 
languages, see [ 11 ,121). Such a “copying theorem” 
shows that the copying 3ower of 3: 1 is fully con- 
tained in %J, i.e. languages not in 92 cannot be co- 
pied within Y1. In this note we discuss some further 
theorems of this nature, in particular two result6 
which generalize the case of ETOL and EDTOL. The 
frost of these results concerns the indexed languages 
and was proved by Fischer [ lo]. Using this result 
together with the incomparability of EDTOL with 
the class of conteit-free languages (recently proved 
in [4]) and a copya theorem concerning bottom- 
up tree transformation languages, we show correct- 
ness of an inclusion diagram for ETOL, EDTOL, the 
context-free languages, the indexed languages and 
the top-down and bottom-up tree transformation 
languages. (However, the problem whether the in- 
dexed languages are contained in the toy-down tree 
transform:dion languages remains open.) The second 
of these rc:-Ats concerns top-down tree transforma- 
tion languages in general (the connection between 

such languages and Lindenmayer languages is shown 
in [3,71 I- 

2. Three properties of languages 

Consider the following “‘deterministic” properties 
Pl, P2, P3 of a language L over alphabet Z. 
(Pl) For all x, x’, U, u’,y,y’E z’, ifxuy, xu’y, I&Y’, 

and x’u’y’ are in L, then u 4 U’ or both x = x’ 
andy =y’. 

(P2) For all x, U, u’, y, u, v’, 2: E Z *, if xuyvz, xdyvz, 
xuyv’z and xtr’yv’z are in L, then w = U’ or v = 

# 

(P3) Lor all x, u,y,, v,z E 9, ifxuyvz, xuyuz, xm)rrz, 
and xvyvz are in L, then u = v. 

Roughly speaking, iP1) says that, in the generation 
of L by some rewriting system, there cannot be any 
‘“nested nondeterminism”, (P2) says :’ lat there can 
not be two nondeterministic symbols (or substrings) 
in one sentential form, and (P3) says that there can- 
not be two occunences of the same nondeterministic 
symbol (or substring) in me sentential form. TINS 
these properties of languages force their grammar 3 to 
be deterministic in a certain sense. 

It can easily be seen that (Pl) implies (P2) an{! 
) implies (P3). We no that (P2) is equivalent to 

t,ie following property ( 
(F2’) For all x, x’,y,y9 ifX9, x’y, xy9 and CY’ 

BY7 
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some examples. ?he languages 
w)jw 6~ X) and {wgl (w)gz(w)lw E x-1 

re K is a language over X1, fi and fi 
0 K --r Zr,gl is a 1- 1 function 
-1 functionK + 23, and Z, , Z2 

iphabets. For instance, for any 
} has (Pi). 

w#f(w)lw EK) and (wgiwBiwEK) 
eKisalanguageoverZ1,fa l-l 
f and g a E. -1 function K + Xs with 

Note tftat languages of this form do not 
ve (Pi j, f3r instance (w#wRIw E Zy}, 
Grt reverse of w, does not have (Pl). 

that the language (ak#bm#@lk, m, n 3 1) 
.~Tnork~m=n-l~ork=m-l=nork= 

m- 1= IZ- 11 has (P3) but not (I?!). 6 

3. thearan-- and an inclusion diagram 

fn 112) severaf results concerning E?OL and 
L are proved whkh c-an be summarized as fol- 

1 [ 121. If L has (P3) and t E ETOL, 
TOL. if, iri particular, t is of the fo 

w)i w E K) or (wn(w)lw E Kj (as in 2), the 9 6 

now war& to recall a generalization of this re- 
t to the indexed languages, proved in [ 101. Let 

denote the class of outside-in macro languages, 
of indexed languages, aad let LB enote 

class of linear basic languages (see [lo] j. r3 ote 
t LB = EXTOL ar.3 ETOL c 01 (see [2]). 

2 PO] - If L has (Pl j and t E 01, ^&en 
DTOL). if, inia.rticuliq a = (w # w #w 1 

wEK),thenalsoKEED,OL. 
PM& By the proof of Lemma 4.3.k [ lo], 

‘hich is part-of the proof that the anguage 
@@)9m 3 I ,n = P- l}, which has property 
is not in 01. Property (PI j ensures that there is 

nksting in the G; macro gramma]., and that there 
not $e more thaq one “non-deterministic” non- 

ermlnal in each sentential form. It is easy to see thst 
EDTOL then A’ E EDTOL by an argument sim- 

o that in the proof of Theorem 2(I) in. [ 12 ] . 0 

the diagram (cf. 13)) cl”epicted in fig. 1, 
enotes the class of context-free languages, 

F@ 1. 

class of context -free languages, and yU’ and yL+ de- 
note the classes of bottom-up and top-down tree 
traln&Jrmation languages respectively (i.e. each L in 
yU1 is of the form yield(EyR)), where B ls a bottom- 
up, fkite state tree transformation and R E RECOG, 
the class 01 recognizable tree languages, and similarly 
for yQ ; se3 [ 11). The inclusion ETOL cy.& is 
shown in [3,7] . Note that CF = yield(RECOC). 

Open problem: is 01 GyD1 :B 
Apart from this open problem we now show that 

all inclusions in the diagram are proper and that un- 
related classes are incomparable. We need the fo’\ow- 
Png result, which solves a conjecture ih [ 101. 

Theorem 3 [de] . Thereis a context-free language 
which is not in EDTOL. c1 

Note that this implies incomparability of CF and 
. IEDTOL, since for inst?ace {ar jn 3 0) is in EDTOL- 

CF. 
It&f Lo be ln CF-EDTOL. Then [Sj 

(*) {w#wRJwELJ is in Oi-ETOL, 

where @ is the reverse of w (Proof: obviokiy, if 
L E CF then {w WM+@ 1~ E L) E OI By Theorem 1, 

‘ if L $ EDTOL then {w#wk: Iw E L 1 $ ETOL). We note 
,rthaf {w#wRiw EL$s also inyi)l. A 

Next we obtain that 

(**) (W#W#WlW ELo} is inyti-01 

(Proof: obviously, if LYE CF then {w#w#wlw EL) 
EyV,. & Theorem 2, if L $ EDTOL then {w#w#wl 
wEL3$01). 

It now sufficeti o itave an EDTOL language which 
is not inyU* (in /3J {an#b”#cQ 
as such a 1angFage). To obtain such languages we 
show a “copying theorem” for yV, . 

Theorem 4. Let ;C,, Z2 be disjoint alphabets and 
K d XT. Letfbe a l-l function K -+ 2; and Ict L =’ 
{wfiw)iw E K}. If L EyV, , then L E CF. 

Proof. We only sketch the proof. Let L E y Ul. 
Then L = yield@(R)) where R is a recognizable tree 
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language znd h is a tree homomorphism (see [ i ,6] )_ 
We may a~ume that k is nondelet~g and nonerasing 
and that its target alphabet does not contain symbols 
of rank f . Consider now all subtrees t of trees of R 
such that 

Suppose that there are infinitely many of such sub- 
trees. Then they are arbitrary high. Hence, by the 
pumping lemma for recognizable tree languages 
(Urnma 4 in f 13)), there is such a subtree t which 
cay1 be pumped up. The above ass~ptions on h then 
ensure that yield(~(~~~ is cha ?d. Thw contradicts 
tlr.2 form of 1;. Hence there is ortiy a f’imte number 
of subtrees t such that 

Then we can change R into a rec~~ble tree lan- 
guage R’ by a Iintar (bottom-up) tree transducer 
which removes these subtrees and puts them as 
@&cl) information at their father nodes, and we 
can change h into a tree homomorphism h’ w&h 
uses this ~fo~ation to simuIate h, so that h’(R ‘) = 
h(R). It follows thatNor each subrree t’of a tree of 
ir(t ’ yield~~‘(~~) contains symbols from both 2, and 
X2. Hence h’ cannot copy (is linear). Since the rec- 
ognizable tree languages are closed under linear tree 
&hornorno~~~s, h’(R’) is recognizable, and thus L = 
~l~~‘(~‘~~ is context-free. Cl 

We note that by (the proof of) Theorem 6 of [ 121 
L is even a linear language and K is regular. Now we 
have that 

(***) {u2%*jn Z@ 0) and {&~“c”ln 3 1) 

are in EDTOL-yq 

(P&of: clearly both languages are in EDTOL. It fol- 
1~~s from Theorem 4 that they are not in yU1, since 
they are not context-free). 

From (*I, (**I and f ***I correctness of the dia- 
gram follows. We flmally mention that one could add 
the class IO of insid~~ut macro lang~ges by dra~ng 
lines from utr, and EDTQL towards 10 (EXTOL G IO 
because EDTOL = LB 121, and ,yW, E IO because the 
1Q tree langu~es are closed ~nde 
phisms 193 ). It was shown in [ 1 
{w E 14, b)*l the number o 
which is in ETOL, is not in I 

(***) that the extcrz’ - 2.1 diagram is correct, except 
that it 1s open WT. il+ !r;? C_?*c,. 

4. A COPY~IQ thlexsrem for t~p~w~~~ tr-ee 
transformation kaguages 

In this section we show that Theorem 1 can be 
genera~~~~d to top-down tree tr~sfo~a~on lan- 
guages. Let, for any family Et: of tree languages, T(g) 
denote the class of tree languages of the form Ff(i;) 
wheric F is a ~.nondete~~sti~~ top-down tree trans- 
formation aad h C 9. Similarly for DIIys), with F 
a dete~~is~i~ tol?down tree transfo~ati~il, Let 
y Tdenot?: the class of languages yield&j with L E 9. 
A (nonde~.er~istic~ relabel~g is a tree transforma- 
tion which relabels nondeterministically the nodes 
of a tree by other symbols ~depen~g on the symbol 
on that nocle; of course, different occurrences of the 
same symbol may be relabeled by different symbols). 
A finite state relabeling is a (nondeterministic) bot- 
tom-up or top-down ftite state tree transformation 
which does not change the shape of the input tree. 
Thus each relabeling is a fin& state relabeling. (In 
&it;3 the classes of relabelings and finite state relabel- 
‘ings are denoted by RELAB and QRELAB respective- 

ly)* 
Theorem 5. Let 9 be a class of tree languages 

closed under ~n~ndeterm~isti~~ relabelings If L has 
(P3) and !, EyTr!P), then L, E yDnB). lf y is closed 
under (nondeterministic) finite state relabelings and 
L, is of the form ~~~~w~~w E K) or ~~w~~w E K) 
(as in 2), then also K E yDT(S). 

Proof, The i&a is essentially the 
the proof of Theorem 1. L.45 t L = yiel 
F is a (nondete~mi~stic) top-down tree transducer 
and ME 3’. We want to simulate F(at least with rc- 
spect to yieids) by a relabeling R, which ‘“guesses” 
the rules applied by F at each symbol of the input 
tree (for each state), followed by a dererministic top 
down tree: transducer F’ which ?kn a~)p~es these 
rules. In general this simulation doec not work be- 
cause F can copy an input. subtree and. process the 
copies ~onde~~!rm~istical~y , so that different rules 
may be applied at corresponding nodes (in the same 

lput subtree: “with the 

to a!vly same rulie, 
it fo~~ol,~s t, when- 
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ffkrent occurrences (copies) 
npart subtm in the same state, then aI1 
g output Lttbtrees have the fame yield. 
itho~t ch~~~g yiekis, we may assume 
s the ame da and @es the same out- 

It fo~o~ that, in this case, 
simulation works. The construction is as 
t R be the (nondeterministic) relabeling 

in the ~~habet of M Can be 
my set S of ntics of F (coded, of course, 

such tha? all rules in S concern the sym- 
every state q of F there is at most one 

Let F’ be 4.he deterministic top 
tra~~u~r with the same states as F, which, 

n arriving at tymbct S in state q, applies the rule 
one, then the transducer does 

t in left to the reader to be convoked 

is closed tinder relabelings, L fyDT(S). 
w that L is of tine of the indicated forms. 
n obviously be,crbtained from L (on the 

tree keel) by way of a determitistk bottom-up trrse 
uux, which remove #and ~ve~~~ to the 

of k @I ekments of the alphdbet of dw), re- 
veiyf . It < m be shown that, if F is closed tmder 
state ~e~a~e~i~s, OnS) is closed under deter- 

~~~n~tic bottom-q tree transformations (see [8] ). 
nce K EyDT(tF). 
As shodvn in f3,7] ) ETOL =y3”(Fj and EDTUL = 

is the class of recognizable monadic 
ce this etass is ciearly dosed uuder 

fitits state relabelings, ThoDrem f is indeed a special 
27~5 oi Theorem 5. 

trC?t L& be the class F(RECW); Dn is closed un- 
der finite state reiabelings [ 11. Constquentiy, for 
e=fy barge K, if X 62 y0, - yD?rD,_ t ), then 

Y’t w E K) E yD7qJ - yL’, 

~~~~. it is easy to see that if # EyD, then 
rcrDwEK)EyD~~~);t;tkilg9=D,_E in 
rem 5 proves the rest of GA statements. This 

arti& yield hierarchy n:sult” tn the spirit 
kker 11 j for the tree hierarchy. 

mpk of the useof Theorem $5 we 
8~~~~~~ tse of tile form yTfS) for any 

uages clo& bnder finite state 

4 

r~la~e~ngs (this shows that Theorem 2 cannot be ob- 
tained as a special @aYe of Theorem 5). In fact, sup- 
pose that QI =yTf7). Let LO E CF-EfiTOL (Theo- 
rltn 3). Then {w## \w E Lo) E Of. ~on~uen~y, 
by Theorem 5, Lo EyDflF). Hence {w#w#wlwELO) 
~~D~D~~~~. It can be shown 18 j that, if 7 is 
closed under finite state relabelings, DnY) is closed 
lander deterministic top-down tree transformations. 
Hence 

{w#w#wlw E LO) EyDqF) c-ynS) = 01. 

This contradicts (**). Note that 01 is neither of the 
form yDn9). 

5. Conclusion 

Copykg theorems exist for the indexed larquages 
and fur several classes of tree tr~~o~ation lan- 
guages. in general it would be inte~s~~ to have theo- 
rems of the form: ‘“if n(L) is in ?F l, then n(L) (or L) 
is in 3” z”, where 9 2 C 9 t and a is an ope~tion other 
than copying, for instance an inverse homomorphism 
or a top-down tree transformation. 

We thank Erik Meineche Schmidt for his comments 
011 this paper. 
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