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1. Introduction

In refs. [5,12] theorems of the following kind
have been shown: for every language L, if L; =
{w#wlw€L}isinF |, thenL, and L are in F,,
where ¥ is a class of “nondeterministic” languages
and F, € F, is the corresponding class of “deter-
ministic” languages, for instance ¥, = ETOL and
%, = EDTOL (for these two ciasses of Lindenmayer
languages, see [11,12]). Such a “copying theorem”
shows that the copying power of ¥, is fully con-
tained in F,, i.e. languages not in ¥, cannot be co-
pied within F, . In this note we discuss some further
theorems of this nature, in particular two result§
which generalize the case of ETOL and EDTOL. The
first of these results concerns the indexed languages
and was proved by Fischer [10] . Using this result
together with the incomparability of EDTOL with
the class of context-free languiges (recently proved
in [4]) and a copying theorem concerning bottrm-
up tree transformation languages, we show correct-
ness of an inclusion diagram for ETOL, EDTOL, the
context-free languages, the indexed languages and
the top-down and bottom-up tree transformation
languages. (However, the problem whether the in-
dexed languages are contained in the top-down tree
transformation languages remains open.) The second
of these results concerns top-down tree transforma-
tion languages in general (the connection between

such languages and Lindenmayer languages is shown
in [3,7]). -

2. Three properties of languages

Consider the following *“‘deterministic properties
P1, P2, P3 of a language L over alphabet Z.

(P1) Forallx,x',u,u,p,y' € Z*, if xuy, xu'y, x'uy’,
and x'u'y’ arein L, thenu =u’ orboth x = x’
andy=y'".

(P2) Forallx,u,u’,y,v,v,z€Z*, if xuyvz, xu'yvz,
xuyv'z and xu'yv'z arein L, then v =u' orv =
v.

(P3) Forallx,u,y,v,z € T¥, if xuyvz, xuyuz, xyyuz,
and xyyvz are in L, thenu = v.

Roughly speaking, (P1) says that, in the generation

of L by some rewriting system, there cannot be any

“nested nondeterminism”, (P2) says ¢".at there can-

r.ot be two nondetesministic symbols (or substrings)

in one sentential form, and (P3) says that there can-
not be two occuirences of the same nondeterministic
symbol (or substring) in one sentential form. Thus
these properties of languages force their grammazis to
te deterministic in a certain sense.

It can easily be seen that (P1) implies (P2) and
(P2) implies (P3). We note that (P2) is equivalent to
tne following property (P2").

(P2) Forallx,x’,y,y' € Z*,if xy,x'y, xy" and xy'
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’th thenx=x"'ory =y’

We now give some examples. Th nguages
: £ 4 70 P VPR Y3 2
i (W)#iy(W)iw &R ) and 1wg(W)gy (W)iw €K}
lhave (Pl),where Kis 2 !a::guage over T,, fj and £
4 ._l functiong K - % o isa I—-l lmgti n

Lt iawii o

w# wH#wiw GK} has (Pl) _
" The language> {w#flw)lw €K} and {wx(W)lngK}

il e B . O a1 1O PO PR ). J

) (1010, Y b‘ amuygada 1"1 lum.umu\ nd 3 WI l
;N X, = 0. Note that languages of this form do not
' necessarily have (P1), for instance (w#wR|w € 2%},

* where wR is the reverse of w, does not have (P1).

Note that the language {a* #bm#Mk,mn>1,

apdk=m=nork=m=n-lhork=m-1=nork=

m-~1 = n—1} has (P3) but not (P2). \

3. Convine theorem-

s 2 AL Rl b

In [12] several results concerning E'TOL and
EDTOL are proved which can be summarized as fol-
lows.

alm K€EDTOL.O

We now want to recall 2 generalization of this re-
sult to the indexed languages, proved in [10] . Let
Ol denote the class of outside-in macro languages,
i.e. the class of indexed languages, and let LB genote
the ciass of iinear basic ianguages (see [10j). Note

that LB = EDTOL ar.d ETOL & Ol 1 (see [2]).
2ha.

Theorem 2 f;e; If L has(P1) and € 0l, then
cular, L = {wH#w#wl

4 | R4

t~

s (P}
s(P1
L € LB( =EDTOL). If, in partic
wE K}, then also K € ED*0L.
Proof. By the proof of Lemma «1.3.6 in [10],
which is partof the proof that the anguage
{c”'(ba”')!'lm 2 1,n=2M_1}, which has property
{P1),is nOI in Oi. rroperty (P1) ensures that there is

amm i w wasn e can 'S e

nacio s}dlll"ldl dllu tiat uere
cannot h»P mgre fh2'n one ““rian-datorminictin® nan.

LR AR LA R S S E- -0} 5 Lo 18 4 AWAM L AZBIRIO VIV 2XNINIT

terminal in each seniential form. It is easy to see that
if L € EDTOL then K € EDTOL by an argument sim-
ilar to that in the proof of Theorem 2(I) in [12].J
Consider the diagram (cf. [3]) cepicted in fig. 1,
where CF denotes the class of context-free languages,
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y is of the form yield(B(R)), where B is a bottom-
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up, ﬁ.nte state tree transformation and R € RECOG,

the class ol recognizable tree languages, and similarly

for yL'y; ses [1]). The'inclusion ETOL & yD, is

shown in [3,7]. Note that CF= yield(RECOG)
Open promem isOI SyDy 4
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related classes are incomparable. We need the
ing result, which solves a conjecture ih [10].
Theorem 3 [4] . Thers is a context-free language
which is not in EDTOL. [1
Note that this implies incomparabiiity of CF and

ind 2% IETAY

JBUTUL, since for instence 1a'- in = Uj isin EDTOL—

) tWFW'thLOf is in OI—-

where wR is the reverse of w (Proof: obviously, if
LECF then {wiwflwelle 01* By Theorem 1,

if L € EDTOL then ‘\w#w" iwell € ETOL) We note
othat wi#wRkiweL, vs also in yDy .

.\lnu, ire that

Nnvf m
YwAlL ' ¢ YULail

(**) {w#wiwiweLg} isinyl,-OI

{Proof: obviously, if L€ CF then {w#w#w|wEL}
€yU;. By Theorem 2, if L € EDTOL then {w#w#w|
we€L} € Ol).

It now suffice~ o nave an EDTOL language which
isnot in yU, {in {3j {a® # #c*in > 0} is mentioned
as such a language). To btam such languages we

* for viIJ.

ANV Fwrje

show 2 “copvine theorem’
show opying theor

Theorem 4. Let T4, 2, be disjoint alphabets and
KSZT Letfbeal— 1 function K - Z, andlet L =
{wﬂw)lw €K}.If LEyU,, then L €CK.

Proof. We only sketch the proof. Let L € yUj.
Then L = yield(h(R)) where R is a recognizable tree
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language and h is a tree homomorphism (see {1,6]).
We may assume that & is nondeleting and nonerasing
and that its target alphabet does not contain symbols
of rank 1. Consider now all subtrees ¢ of trees of R
such that

yield(h(1)) € Z} U Z3.

Suppose that there are infinitely many of such sub-
trees, Then they are arbitrarily high. Hence, by the
pumping lemma for recognizable tree languages
(Lemma 4 in [13]), there is such a subtree ¢ which
can be pumped up. The above assumptions on A then
ensure that yield(h(z)) is changad. This contradicts
th: form of L. Hence tnere is only a finite number
of subtrees t such that

yield(h{)) € Z]U Z3.

Then we can change R into a recognizable tree lan-
guage R’ by a lintar (bottom-up) tree transducer
which removes these subtrees and puts them as
(coded) information at their father nodes, and we
can change A into a tree homomorphism ' waich
uses this information to simulate A, so that A'(R") =
h(R). It follows that#for each subiree ¢'of a tree of
R’ yield(h'(?)) contains symbols from buth Z; and
Z,. Hence h' cannot copy (is linear). Since the rec-
ognizable tree languages are closed under linear tree
‘homomorphisms, A'(R") is recognizable, and thus L =
yield(h'(R")) is context-free. O

We note that by (the proof of) Theorem 6 of [12]
L is even a linear language and X is regular. Now we
have that

*** @ In>0} and {'B"Mn>1}
are in EDTOL — yU,

(Proof: clearly both languages are in EDTOL. It fol-
lows from Theorem 4 that they are not in yU, since
they are not context-free).

From (*), (**) and (***) correctness of the dia-
gram follows. We finally mention that one could add
the class 10 of inside-out macro languages by drawing
lines from yU; and EDTOL towards 10 (EDTOL & 10
because EDTOL = LB [2], and yU; < 10 because the
10 tree languages are closed under tree homomor-
phisms [9]). It was shown in {10} that the language
{w € {a, b}*| the number of a’s in w is a power of 2},
which is in ETOL, is not in IO (and hence not in yU;
and not in EDTOL). it then foilows from (**) and
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* ' . .
(***) that the exter 21 diagram is correct, except
that it is open wi: “iwe: 1O Q;'El.

4. A copying theorem for top-dwon tree
transformation languages

In this section we show that Thecrem 1 can be
generalized to top-down tree transformation lan-
guages. Let, for any family F of tree languages, T{¥)
dencte the class of tree languages of the form F(L)
wherc F is a (nondeterministic) top-down tree trans-
foriration and L € . Similarly for D7(F), with F
a deterministic top-down tree transformation. Let
¥ Fdenote the class of languages yield(L.) with L € F.
A (nondeterministic) relabeling is a tree transforma-
tion which relabels nondeterministically the nodes
of a tree by other symbols (depending on the symbol
on that node; of course, different occurrences of the
same symbol may be relabeled by different symbols).
A finite state relabeling is a (nondeterministic) bot-
tom-up or top-down finite state tree transformation
which does not change the shape of the input tree.
Thus each relabeling is a finitg state relabeling. (In
[6] the classes of relabelings and finite state relabel-
ings are denoted by RELAB and QRELAB respective-
ly).

Theorem S. Let F be a class of tree languages
closed under (aondeterministic) relabelings If L has
(P3)and L € yT(F), then L € yDNF). If F is closed
under (nondeterministic) finite state relabelings and
L is of the form {w#fAwiw € K} or {wg(w)iw €K}
(as in 2), then also K € yDT(F).

Proof. The idea is essentially the sage as that in
the proof of Theorem 1. Let L = yield(F(M)), where
F is a (nondeterministic) top-down tree transducer
and M €F . We want to simulate F (at least with re-
spect to yieids) by a relabeling R, which “guesses”
the rules applied by F at each symbol of the input
tree (for each state), followed by a deterministic top-
down tree transducer F' which then applies these
rules. In general this simulation doe< not work be-
cause F can copy an input subtree anc process the
copies nondeterministically, so that different rules
may be applied at corresponding nodes (in the same
state), but F’ copies the input subtree “with the
guesses” and is thereby forced to apply the same rule,
However, from property (P3) it follows that, when-
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ever F arrives at two different occurrences (copies)

of the same input subtree in the same state, then all
corresponding output subtrees have the same yield.
Therefore, without chznging yields, we may assume
that F applies the same rule and gives the same out-
put in such a situation. It follows that, in this case,
the above simulation works. The construction is as
‘ollows. Let R be the (nondeterministic) relabeling
such that the symbol g in the alphabet of M can be
relabeled by any set S of rules of F (coded, of course,
s symbols) such that all rules in § concern the sym-
hol 7 and for every state g of F there is at most one
rul: n S “for 7 ata”. Let F’ be  he deterministic iop-
down tree trarsducer with the same states as F, which,
when arriving at symbcl § in state g, applies the rule
for g in S (if these is none, then the transducer does
not accept). It is left to the reader to be convinced
that

yield(F(R(M))) = yield(F(M)).

Hence, since F is closed vnder relabelings, L € yDT(F).

Suppose now that L is of ane of the indicated forms.
Then K can obviously be obtained from L (on the
tree lével) by way of a deterministic bottom-up trze

_ transducer, which removes # and everything to the
right of # [all elements of tire alphabet of g(w), re-
speetively] . It can be shown that, if F is closed under
finite state relabelings, DT{YF) is closed under deter-
sainistic bottom-up tree transformations (see [8]).
Hence K € yDT(F).

As shown in [3,7] , ETOL = yT{F) and EDTOL =
YDI(F), where F. is the class of recognizable monadic
tree languages. Since this class is clearly closed under
finit > state relabelings, Theorem 1 is indeed a specxal
case of Theorem 5.

Let D, be the class T™(RECOG); D,, is closed un-
der ﬁmte state relabelings {1]. Consequently, for
every language X, if K € yD,, — yDT(D,,_;), then

{w#wiwe K} €yDT(D,) - yD,

(Proof. it is easy to see that if K €yD, then
{w#wiw €K} €EyDT(D,,); takitg F = D,,_; in
Theorem 5 proves the rest of ti.« statement ). This
grves a “partial yield hicrarchy result” 1n the spirit
of that of Baker [1] for the t:ee hierarchy.

As a final examole of the use‘of Theorem 5 we
show that Of cannot be of tae form yT(F) for any
class F of tree languages closed under finite state
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relabelings (this shows that Theorem 2 cannot be ob-
tained as a special case of Theorem §). In fact, sup-
pose that O = y7(F). Let Ly € CF—EDTOL (Theo-
rem 3). Then {w#wX|w € L} € OI. Consequently,

by Theorem 5, Ly € yDT(F). Hence {w#w#wiwEL}
€ yDT(DI(¥)). It can be shown [8] that, if F is
closed under finite state relabelings, DT(9') is closed
under deterministic top-down tree transformations.

"~ Hence

iw#wi#wiw €Ly} € yDIF) CyN(F)=O0Ll.

This contradicts (**). Note that OI is neither of the
form yDINF).

5. Conclusion

Copying theorems exist for the indexed languages
and for several classes of tree transformation lan-
guages. In general it would be interesting to have theo-
rems of the form: “if (L) is in ¥y, then m(L) (or L)
isin% »”, where , C F, and 7 is an operation other
than copying, for instance an inverse homomorphism
or a top-down tree transformation.
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