
A Reflective Architecture to Support

Dynamic Software Evolution

Ph.D. Thesis

Stephen Rank,
Department of Computer Science,

University of Durham.

2002

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis presents work which is concerned with the run-time evolution
of component-based software systems. In particular, the main result of the
research presented here is a framework which is used to model and control
the architecture of a software system. This framework allows the run-time
manipulation of the components which make up a software system. The
framework makes the architecture of software systems visible, and allows
interaction with it, using a reflective meta-object protocol.

The motivating objectives of this work are providing a framework to sup-
port architectural flexibility, higher-level intervention, safe changes, and ar-
chitectural visibility in software systems.

The framework’s behaviour and structure was motivated by a set of case-
studies which have been used to guide its development and enhancement.
The framework was developed iteratively, using each case-study in turn to
evaluate its capabilities and to prompt the direction of development.

A detailed set of evaluation criteria are developed, and the framework is
evaluated with respect to these. The framework was found to meet each of
the four objectives fully, with the exception of the aim to allow only safe
changes which is only partly satisfied. Ways in which the framework can be
improved in order to more fully satisfy its objectives are suggested, as are
other extensions to its behaviour.

1

Copyright

The copyright of this thesis rests with the author. No quotation from it
should be published without their prior written consent and information
derived from it should be acknowledged.

Declaration

No part of the material contained in this thesis has been submitted for a
degree in any university.

The research documented here has, in part, been presented in the follow-
ing publications:

• S. Rank, K. Bennett, and S. Glover. Flexx: Designing software for
change through evolvable architectures. In Systems Engineering for
Business Process Change: Collected Papers from the EPSRC Research
Programme, pages 38–50. Springer-Verlag, 2000.

• K. Bennett, S. Glover, X. Li, and S. Rank. Designing software for
change: Evolvable architectures. In Proceedings of the ICSE 1999
Workshop on Software Evolution.

2

Acknowledgements

This thesis could not have been produced without the large amount of sup-
port, help, and encouragement which I have received, and for which I am
very grateful.

My supervisor, Professor Keith Bennett, is due grateful thanks for his
constant encouragement, feedback, and support. Dr Simon Smith was very
helpful in the very early stages of my work, and helped to provide structure
and organisation for what was a disorganised collection of thoughts and ideas.
Dr Liz Burd was a great help and encouragement in the final stages, giving
hope that there was light at the end of the tunnel and happily performing
the arduous task of proofreading. I am very grateful to my examiners, Dr
Pearl Brereton and Dr Mark Harman, for their insightful comments on an
earlier version of this thesis, both during the examination and afterwards.

The members of the SEBPC community have provided a forum for many
useful and interesting discussions and exchanges of ideas. The meetings which
this group organised have helped to shape my ideas and have provided a
chance to see things from different perspectives.

This research has been funded and made possible by EPSRC.
In the course of my research, I have made use of a large amount of software

provided by the Open Source community. Without this software, the work
would have been a lot less fun.

The members of the department of Computer Science at Durham Univer-
sity have created an atmosphere in which research has been an enjoyable and
well-supported activity. In particular, the members of Research Institute for
Software Evolution have provided many opportunities for fruitful discussion,
and have not been afraid to ask difficult questions!

The research community at Durham, both past and present, has been a
place of mutual encouragement and support. In particular, thanks are due to
Steven Glover, Nicolas Gold, Antony Hofton, James Ingham, Stephan Jamie-
son, Claire Knight, Phyo Kyaw, and Xiang Li who have all, in one way or
another, made my time as a research student more interesting, productive,
worthwhile, and fun.

My most grateful thanks go to my family, who have been a constant
source of all kinds of support, help, and encouragement.

Contents

1 Introduction 10
1.1 Research Aims . 10
1.2 Research Methods . 11
1.3 Results . 11
1.4 Summary . 12

2 Related Work 14
2.1 Introduction . 14
2.2 Software Evolution and Maintenance 14

2.2.1 Studies of Software Evolution 15
2.2.2 Models of Software Evolution 18
2.2.3 Approaches to Software Evolution 18

2.3 Software Architecture . 20
2.3.1 Definitions of Architecture 20
2.3.2 Architectural Concepts 22

2.3.2.1 Architectural Styles and Patterns 22
2.3.3 Modelling Software Architecture 23

2.3.3.1 Architectural Description Languages 23
2.3.4 Architecture and Evolution 25
2.3.5 Models of Architectural Evolution 26
2.3.6 Architecture and Components 27

2.4 Reflection . 28
2.4.1 Types of Reflection . 29

2.4.1.1 Structural and Behavioural Reflection 30
2.4.1.2 Towers and Meta-Circular Reflection 30

2.4.2 Applications of Reflection 30
2.4.3 Reflection and Evolution 31
2.4.4 Reflection and Architecture 33

2.5 Summary . 33

3

CONTENTS 4

3 Problems in Architecture and Evolution 34
3.1 Introduction . 34
3.2 Context and Assumptions . 35

3.2.1 Architectural Abstraction 36
3.2.2 Control . 37
3.2.3 Designed Behaviour . 37
3.2.4 Software Engineering 38

3.2.4.1 Software Processes 38
3.2.4.2 Software Artefacts 39
3.2.4.3 Processes and Products 42

3.2.5 Software Evolution . 43
3.3 Objectives . 45

3.3.1 Flexible Architectures 45
3.3.1.1 Definitions 46
3.3.1.2 Problems . 51
3.3.1.3 Motivation and Examples 52
3.3.1.4 Criteria For Success 53

3.3.2 Higher-Level Intervention 54
3.3.2.1 Definitions 54
3.3.2.2 Problems . 54
3.3.2.3 Motivation and Examples 55
3.3.2.4 Criteria For Success 56

3.3.3 Safe Modification . 56
3.3.3.1 Definition . 56
3.3.3.2 Problems . 56
3.3.3.3 Motivation and Examples 57
3.3.3.4 Criteria For Success 58

3.3.4 Architectural Visibility 58
3.3.4.1 Definitions 58
3.3.4.2 Motivation and Examples 58
3.3.4.3 Problems . 59
3.3.4.4 Criteria For Success 59

3.4 Summary . 60

4 Research Methods and Techniques 61
4.1 Introduction . 61
4.2 Concepts . 62

4.2.1 Frameworks . 62
4.2.2 Architectural Flexibility 63
4.2.3 Interaction . 66

4.3 Experimental Approach . 68

CONTENTS 5

4.3.1 Outline of Approach 68
4.3.2 Assumptions . 69

4.3.2.1 Architectural Assumptions 69
4.3.2.2 Evolutionary Assumptions 70
4.3.2.3 Modelling and Implementation 70
4.3.2.4 Evolution . 71
4.3.2.5 Evaluation 71

4.4 Research Methods . 72
4.4.1 The Framework . 73

4.4.1.1 Design . 73
4.5 Case Studies . 78

4.5.1 Key Word In Context 79
4.5.1.1 Introduction 79
4.5.1.2 Assumptions 80
4.5.1.3 Modelling and Implementation 80
4.5.1.4 Evolution . 83
4.5.1.5 Evaluation 83

4.5.2 Markov-Chain Random Text Generator 84
4.5.2.1 Introduction 84
4.5.2.2 Assumptions 84
4.5.2.3 Modelling and Implementation 84
4.5.2.4 Evolution . 88
4.5.2.5 Evaluation 88

4.5.3 Gas Station . 88
4.5.3.1 Introduction 88
4.5.3.2 Assumptions 89
4.5.3.3 Modelling and Implementation 89
4.5.3.4 Evolution . 94
4.5.3.5 Evaluation 95

4.6 Summary . 95

5 Research Process 96
5.1 Introduction . 96
5.2 Framework Development . 96

5.2.1 Motivation and Objectives 96
5.2.2 The Pipe and Filter Model of Software 97

5.2.2.1 Outline of the Model 97
5.2.2.2 Architectural Styles 98
5.2.2.3 The Pipe and Filter Style 99
5.2.2.4 Implementation of the Style 99
5.2.2.5 Programming Language 100

CONTENTS 6

5.2.2.6 Use of Reflection 101
5.2.2.7 Implementation of Filters 102
5.2.2.8 User Interface Aspects 106

5.3 Case Studies . 106
5.3.1 Key Word In Context 106
5.3.2 Markov-Chain . 107
5.3.3 Gas Station . 107

5.4 Summary . 107

6 Results and Evaluation 109
6.1 Introduction . 109
6.2 Case Studies . 109

6.2.1 Key Word In Context 110
6.2.2 Markov Chain . 112
6.2.3 Gas Station . 112

6.3 Framework Results . 113
6.3.1 Evaluation Criteria . 113

6.3.1.1 Architectural Modelling 115
6.3.1.2 Higher-Level Modification 116
6.3.1.3 Safe Changes 118
6.3.1.4 Structural Visibility 119

6.3.2 Evaluation . 120
6.3.2.1 Architectural Modelling 121
6.3.2.2 Higher-Level Modification 123
6.3.2.3 Safe Changes 124
6.3.2.4 Structural Visibility 125

6.4 Summary . 125

7 Conclusion 130
7.1 Introduction . 130
7.2 Problems and Objectives . 130
7.3 Method . 131
7.4 Process . 131
7.5 Results and Evaluation . 132
7.6 Further Work . 133

7.6.1 Greater Satisfaction . 134
7.6.2 New Directions . 136

7.7 Summary . 136

CONTENTS 7

A Implementation Details 137
A.1 Pipes . 137
A.2 Filter . 141

List of Figures

4.1 Overview of the Framework 74
4.2 The KWIC System specified in Darwin 81
4.3 Architecture diagram for KWIC 82
4.4 An alternative architectural style for the Markov-Chain Text

Generator . 85
4.5 Architecture diagram for the Markov text-generator 86
4.6 The Markov Text Generator specified in Darwin 87
4.7 Architecture diagram for the Gas Station 90
4.8 The Gas Station specified in Darwin 91
4.9 ‘Cashier’ Component . 92
4.10 ‘Pump’ Component . 92

5.1 An Example Pipe And Filter System 98
5.2 The Interface of a Pipe. 103
5.3 The Interface of a Filter. 104

6.1 Instantiation of Components in the KWIC System 110
6.2 Constructing the KWIC System 111
6.3 Implementation of the Gas Station Example 127
6.4 Adding a filter to a system . 128
6.5 Methods which update a system 129

8

List of Tables

6.1 Relating Objectives to Evaluation Criteria 115
6.2 Architectural Modelling: Requirements and Evaluation Criteria116
6.3 Higher-Level Modification: Requirements and Evaluation Cri-

teria . 118
6.4 Safe Changes: Requirements and Evaluation Criteria 119
6.5 Structural Visibility: Requirements and Evaluation Criteria . . 120
6.6 Evaluation Summary . 126

7.1 Evaluation Summary . 133

9

Chapter 1

Introduction

This thesis presents work done in the field of component-oriented software

evolution. The work is concerned with the flexible and safe run-time evo-

lution of component-oriented systems. In particular, it is software systems

that are of interest here. Software is generally composed from parts which

interact in many ways. In this thesis, the interactions and the parts which

participate in these interactions are of equal importance.

This chapter introduces the material covered in the rest of the thesis.

1.1 Research Aims

Software is inherently difficult to change [Schneidewind, 1987]. In particu-

lar, changes which have not been (and in many cases could not be) antic-

ipated at design time are especially difficult to make correctly and safely.

In order to tackle these problems, the use of an architectural vocabulary

is useful. In this thesis, software is considered as being composed of com-

10

CHAPTER 1. INTRODUCTION 11

ponents and connectors, capturing the behavioural and structural elements

respectively [Shaw and Garlan, 1996].

The research presented here aims at tackling the following objectives:

The research presented here aims at creating a flexible architectural frame-

work which allows the maintainer to intervene in a software system at a

higher-level than at source code. The framework makes the architecture of a

system visible at run-time and forbids some categories of unsafe modification.

1.2 Research Methods

The research was carried out using a set of case studies. A framework was de-

veloped, and evaluated with respect to developing systems within this frame-

work using a given architectural style. The case studies motivated the devel-

opment of a framework which allows run-time architectural evolution. This

framework encapsulates an architectural view of a software system. This

view is made explicit at run-time, in order to provide the maintainer with

a complete high-level view of the structure of a system at run-time. A

presentation and evaluation of the overall results of the research, including a

better understanding of the problems, the framework, are also given.

1.3 Results

The main contribution of the research presented in this thesis is the de-

velopment of a reflective framework which supports the run-time evolution

of object-oriented software systems. This framework allows a maintainer

CHAPTER 1. INTRODUCTION 12

to make changes to a software system at the architectural level, and disal-

lows some changes which are considered unsafe. The framework presents the

maintainer with a run-time view of the architecture of a system in order to

allow its evolution.

1.4 Summary

Chapter 2 introduces related work from the literature. In particular, work

related to software evolution, software architecture, and software reflection

is discussed.

In chapter 3, the objectives of the research (architectural flexibility, higher-

level intervention, safe changes, and architectural visibility) are presented in

detail.

In chapter 4, a potential means of achieving these objectives is presented.

This solution is a reflective framework for enabling and managing run-time

evolution of software systems. The framework is designed to have the follow-

ing features:

• Allow the modifiability of a system at run-time.

• Have an explicit run-time representation of the architecture of a soft-

ware system.

• Disallow some kinds of unsafe change.

• Present an accurate run-time view of the architectural of a system to

the maintainer.

CHAPTER 1. INTRODUCTION 13

In chapter 5, the development of the framework, is described. The devel-

opment of the framework was motivated both by the above required features

and by the implementation of a set of case-studies using the framework. The

various entities which make up the framework are described, as is the influ-

ence which the case studies have had on the development of the framework.

Chapter 6 presents the results of the research. The objectives described

in chapter 3 are used to define a detailed set of evaluation criteria. These

criteria are used to evaluate the framework.

Finally, chapter 7 summarises the work, and identifies possibilities for

further work.

Chapter 2

Related Work

2.1 Introduction

This chapter introduces relevant work from the literature. Section 2.2 iden-

tifies problems in the area of evolution and maintenance of software systems,

section 2.3 introduces the concept of software architecture, and identifies

work in this field which is of relevance. Finally, section 2.4 introduces soft-

ware reflection and relates work in this area to software evolution and archi-

tecture.

2.2 Software Evolution and Maintenance

This section identifies key problems in the evolution and maintenance of

software systems, introduces the fundamental ideas behind the study of soft-

ware evolution, and describes some techniques which have been developed

to tackle these problems. Section 2.2.1 describes studies of software sys-

14

CHAPTER 2. RELATED WORK 15

tems which have undergone changes, section 2.2.2 introduces models of the

evolution of software which have been developed from these studies, and

section 2.2.3 describes some methods of managing the evolution of software

systems.

2.2.1 Studies of Software Evolution

There have been many studies of the evolution of real software systems. In

this section, two such studies are examined, and used to determine some of

the issues of software evolution. The first study described concentrated on

factors external to the software in question, while the second study was more

concerned with the properties of the software itself.

Lientz and Swanson [Lientz and Swanson, 1980] studied a large number

of software projects in many organisations. Each organisation—which was

in some way involved in data-processing—responded to a questionnaire. The

study showed that software maintenance consumes approximately half the

time of programmers and system administrators in the organisations which

responded. In larger organisations, a larger proportion of time is spent on

maintenance, though results did vary by type of industry. The study showed

that in organisations where the maintenance activity is separated from devel-

opment, a smaller proportion of effort is spent on maintenance. The study

was carried out in the late 1970s, and the technology used by the organi-

sations reflects this. For example, change logs are handled manually, and

implementation is done using languages like COBOL and FORTRAN. The

authors conclude that larger and older systems have greater maintenance

CHAPTER 2. RELATED WORK 16

problems than smaller and newer systems, and that personnel issues such

as programmer skill and staff turnover are of importance in the quality of

system maintenance.

Lehman and Belady [Lehman and Belady, 1985a] made a detailed study

of the development of an individual software system (IBM’s OS/360). In con-

trast to the method used by Lientz and Swanson, Lehman and Belady studied

the software product itself. They examined the size of the system at each

release point, and showed that the size (both number of modules and lines of

code) and complexity of a system grows with each successive release, unless

specific effort is made to reduce these factors. During this work, Lehman and

Belady developed the idea of software system types, using the terms S-type,

P-type, and E-type to describe the three types [Lehman and Belady, 1985b].

S-type programs are the simplest kind, being those programs which are for-

mally defined as a function between input and output, with no reliance on or

interaction with their environment. P-type programs are those which solve

real-world problems, and must use heuristics to arrive at approximate solu-

tions. Examples include weather forecasting and chess playing, where the

input the the software is well-defined and well-formed, but in order to arrive

at a useful solution in a reasonable amount of time, approximations must be

used. E-type software is the most complex and most interesting kind of soft-

ware. An E-type program is situated in and interacts with its environment,

leading to feedback between the software and the ‘real world’. Total correct-

ness of an E-type system cannot be shown in the abstract: as it interacts

with its environment, it can be only be shown to be effective in a particular

situation.

CHAPTER 2. RELATED WORK 17

The results of these studies motivated Lehman to develop his laws of soft-

ware evolution [Lehman, 1979, Lehman et al., 1997, Lehman, 1996]. These

laws describe the behaviour of software systems over time [Lehman, 1996]:

Continuing Change An E-type program must either adapt or become ob-

solescent.

Increasing Complexity Unless an evolving program has work done specif-

ically to reduce its complexity, it will become more complex as a result

of the evolution.

Self-Regulation The evolution process is self-regulating, with statistically

determinable trends and invariants.

Invariant Work-Rate The average effective global activity rate is constant

over the life-time of the system.

Conservation of Familiarity The content of successive releases is statis-

tically invariant.

Continuing Growth Functional content of a system must increase with

each release in order to satisfy user demands.

Declining Quality Unless an E-type program is rigorously maintained and

updated to its changing environment, it will be perceived as declining

in quality.

Feedback System The evolution process for E-type programs is multi-loop

and multi-level. Successful management of the process depends on

recognising and accounting for this fact.

CHAPTER 2. RELATED WORK 18

Two of the key problems of maintenance are understanding the program

in order to determine where to make changes, and validating the changed

version of a program—determining that the correct changes and no others

have been made [Baxter and Pidgeon, 1997].

One important cause of the difficulty of maintenance is the complexity of

software systems [Jackson, 1998]; understanding a system in its entirety is

often necessary before even a simple change can be made and validated.

2.2.2 Models of Software Evolution

As described in the previous section, there have been several studies of the

evolution of software systems. These and other studies have lead to models

of software evolution which have been used to manage and control software

evolution.

The main kinds of models identified are process models and product mod-

els. Process models identify the mechanism by which the evolution is carried

out, and product models identify the characteristics of the software which

are important with respect to evolution.

2.2.3 Approaches to Software Evolution

There are two complimentary approaches to handling software evolution.

The first approach, related to reverse engineering, is to take a piece of soft-

ware and work with it (which is often referred to as legacy-system evolution),

while the second approach, related to forward engineering, is to attempt to

design software which is easy to change.

CHAPTER 2. RELATED WORK 19

Whether a software system has been designed for ease of modification or

not, there are common tasks which must be performed. In order to change a

software system, the software engineer performing the task must understand

both the system and the changes to be made [Takang and Grub, 1996]. The

engineer must also be able to verify that exactly the required changes to

behaviour have been made.

Various techniques for handling software evolution have been described in

the literature, including those by Takang and Grub [Takang and Grub, 1996]

and Pigoski [Pigoski, 1996]. Takang and Grub describe several software life-

cycle processes, and put each in the context of systems which evolve, while

Pigoski takes a more evolution-centred approach, concentrating more on the

processes which occur after initial delivery of a software system. Pigoski

describes software evolution processes, metrics, and management issues.

While developing software which is easy to change is not entirely re-

moved from changing so-called ‘legacy’ software, it is sufficiently different

to merit separate treatment. Various techniques for creating software have

been described. These range from product-oriented guidelines for developing

understandable source code [McConnell, 1993, Kernighan and Pike, 1999] to

processes with attempts at psychological grounding in program comprehen-

sion [Smith, 1999].

There have been several attempts to categorise methods for dynamically

changing software (in other words, making changes without halting the exe-

cution of the program). These include simple techniques based on plugins (or

dynamically loadable modules) and parameter alteration [Rubini, 1997], and

more sophisticated approaches based on component replacement or adap-

CHAPTER 2. RELATED WORK 20

tion [Bihari and Schwan, 1991, Segal and Frieder, 1989].

2.3 Software Architecture

When a real software system is being dealt with, the designer is faced with

issues relating to the structure and organisation of the system, not just

with computational issues. These are considered to be architectural is-

sues [Garlan and Shaw, 1994]. This section considers the use of the term ‘ar-

chitecture’ as applied to software, and introduces concepts which have been

used in research into software architecture. In general, architectural issues

deal with high-level, abstract view of software systems [Shaw et al., 1995], re-

lating to the overall structure of the system at the highest level. It has been

claimed that the definition of the architecture of a system is a key milestone

in the life of a software system [Gacek et al., 1995].

Initial work in applying architectural concepts to software was inspired by

Alexander’s work on architecture and town planning [Alexander et al., 1977].

This work inspired research into both software architecture and design pat-

terns for software engineering [Gamma et al., 1995, Beck and Johnson, 1994].

In this section, the use of architectural abstractions applied to software

engineering is examined, as is the idea of design patterns.

2.3.1 Definitions of Architecture

The term ‘architecture’, as applied to software, can be defined as “The

structure(s) of a system, comprising software components, the externally

visible properties of these components and the relationships among them”

CHAPTER 2. RELATED WORK 21

[Bass et al., 1998]. This definition highlights three important aspects of ar-

chitecture:

• System Structure

• Components

• Relationships

The structure of a system shows the components which make up the

system and the relationships between them.

For any system, many views of the architecture can be identified and

used to reason about the system [Perry and Wolf, 1992]. Example views

include [Bass et al., 1998];

• Modular structure of the code.

• Conceptual structure of the system.

• Run-time process structure.

• Data-flow relationships.

• Control-flow within the system.

• ‘Uses’ relationships.

Each of these structures interacts, at design-time and at run-time.

CHAPTER 2. RELATED WORK 22

2.3.2 Architectural Concepts

In this section, the key concepts used by software designers to describe the

architecture of systems, and to talk about architectural issues in general, are

discussed.

A key part of the architectural description of a software system is to break

it down into two types of entity: components and connectors.

A software component (in the architectural sense) is a single unit of inde-

pendent deployment [Szyperski, 1997]. Each component has a well-defined

interface through which it interacts with connectors.

Software connectors explicitly represent and mediate the communication

that occurs between components in a software system [Oreizy et al., 1998b],

and allow the separation of behavioural and interfacing requirements of com-

ponents [Oreizy and Medvidovic, 1998]. As with components, connectors can

be composed [Garlan, 1998].

2.3.2.1 Architectural Styles and Patterns

An architectural style is defined by the types of component that can take part

in an architecture of that style, the topology of the style, a set of constraints

on the interactions in the system and the types of connector by which these

components can interact [Bass et al., 1998].

An architectural style defines a family of software systems which each

have the same pattern of structural organisation [Garlan and Shaw, 1994].

Various architectural styles can be identified [Garlan and Shaw, 1994],

including, for example;

CHAPTER 2. RELATED WORK 23

Pipe-and-Filter Data is passed along pipes and processed by filters.

Implicit Invocation In this style, event-based, (multi-cast) call-backs are

used to broadcast events to each component in the system.

Layering Each layer in a system communicates only with those layers on

either side of it.

2.3.3 Modelling Software Architecture

There are many methods in use for describing the architecture of a soft-

ware system. These range from informal diagrams of boxes and lines (which

Shaw and Garlan claim cannot properly be called architectural descrip-

tions [Garlan and Shaw, 1994]) to formally defined architecture description

languages such as Darwin [Magee et al., 1995].

2.3.3.1 Architectural Description Languages

Programming languages do not allow the description of software architecture.

For this reason, various languages to describe software architecture have been

created. These are variously known as architecture description languages,

module interconnection languages, and configuration languages. These lan-

guages serve to capture the architecture of a software system, and to allow

automatic construction of the system from the components. In addition, the

formal (or semi-formal) nature of these languages provides scope for auto-

matic verification of system properties [Prieto-Diaz and Neighbours, 1986],

such as type-safety.

CHAPTER 2. RELATED WORK 24

To be useful, an architecture description language must allow the follow-

ing [Shaw and Garlan, 1994]:

• Composition of components and connectors.

• Abstraction to the design (rather than implementation) level.

• Reusability of design patterns and elements.

• Configuration of system structure.

• Heterogeneity; use of different patterns in the same design and different

implementation languages.

• Analysis—both automated and manual—of architectural qualities, in-

cluding dynamic properties of systems.

• Precision in system description

Darwin [Magee et al., 1995] has a well-defined syntax (both textual and

diagrammatic) and semantics (described in terms of Milner’s π-calculus).

Darwin is based on a service-oriented view of software architecture: each

component provides and requires services as output and input respectively.

Components are described in terms of these inputs and outputs, while binding

is described separately.

Rapide [Luckham et al., 1995] is a language designed to be used to proto-

type architectures. Architectures are described in terms of the components

which are provided. There are several parts to the language, including a

pattern language, interface-definition language, and an executable language

CHAPTER 2. RELATED WORK 25

which allows the composition of components to provide compound compo-

nents.

While Darwin is a declarative language aimed at modelling distributed

and dynamic systems, Rapide is intended to provide an executable descrip-

tion language for large-scale systems.

2.3.4 Architecture and Evolution

The lack of explicit representation of communication in a software system

causes problems with the evolution of the system [Oreizy et al., 1998b]. Main-

taining the existence of connectors through to the run-time instantiation of

the code allows connectors to encapsulate more information about the com-

munication that occurs between components, to contribute to the mobil-

ity, distribution and extensibility of systems, and to act as domain transla-

tors (providing mappings from messages in one format to messages in an-

other) [Oreizy et al., 1998b].

The initial design of a modern system usually aims to have low inter-

component coupling. This coupling between modules increases as a system

is maintained [Lehman, 1998b].

Whatever the initial architecture of a software system, maintenance of

the system without regard to the effects on the architecture will cause degra-

dation of architecture [Lehman, 1996]. There are several ways to tackle the

problems here:

• Use a process of maintenance that pays explicit and careful attention

to the architecture of the system.

CHAPTER 2. RELATED WORK 26

• Design the architecture of the system in such a way that maintenance

can be carried out in a way that preserves the structure and ‘cleanliness’

of the architecture.

When building a software system of significant size, reuse of existing

pieces of software is desirable. Usually, unless the components have been

specifically designed to work together and do not violate each others’ assump-

tions, simple composition of components is not possible. Each component

will make different assumptions about the environment and the behaviour

of other components in the system, leading to so-called architectural mis-

match [Garlan et al., 1995]. The most common approach to tackling this

mismatch is to ‘wrap’ components (commonly by inserting ‘glue’ code be-

tween them) to insulate them from each other and to transform the input

and output [Shaw, 1995].

One approach to architectural reuse is the concept of product-line archi-

tectures. These provide the opportunity to reuse parts of previously existing

systems in later software, though this requires a significant amount of work

to achieve, and is hard to perform after-the-fact [Bosch, 1999].

2.3.5 Models of Architectural Evolution

Use of the C2 architectural style [Oreizy et al., 1998b], which is based on

a layered system of components and connectors, has been claimed to ease

run-time software evolution; evolution without re-compilation of the system,

in such a way that the system retains its integrity without becoming succes-

sively brittle over modifications [Oreizy and Medvidovic, 1998]. Two types

CHAPTER 2. RELATED WORK 27

of system change are identified: changes to the system requirements, and

changes to the implementation that do not affect the requirements.

Work on run-time architectural evolution has, in general, concentrated on

providing the ability to dynamically replace components. This typically re-

quires provision to be made at design-time [Amador et al., 1991, Oreizy, 1998].

Distributed systems offer further challenges and opportunities. Large dis-

tributed (and other) systems may need to remain functional for long periods

of time without interruption. In order to tackle this, Kramer and Magee

propose replacing traditional (build-time) static configuration with incre-

mental dynamic (re-)configuration [Kramer and Magee, 1985]. This requires

a greater separation between programming (implementation of behaviour)

and configuration (implementation of composition), and requires a config-

uration language distinct from the programming language(s) used in the

system. The C2 architectural style provides explicit representation of con-

nectors, which provides the ability to abstract away from distribution and

to insulate components from changes occurring in other parts of the sys-

tem [Oreizy and Taylor, 1998a, Oreizy and Taylor, 1998b].

2.3.6 Architecture and Components

Traditional programming languages have little (if any) support for architec-

tural (rather than modular) composition of software. Component-oriented

software development can help to address this. The ideas of giving compo-

nents interfaces (using an interface definition language) is also useful. Current

component models (such as CORBA and COM) do not provide architectural

CHAPTER 2. RELATED WORK 28

concepts [Oreizy et al., 1998a].

2.4 Reflection

A reflective computational system is able to examine and adapt its own state

and behaviour [Sobel and Friedman, 1996]. Reflective capabilities have been

added to many programming languages, especially Lisp [Kiczales et al., 1991]

and Smalltalk [Goldberg and Robson, 1983]. In this section, work on re-

flection is examined, with particular emphasis on work related to software

architecture and evolution.

In a reflective software system, there are two distinct kinds of entity,

which are thought of as belonging to two separate layers [Cazzola et al., 1998,

Steindl, 1997]:

Base-level entities are those which provide the computational components

of the software system.

Meta-level entities operate on the base-level entities, treating them as

data.

There are many reasons to use reflection. An example of its use in-

cludes tailoring the implementation of a programming language for effi-

ciency [Kiczales et al., 1993]. In a reflective tower, each meta-level entity

can be considered as a base-level entity with respect to a higher-level inter-

preter. In other words, reflection is based on the observation that what is

considered a program by the programmer is treated as a data item by the

language tools (e.g., interpreter, compiler).

CHAPTER 2. RELATED WORK 29

Reflection makes explicit properties of and structures within software

that previously have been implicit[Kiczales et al., 1991, Cazzola et al., 1998].

Reflection also allows encapsulation of aspects of software which are subject

to change [Buschmann, 1996].

2.4.1 Types of Reflection

There are various ways of dividing the field of reflection. The two main axes

are:

Structural vs behavioural reflection [Kirby et al., 1998] In a system

which exhibit structural reflection, the meta-object(s) hold information

about the organisational structure of the base-level components. In a

behaviourally reflective system, the behaviour of the base-level objects

is represented at the meta-level. These two types of reflection can be

combined; in one sense, behavioural reflection is concerned with lower-

level properties than structural reflection.

Reflective tower vs meta-circular interpreter [Smith, 1982] Using a

reflective tower, a meta-layer is distinct from its base layer. Each layer

can have a meta-level object, leading to a (conceptually unbounded)

tower of reflection. If the meta-circular (or introspective) approach is

used, the base layer and the reflective layer are the same thing; entities

can operate on themselves.

CHAPTER 2. RELATED WORK 30

2.4.1.1 Structural and Behavioural Reflection

Structural reflection has been included in an extension of the Java program-

ming language [Golm and Kleinöder, 1998] known as ‘metaXa’. This is in

addition to the reflective capabilities already present in standard Java, and

allows more than one meta-object per object. Behavioural reflection can also

be added to Java [Welch and Stroud, 2001], allowing the programmer to alter

the behaviour of the virtual machine at run-time. This approach can be used

to implement a security mechanism for mobile code [Welch and Stroud, 2000].

2.4.1.2 Towers and Meta-Circular Reflection

Tower reflection (also known as meta-circular reflection) is the more com-

mon kind of reflection in use. Smith [Smith, 1982] introduced reflection into

Lisp as a means of allowing the programmer to modify the language. Kicza-

les [Kiczales et al., 1991, Kiczales et al., 1993], likewise, used a meta-object

protocol to give the programmer access to the implementation of the language

in which they are programming. In a reflective tower, each program is con-

sidered to be implemented in an ‘interpreter’, which is also a program; each

interpreter is also interpreted, leading to a conceptually infinite ‘tower’ of

interpreters [Mendhekar and Friedman, 1993, Danvy and Malmkjær, 1988].

2.4.2 Applications of Reflection

Several languages have reflective capabilities built into them, including well-

known languages such as Smalltalk, Java, Lisp, Oberon, and research lan-

guages such as Beta, metaXa, and Kava. Due to the need for some degree

CHAPTER 2. RELATED WORK 31

of self-reference, most languages which allow reflection are (to some degree)

interpreted.

In Smalltalk, a simple meta-object protocol is used to allow structural

reflection on classes [Goldberg and Robson, 1983]. Theses features are gen-

erally only used by the language interpreter, though they are exposed for use

by any program.

The Java language allows structural reflection on objects and classes, and

this can be extended (to allow for greater control of the security features of

the virtual machine [Welch and Stroud, 2001, Welch and Stroud, 2000], for

example).

In Beta [Brandt, 1995, Brandt and Schmidt, 1995], reflection is used to

generalise the type system and to allow experimentation with the implemen-

tation of the language.

In Oberon [Steindl, 1997] (a strongly-typed language, in contrast to, for

example, Lisp), reflection has been used to experiment with type-safe meta-

object access across module boundaries.

2.4.3 Reflection and Evolution

The use of reflection in a software system has the following consequences for

evolution [Buschmann, 1996]:

• Modification can occur at a higher level than the source. Changes are

made at the meta-object level, which can enforce constraints on the

type of changes which can be made.

• Modification is less complex. Changes are made at a level which cor-

CHAPTER 2. RELATED WORK 32

responds more closely to the level at which changes are specified.

• Changes are more constrained and thus safer. The classes of changes

which can be made are limited to those which are catered for at design-

time. Encapsulation and abstraction are preserved.

• Some changes which were unforeseen at design time can be easily made.

Although these changes are limited to the class of changes made avail-

able, some changes which have not been (explicitly or implicitly) fore-

seen at design- and implementation-time can be made.

One use of a reflective meta-object protocol is to open up aspects of the

programming language in which a system is written [Kiczales et al., 1993].

This enables evolution of the system at run-time. Typically, every object in a

reflective system has an associated meta-object. Each of these meta-objects

contains data about the class of the object, its public interface (return and

parameter types of methods), and other information. Often (as is the case in

Java), classes have meta-objects, which contain information which is true for

every object of that class. Use of this information aids in ensuring consistency

of a system (making sure that interfaces match, and so on) when changes are

made, particularly run-time changes.

Using reflection, the implementation of a system can be opened up in

a more controlled way than so-called ‘glass box’ reuse, avoiding some of

the restrictions of ‘black-box’ reuse [Kiczales, 1996]. This allows some form

of adaptation of implementation as well as interface [Maeda et al., 1997].

Boyapati has proposed that the Java Virtual Machine be modified to allow

CHAPTER 2. RELATED WORK 33

this form of introspection [Boyapati, 2002], enabling parameterised polymor-

phism and persistence, for example, to be added to Java.

2.4.4 Reflection and Architecture

Structural reflection has been used to allow adaptation of software archi-

tecture [Welch and Stroud, 1998]. This work allows the run-time adapta-

tion of connectors in a software system. In addition, it has also been sug-

gested that a meta-object protocol can be used to allow the composition

of components by allowing their modification [Heineman, 1998, Sabry, 1998,

Mätzel and Bischofberger, 1996].

Cazzola et al describe a system in which a software system maintains

an explicit architectural model of itself, allowing inspection of this model at

run-time [Cazzola et al., 1998].

2.5 Summary

This chapter has introduced relevant work from the literature, with particular

emphasis on work related to software evolution, software architecture, and

software reflection. This material forms the background, motivation, and

basic material for the work presented in the rest of this thesis.

Chapter 3

Problems in Software Evolution

and Software Architectures

3.1 Introduction

This chapter presents the following problems, which will be addressed in later

chapters.

This chapter details the objectives of the research presented in this thesis.

These objectives are known as architectural flexibility, higher-level interven-

tion, safe changes, and architectural visibility.

These problems are of importance to software evolution, which is a major

cost factor for the software industry [Lientz and Swanson, 1980]. In order to

tackle these problems, an architectural view of software is taken, considering

the structure and organisation of software systems. The integrity of the

structure of software is at least as important—in terms of the evolutionary

characteristics of such a system—as its functional behaviour [Brooks, 1995,

34

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 35

Dijkstra, 1968], particularly for large-scale software engineering projects.

The research areas that are presented here are associated with software

evolution; that is, the process of modifying software artefacts. The arte-

facts, rather than the processes, of software engineering are considered; of

interest here is the result, not the means by which the results are generated.

This point is expanded in section 3.2.4.3. Software engineering has tradi-

tionally been concerned with the creation of new software artefacts, rather

than adapting current artefacts to new purposes; failure to pay sufficient

attention to the fact that software must continually change after its instal-

lation [Lehman and Belady, 1985b] is costly. Most (typically 50–70%) of the

effort and expense associated with a piece of software is spent after the ini-

tial installation into its environment [Lientz and Swanson, 1980]. For this

reason, problems of software evolution are of importance.

This chapter identifies four desirable properties of software evolution,

namely architectural flexibility, higher-level intervention, safe changes, and

architectural visibility.

These properties will be addressed in the following chapters. These prop-

erties are necessary in order to reduce the cost of software maintenance.

3.2 Context and Assumptions

The work described in this thesis is in the field of software evolution. The use

of software architectural concepts are of key importance to the research. A

software system, is composed of two types of entity; computational entities

(known as components), and communicational entities (known as connec-

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 36

tors). Taking a high-level, design-oriented view of a software system, these

two categories of entity can be viewed as the sole constituents of software.

Evolution has fundamental effects at the design level as well as at the code

level. Because of this, it is essential that change to software systems is con-

sidered at the architectural level as well as at lower levels of abstraction.

The following assumptions are made in order to simplify the research and

to situate it within the area of the software evolution field concerned with

the evolution of software (in particular the architecture of software systems):

Architectural Abstraction It is possible to identify an architectural over-

view of a system.

Control The evolution of a system is carried out in a controlled manner, by

suitably-qualified personnel.

Designed Behaviour A system is designed in order to satisfy a given set

of requirements, and does not adapt itself over time to fulfil differing

requirements.

These assumptions are examined in the following sections.

3.2.1 Architectural Abstraction

When considering a software system (We consider a software system to be one

which mainly consists of software components. Hardware components, e.g.,

CPUs, are considered part of the infrastructure.), it is possible to identify an

abstraction which can be referred to as the ‘architecture’ of that system. A

more rigorous definition of the term ‘architecture’ is given in section 3.3.1.1;

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 37

the architecture of a system is a high-level design view showing the compu-

tational elements which make up the system, and the interactions between

these elements [Magee et al., 1995]. This assumption allows the identifica-

tion of a high-level abstract view of the overall structure of a software system.

Identifying this structure is possible, in most cases, for new (i.e., unmodified)

systems. In some cases, decompositions smaller than the whole system but

larger than individual lines of code are not possible; these systems are either

pathological cases of bad design, or very small systems with no interesting

decomposition [Burd and Munro, 1998].

3.2.2 Control

Evolution is carried out in a sound and well-thought-out fashion. Expert

‘software architects’, or senior designers, who have good and thorough knowl-

edge of the system’s architecture, plan and manage the changes. This can

be referred to as the ‘evolution’ stage of the software lifecycle, when the

key personnel who are associated with a software project are still avail-

able [Bennett and Rajlich, 2000]. This assumption does not apply after the

structure of a system has degraded, as will happen if attention is not paid to

maintaining this structure [Lehman, 1996].

3.2.3 Designed Behaviour

The systems of interest are designed to fulfil a given set of requirements; emer-

gent behaviour of software systems (for example, software agent systems) is

beyond the scope of the current research. In other words, the type of sys-

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 38

tem that is under consideration is not an adaptive or otherwise intelligent

system; their behaviour does not change over time. This is the assumption

that a particular software system has been designed with overall predictable

behaviour in mind, not that individual components are not adaptive (for

example, a system may have a speech-recognition component which uses an

adaptive algorithm).

3.2.4 Software Engineering

In this section, problems related to software engineering (with respect to

both process and product) are identified, with particular focus on software

evolution.

3.2.4.1 Software Processes

The process of software engineering has been much documented. Most pre-

scriptive approaches make little mention of evolution in their model; they

concentrate instead on the forward development of software systems. In or-

der to consider evolution as a primary property of the software process, it

is possible to concentrate on evolutionary aspects of the life-cycle. Initial

development can be thought of as a short-lived activity in a much longer

software life-cycle in which most activity is concentrated on software evolu-

tion [Bennett and Rajlich, 2000].

There is some debate over the moment at which initial development ceases

and a software products enters the ‘maintenance’ phase of its life. The stan-

dard IEEE definition of the term ‘maintenance’ is as the set of activities that

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 39

take place after the delivery of a piece of software [I.E.E.E., 1994], though

some feel that it is initial development that is anomalous and that all soft-

ware engineering is software evolution [Schneidewind et al., 1999]. Software

‘maintenance’ or evolution, consists of many of the activities (such as re-

quirements capture, programming, and so on) that are carried out during

development [McDermid, 1991], and so can be considered as part of the de-

velopment process (or at least not independent of it). The concept of ‘de-

livery’ of a piece of software is muddled by the use of component-oriented

software [Szyperski, 1997], which allow piecemeal ‘delivery’ of a software sys-

tem, and using external components for some (not necessarily all) of the

functionality of a software system.

3.2.4.2 Software Artefacts

The main kind of systems that are of concern here are those that are situated

in an environment and interact with a non-empty set of users. This type of

system is often referred to as an ‘E-type’ system [Lehman and Belady, 1985a],

as distinct from ‘S-type’ software (which is software that can be formally

defined by a mathematical specification) and ‘P-type’ software, which address

problems that can be clearly defined (such as playing chess), but are only

approximate solutions. E-type software is embedded into its environment,

and embodies a view of that environment. As the software forms part of

this environment, there is a feedback loop. A piece of software is finite,

while its environment is potentially infinite. To bridge this gap, assumptions

about the environment are made [Lehman, 1998a]. These assumptions cause

problems during evolution when they become invalid [Lehman, 1989].

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 40

Any software system can be said to have an architecture. What is of in-

terest here are properties of the system and its architecture. There are many

kinds of architecture (as shown in section 3.3.1.1). Many of the properties—

such as dependencies, performance, reliability, and so on—of a system un-

der maintenance are determined by the properties of that system’s archi-

tecture [Lung et al., 1997, Shaw and Garlan, 1996]. Determining the struc-

ture of a software system is a key part of any process of software evolu-

tion [von Mayrhauser and Vans, 1995].

Properties of a system can partly be determined from the structure (ar-

chitecture), and partly from the behaviour (components) of the system. The

structure and the behaviour of a system cannot be completely separated—

communication between components is a significant factor in the behaviour

of a system—though, for some purposes such as determining dependencies,

the structure of the system can be considered separately from the behaviour

of the components which make it up. A system is built up from three classes

of entity: primitive expressions in some (programming) language, composite

elements (such as modules, classes, libraries), and abstraction mechanisms

by which composite elements are named and manipulated as entities in their

own right [Abelson et al., 1985]. In order to tackle the problems of software

evolution, it is necessary to consider both the structure and the behaviour of

software systems.

It is not possible to ignore the structure of a software system and to

concentrate on the behaviour of the system as a whole. To consider the

organisation of a software system in conjunction with its behaviour brings

benefits in terms of both forward development and reuse [Shaw, 1995]. The

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 41

infrastructure that supports—rather than provides—-the functionality of a

system can comprise up to 90% of an application’s code [Shaw, 1995].

The software evolution artefact problems that will be considered during

this thesis are as follows:

• Software architectures are not flexible enough to allow insertion, re-

moval, and update of software artefacts without causing the infrastruc-

ture to degrade. The ability to treat a system as a collection of parts,

and to operate on each of these parts individually, to some extent, is

necessary here. If anti-regressive work (i.e., preventative maintenance)

is not done on an architecture specifically in order to maintain the

structure, that structure will degrade [Lehman, 1996].

• Intervention in software always takes place at the code level, not at the

component level. This is due, in part, to the inflexibility of software

architectures mentioned above. Code does need to be changed, but

the impact of a change should (in the evolution stage of the software

life-cycle) be considered at the architectural level, not just on the level

of code.

• Modification of software can have undesirable effects. For example,

changes to a single component can cause ‘ripple effects’ throughout

the rest of the system. In this context, the ‘system’ in consideration

can include other parts of the organisations that interact with the soft-

ware [Fyson and Boldyreff, 1998]. Reasoning about changes that ‘rip-

ple’ outside the software is not tackled in the current research. The

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 42

ability to reason about these ripple effects is important, in order to

minimise unwanted side-effects of operations.

• It is difficult to determine the architecture of a software system, par-

ticularly without supporting documentation.

There are many other problems that could be addressed, including the

testing, distribution, and verification problems. These, and other, problems

are beyond the scope of this thesis.

The rest of this chapter examines the problems identified above in more

depth and identifies prerequisites for their solution and criteria for success.

3.2.4.3 Processes and Products

This research is concerned with the products of software engineering, rather

than the processes by which they are constructed, used, and changed. The

software process is a multi-level, multi-loop feedback process [Lehman, 1997].

Much data is transferred in both directions between users, developers, man-

agers, etc., relating to satisfaction of many goals, not all of which are compat-

ible. This applies particularly when the whole life-cycle (including evolution)

is considered [Lehman, 1997], and is beyond the scope of this thesis. What

is of concern here is the behaviour of software during and after changes have

been made. In this thesis, it is the feedback at the level of product iterations

that is of interest, as modelled by the spiral model of software engineer-

ing [Boehm, 1988].

Although the process by which software artefacts are generated is of great

importance, the main concern in this thesis is the properties of artefacts, not

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 43

the means by which these properties are arrived at.

3.2.5 Software Evolution

As a software product gets older, it becomes less useful to its users unless it is

modified [Lehman, 1996]. Software is thus required to change as the require-

ments change, in a continuing, self-stabilising, feedback cycle [Lehman, 1997].

Software evolution has been demonstrated to obey the laws shown in sec-

tion 2.2.1;

The initial design of a modern system usually aims to have low inter-

component coupling. This coupling between modules generally increases as

a system is maintained [Lehman, 1998b].

As a system ages and is maintained, it becomes increasingly brittle i.e.,

resistant to and more likely to require increasing amounts of corrective main-

tenance under change. This is due to violations of the architecture and in-

sensitivity to the architecture during evolution (leading to the architecture

becoming obscured) [Perry and Wolf, 1992].

In the context of software engineering, many entities evolve. Software

itself evolves in response to users’ requirements changing and feedback, as

does the process of software engineering, the environment in which a software

artefact is situated, the documentation that describes the structure and the

usage of an artefact, or the users of an artefact. In this work, the evolution of

software artefacts is of concern. Principally, software artefacts are software

components and systems, but can also include test harnesses and suites, and

also documentation of design decisions, requirements, and so on. Evolution-

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 44

ary pressure usually comes from sources external to the software system in

question; corporate policy changes (in systems that relate to an organisation’s

business); changes in technology (e.g., the introduction of object-oriented

technology); or realisation that the original design and/or implementation

is flawed or inadequate [Lehman, 1998b]. Environmental changes can invali-

date assumptions that are embedded—sometimes implicitly—in a program.

Lack of documentation is a major cause of some of the problems that occur

in software maintenance [Baxter and Pidgeon, 1997].

In principle, a given piece of software can be changed into any other.

However, for a given specification, there are many more incorrect programs

than there are correct programs. Given an unrestricted landscape of syn-

tactically correct programs, most do not satisfy a given set of requirements.

Furthermore, most of the programs will fail at run-time due to semantic er-

rors. Part of the aim of this work is to restrict directions in which a piece

of software can be evolved, in order to make it easier to identify beneficial

changes, and more difficult to perform harmful modifications.

When any form of architectural change occurs, it is important that the

mechanics of the change are considered separately from the semantic ef-

fects of the change, and that changes must be reasoned about in order

to verify that their effects on the system are exactly those which are re-

quired [Oreizy and Medvidovic, 1998].

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 45

3.3 Objectives

This section defines the aims of the research which is presented in follow-

ing chapters. Each objective is defined (in terms of the concepts identified

above), examples are given, and its consequences stated.

The objectives are:

Architectural Flexibility Creating software systems which have architec-

tures that are easy to change.

Higher-Level Intervention Allowing software changes to be made at a

higher-level than the source.

Safe Changes Disallowing certain kinds of unsafe changes to a software

system’s architecture.

Architectural Visibility Making the structure of a software system visible

(from the software itself, automatically) at run-time.

These objectives are discussed in the following sections.

3.3.1 Flexible Architectures

Flexible architectures are necessary for software evolution. In order for soft-

ware changes to be made at the component level, which more closely matches

the conceptual level of system designers, the architecture of a system must

accommodate modification without requiring that the person performing the

modification intervene with the source code of components other than those

which directly require modifications to their behaviour. It is not enough that

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 46

an architecture is clean and well-defined; the architecture of a system must

be designed in such a way that changes to the system can be made with

effort appropriate to the size of the change. Component-oriented engineering

techniques, and before that, object-oriented programming, attempt, among

other things, to address modularisation issues. This alone is necessary but

not sufficient for flexibility.

3.3.1.1 Definitions

Architecture There is no single, concrete, well-defined, and universally-

accepted definition of software architecture. It is therefore necessary to de-

fine here what is meant by the term ‘architecture’ in this thesis. Architec-

ture is accepted as an abstraction from a real system [Shaw et al., 1995],

though there are many ways of abstracting from any given system. The

most generally accepted definitions of the term ‘software architecture’ are

that the architecture of a system is concerned with organisational, rather

than computational, issues [Garlan and Shaw, 1994], that it is external prop-

erties of components that is important when studying software architec-

ture [Bass et al., 1998]. It is also generally accepted that software archi-

tecture involves decomposition of a software system into a set of components

that interact via a set of connectors. Architecture is distinct from design in

that an architecture is a higher-level construct, encapsulating detailed de-

sign. Architectural views of a software system give broader overviews than

detailed design views. Decisions of what belongs in an architectural model

and what should be left out (but included in the detailed design) are mainly

matters of judgement for software engineers.

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 47

For any system, more than one kind of architectural perspective can be

identified and used to reason about the system [Perry and Wolf, 1992]. Ex-

amples include [Bass et al., 1998];

• Modular structure of the code.

• Conceptual structure of the system.

• Run-time process structure.

• Data-flow relationships.

• Control-flow within the system.

• ‘Uses’ relationships.

In this thesis, the abstraction that will be used is the component-oriented

structure of the system, with first-class connectors [Shaw, 1993] as data-

flow and synchronisation constructs. The use of explicit connectors is a

very important part of this work, as, in many systems, the lack of explicit

representation of communication in a software system causes problems with

the evolution of the system [Oreizy et al., 1998b]. These connectors will be

explicitly represented at run-time, as the run-time modification of a system

depends upon this.

An architectural style is defined by the types of component that can

take part in an architecture of that style, the topology of the style, a set of

constraints on the interactions in the system and the types of connector by

which these components can interact [Bass et al., 1998].

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 48

An architectural style defines a family of software systems which each

have the same pattern of structural organisation [Garlan and Shaw, 1994].

Various architectural styles, which identify the kind of components and

connectors which make up a system, can be identified. For example, the

following styles are common [Garlan and Shaw, 1994];

Pipe-and-Filter A data-flow style. Components are ‘filters’, with input

and output ports which consume and produce data respectively. Data

is carried along asynchronous ordered streams.

Implicit Invocation In this style, event-based, (multi-cast) call-backs are

used to broadcast events to each component in the system. Components

register (with an event-handler) their interest in event classes. When

events occur, the event handler notifies those components which have

registered their interest. This style is used in graphical user-interfaces.

Layering Each layer in a system communicates only with those layers on

either side of it. In general, lower-level layers (such as operating sys-

tem routines) tend to be called by higher-level layers (such as system

libraries).

Most systems are heterogeneous, combining the characteristics of more

than one architectural style [Garlan and Shaw, 1994]. In this work, however,

the pipe-and-filter style will be used (almost) exclusively, as this is a simple

abstraction to work with. Although the concepts that will be used will only

be applied to the pipe-and-filter style, there is no reasons why they should

only be applicable to this style.

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 49

Flexibility This section presents the argument that, in order to reduce

the costs of software evolution, it is necessary to increase the flexibility of

software architecture.

Most effort (in terms of both engineers’ time and money) associated

with a piece of software is performed after the initial delivery of the sys-

tem [Lientz and Swanson, 1980, Pigoski, 1996, Banker and Slaughter, 1997].

This effort is necessary because the structure of software is such that it is

difficult to modify successfully and correctly.

To reduce the effort spent on software evolution, it is necessary to increase

the flexibility of the architecture of software. In many circumstances, it is

relatively easy to allow for changes (or categories of changes) which have been

anticipated at design-time (for example, inserting modules into an operating

system kernel). By contrast, it is much more difficult to allow for arbitrary

changes.

One way of achieving a limited degree of flexibility is to parameterise com-

ponents. For example, the VAT rate used by a component can be changed

simply by adjusting one defined constant value. This approach ensures cor-

rectness of changes, but is very limited. The only changes that can be made

are those that have been foreseen and allowed for at design- and code-times.

Most software changes are not foreseen at design-time. For example, if a

company was to begin trading in more than one country, and thus had to

take account of varying sales taxation rates and methods of indirect taxa-

tion (for instance, some countries enforce both local and national sales taxes,

and in many countries different categories of goods have different rates of

taxation applicable), the simple parameterisation of a single rate of sales tax

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 50

would not be sufficient.

Completely unlimited changes can, in principle, be made to any software

artefact for which the source code is available. This approach—the opposite

of parameterisation in some senses—sacrifices the guarantees of correctness

for unbounded flexibility. This is insufficient for successful evolution to occur.

Constraints must be made that will allow correct changes to be made, but

disallow incorrect changes.

To summarise, then, there are several ways in which a software system

can be made flexible. These can be divided into two categories, according to

whether they provide flexibility statically (i.e., before run-time) or dynami-

cally (i.e., at run time):

• Compile-time flexibility

– Compile-time parameterisation (e.g., using defined constants).

– Composition of components using language constructs.

• Run-time flexibility

– Run-time parameterisation. For example, the Linux operating

system kernel allows run-time parameter setting using the sysctl

interface [Rubini, 1997].

– Composition using dynamic binding.

Flexible Architectures A flexible architecture can be defined as an ar-

chitecture that allows the software elements—from which it is composed—to

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 51

be considered, manipulated, removed, and added individually, without dam-

aging the overall properties of the architecture.A flexible architecture must

remain flexible under evolution. This flexibility must be maintained by de-

liberate actions; it cannot be assumed to remain constant during changes to

the system [Lehman, 1996]. Flexibility implies simplicity at some level. A

piece of software in which the interactions are complex and tangled does not

allow modifications to be made easily; a ‘clean’design is essential if changes

are to be made easily. The concept of architectural flexibility is explored in

section 4.2.2.

3.3.1.2 Problems

There has been much work on software architectures. Most of this work

has concentrated on forward development of software systems. The main

concern of this work is the behaviour and structure of software that has or

will change. Change is an intrinsic part of all software systems. To ignore

the necessity of change in a software system is to produce difficult-to-modify

systems which quickly fall out of use.

When software is changed without specific attention being paid to con-

trolling complexity, its structure degrades [Lehman and Belady, 1985a]. A

more desirable outcome is that a software system can be adapted without

increasing its complexity.

Current architectural implementations, such as CORBA, lack the ability

to introduce new components safely at run-time, without imposing over-

heads on the implementor, who must ensure that proposed changes are safe,

desirable, and so on. Run-time introduction of components is limited to

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 52

components which are known at compile-time.

3.3.1.3 Motivation and Examples

This section gives examples of architectural flexibility that have been achieved,

and situations where additional architectural flexibility would be advanta-

geous.

Flexibility Use of the C2 architectural style [Oreizy et al., 1998b] has been

claimed to ease run-time software evolution; evolution without re-compilation

of the system, in such a way that the system retains its integrity without

becoming more and more brittle and resistant to change after each modifica-

tion [Oreizy and Medvidovic, 1998]. Two types of system change are identi-

fied: changes to the system requirements, and changes to the implementation

that do not affect the requirements.

The architecture of a software system can be used to describe, reason

about, and understand the behaviour of a system. Modifications are ex-

pressed in terms of the architectural model of a system. There are three

types of modification which can be handled by the framework; adding, re-

moving and replacing components. Examples have shown that this is possi-

ble [Oreizy and Medvidovic, 1998].

When any form of architectural change occurs, it is important that the

mechanics of the change are considered separately from the semantic ef-

fects of the change, and that changes must be reasoned about in order

to verify that their effects on the system are exactly those which are re-

quired [Oreizy and Medvidovic, 1998].

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 53

Modern operating systems (such as Sun Solaris and Linux) allow (auto-

matic or manual) insertion of kernel modules at run-time, checking certain

compatibility factors (such as version numbers, availability of other required

modules) at insertion time. This is not true architectural flexibility, as the

only available operations are inserting and removing modules, while reconfig-

uration of the entire architecture of these operating systems is impossible.

Problems All software which performs useful tasks in an environment

must be changed over its lifetime in order to satisfy the requirements of

its users [Lehman, 1996]. Typically 50–70% of the effort and expense asso-

ciated with a piece of software is associated with managing or performing

evolution [Lientz and Swanson, 1980]. Examples include business informa-

tion systems in which the structure of the software should reflect the struc-

ture of the organisation, and banking systems, which, in the 1980s and 1990s

started to restructure their information systems from an account-based to a

customer-based style.

3.3.1.4 Criteria For Success

Success will have been achieved in this area when an architectural style and

tools to support the implementation of the style have been defined. The tool

support must enable architectural evolution of systems defined in the given

style. The tools must support clean abstraction, maintaining the separation

of concerns between distinct components, allow reasoning about individual

sub-systems, and showing dependencies between individual software entities

that make up a system.

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 54

3.3.2 Higher-Level Intervention

3.3.2.1 Definitions

Abstraction and Consistency There are many kinds of entity involved in

software systems, from the highest level (requirements documentation)

to the very lowest (executables). The aim here is to reinforce and—to

some degree—automate the correspondence between entities at neigh-

bouring levels of abstraction. In particular, the architecture of a system

is not automatically compared against the implementation of the sys-

tem, so ‘creep’ can occur: the architectural models which have been

carefully generated are inconsistent with the actual implementation.

Components and Connectors In the context of a software system inter-

vening at the architectural level means operating on components and

connectors. At this level, it is mainly larger-scale components which

are of interest, rather than smaller-scale components (such as standard

libraries).

3.3.2.2 Problems

In order to achieve higher-level intervention, the following problems must be

addressed:

Abstraction Intervention must take place at a particular level of abstrac-

tion. Spanning different levels of abstraction breaks this, and must be

avoided. In order to tackle this, concerns must be adequately separated.

Separation Entities which are to be modified must be clearly separated

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 55

from the other entities in the system, in order to allow intervention to

take place at exactly one place.

3.3.2.3 Motivation and Examples

Modifying software at the code level is too low-level to make changes quickly

enough and to ensure that changes are made safely. In order to ensure that

component-level safety and functionality constraints are met, intervention at

the component level is essential.

To enable component-level intervention, the following properties of the

underlying architecture are required:

• A protocol for maintaining information about the components and con-

nectors in the system.

• Change application policies, governing how replacement of components

is handled. For example, components can be instantaneously replaced,

with all present connections moved to the new component, or old con-

nections can be left in place, with the old component eventually being

removed when all connections are closed [Oreizy and Taylor, 1998a].

• A mechanism for interacting with the system at the component level

(a maintainers’ interface, as opposed to the users’ interface).

• Mechanisms for adding, removing, and updating components and the

interactions between them. These interactions must happen at the

architectural level.

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 56

Safe modification is desirable in any system where change must take place,

and safe run-time adaption (without affecting availability) is especially nec-

essary in high-availability or safety-critical systems, such as banking systems,

power stations, aircraft, etc. [Oreizy and Taylor, 1998b].

3.3.2.4 Criteria For Success

Success will have been achieved in this area when a tool has been defined

that, in accordance with section 3.3.1.4, allows modification to a system to

occur at the software component level, giving software engineers the ability

to insert, remove, and update software components, without needing access

to the underlying implementation details of the individual components.

3.3.3 Safe Modification

3.3.3.1 Definition

When a system is modified, the modification can be either safe or unsafe.

An unsafe modification is one which results in incorrect behaviour or in

premature termination of a program.

3.3.3.2 Problems

In general, it is not possible to simply insert a new component into a system

and to be certain of the impact that the insertion will have. Knowledge about

the interfaces of the component and implementation assumptions regarding

the environment is necessary in order to make this kind of prediction.

In order to tackle the problem of safely modifying a system, then, it is

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 57

necessary to categorise the information that is needed to verify the change.

The main problem here is specifying without over-specifying.

3.3.3.3 Motivation and Examples

When changes are made, at any level, the maintainers must have justified

confidence in the behaviour during and after the change process. For this

reason, changes at the architectural level must have predictable and bounded

impact on the system as a whole. There must, therefore, be a well-quantified

process for making changes to the system, along with a method for deter-

mining the impact of proposed changes to a system. Safe modifications are

those modifications which do not cause undesired behaviour which was not

previously present in a system. Unsafe modification may, for example, cause:

• Premature termination (for any a variety of reasons, including memory

access errors, deadlock, etc.).

• Incorrect behaviour in components which have previously behaved cor-

rectly.

• Incorrect communication; e.g., connecting components which should

not be connected, leading to incorrect behaviour.

There are two particular categories of change which can be examined:

changes which are made to a system which do not affect the architecture

of the system (for example, changes to a component which do not alter its

interface, such as changing the type of a private data structure), and changes

which do (re-configuration). Changes which do not affect the architecture

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 58

are, in general, less complicated to carry out, as there is no ripple effect.

Architectural changes are complicated by the fact that, often, there is no

up-to-date documentation of the architecture of a system.

3.3.3.4 Criteria For Success

Success will have been achieved in this area when the architectural sup-

port tools mentioned in sections 3.3.1.4 and 3.3.2.4 detect and disallow some

unsafe modifications to a given software system, as demonstrated in sec-

tion 3.3.1.1.

3.3.4 Architectural Visibility

It is necessary, in order to successfully understand and modify a software

system, to make visible its architecture [Bass et al., 1998]. If changes are to

be made at the architectural level, the architecture needs to be made visible.

3.3.4.1 Definitions

Run-Time Visibility The structure of a software system is visible at run-

time if it can be determined automatically (i.e., correctly and without

human aid) at run-time. There are many ways in which this informa-

tion can be presented, including diagrams, text in some architectural

description language, and so on.

3.3.4.2 Motivation and Examples

If changes to a software system are to be made correctly, those who are

performing the changes need to know the state of the system before the

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 59

changes are made.

Software systems must be represented in a manner which allows the

change to be made at the architectural level. This depiction must include ex-

plicit representation of connectors as well as components [Oreizy et al., 1998b].

3.3.4.3 Problems

There are two methods of determining the architecture of a system. The first

is to extract the architecture from the source (or object) code by analysis,

while the second method is to maintain a model of the system continuously,

and to simply make this model visible when requested. Extracting the archi-

tecture from the source of a system is a complex task, while automatically

maintaining a model of the architecture of a system requires an interface for

constructing software which allows the run-time support system to enforce

the relationship between the model and the system.

3.3.4.4 Criteria For Success

Success in this area will have been achieved when a method for constructing

software which allows the maintenance or extraction of a model at run-time

has been developed. The model of the architecture of a running system must

be automatically generated (either dynamically when required, or dynami-

cally as the software is modified), accurate, and useful.

CHAPTER 3. PROBLEMS IN ARCHITECTURE AND EVOLUTION 60

3.4 Summary

This chapter has identified the problems that will be addressed in the remain-

der of this thesis. To summarise, these problems, and their respective criteria

for successful solutions, are: architectural flexibility, higher-level intervention,

safe changes, and architectural visibility.

The following chapters will describe the methods used to solve these prob-

lems, the results and the conclusions of the research.

Chapter 4

Research Methods and

Techniques

4.1 Introduction

This chapter describes the methods used to undertake the research. The

case-studies are explained, as is the form of the results obtained.

In order to provide solutions to the problems identified in chapter 3, a

framework for modelling an implementing software in terms of its architecture

was developed. In this chapter, the framework is introduced and outlined.

The first part of this chapter deals with the methods that were used, while

the remainder shows how these methods were used to develop a framework

for creating and evolving software systems. The primary research tool was

the building of a framework to enable architectural-level evolution at run-

time. This framework was evaluated with respect to several case-studies.

The evolution of the framework was then guided by the results of these case

61

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 62

studies.

4.2 Concepts

This section details the key concepts which have been used throughout the

research. The terms used are ‘framework’, ‘interaction’, and ‘flexibility’. The

experimental methodology is also described (in section 4.3).

The term ‘framework’ as it will be used throughout the rest of this docu-

ment is defined and explored in section 4.2.1, while interaction is covered in

section 4.2.3.

One of the most important objectives of the research presented here is

providing architectural flexibility. The meaning of this term is explored in

section 4.2.2

A key assumption made during the development of the framework was

that the interactions between components in a piece of software are as im-

portant as the components themselves for the purposes of understanding and

changing the software. This idea and approach is expanded in section 4.2.3.

The framework incorporates a reflective layer in order that it can repre-

sent and control a system. Reflection, which is detailed in section 2.4, is a

very powerful tool that can be used to provide visibility and control of the

structure of a software system.

4.2.1 Frameworks

Object-oriented application frameworks are an approach to the building of

flexible and reusable component systems [Ribeiro-Justo and Cunha, 1999].

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 63

Frameworks capture properties of one or more of the domains in which

the software is situated [Beck and Johnson, 1994, Fayad and Schmidt, 1997]

(such as application domains, or architectural styles) by providing reusable

components, either for application domain objects, or for architectural enti-

ties. In this document, architectural frameworks are of interest.

Architectural frameworks allow easy construction of software systems

from individual components, by standardising the interface schema and en-

couraging design reuse [Johnson, 1997]. A framework dictates the archi-

tecture of systems which are built with it, and encapsulates certain design

decisions (made by the framework designer) [Gamma et al., 1995]. Use of

application frameworks enables more rapid construction of software, more

effective reuse of code, encourages design reuse [Gamma et al., 1995], and is

useful in product-line architectures.

4.2.2 Architectural Flexibility

In order to allow successful software evolution, flexible architectures are re-

quired. A flexible architecture is more than cleanly constructed and well

understood; the effort required to make changes to the system must be pro-

portional to the size of the change.

In order to quickly and easily modify a software artefact, the ability

to add, remove, and update the components and connectors that make up

the artefact is necessary. This gives the software maintainer—the person

or people responsible for making changes to the software—the ability to

introduce a new component (for example, to introduce new functionality into

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 64

the system) at run-time, without compromising the integrity of the original

parts of the system.

There is a spectrum of architectural flexibility. At the least flexible end

of the spectrum, the architecture of a system is completely rigid; the compo-

nents within the architecture can be replaced, but the interactions between

the components are fixed and static. At the other extreme, the architec-

ture is completely flexible; components and connectors can both be added,

removed, and replaced. The least flexible option is too restrictive to allow

many kinds of modification. For example, under these restrictions, introduc-

ing a new kind of file system to an operating system would be impossible.

At the opposite extreme, complete flexibility is obtained, at the expense of

safety.

The safest starting point is the least flexible. If the architecture of a sys-

tem cannot be changed, the properties of the architecture can be guaranteed

to remain constant between versions. However, all (E-type) software must

change. Often this requires changes at the architectural level. Hence, the

totally safe option is too inflexible. The totally flexible end of the spectrum

is also unsuitable, as it does not prevent unsafe and unsound modifications.

The spectrum of architectural flexibility can be broken down into the fol-

lowing categories, in increasing order of flexibility and decreasing order of

safety:

Complete Rigidity No run-time changes can be made to the system. At

this point, there is no need to make any explicit statements about the

architecture at run-time.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 65

Architectural Rigidity Components can be interchanged, although this

is only possible when interfaces are preserved. The connectors cannot

be changed in any way. Complete safety of the architecture is assured

(although faulty components can still be introduced). At this stage, the

set of components needs to be visible (in some manner) at run-time,

but the connectors need not be. No further architectural information

is required at run-time.

Invariant Flexibility Components can be replaced, preserving interfaces,

and new components and connectors can be introduced in a manner

that has been pre-determined. For example, introducing a new pump

into a petrol station system is both valid and safe. The set of safe modi-

fications that can be made is identified by a set of invariants which can-

not be broken. In the petrol station example, example invariants, ex-

pressed informally, would be “each pump must be connected to exactly

one central controller” and “there is exactly one central controller”.

Here, the architecture of the system must be visible at run-time, al-

though the invariants need not be.

Flexible Invariants The set of architectural invariants is made explicit and

modifiable at run-time. In this case, the architectural properties of the

system can be broken between versions of the software, though this

must be done in a conscious manner by maintainers.

Architectural Flexibility Components can be interchanged, even if inter-

faces are not preserved. Connector configuration can be changed in

any way. Invariants are not used or maintained. Some architectural

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 66

information must be made explicit at run-time in order to allow mod-

ification, though invariants are not used, as safety of modifications is

not considered. No properties of the system need be preserved between

versions.

An architecture which is flexible at run-time will provide the following

benefits to software engineering:

• Continuous availability [Oreizy and Medvidovic, 1998].

• Controlled change [Oreizy and Taylor, 1998a].

• Change at a level which reflects the level at which the system is under-

stood by the designers [Perry and Wolf, 1992].

4.2.3 Interaction

Any software system consists of a set of components (which provide function-

ality), interacting via a set of connectors (which provide a communication

infrastructure for the software). Software engineering has, for most of its

history, concentrated on the entities which make up software systems, regard-

ing the means by which they interact as second-class citizens. By contrast,

in the framework that is described here, the connectors by which components

interact are considered of primary importance.

As described in section 3.3.1.1, the architecture of a software system is

composed of a set of components and a set of connectors. Interactions within

a system are both captured and modelled using the connectors. Thus, a

model of a system (the ‘architecture’) contains representations of the same

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 67

components that are used in the implementation of the system. In this way,

the problem of system documentation becoming out-of-date with respect to

the system is addressed: the system is (a part of) its own documentation.

Traditionally, software engineering has concentrated almost exclusively

on the entities of software systems. Recently, however, there has been much

work which has considered interaction as of at least equal importance as

the behavioural entities [Shaw and Garlan, 1996, Shaw, 1993]. This work

has recognised the traditional deficiency in system ‘architecture’ diagrams

and descriptions with respect to the semantics attached (or otherwise) to

the ‘lines’ which connect design elements. Although connectors are ulti-

mately implemented in terms of a small set of elementary constructs (prin-

cipally procedure call and shared memory, also various networking primi-

tives) [Shaw, 1993], there are a wide range of higher-level connector types,

such as pipes, call-and-return, implicit invocation [Shaw and Garlan, 1996]

which generalise this. Consideration of these connectors as first-class en-

tities in their own right is important in order to capture design decisions

with respect to interactions, distribution [Shaw, 1993], to support evolu-

tion [Oreizy et al., 1998b], and to help avoid problems in composing com-

ponents with incompatible interfaces, by making the properties of the con-

nectors which connect these interfaces explicit [Garlan et al., 1995].

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 68

4.3 Experimental Approach

4.3.1 Outline of Approach

In order to address the problems identified in chapter 3, a framework for

modelling software systems and their evolution was created. This frame-

work was motivated by a set of case studies, described in section 4.5. The

framework allows the modelling and construction of the system in question,

and the run-time manipulation of its architecture. This section describes the

case-study-based approach, and gives the details of each of the case studies.

In common with most frameworks, components must conform to a specific

interface (described in section 4.4.1.1), and certain assumptions about their

behaviour are made. These assumptions are identified in section 4.3.2

For each case-study, an implementation was built, using the framework.

In each case, this implementation motivated extensions and changes to the

framework. As the case-studies progressed, the framework was continuously

evaluated and modified. This approach thus lead to a framework which is

applicable to each of the case-studies.

The initial framework created was designed to have the following features:

the ability to modify the system at run-time; an explicit run-time representa-

tion of components and connectors; disallowing some kinds of unsafe change;

and run-time visibility of the architectural structure of a system.

Using the case-study based approach allows the development of a frame-

work which addresses the problems identified during the implementation of

solutions to real (albeit small) programming problems.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 69

4.3.2 Assumptions

In order to successfully implement a case-study in the framework, the exam-

ple must fulfil certain expectations. These expectations are outlined in this

section. There are two main types of assumption, regarding the architectural

and behavioural properties of systems.

The framework models and manages systems which conform to the pipe

and filter architectural style. Any system which does not do this cannot be

modelled without modification.

The systems under consideration must contain components which match

the given interface, and only communicate with other components using facil-

ities provided by the framework (i.e., using message-passing through pipes).

Although it is possible for components to communicate other than via pipes

(e.g., using external files), this breaks the model of architecture and can lead

to undesirable behaviour when modifications are made.

4.3.2.1 Architectural Assumptions

A framework cannot cover all possible architectural styles. In order to sen-

sibly limit the scope of the framework, it was decided to concentrate on

pipe-and-filter style systems (described in section 2.3.2.1), as these have well-

understood modelling techniques and languages associated with them. It was

assumed that each component has a set of input ports and a set of output

ports, and that no port is bi-directional. The framework also makes the as-

sumption that inter-component communication is solely through the mech-

anisms provided (namely pipes), and that components do not use any other

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 70

form of message-passing or shared memory. This assumption is not enforced,

and in fact components can communicate outside the system, but doing this

invalidates the architectural model of the system that is maintained by the

framework.

4.3.2.2 Evolutionary Assumptions

It was assumed that all evolution will leave the architectural style intact;

dynamically changing from a pipe-and-filter style to a layered architecture

is not feasible, for instance. It was also assumed that each change will be

either a localised change of or to a component, or that each change can be

decomposed into changes of this type.

4.3.2.3 Modelling and Implementation

Each case-study must be implemented using the facilities provided by the

framework. In order for this to be done successfully, the system under con-

sideration must be modelled using the pipe-and-filter style, and implemented

using components which conform to the Component interface. Modelling of

the system can be performed in any language (formal or informal) which

supports the pipe-and-filter style. In principle any suitable notation can be

used. In this work, the Darwin ADL was used for architectural description.

When the system has been modelled, it must be implemented. This

involves creating a set of classes which extend the Filter abstract class. In

the examples studied here, and in most other examples, it is not necessary

to extend the Pipe class.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 71

4.3.2.4 Evolution

In order to determine how well the framework supports the evolution of

systems that it is modelling, it is necessary to make changes to these systems.

This is one of the key parts of the case-study.

The kind of changes which are made are dependent on the nature of

the system under consideration. The framework is designed to manage and

support architectural evolution, so this kind of change is the most suitable.

For example, it is often useful to replace a component in the system in order

to correct errors or to experiment with different behaviour (such as modifying

a component to evaluate different algorithms).

There are many ways in which changes can be carried out. The main way

in which the framework supports change is through allowing architectural

reconfiguration. For example, it is possible to modify the architecture of a

system in several ways, including adding and removing both components and

connectors.

4.3.2.5 Evaluation

Having carried out the case study, it is necessary to determine how well the

framework supported the process of modelling, implementing, and changing

the system. This is an important stage in motivating future developments of

the framework.

The criteria used to evaluate the framework in the light of a case study

are:

• How well did the framework support the initial modelling of the system?

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 72

In some cases, a mismatch may be due to the choice of an inappropri-

ate case study (such as an event-driven programming language inter-

preter), rather than due to failings in the framework. Alternatively,

they may be due to deficiencies in the framework’s implementation of

the style (initially, the framework only supported a single input and a

single output connection to each filter, which was a limitation in the

implementation of the style, not in the style itself).

• Once the system had been modelling in the pipe-and-filter style, was

its implementation straightforward? Difficulties in this stage are more

likely due to failures in the framework than problems with the case

study. Problems at this stage usually result from a mismatch between

the pipe-and-filter style and the framework’s implementation of it.

• Was the evolution of the system possible? How well did the framework

support it? At this stage, it is useful to note steps which could have

been (but were not) automatic. Problems here can be caused by style

mismatches (e.g., trying to make a change that results in a departure

from a pure pipe-and-filter style).

4.4 Research Methods

The research presented here proceeded by means of building a framework to

allow evolution at the architectural level. This framework was then evaluated

with respect to a set of case studies. The framework was then modified to

accommodate new features that were determined to be necessary to success-

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 73

fully handle the case studies.

4.4.1 The Framework

This section discusses the framework that was built as part of the research.

The design, implementation, and evolution of the framework are described.

4.4.1.1 Design

The aims of the framework, related to the objectives described in section 3.4,

are to:

Architectural Flexibility Allow the composition and evolution of software

systems at the architectural level of abstraction.

Higher-Level Intervention Maintain the consistency of software systems

over evolutions.

Safe Changes Ensuring that only safe changes are made to a system.

Architectural Visibility Provide visibility and control of software systems

at run-time.

The use of a reflective layer, to maintain and control meta-level informa-

tion, addresses these points. Allowing visibility and manipulation of meta-

level information (properties of interactions) gives the maintainer of software

the ability to compose software at the architectural level.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 74

Overview A software system is composed of two levels of entity; base-level

entities and meta-level entities. In the framework that is described here, base-

level entities are components in the software system that is being modelled

and controlled, and meta-level entities control the interactions between the

base-level entities. The main components which make up the framework can

be seen in figure 4.1.

Running System

Vector of Pipes

Meta−level Operators
Key

Filter

Pipe

Figure 4.1: Overview of the Framework

System Architecture The main components of a software system which

has been created using the framework are:

• A set of pipes, representing the interaction between components. Pipes

are one-way, asynchronous, data streams between exactly two compo-

nents.

• A set of filters, representing the functionality of software. Filters have

a finite (possibly zero) number of input and output ports by which data

enters and leaves respectively.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 75

There are two principle ways in which pipes and filters differ. Pipes

have exactly one filter connected at each end, and make no change to the

data which passes through them. By contrast, filters can perform operations

on the data which passes through them (and need not produce exactly one

output message for every input message, unlike pipes), and can be connected

to more than one pipe.

The framework supports these classes of component by maintaining a

set of ‘pipe’ objects which hold information about the interactions between

the components. Each ‘pipe’ object maintains information about the filters

involved in the interaction, the ports which are used, etc.

Component Design The Pipe component type is fixed. Pipes have the

interface shown in section A.1.

The Pipe component is conceptually very simple: messages are received

at the input end, and transmitted from the output end. A Pipe recieves input

by polling the component connected to its input (using the hasMessages()

method for the relevant port). Messages are then sent by the pipe to the

output filter (after polling the Filter.isReadyToReceive() method) using

the Filter.receive() method. Internally, each Pipe maintains a FIFO

buffer of messages. Pipes are implemented as Java threads, in order that

multiple instances can coexist in a system.

In order to allow the framework to control and monitor the set of Pipes

which it maintains, there are various methods. These are:

getInput() and getOutput() Return the Filters that are connected to

each end of the Pipe. These provide part of the reflective capabilities

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 76

of the framwork, and allow the framework to determine the architecture

of the system which it is controlling.

pauseInput() and pauseOutput() Are necessary to allow the framework

to suspend input to or output from a Pipe which is being modified in

some way (for example, if the input filter is to be removed or replaced).

The methods resumeInput() and resumeOutput() are used to restart

processing by the Pipe.

setOutputDestination() and setInputSource() Are reflective operations,

used by the framework to modify the architecture of the system which

it is controlling.

addPipe() Used when two Pipes are to be merged.

run() and terminate() Used by the framework to start and stop a Pipe.

Filters, on the other hand, are specific to particular functionality. The

interface is shown in section A.2. Particular components conform to the

Filter interface, while providing their own functionality.

While Pipes are maintained and implemented exclusively by the frame-

work, Filters are at the interface between the framework and systems which

are implemented using it: a programmer must create specialised objects of

type Filter, which contain features relevant to the domain of the software in

question as well as the necessary features required for the framework. Thus

a programmer creating a system for implementation in the framework will

not have to produce any objects of type Pipe, they will be required to im-

plement objects of type Filter, and produce code for each of the methods

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 77

listed below.

The two principle methods on Filter relating to inter-component com-

munication are:

send() Called by a Pipe to pass a message (of type Object) to the Filter.

This method is only called after a call to isReadyToReceive() on the

Filter has returned true, indicating that the Filter is prepared to

accept a message. If a call to isReadyToReceive() returns false, the

message is buffered in the Pipe. Pipes which have messages poll their

output Filters until each message has been sent. In this way, a Pipe

acts as a buffer.

receive() Called by a Pipe to receive a message from the Filter. This

method is only called after a call to hasMessages() has returned true.

Similarly to the send() protocol, a Pipe will poll its input filter.

When a change involving adding a Pipe to a Filter is being made,

the framework will call either of the methods canActivateInputPort() or

canActivateOutputPort in order to determine whether the Filter is capa-

bable of accepting a Pipe attachment to the relevant port. If this call returns

a value of true, the pipe is connected and either activateInputPort() or

activateOutputPort() is called (depending on the direction of the port in

question). In this way, the Filter is made aware of connections being made

to it, and thus can take appropriate actions.

If a Filter is removed from the system, the terminate() method is

called, which should perform any deallocation or other tidying which is re-

quired.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 78

4.5 Case Studies

In this section, the case studies are introduced. Each case study was cho-

sen because it motivates or exercises features of the framework. The first

case-study (KWIC) is the simplest, and was intended to motivate the sim-

ple, initial, features of the framework. The Markov-chain text generator was

the next case-study, and was more complex. This case-study motivated more

advanced features, while verifying those created during the process of imple-

menting the first case-study. The final case-study (the Gas Station) is the

most complex of the three, and involved a more sophisticated architecture

than the previous two examples.

Each case study had some common elements; the architecture of the

system was specified in Darwin, and the system was implemented in the

Java programming language.

The case studies were selected because they have the following character-

istics:

Modularity Each example can be divided into separate and well-defined

modules.

Abstraction The key components of each example are at a sufficiently high-

level of abstraction that a boundary can be drawn between the archi-

tecture of the system and its behaviour.

Well-known The various case-studies have been studied in the literature,

and are well-understood.

Varying Size The size and level of abstraction of the examples varies, al-

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 79

lowing comparisons of the level of effectiveness of the experimental

approach to be made.

4.5.1 Key Word In Context

4.5.1.1 Introduction

The Key Word In Context program (KWIC) [Parnas, 1972] creates a per-

muted index of a document. The program takes a text file consisting of a

set of zero or more lines each of which are composed of zero or more char-

acters. A permuted index, consisting of a set of numbered lines, sorted into

alphabetical order, showing the context of each word in the input text file,

is produced.

The KWIC case-study was chosen as it is a simple and well-understood

problem with a well-formed architecture [Parnas, 1972].

The architecture of the KWIC case-study is shown in figure 4.2.

The KWIC case-study was the first to be implemented, and thus moti-

vated several of the basic features of the architectural framework.

The initial framework created to model and implement the KWIC case-

study was designed to have the following features:

Modifiability of the system at run-time to fulfil one of the basic aims

of this research.

High-level modification of the architecture of the system.

Disallowing some kinds of unsafe change by only allowing a given set

of changes to be made within the system. These changes are: adding

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 80

and removing components; adding connectors to and removing them

from components. It is only possible to add a connector to a component

if that component is willing to accept it.

Explicit run-time representation of components and connectors in order

to show the architecture of the system and to allow its modification.

4.5.1.2 Assumptions

The KWIC case-study partly motivated some of the assumptions made by the

framework, so to a certain extent, it matches the framework by default. The

case-study was implemented using four classes, as described in section 4.5.1.

Each class in the system is a single-input, single-output filter, making it

suitable for a pipe-and-filter architectural model.

4.5.1.3 Modelling and Implementation

The architecture of the KWIC system is given informally in figure 4.3. A

more precise way of specifying the architecture is to represent the architecture

in Darwin, as shown in figure 4.2.

The KWIC system was implemented in Java, using the Filter class

(described in section 4.4.1.1). Initially, the system was modelled using a

simpler model of Pipes, with each pipe having only a single input and a

single output port. This modelling restriction was lifted later on, when other

case studies made it unrealistic.

There are four components in the KWIC system. They are as follows:

Input Opens a file, reads it line-by-line, and passes each (num-

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 81

interface NL {} // numbered lines from a file

interface NSL {} // numbered, shifted lines

component Input {

provide numberedLines:NL;

}

component CircularShifter {

require numberedLines:NL;

provide numberedShiftedLines:NSL;

}

component Sorter {

require numberedShiftedLines:NSL;

provide sortedNumberedShiftedLines:NSL; // in order

}

component Output {

require sortedNumberedShiftedLines:NSL;

}

component System {

inst

I: Input;

C: CircularShifter;

S: Sorter;

O: Output;

bind

I.numberedLines -- C.numberedLines;

C.numberedShiftedLines -- S.numberedShiftedLines;

S.sortedNumberedShiftedLines --

O.sortedNumberedShiftedLines;

}

Figure 4.2: The KWIC System specified in Darwin

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 82

Input Circular Shift Sort Output

Figure 4.3: Architecture diagram for KWIC

bered) line to the next component.

Circular Shift Rotates each line, to produce a set of shifted,

numbered lines.

Sort Sorts the set of lines produced by the previous component

into alphabetical order of first word.

Output Displays the sorted, numbered lines produced by the

previous component, in order and formatted for easy read-

ing.

The input component queries the user of the system for a file. This file

is opened and each line is passed (along with its number in the file) into

the next filter. The circular shift filter takes a numbered line at a time, and

produces all the circular shifts of that line. For example, the line ("The

quick brown fox", 1) would be rendered as the four numbered strings

1. ("", "The quick brown fox", 1)

2. ("The", "quick brown fox", 1)

3. ("The quick", "brown fox", 1)

4. ("The quick brown", "fox", 1)

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 83

The tuple produced by the shifting component has the form (beginning

of line, end of line, line number). The end of the line forms the key by

which the lines are sorted, therefore this part of the tuple cannot be an empty

string.

The sort component takes each of these tuples and sorts them into alpha-

betical order of the second string. In the example, this order is 3, 4, 2, 1.

4.5.1.4 Evolution

The KWIC case-study was carried out in order to motivate and exercise

the modelling and implementation capabilities of the framework, so the evo-

lutionary aspects of the framework were not as well tested as in the more

sophisticated cases. The kinds of changes which were made were simple ad-

dition of components. For example, monitoring Filters (which simply show

all data passing through them in an on-screen window) were used in order to

show that Pipes can be interrupted by the addition of new components and

the system as a whole will still function correctly once the new component

has been introduced and each Pipe connected.

4.5.1.5 Evaluation

This was the first case-study, and as such it motivated many of the features of

the framework. In this case, the framework supported the modelling and evo-

lution of the KWIC case study well, as the case-study was used to motivate

the creation of the framework.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 84

4.5.2 Markov-Chain Random Text Generator

4.5.2.1 Introduction

The Markov-chain random text generator takes a piece of text, and pro-

duces a statistical model of the language used in it. This model is then

used to generate a random text whose language is similar in style to the

original [Kernighan and Pike, 1999].

4.5.2.2 Assumptions

The Markov-chain text generator fits the pipe-and-filter style with some

caveats. At some points in the design, the case-study would be improved if

the simple data-flow model of the framework was augmented with a shared-

memory artefact (as used in, for example, blackboard and other architectural

styles [Garlan and Shaw, 1994]), as seen in figure 4.4. This would avoid in-

efficiencies in passing large amounts of data (in this case a large hash table)

through the system unaltered. Using a blackboard to store the language

model would also reduce coupling in the design; the technology used could

be changed from a hash table to an alternative without having to modify the

text generator. Apart from this limitation, the case-study fits the pipe-and-

filter architectural model well.

4.5.2.3 Modelling and Implementation

There are four components in the system:

Input This component prompts the user for a text file and out-

puts the content of that file.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 85

Generate Text

Blackboard

language model)

(Containing

Output

Generated Text

Response

Query

Input

Text

Figure 4.4: An alternative architectural style for the Markov-Chain Text
Generator

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 86

Hash This component constructs a set of word prefix/suffix pairs

which model the language used in the input text.

Generate This component uses the model of language produced

by the previous component to generate a new text, which is

passed to the next component.

Output This component takes the text produced by the previous

component and formats it for display.

The architecture of the system is shown informally in figure 4.5 and given

in Darwin in figure 4.6.

Input OutputGenerate TextCreate
Hash Table

Text
Language
Model Generated Text

Figure 4.5: Architecture diagram for the Markov text-generator

The input component queries the user of the system for a file, which is

then opened and passed to the next filter. The hash component then receives

the text and builds a hash table of word prefix/suffix pairs. This hash table

is then passed to the generator component, which produces random text to

pass to the output component.

As in the previous system, each component has at most one input and

one output, with only ports numbered 0 being used.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 87

interface Text {} // raw text

interface LanguageModel {} // Model of language,

// prefix/suffixes

component Input {

provide inputText:Text;

}

component Hash {

require inputText:Text;

provide model:LanguageModel;

}

component Generate {

require model:LanguageModel;

provide outputText:Text;

}

component Output {

require outputText:Text;

}

component System {

inst

I: Input;

H: Hash;

G: Generate;

O: Output;

bind

I.inputText -- H.inputText;

H.model -- G.model;

G.outputText -- O.outputText;

}

Figure 4.6: The Markov Text Generator specified in Darwin

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 88

4.5.2.4 Evolution

As with the KWIC system, the framework supports modelling of the system,

and also evolution. The text-generator can be changed, for example, by

replacing the hash-table creating component in order to experiment with the

efficiency and results of different designs (for example, using character-based

rather than word-based processing). The text-generation component can be

replaced, in order to experiment with variations on the algorithm (e.g., using

a different prefix length when generating text, which involves a simple change

to a compile-time constant).

4.5.2.5 Evaluation

As described above, the modelling aspects of the framework suited this ex-

ample well, though with the following comment: A central blackboard com-

ponent could, in fact, have been used to make the system more efficient, but

this might have involved adding synchronisation capabilities to the system

(not necessarily to the framework, however) in order to ensure that data is

received in a timely fashion by those components which require it.

4.5.3 Gas Station

4.5.3.1 Introduction

The so-called gas station example[Ducasse and Günter, 1998] involves a cashier

component, and a set of one or more pump components. The station is a

North American style station; payment is made before fuel is drawn from a

pump.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 89

4.5.3.2 Assumptions

The gas station is superficially unsuitable for implementation in the pipe-and-

filter style as it seems that the communication between components should

not be queued (which is implicit in the style, at least as it is implemented

in the framework). However, the Darwin model shown in section 4.8 demon-

strates that the gas station can be adequately modelled in this style.

4.5.3.3 Modelling and Implementation

As in all of the case-studies, the gas station was modelled in Darwin and

implemented in Java. The need for unqueued messages can be handled by

ensuring that the thread in the Cashier component which handles the mes-

sages from the Pump components handles messages in reasonable time. This

is not a difficult task to achieve, and the implementation of the Pump compo-

nent ensures that messages are not queued in the pipe between a Pump and

the Cashier.

In order to correctly handle the three Pipes required for each Pump, each

Pump uses one output port and two input ports. From the point of view of the

Cashier, free() and load(amount) messages to Pump n ≥ 0 are sent from

ports 2n and 2n+1 respectively. All isFree() messages from this pump are

received on port n.

There are two categories of component in the gas station system; the

cashier (of which there is always exactly one), and the pumps (of which

there is always at least one).

An informal overview of the gas station system is presented in figure 4.7,

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 90

while a more rigorous description is given (in Darwin) in figure 4.8. This

figure shows the components and connectors involved in the gas station. The

components (filters) are represented by boxes, with connectors (pipes) rep-

resented as lines, with arrow-heads indicating message flow. In this diagram,

there is no ‘customer’ component indicated: even though this kind of com-

ponent could be considered part of the system [Ducasse and Günter, 1998],

it is not considered so here. Each pump filter is identical in terms of message

streams; for simplicity, only one set of these pipes has been labelled.

0

n

isFree(boolean)

Cashier

Pump

Pump

load(amount)
free()

Pump1

Figure 4.7: Architecture diagram for the Gas Station

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 91

// Want exactly one of these

component Cashier (int n){

provide checkFree [0..n];

provide loadPump [0..n];

require isFree [0..n];

}

// Want n of these (dynamically added)

component Pump {

require checkFree;

require loadPump;

provide isFree;

}

component System (int n) {

array pumps[n];

inst cash:Cashier(n);

forall i=0 to (n-1) {

inst pump:Pump;

bind cash.checkFree[i] -- pump.checkfree;

}

}

Figure 4.8: The Gas Station specified in Darwin

The cashier component is the initial ‘point of contact’ between the cus-

tomer and the system. The customer pays the cashier for fuel, the cashier

finds an available pump (using the ‘free()’ protocol) and then loads this

pump with the appropriate amount of fuel.

When a pump receives a ‘free()’ query from the cashier, it responds

with a boolean. When a pump has been successfully load()ed with a given

amount of fuel, the customer can then use the pump to obtain the fuel.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 92

free(boolean)

Cashier

2

free()

load(litres)

load(litres)

free(boolean)
free()

Port 1

Port n

Port 2n − 1

Port 2n

Port 1

Figure 4.9: ‘Cashier’ Component

Pump

free(boolean)

free()

load(litres)
Port 1

Port 0

Port 0

Figure 4.10: ‘Pump’ Component

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 93

When a customer has paid for some fuel, the cashier attempts to find

a pump that is free. Each pump in turn is tested using the ‘free’ message.

When a pump eventually returns ‘true’ (via an ‘isFree(boolean)’ message

on the corresponding port), that pump is then load()ed with the correct

amount of fuel.

Each pump has a single output port (number 0), and two input ports

(0 and 1). Input port 0 receives ‘free()’ query messages from the cashier.

When such a message is received, a pump responds immediately1 with an

‘isFree({true,false})’ message on the output port. load(amount) mes-

sages are received on input port 1, and cause the pump to become ready to

dispense a given amount of fuel2.

There are several questions relating to the representation and implemen-

tation of customers:

• Are customers explicitly represented, or treated as part of the ‘envi-

ronment’ that the system inhabits?

• If customers are explicitly represented as part of the system, how are

they modelled? The approach of inserting a new component at run-

time each time a new customer is introduced to the system has some

attraction, but also seems to contradict the use of reflective operations

to undertake ‘normal’ operations.

• How does a customer (rather, the representation of a customer) de-

termine which pump to use? There are two issues here: how is the

1There are no real-time concepts in the system; ‘immediately’ is a loose term.
2In a physical implementation, the pump would have to draw this amount of fuel from

the gas station’s tanks.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 94

information returned to the customer component, and how then does

the component ‘find’ the appropriate pump component. Dynamically

inserting a connector (a pipe) seems contrary to the purpose of reflec-

tive operations.

4.5.3.4 Evolution

The most obvious form of evolution of the gas station is to add or remove

pumps. This is supported by the framework, as long as the maintainer en-

sures that the correct pipes are connected to the correct ports (as described

in section 4.5.3.3).

There are various ways in which the gas station can evolve. These are

divided into two categories; architecture-preserving changes (such as adding

or removing pumps) which maintain the structural properties of the system,

and architecture-modifying changes, which change the structural properties

of the system.

Architecture-preserving properties which are foreseen at design-time are

easily accommodated at run-time, as the appropriate structures are in place

for the changes to be made. For example, the insertion of pumps at run-time

is enabled by allowing the dynamic instantiation of the software component

which represents the pump, and the dynamic binding of the connectors in

the appropriate fashion (maintaining the architectural invariants).

Architecture-modifying changes are currently impossible to handle at run-

time in any significant way. For example, dynamically changing a compiler

from a pipeline to a blackboard architecture [Garlan and Shaw, 1994] is not

possible.

CHAPTER 4. RESEARCH METHODS AND TECHNIQUES 95

4.5.3.5 Evaluation

Initially, the single-port restriction on the Filter class meant that the im-

plementation of the gas station was impossible. Once this restriction had

been lifted, the framework successfully supports the implementation of the

system.

4.6 Summary

This chapter has outlined the methods that have been used to undertake

the research. The framework that is part of the results has been described,

as have the case studies that have been used to guide the evaluation and

evolution of the framework.

Chapter 5

Research Process

5.1 Introduction

This chapter describes the process of the research. Section 5.2 describes the

development of the framework, and the results of the case-studies are given

in section 5.3.

5.2 Framework Development

This section outlines the development of the framework.

5.2.1 Motivation and Objectives

The design and implementation of the framework were motivated by the

problems given in chapter 3. The main criteria for the framework, as stated in

section 3.4, are architectural flexibility, higher-level intervention, safe changes,

and architectural visibility.

96

CHAPTER 5. RESEARCH PROCESS 97

In order to satisfy these criteria, the framework has the following features:

• A run-time representation of the structure of a software system (mod-

elling the components and the connectors), giving visibility, and ad-

dressing architectural visibility. This representation is examined in sec-

tion 5.2.2.6.

• A graphical interface, allowing the insertion and deletion of components

and connectors which make up a software system, addressing architec-

tural flexibility, and higher-level intervention. This interface is detailed

in section 5.2.2.8.

• A model of a particular software architectural style, which consists of

components which communicate via connectors, aiding in addressing

architectural visibility and safe changes. This model of software is de-

tailed in section 5.2.2.

5.2.2 The Pipe and Filter Model of Software

5.2.2.1 Outline of the Model

The pipe-and-filter architectural style employs two categories of architectural

entity. The computational components of software are filters, which are con-

nected using pipes. Filters interact via a set of input and output ports, which

are connected to pipes. Pipes are data streams, transmitting data in first-in

first-out order. An example of such a system is shown in figure 5.1. Com-

ponents perform computation, producing, consuming, or altering messages.

Messages are passed along pipes asynchronously (ordered, in respect to first-

CHAPTER 5. RESEARCH PROCESS 98

in, first-out). Each pipe/filter connection is via a particular port. Ports are

numbered sequentially from zero.

Port 0

Port 1

Port 0
Port 0

Port 1

C

A

B

D E

Port 0

Port 0

Port 0

Port 0

Port 0

Figure 5.1: An Example Pipe And Filter System

5.2.2.2 Architectural Styles

An architectural style encapsulates constraints on software architectures. A

style is determined by the set of component and connector types which are

either required or supported, constraints on the connector configuration of

a system [Bass et al., 1998]. The main categories of architectural styles are

data-centred styles (such as blackboard architectures), data-flow styles (such

as the pipe-and-filter style discussed below), virtual-machine styles (such as

that used in interpreted languages e.g., Java), call-and-return styles (as used

in traditional procedural programming languages), and layered styles (such

as those used in operating systems).

CHAPTER 5. RESEARCH PROCESS 99

5.2.2.3 The Pipe and Filter Style

In the pipe and filter architectural style, the components are filters, and the

connectors are pipes. Data flows through the pipes in one direction only, into

or out of ports to filters.

5.2.2.4 Implementation of the Style

In the architecture presented here, pipes are implemented by the framework.

Pipes consist of asynchronous buffers of objects between filters. Filters have

two types of port, input and output, which can only be connected to the

corresponding port of a pipe. Each pipe is implemented as a thread, executing

independently and polling each filter that it is attached to. Filters implement

various methods in order to maintain the relationship with the pipes that

they are connected to. These methods (which are called by the pipes) are:

• public boolean hasMessages(int outPortNo); returns true if the filter

has any messages ready to be transmitted.

• public Object send(int outPortNo); returns a message to be sent.

• public boolean isReadyToReceive(int inPortNo); returns true if the fil-

ter is capable of receiving a message.

• public void receive(int inPortNo,Object message); sends a message to

the filter (from the pipe).

• public boolean activateInputPort(int portNo); and public boolean ac-

tivateOutputPort(int portNo); tell the filter that pipes have been con-

nected to the respective ports. Returns true on success, false on failure.

CHAPTER 5. RESEARCH PROCESS 100

5.2.2.5 Programming Language

The framework has been implemented in Java. This choice was made because

the language provides reflective facilities, is interpreted (providing facilities

for dynamic loading of class definitions), and provides a rich application pro-

gramming interface, with facilities for collections, user-interfaces, and other

useful capabilities.

Reflection The package java.lang provides meta-classes for Object and

Class. Along with classes provided by java.lang.reflect, these can be

used to inspect and use classes. In conjunction with the dynamic loading

of classes, new classes can be instantiated at run-time. Knowledge of these

classes is not required at compile-time. This provides flexibility, allowing

systems to be extended with new classes at run-time.

Dynamic Loading Facilities provided by the reflective components of the

Java runtime environment also allow the loading of classes from files of byte-

code. The only restriction placed on this is that the file to be loaded must

be a valid class file.

API The rich API provided by the Java development kit contains classes

providing functionality for user interfaces (traditionally a facility which has

been added to languages after their design), with a comprehensive approach

to interaction, using callbacks and listeners. This allows for rapid develop-

ment of user interfaces, in a simple and reliable fashion.

CHAPTER 5. RESEARCH PROCESS 101

5.2.2.6 Use of Reflection

Meta-objects are used to represent both the components and the connectors

which make up a software system. Communication is managed using oper-

ations on communication objects (represented by instantiations of the Pipe

class).

Pipes have the interface shown in figure 5.2. All of the methods shown

are called by the framework in order to control communication between com-

ponents.

Constructor simply creates an instance of Pipe, which connects the two

filters given as parameters. The filters communicate with the pipe via

the ports given.

getInput() and getOutput() return the Filters which are connected to

the Pipe.

getInputPort() and getOutputPort() return the port numbers that the

pipe is connected to on its input and output filters.

equals(Pipe) overrides the java.lang.Object method of the same name.

pauseInput() and pauseOutput() are used by the framework, when it is

reconfiguring a system, to (temporarily) suspend flow either into or out

of, the pipe.

inputIsPaused() and outputIsPaused() are both used internally by the

framework to determine the status of a pipe.

CHAPTER 5. RESEARCH PROCESS 102

resumeInput() and resumeOutput() are the the inverses of the previous

pause methods, acting correspondingly.

setOutputDestination() disconnects the pipe from its current output fil-

ter, and reconnects it to the specified port on the given filter.

setInputSource() correspondingly allows the setting of the input source to

the pipe.

terminate() indicates to the pipe that it is to cease passing data, tidy up,

and exit.

hasMessages() returns true if and only if the pipe’s message buffer is non-

empty.

run() is used to start the pipe’s execution.

addPipe() concatenates the given pipe’s message queue to the end of the

pipe’s queue.

5.2.2.7 Implementation of Filters

A Filter is a subclass of java.lang.Thread, and has the interface shown in

figure 5.3. A filter’s communication methods are called by the various Pipes

to which it is connected:

hasMessages() and isReadyToReceive() are called by output and input

Pipes, respectively, to determine whether the filter is ready to commu-

nicate.

CHAPTER 5. RESEARCH PROCESS 103

public class Pipe extends Thread

{

public Pipe(Filter sender, int senderPortNo,

Filter receiver, int receiverPortNo)

throws PortInactiveException;

public synchronized Filter getInput();

public int getInputPort()

public synchronized Filter getOutput();

public int getOutputPort();

public synchronized void pauseOutput();

public synchronized void pauseInput();

public boolean inputIsPaused();

public boolean outputIsPaused();

public synchronized void resumeInput();

public synchronized void resumeOutput();

public synchronized void setOutputDestination(

Filter newOutput, int newOutPort)

throws PortInactiveException;

public synchronized void setInputSource(Filter newInput,

int newInPort)

throws PortInactiveException;

public void terminate();

public boolean hasMessages();

public void run();

public boolean equals(Pipe p);

public void addPipe (Pipe p);

}

Figure 5.2: The Interface of a Pipe.

CHAPTER 5. RESEARCH PROCESS 104

public abstract class Filter extends Thread

{

public abstract boolean hasMessages(int outPortNo);

public abstract boolean isReadyToReceive(int inPortNo);

public abstract Object send(int outPortNo);

public abstract void receive(int inPortNo,Object message);

public abstract boolean canActivateInputPort(int portNo);

public abstract boolean canActivateOutputPort(int portNo);

public abstract void activateInputPort(int portNo);

public abstract void activateOutputPort(int portNo);

public abstract void terminate();

}

Figure 5.3: The Interface of a Filter.

CHAPTER 5. RESEARCH PROCESS 105

send() is called by an output pipe in order to receive a message from the

filter on a specified port. The filter must return an object corresponding

to the message.

receive() is called by an input pipe in order to pass a message into the filter

through the given port. The filter handles the object appropriately,

probably adding it to an internal buffer for later processing.

canActivateInputPort() and canActivateOutputPort() are called by

the framework to determine whether the filter is willing to allow a pipe

to be attached to the given ports.

activateInputPort() and activateOutputPort() are used by the frame-

work (after verification using the two can. . . () methods) to inform

the filter that a pipe has been attached to the corresponding input or

output port.

terminate() is called by the framework to indicate that the filter is to cease

processing, tidy up, and exit.

Typically, a filter operates as a single thread with a main event-handling

loop. The methods which are called by pipes can be thought of as call-back

methods, allowing the framework (via its pipes) to communicate with the

filter. In particular, the methods which cause data to flow into the filter

correspond closely with action-type call-back methods as used, for example,

in user interface toolkits.

CHAPTER 5. RESEARCH PROCESS 106

5.2.2.8 User Interface Aspects

The user-interface of the framework (as opposed to the user interface of

systems created in the framework) allows the system builder to interact with

the architecture of the system. There are two main kinds of action: requests

for information, and requests for action.

Requests for information take the form of interrogating pipes or filters

in order to determine (and display) properties of these objects. Available

information about filters includes the type-hierarchy of the object, and the

connection state of its input and output ports. For a pipe, the filters, and

ports, to which it is connected can be determined, as can the state of the

pipe in terms of number of messages in its internal queue, and whether its

input and output is paused or active.

Requests for action are meta-object protocol methods, performing such

tasks as inserting filters into pipes, removing pipes, or removing filters.

5.3 Case Studies

This section describes the ways in which the various case studies have mo-

tivated the development of the framework. Each case-study has different

characteristics, and has motivated different aspects of the framework.

5.3.1 Key Word In Context

As the first, and simplest, case-study, the key-word in context example mo-

tivated most of the basic features of the system. Initial features included

CHAPTER 5. RESEARCH PROCESS 107

simple connectivity between components, using pipes with buffers, providing

asynchronous communication.

The key word in context system, as described in section 4.5.1, involves

four components, in a simple pipeline. This system, therefore, could be

implemented without making use of the concept of ports. This was initially

the case.

5.3.2 Markov-Chain

This case study, as documented in section 4.5.2, also involves four compo-

nents. This also could be implemented using a simple pipe-line style, as

opposed to the full pipe-and-filter style described above.

5.3.3 Gas Station

The gas station, described in section 4.5.3, was the most complex example,

and required the use of the full pipe-and-filter style. This meant that the

framework had to be updated to allow the use of multiple input and output

ports for each filter.

5.4 Summary

This chapter has shown the motivation for the creation of a reflective object-

oriented framework for managing software, and the requirements which it

must fulfil. These requirements will be used in the next chapter to evaluate

the framework. The ways in which the three main case studies have been

CHAPTER 5. RESEARCH PROCESS 108

used to motivate features of the framework have also been described. The

framework makes use of the pipe-and-filter model of software. This model

and the way in which it is used by the framework has been explained. The

way in which the framework makes use of the concept of object-oriented

reflection in order to satisfy these requirements has also been described.

Chapter 6

Results and Evaluation

6.1 Introduction

This chapter presents the results of the research. In section 6.2, the results

of the three main case studies are presented. In section 6.3, the framework

itself is evaluated. Requirements for evaluation are given and then refined

into detailed evaluation criteria. These evaluation criteria are then used to

evaluate the framework.

6.2 Case Studies

In this section, the three case studies are presented, and the results of the

experiments are outlined. Each case study is presented in detail, and the

results of evolving each example system are given.

109

CHAPTER 6. RESULTS AND EVALUATION 110

6.2.1 Key Word In Context

The KWIC system was implemented using six classes, as shown in figure 6.1.

Four of the classes correspond to components in the architectural design, the

remaining two are message classes, used to carry data through the pipes. In

the KWIC system, each component class is instantiated exactly once, while

message classes are instantiated many times.

Shifted Numbered
Lines

CircularShift

Instantiates

KWICInput

LineAndNumber CircularShiftedLine CircularShiftedLine

KWICOutput

Input Circular Shift Sort Output

Numbered Lines
Sorted, Shifted,
Numbered Lines

Instantiates Instantiates Instantiates

Sort

Figure 6.1: Instantiation of Components in the KWIC System

The KWIC implementation showed that the framework was capable of

supporting simple interactive software in a steady state (i.e., before evolution

has taken place). It also showed that the framework supports run-time visu-

alisation of the architecture of a software system in an appropriate fashion.

Implementing the KWIC system using the framework shows that the

framework can be used to construct software, and to support simple evolu-

tion. The system can be constructed in either of two ways. It can be built up

CHAPTER 6. RESULTS AND EVALUATION 111

using the user interface, starting with an empty system, adding components

one at a time, or it can be automated, using the simple Java program shown

in figure 6.2.

import newarch.*;

public class TestInput

{

public static void main(String[] args)

throws PortInactiveException

{

PipeAndFilterSystem sys = new PipeAndFilterSystem();

InputFile in = new InputFile();

CircularShift shift = new CircularShift();

Sorter sort = new Sort();

KWICOutput output = new KWICOutput();

sys.addFilter(output, 0, 0);

sys.addFilter(sort, 0, 0);

sys.addFilter(shift, 0, 0);

sys.addFilter(in, 0, 0);

}

}

Figure 6.2: Constructing the KWIC System

In terms of evolution, the KWIC system implementation showed that

it is possible to insert components into pipelines, to remove components,

and to monitor the addition of pipes into a system, ensuring that pipes

are only inserted when the components are compatible. Evolution of the

example system is carried out using the graphical interface, which, in turn,

calls methods in the framework to make changes to the system.

CHAPTER 6. RESULTS AND EVALUATION 112

6.2.2 Markov Chain

The Markov-Chain text-processing system demonstrated the capabilities of

the framework in that it can support run-time replacement of modules in

a safe manner (for example, replacing the component which manages data

storage) while the system is idle. This system also demonstrated that the

framework is capable of performing modification at the architectural level.

6.2.3 Gas Station

As the largest and most complex of the case-studies, the gas station exam-

ple demonstrated (and motivated) most of the features of the framework.

It showed that the framework is capable of supporting larger systems with

complex (and multiple) inter-component communication, adding and remov-

ing components with many connectors attached, and ensuring that a visual

representation of the system is maintained at all times.

Figure 6.3 shows the relationships between the objects which implement

the gas station and the architectural model.

In common with the previous examples, the example can be either con-

structed from an empty system using the graphical user interface, or ‘scripted’

using a simple Java program.

One of the example operations performed on the gas station was the

addition of pumps to the system at run-time. This showed that complex

operations, involving the addition of many entities (in this case, a component

and two pipes), are possible.

CHAPTER 6. RESULTS AND EVALUATION 113

6.3 Framework Results

In this section, the framework is evaluated against the criteria from chapter 3.

Firstly, the criteria which will be used to evaluate the framework are given (in

section 6.3.1), and then, in section 6.3.2, the framework is measured against

these criteria.

6.3.1 Evaluation Criteria

The objectives which this research was initially aimed to achieve, as initially

presented in section 3.4, are architectural flexibility, higher-level intervention,

safe changes, and architectural visibility.

Each of these objectives can be refined to evaluation criteria as follows:

Architectural Flexibility The framework must be capable of modelling

the architectural level of a software system. This model must describe

and show the components and the connectors of a software system, and

make them explicit.

Higher-Level Intervention The framework must allow the modification

of such a software system (and its corresponding model) at run-time.

This modification must be possible at the level of the architectural

level.

Safe Changes The framework must ensure that changes to the system are

safe (the meaning of ‘safe’ in this context is explored in section 6.3.1.3).

Architectural Visibility The framework must make the structure of the

CHAPTER 6. RESULTS AND EVALUATION 114

system visible, for example by displaying a diagram in a graphical user

interface.

The evaluation criteria are thus architectural modelling (described in

section 6.3.1.1), high-level modification (section 6.3.1.2), safe changes (sec-

tion 6.3.1.3, and structural visibility (section 6.3.1.4). Each of the objectives

is related to at least one (and usually more than one) of these criteria, in the

following way. In order for architectural flexibility to be achieved, it is neces-

sary to have both architectural modelling (if the architecture is not modelled,

it cannot be controlled) and higher-level modification (the architecture is a

higher-level construct). Higher-level intervention is directly dependent on

higher-level modification, as well as structural visibility (it must be possible

to see the higher-level structure in order to make changes to it). Safe changes,

as well as safety itself, require higher-level modification (in order to disallow

changes below the level at which the framework. Architectural visibility

requires both the modelling of the architecture and structural visibility.

This relationship between the criteria and the objectives is summarised

in table 6.1.

Each of these criteria is tackled in sections 6.3.1.1–6.3.1.4. In each section,

a high-level set of requirements is given. Each of these requirements is then

broken down into a set of concrete evaluation criteria against which the

framework can then be easily compared. For ease of comparison, a table

summarises the relationships between requirements and evaluation criteria.

CHAPTER 6. RESULTS AND EVALUATION 115

Evaluation Criteria
Objectives Architectural High-level Safe Structural

Modelling Modification Changes Visibility

Architectural
Flexibility

• •

Higher-level
Intervention

• •

Safe Changes • •
Architectural
Visibility

• •

Table 6.1: Relating Objectives to Evaluation Criteria

6.3.1.1 Architectural Modelling

The framework treats a software system as a collection of components and

connectors. In order to determine whether the framework supports this, the

following requirements must be evaluated:

Accuracy The model of the system which is held by the software must be

accurate, corresponding exactly with the actual system which is being

modelled.

Updates The model must be updated whenever the system changes; the

accuracy must be maintained over evolutions of the system.

Relevance The model of the software system must be relevant: all the

important parts of the system must be modelled, and unimportant

parts are not to be modelled.

These requirements can be further refined to give the following evaluation

criteria. The relationships between the above requirements and the following

evaluation criteria are given in table 6.2

CHAPTER 6. RESULTS AND EVALUATION 116

Model The set of components which make up the system must be modelled

by the framework: every object (component or connector) which ap-

pears in the system must be modelled by a corresponding meta-object

in the framework’s model of the system.

Architecture The architecture of the model must correspond exactly with

the architecture of the system being modelled.

Timeliness When a change is made to either the system or the meta-model,

the correspondence between the model and the system will be broken.

When these events occur, corrections must be made as soon as possible

(n.b., no real-time constraints are made here).

Content of model The model of the software must include all the compo-

nents and connectors which make up the system, and include details of

the ports that connectors are attached to.

Requirements
Evaluation Criteria Accuracy Updates Relevance

Model • •
Architecture •

Timeliness • •
Content of Model •

Table 6.2: Architectural Modelling: Requirements and Evaluation Criteria

6.3.1.2 Higher-Level Modification

Modification can occur at many levels in a software system. Flexibility can be

achieved at code-time, compile-time, or run-time. The framework presented

here aims at run-time flexibility. The specific goals for flexibility at the

CHAPTER 6. RESULTS AND EVALUATION 117

architectural level are allowing insertion and removal of components and

connectors.

The requirements for this aim are as follows:

Run-Time Change The framework must allow and support changes at

run-time.

Flexibility It must be possible to make meaningful changes to systems using

the framework.

These requirements are met by the following evaluation criteria. The

relationships between the requirements and the evaluation criteria are sum-

marised in table 6.3.

Run-Time Change The framework must present a user interface at run-

time of the system. This interface must allow the system’s maintainer

to interact with the architecture of the system.

Component Changes It must be possible to make changes to the com-

ponents in the system (at run-time). It must be possible to remove

components from the system, and to insert new components.

Connector Changes It must be possible to change the configuration and

number of connectors in the system. It must be possible to remove

connectors from the system, and to insert connectors into the system.

CHAPTER 6. RESULTS AND EVALUATION 118

Requirements
Evaluation Criteria Run-Time Change Flexibility
Run-Time Change •

Component Changes •
Connector Changes •

Table 6.3: Higher-Level Modification: Requirements and Evaluation Criteria

6.3.1.3 Safe Changes

The framework should prevent certain kinds of unsafe changes. It is, obvi-

ously, impossible to prevent all kinds of unsafe changes being made to the

system, so it is important to be specific about the kinds of changes that

are denied. The framework is concerned with architectural modelling and

control, so, clearly, it is architectural properties of changes that are under

consideration. It is not possible, for example, to prevent that addition of com-

ponents which function incorrectly (e.g., consider a ‘sort’ component which

sorts into reverse order). Rather, the kinds of changes under consideration

are structural.

The requirements, therefore, for safety (as applied in this context), are as

follows:

Connectivity The system must operate as one whole individual system.

Connections Components and connectors must be connected properly, in

ways for which they are suitable.

The following evaluation criteria encapsulate the above requirements (the

relationship between the requirements and evaluation criteria is summarised

in table 6.4):

CHAPTER 6. RESULTS AND EVALUATION 119

Connectivity The architectural model of the system must be a single con-

nected graph.

Component Connection Each component provides methods which can be

called by the framework to determine whether the component is able

to accept pipe connections to each port. The framework must prevent

any other connections being made.

Pipe Connection Each pipe must be connected to exactly two component;

one for each of input to and output from the pipe. These connections

must be to a port which handles the relevant type of messages.

Requirements
Evaluation Criteria Connectivity Connections

Connectivity •
Component Connection •

Pipe Connection •

Table 6.4: Safe Changes: Requirements and Evaluation Criteria

6.3.1.4 Structural Visibility

In order for the framework to be useful, it must be possible for the maintainer

to interact with it. The framework must make visible the architecture of the

system which it is modelling, and allow interaction with it. The requirements

are:

Visibility The architecture of the system must be presented to the user

accurately.

CHAPTER 6. RESULTS AND EVALUATION 120

Interaction The user must be able to make changes to the architecture of

the system, including adding and removing components and connectors.

These requirements can be refined to the following evaluation criteria (the

relationship between the requirements and evaluation criteria is summarised

in table 6.5):

Display The framework must display the architecture of the system that is

being modelled.

Accuracy The display of the architecture must correspond with the model

of the architecture held by the framework, and changes to the model

must be reflected by changes to the display.

Interaction The framework must allow the modification of the system, pro-

viding means by which the user can add and remove both components

and connectors.

Requirements
Evaluation Criteria Visibility Interaction

Display •
Accuracy •

Interaction •

Table 6.5: Structural Visibility: Requirements and Evaluation Criteria

6.3.2 Evaluation

In this section, the framework is evaluated against each of the evaluation

criteria given above.

CHAPTER 6. RESULTS AND EVALUATION 121

6.3.2.1 Architectural Modelling

The architectural model used by the framework is an array (Java Vector)

of pipes. The components which make up the system are not directly rep-

resented, though methods on the Pipe object can be used to interrogate a

pipe to determine the components to which it is connected.

The four evaluation criteria are entitled Model, Architecture, Timeliness,

and Content of Model. With respect to these criteria, the framework com-

pares as follows:

Model A system is modelled primarily as an array of Pipe objects, as these

are the primary meta-objects in the framework. By interrogating these

objects using the methods getInput() and getOutput (and also the

methods getInputPort() and getOutputPort()), the framework can

determine the entire architecture of the system. In this way, there are

two layers to the model; the higher-level is the set of pipes used in the

system. This set of pipes is in turn examined to determine the set of

components which make up the functionality of the system. Thus, the

framework models every entity (component or connector) which is part

of the system under consideration. Since every significant feature of a

system is modelled, this criterion is satisfied.

Architecture When a new system is created, there are no components

and no connectors in the system. Components and connectors can

only be added to a system using methods on the framework (such as

addFilter(Pipe p, Filter f, int outPort, int inPort)) which

both update the system and the framework’s model of the system. In

CHAPTER 6. RESULTS AND EVALUATION 122

this way, the framework’s model of the system is automatically updated

in the same method as the system itself is updated. The initial (empty)

system is correctly modelled by the framework, and every change to the

system results in a change to the model, therefore this criterion is sat-

isfied.

Timeliness When a method which updates the system is called, the same

method also updates the framework’s model of the system. Although

no real-time guarantees can be made, the two representations of the

system are updated closely enough in order to satisfy this criteria. For

example, one method which adds a filter is shown in figure 6.4, where

the system and the model are updated in consecutive statements. In

every case of update of the system the change to the model occurs

within the method which makes the change to the system, therefore

this criterion is satisfied for non-real-time systems.

Content of Model As mentioned above, the model of the system includes

firstly all the pipes which make up the system, and secondly all the

components in the system. These entities, along with the relationships

between them, are sufficient to completely model the system. As the

empty system is correctly modelled, and each change to the model is

exactly equivalent, this criterion is satisfied.

Each of the four criteria in this section (Model, Architecture, Timeliness,

and Content of model) has been satisfied to the degree stated above.

CHAPTER 6. RESULTS AND EVALUATION 123

6.3.2.2 Higher-Level Modification

The evaluation criteria for higher-level modification are Run-Time Change,

Component Changes, and Connector Changes. Comparing the framework to

these criteria yields the following:

Run-Time Change The framework’s graphical user interface presents a

run-time visualisation of the architecture of the system. This allows the

user, using menus, to use the meta-object protocol of the framework

to make architectural changes to the system at run-time. The user

interface calls the methods shown in figure 6.5 in order to perform

these operations. As it is possible to make changes at run-time, this

criterion is satisfied.

Component Changes Components can be added to and removed from sys-

tems using the run-time interface, as described above and shown in fig-

ure 6.5. This criterion is satisfied in that components can be added and

removed at run-time. However, it is not possible to replace a compo-

nent and maintain state information held within that component (for

example, if a component which counts the messages which pass through

it is replaced, the previous total will be lost).

Connector Changes Connectors can be added to and remove from systems

in the same way, therefore this criterion is satisfied.

Each of the three criteria in this section (Run-time change, Component

change, and Connector change) has been satisfied to the degree stated above.

CHAPTER 6. RESULTS AND EVALUATION 124

6.3.2.3 Safe Changes

The evaluation criteria for safety are Connectivity, Component Connection,

and Pipe Connection. In this section, the framework is compared to these

evaluation criteria.

Connectivity When components are added, they must be connected (via

a pipe) to a component which is already part of the system. Pipes

can only be added between components which are part of the system.

So adding entities (components or connectors) is safe. However, if the

removal of a pipe breaks the system into two disconnected systems, the

framework loses control of one of the systems. The framework does

not prevent this kind of unsafe change occurring. This criterion is only

partly satisfied.

Component Connection Each component provides a pair of ‘safety’ meth-

ods: canActivateInputPort(int portNo), which is called for input

ports, and canActivateOutputPort(int portNo) for output ports,

which are called by the framework to determine whether the compo-

nent is capable of being connected in the given manner. This allows

the framework to forbid certain kinds of unsafe changes, and so this

criterion is satisfied

Pipe Connection When a pipe is added, exactly two components and two

ports must be specified, and it is to these components that the new

pipe is connected. If a component is removed, any pipes which are

would be left disconnected at either end are removed from the system.

CHAPTER 6. RESULTS AND EVALUATION 125

Each of the three criteria in this section (Connectivity, Component con-

nection, and Pipe connection) has been satisfied to the degree stated above.

6.3.2.4 Structural Visibility

The evaluation criteria for structural visibility are Display, Accuracy, and

Interaction. The framework is measured against these as follows:

Display The framework presents a graphical representation of the system

to the user. This criterion is satisfied.

Accuracy The view of the architecture presented to the user is directly

derived from the model held by the framework. As shown in sec-

tion 6.3.2.1, this model is an accurate model of the system’s archi-

tecture. Hence, the view presented to the user is accurate, and this

criterion is satisfied.

Interaction As described in section 6.3.2.2, the user interface allows the

user to modify the system which is being modelled by the framework.

Therefore this criterion is satisfied.

Each of the three criteria in this section (Display, Accuracy, and Interac-

tion) has been satisfied to the degree stated above.

6.4 Summary

This chapter has presented the results of the case studies, and the framework.

From the objectives presented in chapter 3, a detailed set of evaluation cri-

teria have been defined. The framework has been evaluated against this

CHAPTER 6. RESULTS AND EVALUATION 126

set of evaluation criteria. This evaluation is summarised in table 6.6. The

framework successfully encapsulates a model of software architecture (rep-

resenting a system by modelling the components and the connectors which

constitute it) and allows the maintainer to modify software at the architec-

tural level. Some kinds of unsafe change are forbidden by the framework,

though it is possible to make changes which result in a system becoming

irreparably fragmented. Because of this, the framework fails to achieve all

of the ‘safety’ requirements. The framework presents a graphical interface

which allows the maintainer to make changes to a system interactively and

at run-time.

Objective Evaluation Criteria Success?

Architectural Modelling Model Yes
Architecture Yes
Timeliness Yes
Content of Model Yes

Higher-Level Modification Run-Time Change Yes
Component Changes Yes
Connector Changes Yes

Safe Changes Connectivity No
Component Connection Yes
Pipe Connection Yes

Structural Visibility Visibility Yes
Interaction Yes

Table 6.6: Evaluation Summary

CHAPTER 6. RESULTS AND EVALUATION 127

i

Cashier

Pump

Instantiates

Instantiates

isFree(boolean)

Cashier

Pump

free()

load(amount)

load(amount)

free()

IsFree(boolean)

Figure 6.3: Implementation of the Gas Station Example

CHAPTER 6. RESULTS AND EVALUATION 128

public void addFilter(Pipe p, Filter f,

int outPort, int inPort)

throws PortInactiveException

{

int thePipeInd;

synchronized (this.pipes)

{

thePipeInd = this.pipes.indexOf(p);

}

// pause the pipe

p.pauseInput();

p.pauseOutput();

Filter oldF = p.getOutput();

int oldPort = p.getOutputPort();

p.setOutputDestination(f, outPort);

// Update the system

Pipe newP = new Pipe(f, inPort, oldF, oldPort);

// update the model of the system

this.pipes.insertElementAt(newP, thePipeInd+1);

newP.start();

p.resumeInput();

p.resumeOutput();

this.updateSystemView();

}

Figure 6.4: Adding a filter to a system

CHAPTER 6. RESULTS AND EVALUATION 129

public void addFilter(Pipe p, Filter f,

int outPort, int inPort)

public void removePipe(Pipe p)

public void removeFilter(Filter f)

public void newPipe(Filter inputFilter, int inPort,

Filter outputFilter, int outPort)

public void addFilter(Pipe p) throws PortInactiveException

Figure 6.5: Methods which update a system

Chapter 7

Conclusion

7.1 Introduction

This chapter summarises the work that has been described in the rest of this

thesis. Further, this chapter makes some suggestions for work that could be

done in the future to further tackle some of the problems addressed here.

7.2 Problems and Objectives

In the problems which have been addressed were identified in chapter 3:

architectural flexibility, higher-level intervention, safe changes, and architec-

tural visibility.

130

CHAPTER 7. CONCLUSION 131

7.3 Method

In order to tackle the above problems and achieve the objectives, chapter 4

identified a potential solution, consisting of a reflective framework for man-

aging object-oriented software evolution. The concepts underlying the oper-

ation of such a framework were identified, in particular reflection. The three

case studies which were used to motivate and evaluate the framework were

described. The framework models the architecture of a software system by

representing the connectors by which communication takes place, and using

a meta-object protocol to interact with the system.

7.4 Process

In chapter 5, the research process was shown. The development of the frame-

work and the associated case studies was described, and the model of ar-

chitecture used in the framework was shown. The implementation of the

framework was shown in detail, and the two main categories of entity (pipe

and filter) described. The framework has the following criteria for success:

• The framework must allow the entities which make up a software sys-

tem, and the means by which these entities interact, to be modified at

run-time.

• The framework must allow intervention at a higher level of abstraction

than source code statements.

• The framework must ensure that safety properties are maintained.

CHAPTER 7. CONCLUSION 132

• The structure of a software system implemented using the framework

must be made visible at run-time.

These criteria were later used to determine the way in which the frame-

work was evaluated.

The development of the case studies and the framework gave a greater

understanding of the problems and issues involved in the satisfaction of the

objectives identified in chapter 3. For example, the development of the gas

station framework provided insights into managing the modelling of systems

with multiple interconnections between components.

7.5 Results and Evaluation

In chapter 6, the results of the research were presented. The case study re-

sults were presented first. A detailed set of objectives were developed, and

the framework was examined with respect to these, which can be summarised

as architectural flexibility, higher-level intervention, safe changes, and archi-

tectural visibility.

Each of these objectives was broken down into a set of requirements and

then into concrete evaluation criteria, summarised as follows;

Architectural Modelling Model, architecture, timeliness, and content of

model.

Higher-Level Modification Run-time change, component changes, and

connector changes.

Safe Changes Connectivity, component connection, and pipe connection.

CHAPTER 7. CONCLUSION 133

Structural Visibility Display, accuracy, and interation.

The framework was compared against these evaluation criteria, and the

results are summarised in figure 7.1. This table shows that the framework

satisfies the evaluation criteria, apart from the connectivity evaluation crite-

ria in the “safe changes” section. This criterion requires greater protection

against the breaking of a system into two or more disconnected parts when

a component or a connector is removed. In the cases of the other evaluation

criteria, the framework behaves satisfactorily. For example, the framework

contains a model of the architecture which is complete enough to allow a

maintainer to interact with the system at the architectural level.

Objective Success?
Architectural Modelling Yes
Higher-Level Modification Yes
Safe Changes Partly
Structural Visibility Yes

Table 7.1: Evaluation Summary

The problems which were identified in chapter 3 have thus been addressed

satisfactorily, with the exception that it is still possible to make some kinds

of unsafe changes to a system which is implemented using the framework.

7.6 Further Work

There are two categories of further work; work which can be done in order

to further satisfy the objectives given here, and extensions in new directions.

CHAPTER 7. CONCLUSION 134

7.6.1 Greater Satisfaction

As shown in chapter 6, the framework does not entirely fulfil the objectives

given in chapter 3, in particular with respect to safety.

In order to produce a framework which better satisfies the objectives

given above, the following work would be useful:

• A greater understanding of the concepts of safety, and how further cat-

egories of safety can be ensured, in order to determine whether the

framework is addressing the problems which are important in system

operation. Further work in this area would address the areas of sys-

tem integrity, and how a system should behave when components are

removed.

• An extended meta-object protocol, allowing greater examination of a

system by a user of the framework. This work would involve increasing

the amount of information recorded by the system, for example the

history of connections between components.

• Allowing the framework to handle a greater range of architectural

styles.

• Handling replacement of components; allowing the upgrading of a com-

ponent during its operation without losing its data content.

The framework does not satisfy all the evaluation criteria for safety. This

became apparent when carrying out the gas station case study. The lack of

proper safety checking can lead to unsafe modifications being carried out,

CHAPTER 7. CONCLUSION 135

and thus lead to undesired behaviour of a system. In order to improve the

framework to satisfy this goal, extra checks could be added to the methods

which are used to add and remove components and connectors, to determine

whether an unsafe operation has been attempted. Further, a separate safety-

monitoring entity could also be created, which would constantly monitor the

state of the system and prevent unsafe changes being made.

The meta-object protocol could be extended in many ways. Perhaps most

useful would be including operations to handle the transfer of internal state

between instantiations of components when a component is replaced. This

would allow components to be upgraded without causing a loss of state. In

order to tackle this, it would be necessary to introduce a common mecha-

nism for representing the internal state of a component in a portable manner,

to allow a new component to be ‘primed’ with the state of an earlier ver-

sion. Particular attention would have to be paid to cases where the internal

representation of state differs between versions of a component.

The framework currently handles systems which are exclusively imple-

mented in the pipe-and-filter style. There are many other styles, and many

systems use more than one style. To allow this, the framework would have

to be extended to include different types of connectors and components.

Further safety measures would be required to prevent incompatibilities (for

example, a pipe could not be connected to a component which only allows

call-and-return connectors). This could be achieved by segmenting systems

into parts, each of which is implemented in one particular style. Each of

these parts could then be composed into one final system.

CHAPTER 7. CONCLUSION 136

7.6.2 New Directions

Work which can lead the framework to satisfy further objectives could in-

volve:

• Allowing scripting, i.e., automatable construction of systems from high-

level descriptions. For example, these descriptions could be given in

Darwin.

• The use of patterns, as high-level templates for systems could be intro-

duced.

• Monitoring the evolution of a system, in order to allow undoing of

changes, and ‘snapshots’ of the state of a system.

7.7 Summary

This chapter has summarised the work conducted. The content of the thesis

was described, and then a set of ideas for further work presented. The main

result of this work is a reflective object-oriented framework for enabling and

managing run-time software evolution.

Appendix A

Implementation Details

A.1 Pipes

This section shows the Java interface to the Pipe class, described in sec-

tion 4.4.1.

public class Pipe extends Thread

{

/** Constructor: by default, messages are not echoed.

* @param sender The object which writes to the pipe

* @param receiver The object which receives data

* from the pipe

*/

public Pipe(Filter sender, int senderPortNo,

Filter receiver, int receiverPortNo)

throws PortInactiveException

137

APPENDIX A. IMPLEMENTATION DETAILS 138

/** Constructor which allows specification of verbosity

* (whether messages are echoed to the screen)

* @param sender The object which writes to the pipe

* @param receiver The object which receives data

* from the pipe

* @param beVerbose if true, echo all messages

* to standard output

*/

public Pipe(Filter sender, int senderPortNo,

Filter receiver, int receiverPortNo,

boolean beVerbose)

throws PortInactiveException

/** Determine which <tt>Filter</tt> is connected to the

* input of the pipe.

*/

public synchronized Filter getInput()

/** Determine which port input is coming from/

*/

public int getInputPort()

APPENDIX A. IMPLEMENTATION DETAILS 139

/** Determine which <tt>Filter</tt> is connected to the

* output of the pipe.

*/

public synchronized Filter getOutput()

/** Determine which port the output is going to.

*/

public int getOutputPort()

/** Pause communication from the pipe.

*/

public synchronized void pauseOutput()

/** Pause communication to the pipe

* (i.e., accept no more input).

*/

public synchronized void pauseInput()

/** Determine whether the pipe’s input is paused.

*/

public boolean inputIsPaused()

/** Determine whether the pipe’s output is paused.

*/

APPENDIX A. IMPLEMENTATION DETAILS 140

public boolean outputIsPaused()

/** Resume communication to the pipe (i.e., accept input).

*/

public synchronized void resumeInput()

/** Resume communication from the pipe (i.e., resume sending

* things.

*/

public synchronized void resumeOutput()

/** Change the destination for output from the pipe.

*/

public synchronized void setOutputDestination(

Filter newOutput,

int newOutPort)

throws PortInactiveException

/** Set the source for input to the pipe

*/

public synchronized void setInputSource(Filter newInput,

int newInPort)

throws PortInactiveException

/** kill the pipe

APPENDIX A. IMPLEMENTATION DETAILS 141

*/

public void terminate()

public boolean hasMessages()

/** Start the pipe going.

* Calls <tt>run</tt> for the input and

* output components (if they are

* not already executing).

*/

public void run()

/** Add a pipe in front of this pipe.

*/

public void addPipe (Pipe p)

}

A.2 Filter

This section shows the interface to the Filter class, as described in sec-

tion 4.4.1.1.

package newarch;

/** Filter: an abstract class of objects that can be

APPENDIX A. IMPLEMENTATION DETAILS 142

* connected via a <tt>Pipe</tt>.

* The programmer should sub-class <tt>Filter</tt> and provide

* the methods from this class and the <tt>run</tt> method

* from the <tt>Thread<tt> class.

* @see java.lang.Thread

* @see Pipe

* @author Stephen Rank

*/

public abstract class Filter extends Thread

{

/** Called by the pipe to query whether the object is ready

* to send a message.

*/

public abstract boolean hasMessages(int outPortNo);

/** Called by the pipe to obtain a message

*/

public abstract Object send(int outPortNo);

/** Called by the pipe to query whether the object is ready

* to receive a message.

*/

public abstract boolean isReadyToReceive(int inPortNo);

APPENDIX A. IMPLEMENTATION DETAILS 143

/** Called by the pipe with the message object

* as a parameter.

* @param message: the Object to send as a message

*/

public abstract void receive(int inPortNo,Object message);

/** Called by a Pipe before activating ports. Returns

* true iff the given port number can be activated.

*/

public abstract boolean canActivateInputPort(int portNo);

public abstract boolean canActivateOutputPort(int portNo);

/** Called by a pipe to perform the activation

*/

public abstract void activateInputPort(int portNo);

public abstract void activateOutputPort(int portNo);

/** This method should clean up and end the thread

*/

public abstract void terminate();

}

Bibliography

[Abelson et al., 1985] Abelson, H., Sussman, G. J., and Sussman, J. (1985).
Structure and Interpretation of Computer Programs. Electrical Engineer-
ing and Computer Science Series. M.I.T. Press.

[Alexander et al., 1977] Alexander, C., Ishikawa, S., Silverstein, M., Jacob-
son, M., Fiksdahl-King, I., and Angel, S. (1977). A Pattern Language:
Towns–Buildings–Construction. Oxford University Press.

[Amador et al., 1991] Amador, J., de Vicente, B., and Alonso, A. (1991).
Dynamically replaceable software: A design method. In van Lamsweerde,
A. and Fuggetta, A., editors, Proceedings of the 3rd European Software En-
gineering Conference, E.S.E.C., volume 550 of Lecture Notes in Computer
Science, pages 210–228, Milan, Italy. Springer-Verlag.

[Banker and Slaughter, 1997] Banker, R. D. and Slaughter, S. A. (1997). A
field study of scale economies in software maintenance. Management Sci-
ence, 43(12):1709–1725. December.

[Bass et al., 1998] Bass, L., Clements, P., and Kazman, R. (1998). Software
Architecture in Practice. S.E.I. Series in Software Engineering. Addison-
Wesley.

[Baxter and Pidgeon, 1997] Baxter, I. and Pidgeon, C. W. (1997). Software
change through design maintenance. In Proceedings of the 1997 Interna-
tional Conference on Software Maintenance (ICSM ’97), pages 250–259.
I.E.E.E.

[Beck and Johnson, 1994] Beck, K. and Johnson, R. (1994). Patterns gen-
erate architectures. In Proceedings of ECOOP 1994, Lecture Notes in
Computer Science, pages 139–149. Springer-Verlag.

[Bennett and Rajlich, 2000] Bennett, K. H. and Rajlich, V. T. (2000). A
staged model for the software life cycle. IEEE Computer, 33(7):66–71.

144

BIBLIOGRAPHY 145

[Bihari and Schwan, 1991] Bihari, T. E. and Schwan, K. (1991). Dynamic
adaptation of real-time software. A.C.M. Transactions on Computer Sys-
tems, 9(2):143–174.

[Boehm, 1988] Boehm, B. (1988). A spiral model for software development
and enhancement. Computer, 21(5):61–72.

[Bosch, 1999] Bosch, J. (1999). Evolution and composition of reusable assets
in product-line architectures: A case study. In Proceedings of the First
Working IFIP Conference on Software Architecture, pages 321–340.

[Boyapati, 2002] Boyapati, C. (2002). Towards an extensible virtual ma-
chine. Technical Report MIT-LCS-TR-842, MIT Laboratory for Computer
Science.

[Brandt, 1995] Brandt, S. (1995). Reflection in a statically typed and
object oriented language – A meta-level interface for BETA. Techni-
cal report, Computer Science Department, Aarhus University, Denmark.
http://www.daimi.au.dk/~beta/Papers/sbrandt/betamli.html.

[Brandt and Schmidt, 1995] Brandt, S. and Schmidt, R. W. (1995). The de-
sign of a meta-level architecture for the BETA language. In Proceedings of
the ECOOP Workshop on Advances in Metaobject Protocols and Reflection
(META’95).

[Brooks, 1995] Brooks, F. P. (1995). The Mythical Man-Month. Addison-
Wesley.

[Burd and Munro, 1998] Burd, E. and Munro, M. (1998). Assisting hu-
man understanding to aid the targeting of necessary reengineering work.
In Proceedings of the Fifth Working Conference on Reverse Engineering
(WCRE’98), pages 2–9, Honolulu, Hawaii. IEEE Computer Society.

[Buschmann, 1996] Buschmann, F. (1996). Reflection. In Vlissides, J. M.,
Coplien, J. O., and Kerth, N. L., editors, Pattern Languages of Program
Design, pages 271–294. Addison Wesley.

[Cazzola et al., 1998] Cazzola, W., Savigni, A., Sosio, A., and Tisato, F.
(1998). Architectural reflection: Bridging the gap between a running sys-
tem and its specification. In Proceedings of the Second Euromicro Confer-
ence on Software Maintenance and Reengineering, Florence, Italy.

[Danvy and Malmkjær, 1988] Danvy, O. and Malmkjær, K. (1988). Inten-
sions and extensions in a reflective tower. In Proceedings of LFP88, the

BIBLIOGRAPHY 146

1988 ACM Conference on Lisp and Functional Programming, pages 327–
341.

[Dijkstra, 1968] Dijkstra, E. W. (1968). The structure of the “T.H.E.”-
multiprogramming system. Communications of the A.C.M., 11(5):341–
346. Reprinted in Communications of the A.C.M. 26(1), January 1983.

[Ducasse and Günter, 1998] Ducasse, S. and Günter, M. (1998).
Coordination of active objects by means of explicit connec-
tors. In Proceedings of the DEXA’98 Workshop. Available on
the World-Wide Web at http://www.iam.unibe.ch/~ducasse/

PubHTML/newpage.html#repository.

[Fayad and Schmidt, 1997] Fayad, M. E. and Schmidt, D. C. (1997).
Object-oriented application frameworks. Communications of the A.C.M.,
40(10):32–38.

[Fyson and Boldyreff, 1998] Fyson, M. J. and Boldyreff, C. (1998). Using
application understanding to support impact analysis. Journal of Software
Maintenance: Research and Practice, 10(2):93–110.

[Gacek et al., 1995] Gacek, C., Abd-Allah, A., Clark, B. K., and Boehm, B.
(1995). On the definition of software system architecture. In Garlan, D.,
editor, Proceedings of the First International Workshop on Architectures
for Software Systems, pages 85–95, Seattle, Washington.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

[Garlan, 1998] Garlan, D. (1998). Higher-order connectors. Pre-
sented at the Workshop on Compositional Software Architec-
tures, Monterey, California. Available on the World-Wide Web at
http://www.cs.cmu.edu/afs/cs/project/able/ftp/hoc-omg98/

hoc-omg98.pdf.

[Garlan et al., 1995] Garlan, D., Allen, R., and Ockerbloom, J. (1995). Ar-
chitectural mismatch or why it’s hard to build systems out of existing
parts. In Proceedings of the Seventeenth Interntional Conference on Soft-
ware Engineering, pages 179–185, Seattle, Washington, U.S.A.

[Garlan and Shaw, 1994] Garlan, D. and Shaw, M. (1994). An introduc-
tion to software architecture. Technical Report CMU/SEI-94-TR-21 or

BIBLIOGRAPHY 147

ESC-TR-94-24, Software Engineering Institute, Carnegie Mellon Univer-
sity. Also published in Advances in Software Engineering Volume 1, ed.
V. Ambrolia and G. Tortora, 1993.

[Goldberg and Robson, 1983] Goldberg, A. and Robson, D. (1983).
Smalltalk-80: The Language and its Implementation. Addison-Wesley.

[Golm and Kleinöder, 1998] Golm, M. and Kleinöder, J. (1998). metaXa
and the future of reflection. In Proceedings of the Workshop on Reflec-
tive Programming in C++ and Java. Available on the World-Wide Web at
http://www4.informatik.uni-erlangen.de/TR/pdf/TR-I4-98-09.pdf.

[Heineman, 1998] Heineman, G. T. (1998). Adaptation and software archi-
tecture. In Proceedings of the 3rd Annual International Workshop on Soft-
ware Architecture (ISAW-3), pages 61–64, Orlando, Florida.

[I.E.E.E., 1994] I.E.E.E. (1994). I.E.E.E. Software Engineering Standards
Collection. I.E.E.E. Press.

[Jackson, 1998] Jackson, M. (1998). Will there ever be software engineering?
IEEE Software, 15(1):36–39.

[Johnson, 1997] Johnson, R. E. (1997). Frameworks = (Components + pat-
terns). Communications of the A.C.M., 40(10):39–42.

[Kernighan and Pike, 1999] Kernighan, B. W. and Pike, R. (1999). The
Practice of Programming. Addison Wesley Longman.

[Kiczales, 1996] Kiczales, G. (1996). Beyond the black box: Open imple-
mentation. IEEE Software, 13(1):8–11.

[Kiczales et al., 1993] Kiczales, G., Ashley, J. M., Rodriguez, L., Vahdat, A.,
and Bobrow, D. G. (1993). Metaobject protocols: Why we want them and
what else they can do. In Paepcke, A., editor, Object-Oriented Program-
ming: The CLOS Perspective, pages 101–118. M.I.T. Press.

[Kiczales et al., 1991] Kiczales, G., des Rivières, J., and Bobrow, D. G.
(1991). The Art of the Metaobject Protocol. M.I.T. Press.

[Kirby et al., 1998] Kirby, G., Morrison, R., and Stemple, D. (1998). Lin-
guistic reflection in Java. Software—Practice and Experience, 28(10):1045–
1077.

BIBLIOGRAPHY 148

[Kramer and Magee, 1985] Kramer, J. and Magee, J. (1985). Dynamic con-
figuration for distributed systems. I.E.E.E. Transactions on Software En-
gineering, SE-11(4):424–436.

[Lehman, 1979] Lehman, M. M. (1979). On understanding law, evolution
and conservation in the large program, life cycle. Journal of Systems and
Software, 1:213–221.

[Lehman, 1989] Lehman, M. M. (1989). Uncertainty in computer application
and its control through the engineering of software. Journal of Software
Maintenance: Research and Practice, 1(1):3–27.

[Lehman, 1996] Lehman, M. M. (1996). Laws of software evolution revisited.
In Proceedings of EWSPT96, number 1149 in Lecture Notes in Computer
Science, pages 108–124. Springer-Verlag.

[Lehman, 1997] Lehman, M. M. (1997). Feedback in the software process.
Position Paper at the SEA Workshop: Research Directions in Software
Engineering, Imperial College, London.

[Lehman, 1998a] Lehman, M. M. (1998a). FEAST, FEAST/1 and
FEAST/2. Feedback, Evolution And Software Technology, Magnet Semi-
nar, Tel Aviv, Israel. Also presented at the University of Durham, January
1999.

[Lehman, 1998b] Lehman, M. M. (1998b). Software’s future: Managing evo-
lution. IEEE Software, 15(1):40–44.

[Lehman and Belady, 1985a] Lehman, M. M. and Belady, L. A. (1985a). Pro-
gram Evolution: Processes of Software Change. Number 27 in APIC Stud-
ies in Data Processing. Academic Press.

[Lehman and Belady, 1985b] Lehman, M. M. and Belady, L. A. (1985b).
Programs, life cycles and laws of software evolution. In Program Evo-
lution: Processes of Software Change, number 27 in APIC Studies in Data
Processing, pages 393–449.

[Lehman et al., 1997] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry,
D. E., and Turski, W. M. (1997). Metrics and laws of software evolution—
The nineties view. In Eman, K. E. and Madhavji, N. H., editors, El-
ements of Software Process Assessment and Improvement, pages 20–32,
Albuquerque, New Mexico. IEEE CS Press.

BIBLIOGRAPHY 149

[Lientz and Swanson, 1980] Lientz, B. P. and Swanson, E. B. (1980). Soft-
ware Maintenance Management: A Study of the Maintenance of Computer
Application Software in 487 Data Processing Organizations. Addison-
Wesley.

[Luckham et al., 1995] Luckham, D. C., Kenney, J. J., Augustin, L., Vera,
J., Bryan, D., and Mann, W. (1995). Specification and analysis of system
architecture using Rapide. IEEE Transactions on Software Engineering,
21(4):336–359.

[Lung et al., 1997] Lung, C.-H., Bot, S., Kalaichelvan, K., and Kazman, R.
(1997). An approach to software architecture analysis for evolution and
reusability. In Proceedings of CASCON ’97, Toronto, Ontario, Canada.

[Maeda et al., 1997] Maeda, C., Lee, A., Murphy, G., and Kiczales, G.
(1997). Open implementation analysis and design. In Proceedings of
the 1997 Symposium on Software Reusability, pages 44–52, Boston, Mas-
sachusetts, United States. ACM Press.

[Magee et al., 1995] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.
(1995). Specifying distributed software architectures. In Proceedings of
5th European Software Engineering Conference (ESEC 95), Sitges, Spain.

[Mätzel and Bischofberger, 1996] Mätzel, K.-U. and Bischofberger, W.
(1996). Evolution of object systems – How to tackle the slippage problem.
In Mätzel, K.-U. and Frei, H. P., editors, Computer Science Research at
Ubilab, Research Projects 1995/96; Proceedings of the Ubilab Conference
’96, pages 99–119, Universitätsverlag Konstanz.

[McConnell, 1993] McConnell, S. (1993). Code Complete: A Practical Hand-
book of Software Construction. Microsoft Press.

[McDermid, 1991] McDermid, J. A., editor (1991). Software Engineers Ref-
erence Book. Butterworth-Heinemann.

[Mendhekar and Friedman, 1993] Mendhekar, A. and Friedman, D. P.
(1993). Towards a theory of reflective programming languages. In Pro-
ceedings of the 1993 OOPSLA Workshop on Reflection and Meta-level Ar-
chitectures.

[Oreizy, 1998] Oreizy, P. (1998). Issues in modeling and analyzing dynamic
software architectures. In Proceedings of the International Workshop on
the Role of Software Architecture in Testing and Analysis, Marsala, Sicily,
Italy.

BIBLIOGRAPHY 150

[Oreizy and Medvidovic, 1998] Oreizy, P. and Medvidovic, N. (1998).
Architecture-based runtime software evolution. In Proceedings of the In-
ternational Conference on Software Engineering 1998 (ICSE’98), Kyoto,
Japan.

[Oreizy et al., 1998a] Oreizy, P., Medvidovic, N., and Taylor, R. N. (1998a).
Software architecture and component technologies: Bridging the gap. In
Proceedings of the OMG-DARPA Workshop on Compositional Software
Architectures, Monterey, California.

[Oreizy et al., 1998b] Oreizy, P., Rosenblum, D. S., and Taylor, R. N.
(1998b). On the role of connectors in modelling and implementing software
architectures. Technical Report UCI-ICS-98-04, Department of Informa-
tion and Computer Science, University of California, Irvine, California.

[Oreizy and Taylor, 1998a] Oreizy, P. and Taylor, R. N. (1998a). On the role
of software architectures in runtime system reconfiguration. In Proceed-
ings of the International Conference on Configurable Distributed Systems
(ICCDS 4), Annapolis, Maryland.

[Oreizy and Taylor, 1998b] Oreizy, P. and Taylor, R. N. (1998b). On the
role of software architectures in runtime system reconfiguration. I.E.E.
Proceedings-Software, 145(5):137–145.

[Parnas, 1972] Parnas, D. L. (1972). On the criteria to be used in decompos-
ing systems into modules. Communications of the A.C.M., 15(12):1053–
1058.

[Perry and Wolf, 1992] Perry, D. E. and Wolf, A. L. (1992). Foundations for
the study of software architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40–52.

[Pigoski, 1996] Pigoski, T. M. (1996). Practical Software Maintenance. John
Wiley and Sons.

[Prieto-Diaz and Neighbours, 1986] Prieto-Diaz, R. and Neighbours, J. M.
(1986). Module interconnection languages. Journal of Systems and Soft-
ware, 6:307–334.

[Ribeiro-Justo and Cunha, 1999] Ribeiro-Justo, G. R. and Cunha, P. R. F.
(1999). An architectural application framework for evolving distributed
systems. Journal of Systems Architecture, 45(15):1375–1384.

BIBLIOGRAPHY 151

[Rubini, 1997] Rubini, A. (1997). The sysctl interface.
Linux Journal, 41. Available on the World-Wide Web at
http://www2.linuxjournal.com/lj-issues/issue41/2365.html.

[Sabry, 1998] Sabry, A. (1998). A programming language per-
spective to compositional software architectures. In Work-
shop on Compositional Software Architectures. Available at
http://www.objs.com/workshops/ws9801/papers/paper042.html.

[Schneidewind et al., 1999] Schneidewind, N., Kitchenham, B., Niessick, F.,
Singer, J., von Mayrhauser, A., and Yang, H. (1999). Resolved: “Software
maintenance is nothing more than another form of development”. In Pro-
ceedings of the International Conference on Software Maintenance 1999,
pages 63–64, Oxford, U.K. I.E.E.E., I.E.E.E. Computer Society Press.

[Schneidewind, 1987] Schneidewind, N. F. (1987). The state of soft-
ware maintenance. I.E.E.E. Transactions on Software Engineering, SE-
13(3):303–310.

[Segal and Frieder, 1989] Segal, M. E. and Frieder, O. (1989). Dynamic pro-
gram updating: A software maintenance technique for minimizing soft-
ware downtime. Journal of Software Maintenance: Research and Practice,
1(1):59–79.

[Shaw, 1993] Shaw, M. (1993). Procedure calls are the assembly language
of software interconnection: Connectors deserve first class status. Techni-
cal Report CMU/SEI-94-TR-2, Software Engineering Institute, Carnegie
Mellon University. Presented at the Workshop of Software Design, 1994.
Published in the proceedings: LNCS 1994.

[Shaw, 1995] Shaw, M. (1995). Architectural issues in software reuse: It’s
not just the functionality, it’s the packaging. In Proceedings of the I.E.E.E.
Symposium on Software Reusability.

[Shaw et al., 1995] Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young,
D. M., and Zelesnik, G. (1995). Abstractions for software architecture
and tools to support them. IEEE Transactions on Software Engineering,
21(4):314–335.

[Shaw and Garlan, 1994] Shaw, M. and Garlan, D. (1994). Characteristics of
higher-level languages for software architectures. Technical Report CMU-
CS-94-210, Department of Computer Science, Carnegie Mellon University.

BIBLIOGRAPHY 152

[Shaw and Garlan, 1996] Shaw, M. and Garlan, D. (1996). Software Archi-
tecture: Perspectives on an Emerging Discipline. Prentice Hall.

[Smith, 1982] Smith, B. C. (1982). Reflection and Semantics in a Procedural
Language. PhD thesis, M.I.T. Laboratory for Computer Science. M.I.T.
Technical Report MIT/LCS/TR-272.

[Smith, 1999] Smith, D. D. (1999). Designing Maintainable Software.
Springer-Verlag.

[Sobel and Friedman, 1996] Sobel, J. M. and Friedman, D. P. (1996). An
introduction to reflection-oriented programming. In Proceedings of Reflec-
tion ’96, San Francisco.

[Steindl, 1997] Steindl, C. (1997). Reflection in Oberon. In Mössenböck,
H., editor, Modular Programming Languages: Joint Modular Programming
Languages Conference, JMLC’97, number 1204 in Lecture Notes in Com-
puter Science, pages 282–296, Linz, Austria. Springer-Verlag.

[Szyperski, 1997] Szyperski, C. (1997). Component Software: Beyond
Object-Oriented Programming. A.C.M. Press.

[Takang and Grub, 1996] Takang, A. A. and Grub, P. A. (1996). Software
Maintenance: Concepts and Practice. International Thomson Computer
Press.

[von Mayrhauser and Vans, 1995] von Mayrhauser, A. and Vans, A. (1995).
Program comprehension during software maintenance and evolution. IEEE
Computer, 28(8):44–55.

[Welch and Stroud, 1998] Welch, I. and Stroud, R. (1998). Adaptation
of connectors in software architectures. In ECOOP’98 Workshop on
Component-Oriented Programming, Brussels, Belgium.

[Welch and Stroud, 2000] Welch, I. and Stroud, R. (2000). Using reflection
as a mechanism for enforcing security policies in mobile code. In Proceed-
ings of ESORICS.

[Welch and Stroud, 2001] Welch, I. and Stroud, R. (2001). Kava – Using
bytecode rewriting to add behavioural reflection to java. In Proceedings of
USENIX Conference on Object-Oriented Technology.

